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Abstract— A major challenge in cooperative sensing is to
weight the measurements taken from the various sources to
get an accurate result. Ideally, the weights should be inversely
proportional to the error in the sensing information. However,
previous cooperative sensor fusion approaches for autonomous
vehicles use a fixed error model, in which the covariance of
a sensor and its recognizer pipeline is just the mean of the
measured covariance for all sensing scenarios. The approach
proposed in this paper estimates error using key predictor
terms that have high correlation with sensing and localization
accuracy for accurate covariance estimation of each sensor
observation. We adopt a tiered fusion model consisting of local
and global sensor fusion steps. At the local fusion level, we
add in a covariance generation stage using the error model
for each sensor and the measured distance to generate the
expected covariance matrix for each observation. At the global
sensor fusion stage we add an additional stage to generate
the localization covariance matrix from the key predictor term
velocity and combines that with the covariance generated from
the local fusion for accurate cooperative sensing. To showcase
our method, we built a set of 1/10 scale model autonomous
vehicles with scale accurate sensing capabilities and classified
the error characteristics against a motion capture system.
Results show an average and max improvement in RMSE when
detecting vehicle positions of 1.42x and 1.78x respectively in a
four-vehicle cooperative fusion scenario when using our error
model versus a typical fixed error model.

I. INTRODUCTION

Cooperative sensing has been proposed to mitigate sensor

coverage and obstruction issues in autonomous vehicles.

Cooperative sensing occurs when multiple connected au-

tonomous vehicles (CAVs) combine their data together to get

a more accurate picture of the world around each individual

CAV [10]. Cooperative sensor fusion has been proposed

to improve a number of systems in autonomous vehicle

including localization [15], [4], [8] and perception [7], [3].

Additional connected infrastructure sensors (CISs) that are

placed throughout the city (such as traffic cameras) could be

used to gather more data for the cooperative sensors fusion

and strengthen the robustness [3].

Most prior works on cooperative fusion consider a fixed

error model, e.g. creating a covariance matrix for sensor

error using the mean error seen in all scenarios. However,

assuming sensor errors to be fixed can result in poor weight-

ing of observations in cooperative fusion. For instance, let
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us consider a scenario where two identical cameras report

the distance to an object. Sensor A is 5 meters away from

the object and sensor B is 200 meters away. Clearly we

should know that the closer camera should be weighted

more heavily. However, a fixed error model will not consider

this problem and will weight the data the same. Consider a

second scenario where vehicles A and B have a localizer

that works well when traveling slow but badly at a faster

speed due to a slow update frequency. The two vehicles are

equidistant from an object and have the same sensor suite,

but vehicle A is traveling 10x slower than vehicle B. It seems

clear that the result from vehicle A should be weighted much

higher than B because B will be reporting the position of

the object with respect to its localization data which is less

accurate. In these two scenarios a fixed error model would

weight both sensed values the same and the cooperative result

may be worse than the ego vehicle sensing alone. Therefore,

changes in both perception error and localization error must

be taken into account when performing cooperative sensing.

In this paper, we:

• Analyze the error sources in autonomous vehicles and

pinpoint that distance from the sensor is a good pre-

dictor of sensing error, and that the velocity is a good

predictor of the localization error. Using these predictors

enables the generation of more accurate covariance

estimation for each sensor observation.

• Add a parameterized covariance generation step to the

local fusion process based on the sensor pipeline charac-

terization that uses distance as a predictor to get a better

covariance estimate. Add a parameterized localization

covariance generation using velocity as a predictor, and

combine it with the local sensor fusion result to drive

the global fusion step. This results in a more accurate

cooperative sensing.

To demonstrate and evaluate the effectiveness of our

approach, we perform an in depth analysis of our parameter-

ized error model on a 1/10 scale autonomous vehicle setup

consisting of up to four CAVs and two CISs using a motion

capture system as a baseline. Results from our work show a

significantly improvement in error fitment using our parame-

terized error model vs. fixed error model on on our 1/10 scale

setup. We run a high level sensor fusion pipeline with Joint

Probability Data Association Filter (JPDA) and Extended

Kalman Filter (EKF) to match and perform cooperative
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sensor fusion on our 1/10 scale setup using various scenario

settings. The results of these tests show our parameterized

error model to be 1.42x more accurate in terms of RMSE

versus the motion capture system baseline across our test set

and has up to a 1.78x improvement for the best case.

II. RELATED WORKS

Stroupe et al. proposed a covariance estimation technique

that used measured distance as a predictor for the < x,y >
measurement covariance of a football detected by their

football-playing robots [17]. Though limited to a camera

sensor modality, they showed a significant correlation with

error vs. distance and that measured distance could be used as

a predictor. We have adopted the term “parameterized error

model” for generating a covariance matrix using a predictor

terms (like distance by Stroupe et al.) to get a better fitment

to the error data whereas the typical approach is to use a

“fixed error model” where the covariance of a sensor and its

recognizer is generated using the mean error for all sensing

scenarios. This parameterized error estimation seems to have

not crossed over to the autonomous vehicle field from the

multi-robot field even through autonomous vehicles sensor

have been shown to exhibit the same relationship. Garcia et

al. showed a significant correlation between LIDAR sensor

distance measurement error with the distance to that object

supporting the need for a parameterized error model [11].

Chadwick et al. go on to show the same distance versus

measurement error relationship for both camera and radar

detecting vehicles and how it affects Recall as well [5].

A lone AV is likely to not notice the distance accuracy

relationship as it’s own sensors see the same objects from a

similar distance due to being mounted on the same rigid

body so the problem is masked. However, this distance

error relationship is very important for cooperative sensing

because of the drastically different distances sensors can

observe the same object from.

A further problem in cooperative fusion involving au-

tonomous vehicles is localization error. Wan et al showed

that localization error of multiple types of localizers vs.

ground truth is different on the longitudinal axis of a vehicle

than on the lateral axis and can be modeled using an ellipse

[20]. From the perspective a singular CAV, this localization

error and its directionality is not critical. However, when

we move to a cooperative sensing this localization has an

additive effect because it is passed along to all observation

from the CAV and is thus essential to model correctly.

Prior approaches to the problem of cooperative sensor

fusion in autonomous vehicles tend to take one of three

approaches for sharing data: 1) sending raw sensor data

[13], [14], [7] which is known as early fusion or low level

sensor fusion, 2) sending object position with relevant type

information and bounding box which is known as late or

high level sensor fusion [1], [3], [2], and finally, 3) sending

Voxel occupancy grids [6] which we define as a hybrid

fusion approach. We eliminate approach one due to well

cited communication delay and scalability issues even using

802.11n in close proximity [13]. We also eliminate the hybrid

approach three due to scalability problems with sending

Voxel occupancy grids along with a severe accuracy vs.

performance trade-offs that must be decided when choosing

the size of the Voxels [1]. We chose approach 2, high level

fusion, because it does not suffer from communication issues

and it allows for a more intuitive approach for linking sensor

accuracy and modality to their respective observations [10].

Rauch et al. proposed a high level cooperative fusion

approach using road side units and other vehicles to improve

localization of an ego vehicle and compared this result

to a DGPS baseline [16]. Their method coined the terms

“local fusion” and “global fusion” to refer to the fusion

performed on sensors on-board an ego vehicle and the fusion

performed on inputs from all sensors in the area respectively,

both terms we adopt in this paper. However, their results

were limited to improving localization and not perception.

Arnold et al. compare low level and high level cooperative

fusion techniques using CIS to augment the CAVs but their

results do not give statistics on measurement variance and

instead focus on recall in addition to using a fixed sensor

error model[3]. Tsukada et al. published a paper and article

respectively proposing high level V2X fusion method and

software called C2X and provide an analysis of the results

at scale using SUMO and shows the viability of high level

cooperative V2X fusion at scale[18], [19]. However, the

authors use a fixed sensor error model and did not account

for localization covariance. Finally, Allig et al. proposed

a method for fusing heterogeneous sensors to track, using

a covariance intersection method that is very similar to

the fusion pipeline we use in this paper [2]. Again, the

authors use a fixed error model for the generation of sensor

measurement and did not account for localization covariance.

III. EXPERIMENTAL SETUP

The first contribution of this paper is to analyze and

characterize sources of error within autonomous vehicles to

look for trends that can be exploited for cooperative fusion.

Therefore we first discuss our experimental setup before

moving on to our findings and our results. We develop a

1/10 scale testbed with 1/10 scale vehicles, 1/10 scale road

dimensions, 1/10 scale object dimensions, etc. This setup

has the advantage that we can utilize an Optitrack System to

collect the ground truth.

Fig. 1. One tenth scale CAV with
camera, LIDAR, and Nvidia Jetson
Nano for on-board processing.

Fig. 2. One tenth scale CIS traffic
camera replica using Nvidia Jetson
Nano and IMX160 camera in a case.

A. 1/10 Scale Connected Autonomous Vehicle (CAV)

We outfitted four 1/10 scale vehicles with scale accurate

autonomous vehicles sensors including a LIDAR and camera.



TABLE I

1/10 SCALE CAV SENSOR HARDWARE

Type Model Bearing FOV Pipeline

LIDAR Slamware M1M1 0◦ 360◦ SLAM, DBScan
Camera IMX160 0◦ 160◦ YoloV4 CNN

TABLE II

1/10 SCALE CIS SENSOR HARDWARE

Type Model Bearing FOV Pipeline

Camera IMX160 0◦ 160◦ YoloV4 CNN

Sensor data is processed on-board the 1/10 scale vehicle

using an Nvidia Jetson Nano 4GB. Hardware is mounted on

a Traxxis Slash 1/10 scale RWD remote control vehicle with

controls of the motor and steering servo performed using a

PCA9685 board connected to the Jetson Nano.

B. 1/10 Scale Connected Infrastructure Sensor (CIS)

We created 1/10 scale traffic cameras using Nvidia Jetson

Nano and IMX160 camera used on the vehicles. The main

difference in this setup from the vehicle setup is the lack of

LIDAR and that fact it is a stationary platform.

C. Camera Object Detection Pipeline

The IMX160 camera recognition pipeline consists of

YoloV4 Tiny convolutional neural net (CNN) running na-

tively on the Jetson Nano GPU. The CNN has been trained

to recognize other 1/10 scale cars, small 1/10 scale cones,

and lane corners. Distance to the object recognized by the

camera is estimated using the known height of the object

model, focal length of the camera, and the height detected

in pixels which allows us to compute the distance of the

detected object. We run the camera recognition pipeline at 8

Hz to match the LIDAR.

D. LIDAR Object Detection Pipeline

The LIDAR recognition pipeline consists of gathering

the angle and distance measurements from the LIDAR,

converting to a point cloud, and using the DBScan library

to cluster the points. We then fit the shape of the object

to determine the distance and angle to the centroid of the

vehicle point cluster.

E. Localization Pipeline

Localization is performed via SLAM on-board the Slamtec

M1M1 LIDAR along with its integrated IMU and outputted

at 8 Hz. This process is proprietary though it is known to be

SLAM and works up to a velocity of 1 meter per second.

F. Driving Scenarios

Our 1/10 vehicle setup utilizes a figure 8 route. The figure

8 is the optimal route for testing CAVs as it supplies an

intersection, some straight driving, and two turns that are in

the opposite direction such that there is no turn directional

bias. The figure 8 is defined by the straight length, which we

will call sl . The turns are of constant radius which is equal

to sl/2. We have created two different figure 8 tracks, one

Fig. 3. Small (sl = 1.0m) figure 8
loop with two CAVs and one CIS.
Cardboard boxes around the track
were placed for localization.

Fig. 4. Generalized format for
figure 8 loop showing straight
length sl . Positions for CIS
sensors are indicated.

TABLE III

1/10 SCALE VEHICLE FIGURE 8 TEST SCENARIOS

Name Explanation sl CAVs CISs

sm/sp small, sparse, no CIS 1m 2 0
sm/de small, dense, no CIS 1m 4 0
lg/sp large, sparse, no CIS 2m 2 0
lg/de large, dense, no CIS 2m 4 0
sm/sp/CIS small, sparse, with CIS 1m 2 1
sm/de/CIS small, dense, with CIS 1m 4 2
lg/sp/CIS large, sparse, with CIS 2m 2 1
lg/de/CIS large, dense, with CIS 2m 4 2

where sl = 1.0m and the other where sl = 2.0m. This gives

us both a small and large map to test the effect of distance

on sensors.

We vary the amount of vehicles and sensors in the figure

8 setup. We create two scenarios, a low density scenarios

where there is a CIS and two CAVs, and a high density

scenario where there are two CISs and four CAVs. Utilizing

the two track setups and two density scenarios, we get four

total test setups. We then further vary whether CIS sensors

are present or not as depicted in table III for a total of eight

scenarios. We believe these eight scenarios give reasonable

coverage of the main scenarios that CAVs would encounter,

light density small area, light density large area, high-density

small area, and a high-density large area along with whether

there are CIS sensors installed or not.

Error classification of the 1/10 scale vehicles is relatively

straightforward. We outfit all of the CAVs with Optitrack

motion capture trackers. The CISs and CAVs are placed in

predetermined positions. We zero out the offsets between

the Optitrack and Slamtec M1M1 coordinate systems before

each test. Each scenario is run for 10 minutes with the

Optitrack system recording ground truth data at 120Hz.

Time synchronization is periodically performed between the

Optitrack and 1/10 scale system. Data from each vehicle,

sensor, and the Optitrack system is saved so it can be parsed

and replayed to check for specific parameters.

IV. ERROR CLASSIFICATION RESULTS

A. Velocity as a Localization Predictor

Localization accuracy is the first error classification that

we performed. At a larger scale, this data could be latitude,

longitude, and heading. In our small setup, this is a more

simple x, y, yaw where the center of figure 8 is x = 0 and



y = 0. Localization accuracy is measured against the motion

capture system using the scenarios depicted previously.

Fig. 5. Longitudinal and lateral localization error components scatter plot
W.R.T. the vehicle heading. Red points indicate a velocity between .25 and
.5 meters per second and blue indicates a velocity between .25 and 0 meters
per second. This plot shows a covariance fit to both of these data-sets drawn
as an ellipse in the same color. One can clearly see a significant correlation
between velocity and localization error. RMSE is 0.0576m

We graphed the localization error with respect to the

ego vehicle direction of travel laterally (side to side) and

longitudinally (front to back) in figure 5. We color the points

according to the velocity, blue to indicate a velocity less than

.25 meters per second, and red to indicate the velocity is

greater than .25 meters per second. We fit both sets of data

with a 2x2 covariance matrix using the least squares method.

This results in the two ellipses in figure 5, the blue ellipse is

clustered tightly around the origin and the red ellipse is far

more spread out. These different ellipses can be explained

from the stop-and-go nature of the figure 8 path we drive.

Our vehicle is either maintaining the target speed, .5 meters

per second, or is stopped or slowing for the red traffic light

and the velocity is near 0. Our hypothesis that the error was

Gaussian was rejected according to D’Agostino’s K2 test,

however we are still able to prove the premise that velocity

is a useful predictor of variance. A linear regression fitment

to the data using velocity as the X axis and expected error

as the Y axis results in an R2 fitment of .22 longitudinal

error and .18 for lateral error. This is not a great fit, but

it is significantly better than the fixed average (mean) which

has an R2 fitment of 0. Therefore, our analysis of localization

error of our 1/10 CAVs shows that we can predict the position

variance based on measured velocity better than the mean.

B. Distance as a Object Detection Predictor

We define object detection as the ability to detect the

centroid, bounding box, and type of an object using a sensing

pipeline such as camera or LIDAR. For the purposes of

this paper, we only consider the centroid position when

determining object detection accuracy. To measure object

detection accuracy, we recorded distance and angle to all

objects tracked in the scene as reported by the LIDAR and

camera detection pipelines separately. We use global nearest

neighbors to match observation to ground truth from the

Optitrack system, along with human labeling where required.

We compare the distance and angle reported by the Optitrack

to that reported by the sensor. The result is two reported

characteristics, delta distance and delta angle. This removes

localization as a bias by utilizing the true position as reported

by Optitrack rather than the localizer report.

Plotting the error in distance detected to the object versus

detected distance to the object in figure 6 we get a strong

correlation. There are some artifacts at short range which

come from the vehicles sitting in the same stationary location

when the traffic light is red as well as more noise for the

LIDAR. We believe this LIDAR noise is because the LIDAR

pipeline is much worse than the camera at determining what

is a CAV or just a random object so it may be mis-detecting

the corners of boxes as other CAVs resulting in a higher

rate of outliers. LIDAR error does not increase as fast as

camera error and there is a distinct crossover point where

the LIDAR becomes more accurate than the camera at 1.5

meters distance. We have not shown the perpendicular error

here but the R2 is 0.021 and 0.045 for LIDAR and camera

perpendicular error respectively.

Fig. 6. Plotting distal error of an object detection versus distance detected
to that object results in a clear correlation. Camera and LIDAR linear
regression R2 fitness are 0.18 and 0.35 respectively.

V. COOPERATIVE SENSING PIPELINE OVERVIEW

The approach we choose for the sensor fusion pipeline is

tied to our decision to utilize high-level (late) sensor fusion.

Sensors and their recognition pipelines are tied to a sensor

package which is a collection of sensors mounted on the

same rigid body. We consider two types of sensor packages,

1) a connected infrastructure sensor (CIS) which could be

a traffic camera or other statically mounted sensor package,

and 2) a connected autonomous vehicle (CAV) which is a

typical autonomous vehicle with a suitable sensor suite. All

sensing platforms are assumed to include communication

hardware such that they can talk to other sensor packages

and roadside units (RSU) within range. Due to bandwidth

constraints as well as the need for the CAV to drive using

its sensor output, our cooperative sensor fusion is done in

a cascade approach. On-board each sensor package, each

sensor and its respective recognition algorithm(s) processes

a frame of data from the sensor and outputs a list of object

observations which consists of a centroid < x,y >, bounding

box, and type for each observation. Local sensor fusion is

performed on all on-board sensor data. Results of this local

sensor fusion are transmitted to a local RSU that aggregates



and fuses it with the data received from other CAVs and

CISs in the area, and then this cooperative sensing data is

distributed back out the CAVs so it can be consumed as

sensing input.

VI. LOCAL FUSION DESIGN

Figure 7 depicts the local fusion process of a single CAV

or CIS. Sensors along with their recognizer are treated as

separate pipelines until the JPDA filter stage where all the

observations are associated using the JPDA filter. Associated

observations that are considered a single object are tracked

using an EKF for that track. The EKF has a predict stage

and then up to n update stages depending on how many

observations from the sensor pipelines are associated with

the same track.

Fig. 7. Our method for local sensor fusion adds in a covariance generation
stage using the error model for each sensor and the measured distance to
generate the expected covariance matrix for each observation.

A. Parameterized Sensing Error Model

Fig. 8. This figure depicts a scenario where a stationary ego vehicle (a
1/10 scale CAV) is sensing two stationary objects (other 1/10 scale CAVs)
many times using a camera sensor mounted at < 0,0 > with a facing angle
of 0 degrees W.R.T. the ego vehicle. The resulting point distribution is
shown with an estimated 2x2 covariance matrix shown as an ellipse that
was generated by our camera error estimation. Note: the error distribution
has been greatly exaggerated so that it is visible in this paper format.

In the prior section we observed that for the LIDAR

and camera cases, measured distance as reported by the

sensing pipeline was an accurate predictor of both distal

and perpendicular error with respect to the sensor. We fit

a prediction equation to the characterization error data. In

our cases, we believe a linear regression fit is accurate

enough, but if need be a polynomial fit could be used

as well if it results in a better fit. Equation 1 shows the

measurement data received from a sensor pipeline. Equation

2 and equation 3 show the polynomial form for the distal

and perpendicular error respectively where αk and βk are

the polynomial expansion coefficients that will be fit to the

data using the measured distance d to the observation as a

predictor. Figure 8 shows the depiction of the terms used in

Equations 1 through 3.

obs =
[ distanceobs

θobs

]

(1)

σdistal =
n

∑
k=0

αk ∗distanceobs (2)

σperp =
n

∑
k=0

βk ∗distanceobs (3)

Using equation 2 and equation 3, we generate the dis-

tal and perpendicular errors respectively with distance d

measured to the observed object as a predictor. The ob-

servation position µ is calculated from the sensor position

< xsensor,ysensor > and sensor angle θsensor with respect to the

ego vehicle rear axle by transforming the observed object

given in equation 1 to the ego vehicle coordinate system

using equations 4 and 5. We generate the covariance of the

observed object Σobs using the bearing angle to the object

with respect to the rear axle or φobs and the expected distal

error and expected perpendicular error given by equation

2 and equation 3 respectively using equation 5 and 6.

This resulting < x,y > location contained in µobs and 2x2

covariance contained in Σobs are now in a form that can be

easily fed into a fusion algorithm (Kalman Filter, EKF, UKF,

etc.)

φobs = θsensor +θobs (4)

µobs =
[ xsensor+distanceobs cosφobs

ysensor+distanceobs sinφobs

]

(5)

Σobs =
[ cos(φobs) sin(φobs)
−sin(φobs) cos(φobs)

][σdistal 0
0 σperp

][ cos(φobs) sin(φobs)
−sin(φobs) cos(φobs)

]

ᵀ

(6)

B. Local Joint Probability Data Association Filter Design

We chose the Joint Probability Data Association (JPDA)

Filter for the association of observations. Similar to Garcı́a

et al., each sensor observation is treated individually and

is matched to the existing set of tracks [12]. Each track

has an associated EKF for fusing the observations. If an

observation is not in the gate of any track and is not

considered noise, then a new track will be created. To smooth

out some smaller errors, a track is not officially reported

until it has been tracked for a minimum amount of frames.

Conversely, if a track has not had an association from a

sensor observation within a specified amount of frames, that

track and its associated EKF are deleted. The covariance for

each observation contained in Σobs is fed into the JPDA Filter

along with the observed location of the object, µobs.



C. Sensor Platform EKF Design

All sensing pipelines are assumed to output an estimate for

the µobs of each object they detect with respect to the sensor

platform (e.g. CAV or CIS). The number of sensor pipelines

attached to a sensor platform is not bounded. We chose to

use the model introduced by Farag et al., with some minor

modifications [9]. Using the standard form for an EKF, xk,

Fk, Q, zk, Rk, and Hk are defined in equations 7, 8, 9, 10,

11, and 12 respectively.

xk =













x

y

v

ψ
ψ̇













(7)

Fk =













1 0 1
ψ (−sinψ + sin∆tψ̇ +ψ v

ψ̇ (−cosψ + cos∆tψ̇ +ψ v∆t
ψ̇ (cos∆tψ̇ +ψ)− v∆t

ψ (−sinψ + sin∆tψ̇ +ψ

0 1 1
ψ (cosψ − cos∆tψ̇ +ψ v

ψ̇ (−sinψ + sin∆tψ̇ +ψ v∆t
ψ̇ (sin∆tψ̇ +ψ)− v∆t

ψ (cosψ − cos∆tψ̇ +ψ

0 0 1 0 0

0 0 0 1 ∆t

0 0 0 0 1













(8)

Q =

















∆t4

4
σ2

ax
0 ∆t3

2
σ2

ax
0 0

0 ∆t4

4
σ2

ay

∆t3

2
σ2

ay
0 0

∆t3

2
σ2

ax

∆t3

2
σ2

ay
∆t2σ2

a 0 0

0 0 0 ∆t2σ2
ψ 0

0 0 0 0 ∆t2σ2
ψ̇

















(9)

zk = µobs (10)

Rk = Σobs (11)

Hk =

[

1 0 0 0 0

0 1 0 0 0

]

(12)

VII. GLOBAL FUSION DESIGN

A global cooperative sensor fusion is applied to an area

larger than an ego vehicle can see on its own, e.g. the area

around a traffic light, an entire city, etc. Our global sensor

fusion shown in figure 9 is done similarly to our local fusion.

However, instead of receiving observations from a set of

sensors that are hard mounted on a vehicle body, we are

working with a the local fusion outputs from a set of n sensor

platforms which may or may not be moving. These fused

sensor outputs can be treated almost the same way as the

single sensor pipelines, except for one major difference; the

global sensor fusion must deal with localization error.

A. Parameterized Localization Error Model

Localization error must be accounted for when performing

a global cooperative fusion of sensor values. Unlike on

a sensor platform where the transformations between the

sensors can be considered stationary because the sensors

are rigidly mounted, the transformation between more than

one moving sensor platform is not rigid and thus must

be measured W.R.T. some shared coordinate system. Each

sensor platform is assumed to have a localizer unless the

Fig. 9. Our method for global sensor fusion is very similar to the
local fusion, however it has an additional stage to generate the localization
covariance matrix from the key predictor term velocity and combines that
with the covariance generated from the local fusion.

platform is stationary like a CIS. For this stationary case,

the CIS platform is considered to have a stationary measure-

ment of location along with some error estimation of that

measurement which will be treated the same as a localizer.

A localizer regardless of type (SLAM, GPS, etc.) is assumed

to report the current position of the sensor platform sp with

respect to a mutual global coordinate system (e.g. latitude

and longitude). Our global fusion coordinate system can

be thought of as a standard x,y coordinate system where

each sensor platform position is reported as < xsp,ysp >.

This localization needs an associated error as no localizer is

perfect. As discussed in the error characterization section, we

found an accurate predictor for the lateral error σlateral and

longitudinal error σlongitudinal component of localization to be

measured velocity vsp. We fit a polynomial to the longitudinal

and lateral localization error using sensor platform velocity

vsp as a predictor in equations 13 and 14 respectively. ηk

and γk are the polynomial expansion coefficients for the

longitudinal and lateral variance respectively that will be

solved for.

σlongitudinal =
n

∑
k=0

ηk ∗ vsp (13)

σlateral =
n

∑
k=0

γk ∗ vsp (14)

Localization error can be represented as a 2x2 matrix, with

the longitudinal σlongitudinal and lateral σlateral error com-

ponents estimated using the measured velocity the vehicle

is traveling. This error can then be rotated based on the

direction θsp the vehicle is traveling. These calculations are

shown in equation 16. Measured location is converted to the

global coordinate system using equation 15 with the sensor

platform position < xsp,ysp > and the position relative to the

sensor platform that was generated by the local EKF state

< x̂k|k[0], x̂k|k[1]> (or < x,y >).

µsp obs =
[ xsp

ysp

]

+
[ x̂k|k[0]

x̂k|k[1]

]

(15)

Σsp =
[ cos(θsp) sin(θsp)

−sin(θsp) cos(θsp)

][σlongitudinal 0

0 σlateral

][ cos(θsp) sin(θsp)

−sin(θsp) cos(θsp)

]

ᵀ

(16)

With the covariance of the localization known, we com-

bine that error with the local fusion EKF error from each



platform. The EKF outputs the covariance Pk|k but it must

be rotated to the world coordinate system using equation 17.

This covariance from Pk|k already contains the perception

error that was factored in from the local fusion. We can

sum the Pk|k covariance with the localization covariance

to get an approximate covariance for that sensor fusion

track combined with the expected covariance of the sensor

platform localization using equation 18 [2]. This is not an

exact covariance merger as it does clip some of the data that

would be there with a higher-order representation. However,

this is viewed as a worthwhile trade-off since our sensor

fusion algorithms expects a 2x2 covariance input, thus a

higher-order representation would not be usable.

Σobs world =
[ cos(θsp) sin(θsp)

−sin(θsp) cos(θsp)

][
Pk|k[0][0]

Pk|k[0][1]

Pk|k[1][0]
Pk|k[1][1]

][ cos(θsp) sin(θsp)

−sin(θsp) cos(θsp)

]

ᵀ

(17)

Σsp obs = [Σᵀ

sp +Σ
ᵀ

obs world ]
ᵀ (18)

B. Global Fusion Incoming Message Packet Design

We assume global sensor fusion computations to happen

on a Road Side Unit (RSU) which is a computation platform

located near the area of interest that can communicate with

CAVs and CISs in the area. Data is packetized to be sent to

the RSU and includes sensor platform localization µsp obs,

estimated localization covariance for Σsp obs generated in

equations 15 and 18 respectively as well as the vehicles own

reported localization µsp and estimated covariance Σsp.

C. Global Fusion Joint Probability Data Association Filter

The sensor platform JPDA Filter shares the same design

as the one used locally on the sensor platforms. The only

difference is now the sensing platforms report their observa-

tions W.R.T. a global coordinates using equation 15 and 18.

This uses the same µ and σ form as the local fusion so no

changes to the JPDA Filter design are necessary.

D. Global Fusion EKF Model

The EKF for the global fusion is nearly identical to the

EKF used in the local EKF. The state xk, update matrix Fk,

Q, and Hk for the global fusion EFK is the same as those

used by the local fusion EKF in equations 7, 8, 9, and 12

respectively. We change the zk and Rk values as shown in

equation 19 and 20 respectively. Just like the local fusion,

the update rate is constant and the global fusion EKF has

a predict stage and then up to s update stages dictated by

the number of sensors packages (CAVs and CISs) there are

reporting observations that are associated to the same track

by the JPDA Filter.

zksp
= µsp obs (19)

Rksp
= Σsp obs (20)

TABLE IV

1/10 SCALE SENSING EXPECTED VARIANCE EQUATIONS

Error Type Variable Parameterized Fixed

(Direction, Sensor) (Our Method) (Mean)

Distal, Camera σdistal 0.0517∗d +0.0126 0.0881
Perpendicular, Camera σperp 0.0117∗d +0.023 0.0401
Distal, LIDAR σdistal 0.0165∗d +0.0607 0.0848
Perpendicular, LIDAR σperp 0.0097∗d +0.0361 0.0503
Longitudinal, Localizer σlongitudinal 0.0782∗ v+0.0428 0.0663
Lateral, Localizer σlateral 0.0841∗ v+0.0241 0.0493

VIII. COOPERATIVE FUSION EXPERIMENTAL RESULTS

Our 1/10 scale model experiment utilizes the map sizes

and vehicle counts listed in table III. We ran ten minute

tests of the four setups depicted five times each. Data was

recorded during all 20 tests so that the test set would be the

same as we ran the different fusion methods. CIS sensor data

is simply removed from the data-set when it not needed so

that makes 8 total scenarios or 40 tests. The Optitrack system

was calibrated to an RMSE of 0.00088m. We compare two

error models: 1) our parameterized error model discussed

before and 2) a typical fixed error model as a baseline.

For the fixed error model, we use the mean error that we

gathered using sensor classification for each sensing pipeline

and the localization pipeline. The equations used for our

parameterized error model can be found in table IV. We test

two different filters, the EKF outlined above from Farag et

al. as well as the UKF proposed in the paper by Garcia et

al., which we refer to as “Farag EKF” and “Garcia UKF”

respectively [9], [12].

Fig. 10. Results of the cooperative fusion method using a fixed vs.
parameterized error model. “Garcia UKF” is from Garcia et al.[12] while
“Farag EKF” is described in the prior section [9]. RMSE for the localization
of the CAVs alone is shown as a blue line - Cooperative Fusion RMSE
needs to be less than this line for results to be considered more accurate
than localization data alone.

A. A Fixed Error Approach can Result in Less Accurate CAV

Positions than Onboard Localization Alone

RMSE localization error for the M1M1 LIDAR is 0.0576

meters. Therefore in order for the cooperative sensor fusion

to return data that is useful, reported RMSE vs. the Optitrack

motion capture system must be less than 0.0576m. A major

result of note is that when using a fixed model, some of

the tests get an overall RMSE near 0.0576m. This can be

seen very clearly in the large sparse no CIS scenario ”ls,sp”



where the RMSE is 0.0602m and 0.0615m, which is worse

than the localizer alone for both methods. Our parameterized

error model allows the filter to get an RMSE value that is

equal or less RMSE than the localisation in all cases.

B. Connected Infrastructure Sensors Are Useful Due to Lack

of Localization Error

In general the larger map with the sparse setting (i.e. fewer

sensors) had a higher RMSE due to the larger distances and

lack of sensing. The small dense maps on the other hand have

results with the lowest RMSE values. When CIS sensors are

added, regardless of the fixed or parameterized model, RMSE

decreases because the position of these CIS sensors is well

known and does not change thus there is very little error

introduced by the localization step. This makes CIS sensors

very useful compared to the CAVs which have an average

localization error of 0.0576m.

C. Our Parameterized Sensor Fusion Approach is More

Accurate than a Fixed Approach

The most significant finding of these results is that our

parameterized error model outperforms the fixed error model

in every scenario. In the best case, our parameterized error

model along with our proposed EKF achieves an RMSE of

0.0237m which is 2.43x better than localization was able

to achieve alone and it was 1.7x better than the fixed error

model in the same scenario. The results also show that our

parameterized error model decreases RMSE for both our

EKF and Garcia UKF models showing that it is useful for

more than just one specific EKF.

IX. CONCLUSION

In this paper, we propose a parameterized sensing and

localization error model for use in connected autonomous

vehicles to improve cooperative sensor fusion. We performed

an analysis of scale 1/10 model autonomous vehicles with

scale-accurate sensors to fit the model. To our knowledge,

this is the first time that a comprehensive error classification

of an autonomous vehicle sensing suite has been performed

against a baseline sensing system that is accurate enough to

evaluate the results. Results of our parameterized error model

are integrated with a tiered, high level cooperative sensor

fusion pipeline using an EKF. Our results show an average

improvement of 1.42x in RMSE versus a typical fixed error

model on our 1/10 scale test-bed. In the future, we hope to

perform the same analysis on full-size autonomous vehicles

to prove it scales with size as well as analyze the possible

effect of weather conditions, lighting, city density, etc. as

predictors in a less controlled environment.
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