
GiPH: Generalizable Placement Learning for Adaptive
Heterogeneous Computing

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose GiPH, a reinforcement learning (RL) approach to learning efficient1

and fully generalizable placement search policies for heterogeneous computing.2

The placement of a computational graph on a target device cluster is critical for3

achieving low latency for distributed computing (e.g., cloud computing, distributed4

neural network training). The problem is challenging due to its NP-hardness5

and combinatorial nature. In recent years, learning-based approaches have been6

proposed to learn a general placement policy that can be applied to unseen graphs.7

While in practice, a wide range of application graphs need to run constantly8

changing networks of devices, the learned policies based on existing formulations9

cannot quickly adapt to changes in the device cluster because those methods10

only take a fixed number of devices into account. GiPH overcomes this limitation11

through the use of 1) a novel graph representation gpNet that efficiently encodes the12

information needed for choosing a good placement, and 2) a scalable graph neural13

network (GNN) that directly takes edge features with topological information into14

account. GiPH turns the placement problem into a problem of finding a sequence15

of placement improvements to learn a policy that scales to placement problems of16

arbitrary sizes. The learned policy can efficiently search for good placement given17

a heterogeneous task graph and a cluster of heterogeneous devices. We evaluate18

GiPH with a wide range of randomly generated task graphs and device clusters and19

show that our learned policy can be applied to new problem instances to rapidly20

find good placements. Our learned policy achieves placement speedup by up to21

30.5%, and searches up to 3× faster than other search-based placement policies.22

GiPH policy also adapts to network changes and produces better placement results23

than baselines.24

1 Introduction25

The placement of computation tasks of distributed applications has key importance on performance26

of distributed platforms. When running a compute application across a network of computing27

devices, careful choice of which parts of the application to run on which device can significantly28

affect application performance. This is particularly true when devices are heterogeneous: e.g.,29

compute-intensive tasks should be run on devices with more computation resources, but those devices30

may not be the best choice if they have limited communication resources. Solving this problem is31

particularly difficult. Such placement problems on heterogeneous networks are particularly common32

in the emerging Internet-of-Things, where we have a mix of edge devices, edge servers, and clond33

servers. The resulting device placement problem is typically modeled by representing applications as34

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

directed acyclic graphs (DAGs), in which each node represents a unit of computation (task) and edges35

represent data links between tasks which determine the sequence of computations. By using DAGs to36

encode the precedence order of different computation units within an application, we can measure37

the end-to-end completion time of the application as a function of the computing and communication38

resources available at each device, given an application placement.39

Due to the NP-hardness and combinatorial nature of the placement problem, heuristic methods that40

rely on simple strategies and hand-crafted features have been proposed. However, they can only41

achieve sub-optimality and forego potential performance optimization. Many of the heuristics also42

assume an inaccurate or simplified performance model (e.g., computation and communication times)43

about the system to enable a closed-form formulation. This paper, instead, follows another recent44

line of work that has focused on machine-learning techniques to automatically learn highly efficient45

placement policies using reinforcement learning (RL). Unlike traditional static heuristic methods,46

RL allows learning from simulated or real completion times without heavily relying on inaccurate47

assumptions.48

RL also has the potential to generalize across different problem instances, which cannot be done by49

static heuristics. The training overhead is reduced when the policy learned from previous experience50

is applicable to a wide range of cases. Although RL learns problem-specific policies, in practice a51

wide range of applications may run on constantly changing networks of devices. It is thus imperative52

to design RL representations and learning algorithms that can generalize well. Existing approaches53

fail to be fully generalizable as they either do not take features of the network of devices into account54

or only consider a fixed number of devices. As a result, whenever the device network changes, the55

learned policies will perform poorly and require significant amount of re-training. In heterogeneous56

computing environment, placement feasibility constraints may also exist due to hardware availability,57

which in general are not well handled by RL.58

In this work, we propose GiPH, an RL-based approach to learning efficient and fully Generalizable59

Placement with the ability to adapt to dynamic Heterogeneous networks. To the best of author’s60

knowledge, GiPH is the very first RL approach to learn a placement policy that not only generalizes61

to new task graphs that are not in the training set, but also adapts to changing device networks. The62

key contributions and findings of this work can be summarized as follows:63

• We develop a scalable and generalizable neural network design that can process general64

placement problems given arbitrary task graphs and device networks.65

• We formulate the learning problem as a search problem where the placement is done through66

applying a sequence of iterative placement improvements.67

• We propose GiPH, a RL-based framework for learning generalizable placement policy.68

Given a heterogeneous device network and a heterogeneous task graph, the learned policy ef-69

ficiently searches for good placement and produces results comparable to HEFT (Topcuoglu70

et al. [2002]).71

• We devise gpNet, a novel and universal graph representation of the placement problem that72

takes both the task graph and the device network into account. It is flexible for representing73

the placement of any task graph on any device network with optional placement constraints.74

• We evaluate GiPH in terms of the placement quality and generalizability. For completion75

time minimization, GiPH policy achieves placement speedup by up to 30.5% with higher76

search efficiency.77

2 Placement Problem78

This section defines a general placement problem that takes into account 1) placement constraints, 2)79

heterogeneous compute features, and 3) heterogeneous communication features.80

Given a distributed application and a device network, a placement maps each computation task in the81

application to a device in the network to optimize a performance criteria. In this work, we consider82

2

Figure 1: (a) and (b) show the task graph and the device network, respectively, of an example
placement problem. The set of feasible devices for each task (placement constraints) is shown in (a).
Node and edge features are in parenthesis. (c) shows the gpNet representation of a feasible placement
indicated in (a) and (b).

the minimization of the completion time of an application, which is the time duration from the start83

of the first task’s execution to the end of the last task’s execution. An application is defined by a84

directed acyclic graph G = (V,E), as shown in Fig. 1(a), where nodes V = {v0, ..., vn−1} represent85

computation tasks of the application and edges E ⊂ V × V represent inter-task data dependencies86

and communication. Each edge also represents the precedence constraint such that a task should87

complete its execution before any of its child tasks starts. The raw features of each node vi ∈ V and88

each edge (vi, vj) ∈ E, represented by βn
i and βe

ij , respectively, should be defined according to the89

performance criteria to optimize, e.g., node features and edge features may include the amount of90

compute and data transfer each task and data link requires for completion time minimization.91

A target computing network (e.g., Fig. 1(b)) consists of a set D = {d0, ..., dm−1} of m devices.92

Each device di has device feature bi (i.e., device compute speed, hardware type) and each pair of93

devices (di, dj) has communication link features bij (e.g., bandwidths, delay). For the purpose of94

this paper, we assume the devices are fully connected and the communication links are symmetric95

bij = bji, and we only consider single-link paths (represented by edges) between devices. It is easy96

to generalize to more complex device topology by attaching extremely high communication losses to97

links that do not exist.98

A placement of an application G on a network N is a mappingM : V → D. For heterogeneous99

network, we consider placement constraints resulted from hardware availability and feasibility, where100

each computation task vi can only be mapped to a subset of devices Di ⊆ D. See Fig. 1(a) and (b)101

for an example. The goal of the placement is to optimize a performance criteria ρ(M|G,N) while102

satisfyingM(vi) ∈ Di for all vi ∈ V . (G,N) defines a specific problem instance, and we denote a103

general placement as a triple P = (G,N,MG→N).104

3 GiPH105

This section introduces GiPH. Each subsection describes one of the key ideas: the formulation of the106

search problem and the associated Markov decision process (MDP) (§3.1), gpNet representation of107

the placement (§3.2), the scalable neural network design (§3.3), and RL training (§3.4).108

3.1 MDP Formalism109

We formulate the learning problem as a search problem, where given an initial placement, a learned110

policy iteratively applies some small changes to the current placement. Through making incremental111

changes, the policy is able to search through the solution space and find better placement solutions.112

Instead of trying to learn a policy that places the whole graph at once, our search approach makes the113

learning simpler by only considering a small local search space at a time.114

3

Figure 2: MDP of the placement search problem.

Consider a single problem instance (G,N). For the search problem, we define the state space115

as the set of all feasible placement SG,N = {M|M(vi) ∈ Di, ∀vi ∈ V }. (state and placement116

terms are interchangeably used in the paper.) The size of the state space |SG,N | =
∏|V |−1

i=0 |Di|,117

since each task can be placed on any of the feasible devices for it. When there is no placement118

constraint, |SG,N | = |D||V |. For the two-task example shown in Fig.2(a), there are a total of 4119

feasible placements, all shown as states in the transition diagram of Fig.2(b).120

To search through the state space, we define an action to be a task and device pair (vi, dj) that sets121

the placement of vi to device dj . Suppose at time t, the current state st = M. If M(vi) = dj ,122

the action does not change the current placement and st+1 = st =M. IfM(vi) ̸= dj , the action123

moves the placement of vi fromM(vi) to dj , and st+1 =M′ ̸=M such thatM′(vi) = dj and124

M′(vk) =M(vk) for all k ∈ [n]/i. We only consider feasible actions (vi, dj) such that dj ∈ Di.125

The size of the action space is thus |AG,N | =
∑|V |−1

i=0 |Di|. In the case there is no placement126

constraint, |AG,N | = |V ||D|. Fig. 2(b) lists all four actions for the simple two-task example and127

shows the deterministic state transition given an action taken at each state.128

Note that the diameter, i.e., the longest shortest path between state of the state transition diagram is129

|V | because you can always change from one placement to any other placement by moving each task130

node for at most once. Therefore, even though the state space grows exponentially with |V |, it is131

always possible to go from any state to any other state in |V | steps.132

We consider the MDP for the placement of a task graph G on a device network D as follows. At133

first, the episode is initialized at a random placement s0 ∼ |SG,N |, where each task node is randomly134

assigned to one of the feasible devices. At each step t, an action at ∈ AG,N is taken to update the135

current placement. The episode length is set to 2|V | steps, during which the agent is free to explore136

the search landscape through “trial and error”.137

The objective function ρ(M|G,N) reflects how good a state s = M is. We assign intermediate138

reward rt = ρ(st+1|G,N)− ρ(st|G,N) that indicates the performance improvement after taking139

an action at at state st for t = 0, 1, ..., 2|V | − 1. The goal of RL is to learn to take actions in order140

to maximize the expected discounted return
∑2|V |−1

t=0 γtrt. When γ = 1, the expected return is the141

expected performance improvement between the final state s2|V | and a randomly initialized state s0,142

i.e., the policy tries to maximize E[ρ(s2|V ||G,N)]− E[ρ(s0|G,N)]. Since the latter term is constant143

for a (G,N) pair with random initialization, RL is effectively improving the expected performance144

of the final placement through maximizing the expected return. When γ < 1, the policy seeks more145

immediate reward as future rewards are discounted. In this case, the policy also learns to search more146

efficiently at the beginning of the episodes.147

4

3.2 gpNet Representation148

We have formulated a discrete MDP for the placement search problem given (G,N). However, for the149

learned policy to be fully generalizable without depending on (G,N), a representation of a general150

placement P = (G,N,MG→N) is required to work across different problem instances with an151

arbitrary pair of task graph and device network. The representation should capture the heterogeneous152

compute and communication requirements of the task graph G and the heterogeneous compute and153

communication capabilities of the device network N , in order to enable the learning of the relation154

between ρ and P .155

To this end, we present gpNet, a novel and universal graph representation of the placement that156

encapsulates features of both the task graphs and the device networks with placement constraints.157

gpNet generates a unique graph H = (VH , EH) given a general placement P = (G,N,MG→N),158

where G = (V,E) is an arbitrary task graph with node features βn and edge feature βe, N is159

an arbitrary device network with a set of devices D that has device compute features bn and160

communication link features be. The pseudocode is shown in Algorithm below.161

Algorithm gpNet

function GPNET(G = (V,E,βn,βe), N = (D, bn, be),MG→N)
Initialize an empty graph H = (VH , EH ,xn,xe)
VH,P = {} ▷ The set of pivots
for vi ∈ V do

Ci = {} ▷ The node cluster of vi
for dj ∈ Di do ▷ Di: the placement constraint of vi

add node u = (vi, dj) to VH and Ci

node feature of u: xn
u = fn(β

n
i , b

n
i)

ifMG→N (vi) = dj then
add u = (vi, dj) to VH,P

for (vi, vj) ∈ E do
for u1 = (vi, dk) ∈ Ci, u2 = (vj , dl) ∈ Cj do

if u1 ∈ VH,P or u2 ∈ VH,P then
add edge c = (u1, u2) to EH

edge feature of c: xe
c = fe(β

e
ij , b

e
kl)

return H ▷ gpNet representation of the placement

Each node in H represents a feasible placement of vi ∈ V on device dj ∈ Di, and is labeled (vi, dj).162

The node feature of (vi, dj) is a function, fn, of the task feature βn
i and the device feature bnj . The set163

of nodes for all possible placements of a task vi forms a cluster Ci = {(vi, ·)} ⊆ VH . Those nodes,164

whose labels are in the current placementMG→N , are called pivots and form a set VH,P ⊆ VH . The165

subgraph induced by VH,P contains all information about the current placementMG→N . Non-pivot166

nodes, on the other hand, represents a potential task re-placement. Each node in H also corresponds167

to one action defined in the search problem (§3.1). This correspondence is exploited later in our168

neural network design (§3.3).169

Edge ((vi, dk), (vj , dl)) exists in H if and only if (vi, vj) ∈ E and at least one of (vi, dk) and (vj , dl)170

is in VH,P . In this way, each non-pivot node (vi, dj) only has edges pointing to or from pivots that171

contain the current placement information of the parent tasks and child tasks , and thus, has a local172

graph structure corresponding to the one if a replacement of vi to dj happens. This design decision173

is in support of the local search idea that at most one task is moved each time. The edge feature of174

((vi, dk), (vj , dl)) is a function, fe, of the data link feature βe
ij and the communication link feature175

bekl. The resulting graph H has |VH | =
∑|V |−1

i=0 |Di| nodes and |EH | =
∑|V |−1

i=0 (|Di||Ei|) − |E|176

edges, where |Ei| is the degree of vi in G. Fig.1(c) shows the gpNet of the example placement in (a)177

and (b). fn and fe can be any sensible functions that combine the raw features of the task graph and178

the device network (e.g., concatenation function).179

5

Figure 3: GiPH neural network design

Our proposed gpNet captures all network- and task-related features for making a placement update180

decision given a current placement. The original task dependencies in G and placement constraints181

are implicitly present in the output gpNet H through the way it is constructed. gpNet also generalizes182

to different problem instances and can represent any feasible placement of an arbitrary problem pair183

(G,N).184

3.3 Neural Network Design185

The learning framework of GiPH is visualized in Fig. 3. Given a placement problem of an arbi-186

trary task graph Gi and target network Ni, the placement agent starts a search from a randomly187

initialized placementMGi→Ni
0 . The agent then takes as the input the current state of the search,188

P = (Gi, Ni,MGi→Ni
t), decides a placement update (an action defined in §3.1) that modifies the189

current placement, and observes the improvement of the performance objective ρ as the reward. It190

consists of a graph neural network and a policy network, which are jointly trained.191

Scalable and generalizable graph embedding GiPH must first convert the state information into192

features to pass to the policy network. We use gpNet (§3.2) to generate a graph representation193

gpNet(Gi, Ni,MGi→Ni
t) of the current state. However, we still need to encode the graph-structured194

state information as vectors. Creating a flat vector representation is not scalable because it cannot195

handle graphs of arbitrary sizes and shapes (which depend on the specific task graph, target network196

and constraints).197

GiPH achieves scalability using a graph neural network (GNN) that embeds the state information198

in a set of embedding vectors. Taking a gpNet as input with node features xn and edge features xe199

composed as described in §3.2, GiPH propagates information in a sequence of message passing step200

in the form of201

eu = h

 ∑
v∈ξ(u)

g([ev ∥ xe
vu])

+ xn
u, (1)

where ξ(u) is the set of parents of u, who have aggregated messages from all of their parents. g()̇202

and h()̇ are non-linear transformations over vector inputs with trainable parameters. The message203

passing is done in both forward and backward directions with separate parameters, each summarizes204

information about the subgraph of nodes that can be reached and is reachable from u. GiPH205

concatenates the two summaries along each direction as the embedding of a node in gpNet. For a206

node with label (v, d), with embedding captures the local placement information if v is placed on d207

(i.e., if an action (v, d) is taken).208

Adopting a GNN also helps generalizability because it automatically learns high-level features that209

are statistically important through end-to-end training, and the model learned can generalize (and210

scale) to unseen graphs.211

Policy network and actions The policy network consists of a multi-layer perceptron (MLP), an212

optional mask layer, and a softmax layer (Fig. 3). We use the per-node embedding from GNN to213

6

compute a score qa = g(ea) for each action a in the action space AGi,Ni (represented as nodes214

in the gpNet). g(·) is a score function implemented as a MLP that computes a scalar value from215

an embedding vector. The score qa quantifies how good an action is given the current state s.216

GiPH then uses a softmax layer to output a probability of selecting each action based on the score217

P (a|s) = exp (qa)
∑

b∈AGi,Ni
exp (qb). An optional mask layer can be placed before the softmax to218

mask out undesired actions. The final output is a probability distribution over all feasible actions219

3.4 RL Training220

GiPH uses a policy gradient method REINFORCE for training (Williams [1992]). During each221

episode, a placement problem (G,N) is sampled from a training set GT × NT . Starting from a222

random placement s0, the agent collects observations (st, at, rt) at each step t = 0, ..., 2|V | − 1223

following the current policy πθ. It updates its policy parameters at the end of each episode224

θ ← θ + α

2|V |−1∑
t=0

γt∇θ log πθ(at|st)

2|V |−1∑
t′=t

γt′−trt′ − bt

 , (2)

where α is the learning rate, γ is the discounting factor, and bt is a baseline for reducing the variance225

of the policy gradient (Weaver and Tao [2001]).226

To improve the sample efficiency and force exploration, we mask out actions that do not change the227

current placement (e.g., a0, a1 at stateM0 in the example Fig. 2(b)) because no new information228

will be acquired by taking those actions. We also mask out actions that will move the same task node229

as the immediate previous action did as moving the same node consecutively is inefficient.230

4 Experiments231

In this section, we evaluate the performance of our proposed GiPH for makespan minimization. We232

assume a heterogeneous computing environment where the computation time and communication233

time can be estimated from compute (task) and communication (data link) features of the device234

network (task graph). We consider randomly generated task graphs and device networks and compare235

GiPH with the following baseline algorithms:236

• Random placement sampling: generate random placements of the task graph by sampling237

a feasible placement for each task from a uniform random distribution. This random baseline238

is representative of the average placement “quality” without GiPH’s intelligent search.239

• Random task selection + earliest finish time device selection: a heuristic for placement240

search, where at each step a task in the graph is randomly selected and placed to a feasible241

device that is expected to finish the task the earliest (Topcuoglu et al. [2002]).242

• GiPH task selection + EFT device selection: the version of GiPH without using gpNet. At243

each step, instead of deciding both a task and a device, the RL agent only selects a task. The244

task is then placed to a feasible device that can finish the task the earliest.245

• Placeto (Addanki et al. [2019]):246

• HEFT (Topcuoglu et al. [2002]): one of the most well-known heuristic offline scheduling247

algorithm for heterogeneous computing, which assumes the perfect knowledge of compute248

and communication times.249

Evaluation Metrics We compare 1) the placement quality of these placement algorithms and 2)250

the generalizability.251

For the placement quality, we consider an objective of minimizing the makespan, which is the duration252

from the start to the end of the excution of the task graph. Since the makespan can vary significantly253

across different problem instances, it is necessary to normalize the makespan to a problem-dependent254

7

lower bound. We use the Schedule Length Ratio (SLR) defined by255

SLR =
makespan∑

vi∈CPMIN
mindj∈Di

wi,j
, (3)

where wi,j is the expected time of running task vi on device dj . This metric is first introduced256

in(Topcuoglu et al. [2002]). The denominator is the sum of the minimum computation cost of tasks257

along the critical path CPMIN . The placement algorithm that gives the lowest SLR is the best with258

respect to the placement performance. Average SLR of different problem instances is used in the259

experiments for testing.260

We measure the generalizability of the algorithms by testing how well they can adapt to network261

changes. The test is done by gradually removing devices and then putting new devices back in one by262

one. We record the placement quality of each algorithm as the device network become more different.263

Dataset We implement a random task graph generator and a random device network generator with264

various characteristics depending on input parameters. For task graphs, those parameters include:265

the number of tasks, the depth/width ratio of the DAG, the edge connection probability, the average266

compute requirements of tasks, the average amount of data transmission, and the heterogeneity267

across tasks in a graph. For device networks, the input parameters include: the number of devices,268

the average communication bandwidth and delay, the average compute speed of devices, and the269

heterogeneity across devices in the network. Each task graph and device network has compute and270

communication properties that are draw from a uniform distribution centered around the average271

value with a range defined by the heterogeneity parameters. Our simulation-based framework allows272

assigning sets of values to the parameters used by the generators.273

4.1 Placement Performance274

We train GiPH and other learning-based methods using the same training dataset Gtrain ×Ntrain275

and evaluate them every five episodes with a separate set of evaluation cases GE ×NE . The training276

stops when there is no further performance improvement on the evaluation set. Then, a larger set of277

test cases Gtest ×Ntest is used to test the performance of each learned policy. To demonstrate the278

generalizability, the training set and test set are generated separately using different sets of random279

seeds to make sure the learned policy is evaluated on task graphs and device networks that are not280

seen during training (except for the single-device-network case).281

For a given test case (composed of an arbitrary task graph and device network), all search-based282

policies start from the same initial placement for fair comparison. The episode length is set to twice283

the number of computational tasks in the 2|V |. Since Placeto fixes the number of search steps to284

|V |, we start a new search episode for Placeto after |V | steps. Each policy outputs the SLR of the285

best placement found so far within a the episode. The average SLR across test cases is record as a286

function of the number of samples as each policy searches through the solution space.287

Single-device-network case (task-graph generalization) We first evaluate GiPH’s performance288

when there is only one single device network with and without 20% noise added to the computation289

and communication times. The noise is intended to model the randomness (unpredictability) of the290

communication and computation times in real systems. The training set contains 300 task graphs,291

and the learned policies are tested on a separate set of 300 graphs.292

The average SLR across test cases as a function of the number of the search step is shown in293

Fig.4a. In all cases, our GiPH policy outperforms other search policies and more rapidly finds better294

placements within fewer number of search steps. It achieves up to 30.4% speadup compared to the295

random baseline, which represents the average placement “quality”. GiPH also exhibits resistance296

to variance in the communication and computation times (noise). In contrast, the Placeto policy297

degrades considerably probably because the agent cannot de-couple the noise sources without a proper298

presentation of the device network. Fig.4b shows the SLR of the final placements found by different299

algorithms with respect to the depth of the task graph. GiPH outperforms other search-based methods300

8

0.0 0.5 1.0 1.5 2.0
of samples/# of tasks in the graph

8

9

10

11

12

13

Av
er

ag
e

SL
R

single network, noise=0

0.0 0.5 1.0 1.5 2.0
of samples/# of tasks in the graph

single network, noise=0.2

GiPH GiPH-task-eft Placeto Random Samples Random-task-eft

(a) Placement search efficiency when trained and tested on a single network

10 20 30 40 50
Depth of the task graph

5

10

15

20

25

30

SL
R

single network, noise=0

10 20 30 40 50
Depth of the task graph

single network, noise=0.2
GiPH
GiPH-task-eft
Random-task-eft

Random Samples
Placeto
HEFT

(b) Average SLR with respect to the depth of the task graph

in most of the cases and are comparable to the state-of-the-art HEFT. The results demonstrate the301

generalizability of the GiPH policy to unseen task graphs.302

Multiple-device-network case (device-network generalization) We also look at the case where303

multiple device networks are used for training and testing. Since Placeto only works for a fixed number304

of devices, we generate fixed-sized device networks but with varying compute and communication305

capacities per device across generated networks instances. 10 device networks and 120 task graphs306

(a total of 1200 combinations for train cases), and the learned policies are tested on 500 sampled307

placement problems from 10 test device networks and 120 test graphs. In terms of average SLR308

across test cases (Fig. 5a), our GiPH policy again outperforms other search policies and find good309

placements within fewer steps. Placeto, on the other hand, is not able to distinguish between different310

device networks without encoding any device-level information. The policy could be even biased311

during the training process towards some false local optima that no longer exist in a new device312

network. Thus, with a biased sampling strategy, Placeto performs even worse than the random policy.313

The results demonstrate the generalizability of the GiPH policy across device networks.314

9

0.0 0.5 1.0 1.5 2.0
of samples/# of tasks in the graph

7.5

8.0

8.5

9.0

9.5

10.0

Av
er

ag
e

SL
R

multiple networks, noise=0

0.0 0.5 1.0 1.5 2.0
of samples/# of tasks in the graph

multiple networks, noise=0.2

GiPH GiPH-task-eft Placeto Random Samples Random-task-eft

(a) Placement search efficiency when trained and tested on multiple networks

10 15 20 25 30 35 40 45
Depth of the task graph

4

6

8

10

12

14

16

18

SL
R

multiple networks, noise=0

10 15 20 25 30 35 40 45
Depth of the task graph

multiple networks, noise=0.2
GiPH
GiPH-task-eft
Random-task-eft

Random Samples
Placeto
HEFT

(b) Average SLR with respect to the depth of the task graph

4.2 Generalizability315

5 Conclusion316

We presented GiPH, an RL-based framework for learning generalizable placement policies. We317

formulate the learning problem as a search problem such that the policy outputs incremental placement318

improvement steps. To generalize across different problem instances, we devise gpNet, a graph319

representation of placement for any task graphs and device networks. This novel graph representation320

together with a scalable and generalizable neural network design enables learning from an arbitrary321

placement problem. We demonstrate that GiPH is able to learn generalizable policies that produce322

better placement results than other baseline algorithms on unseen task graphs and device networks.323

References324

Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, and Mo-325

hammad Alizadeh. Placeto: Learning generalizable device placement algorithms for distributed326

machine learning, 2019.327

H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and low-complexity task scheduling328

for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems, 13(3):329

10

260–274, 2002. doi: 10.1109/71.993206.330

Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforcement learning. In331

Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, UAI’01, page332

538–545, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558608001.333

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement334

learning. Mach. Learn., 8(3–4):229–256, may 1992. ISSN 0885-6125. doi: 10.1007/BF00992696.335

URL https://doi.org/10.1007/BF00992696.336

11

https://doi.org/10.1007/BF00992696

	Introduction
	Placement Problem
	GiPH
	MDP Formalism
	gpNet Representation
	Neural Network Design
	RL Training

	Experiments
	Placement Performance
	Generalizability

	Conclusion

