© ®©® N o g b~ 0w N o=

2
27
28
29
30
31
32
33
34

GiPH: Generalizable Placement Learning for Adaptive
Heterogeneous Computing

Anonymous Author(s)
Affiliation
Address

email

Abstract

We propose GiPH, a reinforcement learning (RL) approach to learning efficient
and fully generalizable placement search policies for heterogeneous computing.
The placement of a computational graph on a target device cluster is critical for
achieving low latency for distributed computing (e.g., cloud computing, distributed
neural network training). The problem is challenging due to its NP-hardness
and combinatorial nature. In recent years, learning-based approaches have been
proposed to learn a general placement policy that can be applied to unseen graphs.
While in practice, a wide range of application graphs need to run constantly
changing networks of devices, the learned policies based on existing formulations
cannot quickly adapt to changes in the device cluster because those methods
only take a fixed number of devices into account. GiPH overcomes this limitation
through the use of 1) a novel graph representation gpNet that efficiently encodes the
information needed for choosing a good placement, and 2) a scalable graph neural
network (GNN) that directly takes edge features with topological information into
account. GiPH turns the placement problem into a problem of finding a sequence
of placement improvements to learn a policy that scales to placement problems of
arbitrary sizes. The learned policy can efficiently search for good placement given
a heterogeneous task graph and a cluster of heterogeneous devices. We evaluate
GiPH with a wide range of randomly generated task graphs and device clusters and
show that our learned policy can be applied to new problem instances to rapidly
find good placements. Our learned policy achieves placement speedup by up to
30.5%, and searches up to 3x faster than other search-based placement policies.
GiPH policy also adapts to network changes and produces better placement results
than baselines.

1 Introduction

The placement of computation tasks of distributed applications has key importance on performance
of distributed platforms. When running a compute application across a network of computing
devices, careful choice of which parts of the application to run on which device can significantly
affect application performance. This is particularly true when devices are heterogeneous: e.g.,
compute-intensive tasks should be run on devices with more computation resources, but those devices
may not be the best choice if they have limited communication resources. Solving this problem is
particularly difficult. Such placement problems on heterogeneous networks are particularly common
in the emerging Internet-of-Things, where we have a mix of edge devices, edge servers, and clond
servers. The resulting device placement problem is typically modeled by representing applications as

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

35
36
37
38
39

40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58

59
60
61
62
63

64
65

66
67

68
69
70
71

72
73
74

75
76
7

79
80

81
82

directed acyclic graphs (DAGs), in which each node represents a unit of computation (task) and edges
represent data links between tasks which determine the sequence of computations. By using DAGs to
encode the precedence order of different computation units within an application, we can measure
the end-to-end completion time of the application as a function of the computing and communication
resources available at each device, given an application placement.

Due to the NP-hardness and combinatorial nature of the placement problem, heuristic methods that
rely on simple strategies and hand-crafted features have been proposed. However, they can only
achieve sub-optimality and forego potential performance optimization. Many of the heuristics also
assume an inaccurate or simplified performance model (e.g., computation and communication times)
about the system to enable a closed-form formulation. This paper, instead, follows another recent
line of work that has focused on machine-learning techniques to automatically learn highly efficient
placement policies using reinforcement learning (RL). Unlike traditional static heuristic methods,
RL allows learning from simulated or real completion times without heavily relying on inaccurate
assumptions.

RL also has the potential to generalize across different problem instances, which cannot be done by
static heuristics. The training overhead is reduced when the policy learned from previous experience
is applicable to a wide range of cases. Although RL learns problem-specific policies, in practice a
wide range of applications may run on constantly changing networks of devices. It is thus imperative
to design RL representations and learning algorithms that can generalize well. Existing approaches
fail to be fully generalizable as they either do not take features of the network of devices into account
or only consider a fixed number of devices. As a result, whenever the device network changes, the
learned policies will perform poorly and require significant amount of re-training. In heterogeneous
computing environment, placement feasibility constraints may also exist due to hardware availability,
which in general are not well handled by RL.

In this work, we propose GiPH, an RL-based approach to learning efficient and fully Generalizable
Placement with the ability to adapt to dynamic Heterogeneous networks. To the best of author’s
knowledge, GiPH is the very first RL approach to learn a placement policy that not only generalizes
to new task graphs that are not in the training set, but also adapts to changing device networks. The
key contributions and findings of this work can be summarized as follows:

* We develop a scalable and generalizable neural network design that can process general
placement problems given arbitrary task graphs and device networks.

* We formulate the learning problem as a search problem where the placement is done through
applying a sequence of iterative placement improvements.

* We propose GiPH, a RL-based framework for learning generalizable placement policy.
Given a heterogeneous device network and a heterogeneous task graph, the learned policy ef-
ficiently searches for good placement and produces results comparable to HEFT (Topcuoglu
et al. [2002]).

* We devise gpNet, a novel and universal graph representation of the placement problem that
takes both the task graph and the device network into account. It is flexible for representing
the placement of any task graph on any device network with optional placement constraints.

* We evaluate GiPH in terms of the placement quality and generalizability. For completion
time minimization, GiPH policy achieves placement speedup by up to 30.5% with higher
search efficiency.

2 Placement Problem
This section defines a general placement problem that takes into account 1) placement constraints, 2)
heterogeneous compute features, and 3) heterogeneous communication features.

Given a distributed application and a device network, a placement maps each computation task in the
application to a device in the network to optimize a performance criteria. In this work, we consider

83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98

99
100
101
102
103
104

105

106
107
108

109

110
111
112
113
114

Dy ={d4,d;} D3 = {dz,d3} do dy
(B13)

Dy = {do,d Dy ={d
o = {do, d1} D; = {do, ds} 4 = {dq} dy d;

(a) Example task graph G with (b) Example device network with
placement constraints symmetric communication links (c) gpNet representation. The pivots and the

edges between pivots are identified in bold.

Figure 1: (a) and (b) show the task graph and the device network, respectively, of an example
placement problem. The set of feasible devices for each task (placement constraints) is shown in (a).
Node and edge features are in parenthesis. (c) shows the gpNet representation of a feasible placement
indicated in (a) and (b).

the minimization of the completion time of an application, which is the time duration from the start
of the first task’s execution to the end of the last task’s execution. An application is defined by a
directed acyclic graph G = (V, E), as shown in Fig. 1(a), where nodes V' = {vy, ..., v,,_1 } represent
computation tasks of the application and edges 2 C V' x V represent inter-task data dependencies
and communication. Each edge also represents the precedence constraint such that a task should
complete its execution before any of its child tasks starts. The raw features of each node v; € V' and
each edge (v;,v;) € E, represented by 5" and B;;. respectively, should be defined according to the
performance criteria to optimize, e.g., node features and edge features may include the amount of
compute and data transfer each task and data link requires for completion time minimization.

A target computing network (e.g., Fig. 1(b)) consists of a set D = {dy, ..., d,—1} of m devices.
Each device d; has device feature b; (i.e., device compute speed, hardware type) and each pair of
devices (d;, d;) has communication link features b;; (e.g., bandwidths, delay). For the purpose of
this paper, we assume the devices are fully connected and the communication links are symmetric
b;; = bj;, and we only consider single-link paths (represented by edges) between devices. It is easy
to generalize to more complex device topology by attaching extremely high communication losses to
links that do not exist.

A placement of an application GG on a network IV is a mapping M : V' — D. For heterogeneous
network, we consider placement constraints resulted from hardware availability and feasibility, where
each computation task v; can only be mapped to a subset of devices D; C D. See Fig. 1(a) and (b)
for an example. The goal of the placement is to optimize a performance criteria p(M |G, N') while
satisfying M (v;) € D; for all v; € V. (G, N) defines a specific problem instance, and we denote a
general placement as a triple P = (G, N, M&—N).

3 GiPH

This section introduces GiPH. Each subsection describes one of the key ideas: the formulation of the
search problem and the associated Markov decision process (MDP) (§3.1), gpNet representation of
the placement (§3.2), the scalable neural network design (§3.3), and RL training (§3.4).

3.1 MDP Formalism

We formulate the learning problem as a search problem, where given an initial placement, a learned
policy iteratively applies some small changes to the current placement. Through making incremental
changes, the policy is able to search through the solution space and find better placement solutions.
Instead of trying to learn a policy that places the whole graph at once, our search approach makes the
learning simpler by only considering a small local search space at a time.

115
116

117
118
119
120

121
122
123
124
125

126
127
128

129
130
131
132

133
134
135
136
137

138
139
140
141
142
143
144
145
146
147

Action space

DO = {d()v dl} ag = Evo,gog
. . a; = (Yo, 1
@ @ a; = (vy,dq)

Dy ={dy,dz} az = (vy,d,)

(a) Two task example

(b) State action diagram of the MDP for the two-task
example in (a)

Figure 2: MDP of the placement search problem.

Consider a single problem instance (G, N). For the search problem, we define the state space
as the set of all feasible placement Sq, v = {M|M(v;) € D;,Yv; € V}. (state and placement

terms are interchangeably used in the paper.) The size of the state space |Sg n| = HLZ'O_l |D;],
since each task can be placed on any of the feasible devices for it. When there is no placement
constraint, |Sg x| = |D|!V!. For the two-task example shown in Fig.2(a), there are a total of 4
feasible placements, all shown as states in the transition diagram of Fig.2(b).

To search through the state space, we define an action to be a task and device pair (v;, d;) that sets
the placement of v; to device d;. Suppose at time ¢, the current state s, = M. If M(v;) = dj,
the action does not change the current placement and s; 1 = s; = M. If M(v;) # d;, the action
moves the placement of v; from M(v;) to d;, and s;41 = M’ # M such that M'(v;) = d; and
M (vi,) = M(vy) for all k € [n]/i. We only consider feasible actions (v;,d;) such that d; € D;.
The size of the action space is thus |Ag n| = Zzlo_l |D;|. In the case there is no placement
constraint, |Ag n| = |V||D|. Fig. 2(b) lists all four actions for the simple two-task example and
shows the deterministic state transition given an action taken at each state.

Note that the diameter, i.e., the longest shortest path between state of the state transition diagram is
|V| because you can always change from one placement to any other placement by moving each task
node for at most once. Therefore, even though the state space grows exponentially with |V], it is
always possible to go from any state to any other state in |V steps.

We consider the MDP for the placement of a task graph G on a device network D as follows. At
first, the episode is initialized at a random placement sy ~ |S¢, |, where each task node is randomly
assigned to one of the feasible devices. At each step ¢, an action a; € Ag, n is taken to update the
current placement. The episode length is set to 2|V| steps, during which the agent is free to explore
the search landscape through “trial and error”.

The objective function p(M|G, N) reflects how good a state s = M is. We assign intermediate
reward r; = p(sy11|G, N) — p(s¢|G, N) that indicates the performance improvement after taking
an action a, at state s; fort = 0,1, ...,2|V| — 1. The goal of RL is to learn to take actions in order
to maximize the expected discounted return Zf%‘ -t ~tr;. When v = 1, the expected return is the
expected performance improvement between the final state sy|y| and a randomly initialized state s,
i.e., the policy tries to maximize E[p (s (|G, N)] — E[p(so|G, N)]. Since the latter term is constant
for a (G, N) pair with random initialization, RL is effectively improving the expected performance
of the final placement through maximizing the expected return. When + < 1, the policy seeks more
immediate reward as future rewards are discounted. In this case, the policy also learns to search more
efficiently at the beginning of the episodes.

148

149
150
151
152
153
154
155

156
157
158
159
160
161

162
163
164
165
166
167
168
169

170
171
172
173
174
175

176
177
178
179

3.2 gpNet Representation

We have formulated a discrete MDP for the placement search problem given (G, N'). However, for the
learned policy to be fully generalizable without depending on (G, V), a representation of a general
placement P = (G, N, M%) is required to work across different problem instances with an
arbitrary pair of task graph and device network. The representation should capture the heterogeneous
compute and communication requirements of the task graph G and the heterogeneous compute and
communication capabilities of the device network IV, in order to enable the learning of the relation
between p and P.

To this end, we present gpNet, a novel and universal graph representation of the placement that
encapsulates features of both the task graphs and the device networks with placement constraints.
gpNet generates a unique graph H = (Vy, Efr) given a general placement P = (G, N, M&=N),
where G = (V, E) is an arbitrary task graph with node features 3™ and edge feature 3¢, N is
an arbitrary device network with a set of devices D that has device compute features b™ and
communication link features b®. The pseudocode is shown in Algorithm below.

Algorithm gpNet

function GPNET(G = (V, E, 8", 8°), N = (D, b",b¢), MG—N)
Initialize an empty graph H = (Vg, Eg, ™, x°)

Vaur ={} > The set of pivots
for v; € V do
C; =1} > The node cluster of v;
for d; € D; do > D;: the placement constraint of v;

add node u = (v;, d;) to Vi and C;
node feature of u: 21} = f,, (87, b")
if M%>N(v;) = d; then
add u = (Ui, d]) to VH,p
for (v;,v;) € E do
for u; = (Ui,dk) S Cz',UQ = (Uj,dl) S Cj do
ifu; € VH’p or us € VH’p then
add edge ¢ = (u1,uz) to Egy
edge feature of c: z = f.(85;, by;)

return H > gpNet representation of the placement

Each node in H represents a feasible placement of v; € V on device d; € D;, and is labeled (v;, d;).
The node feature of (v;, dj) is a function, f,, of the task feature 3;* and the device feature b}l. The set
of nodes for all possible placements of a task v; forms a cluster C; = {(v;,-)} C V. Those nodes,
whose labels are in the current placement M &~ are called pivots and form a set Vap C Vi. The
subgraph induced by Vy p contains all information about the current placement ME=N _Non-pivot
nodes, on the other hand, represents a potential task re-placement. Each node in H also corresponds
to one action defined in the search problem (§3.1). This correspondence is exploited later in our
neural network design (§3.3).

Edge ((vi,dk), (vj,d;)) exists in H if and only if (v;,v;) € E and at least one of (v;, dy) and (v;, d;)
is in Vi p. In this way, each non-pivot node (v;, d;) only has edges pointing to or from pivots that
contain the current placement information of the parent tasks and child tasks , and thus, has a local
graph structure corresponding to the one if a replacement of v; to d; happens. This design decision
is in support of the local search idea that at most one task is moved each time. The edge feature of

((vi, dk), (vj,di)) is a function, fe, of the data link feature /3f; and the communication link feature

b%,;. The resulting graph H has |V | = ZLZFI |D;| nodes and |Eg| = Z‘izl(fl (|Di||E;]) — | E|
edges, where |E;| is the degree of v; in G. Fig.1(c) shows the gpNet of the example placement in (a)
and (b). f,, and f. can be any sensible functions that combine the raw features of the task graph and

the device network (e.g., concatenation function).

180
181
182
183
184

185

186
187
188
189
190
191

192
193
194
195
196
197

198
199
200
201

202
203
204
205
206
207
208

209
210
211

212
213

Na¥

Problem Instances reward\l/?} = p(Se411Gi, Ni) — p(sel Gy, Ni)
GioN, Fo=m=——=———=———-——-- 1 Action
m se=M, Placement Agent 1 Policy Network ! Selection St+1
—oN; ! P(acti Gi=N,
G ..No gpNet(Gi, Ny, p N J (action My ™
x 1
(G, Ny) ! Graph S ample] ap 8 :
Neural { (v, dg) O/'. d
Network 1 wevs Vi
| | ! d €D’ .
m ! O
1 yGi phi
G N, T !
'j j |

Figure 3: GiPH neural network design

Our proposed gpNet captures all network- and task-related features for making a placement update
decision given a current placement. The original task dependencies in G and placement constraints
are implicitly present in the output gpNet H through the way it is constructed. gpNet also generalizes
to different problem instances and can represent any feasible placement of an arbitrary problem pair
(G,N).

3.3 Neural Network Design

The learning framework of GiPH is visualized in Fig. 3. Given a placement problem of an arbi-
trary task graph G; and target network NN;, the placement agent starts a search from a randomly
initialized placement Mg i=Ni The agent then takes as the input the current state of the search,
P = (Gy, Ny, .MtG =N), decides a placement update (an action defined in §3.1) that modifies the
current placement, and observes the improvement of the performance objective p as the reward. It
consists of a graph neural network and a policy network, which are jointly trained.

Scalable and generalizable graph embedding GiPH must first convert the state information into
features to pass to the policy network. We use gpNet (§3.2) to generate a graph representation
gpNet(G;, N;, MtG i h. “ of the current state. However, we still need to encode the graph-structured
state information as vectors. Creating a flat vector representation is not scalable because it cannot
handle graphs of arbitrary sizes and shapes (which depend on the specific task graph, target network
and constraints).

GiPH achieves scalability using a graph neural network (GNN) that embeds the state information
in a set of embedding vectors. Taking a gpNet as input with node features =™ and edge features x¢
composed as described in §3.2, GiPH propagates information in a sequence of message passing step
in the form of

€y = h Z g([eﬂ || Iiu]) + ILL? (1)
veg(u)

where £(u) is the set of parents of u, who have aggregated messages from all of their parents. g()
and h() are non-linear transformations over vector inputs with trainable parameters. The message
passing is done in both forward and backward directions with separate parameters, each summarizes
information about the subgraph of nodes that can be reached and is reachable from u. GiPH
concatenates the two summaries along each direction as the embedding of a node in gpNet. For a
node with label (v, d), with embedding captures the local placement information if v is placed on d
(i.e., if an action (v, d) is taken).

Adopting a GNN also helps generalizability because it automatically learns high-level features that
are statistically important through end-to-end training, and the model learned can generalize (and
scale) to unseen graphs.

Policy network and actions The policy network consists of a multi-layer perceptron (MLP), an
optional mask layer, and a softmax layer (Fig. 3). We use the per-node embedding from GNN to

214
215
216
217
218

219

220

221
222
223
224

225
226

227
228
229

231

232
233
234

243
244
245

246

247
248
249

250
251

252
253
254

compute a score ¢, = g(e,) for each action ¢ in the action space A, n, (represented as nodes
in the gpNet). g(-) is a score function implemented as a MLP that computes a scalar value from
an embedding vector. The score g, quantifies how good an action is given the current state s.
GiPH then uses a softmax layer to output a probability of selecting each action based on the score
P(als) = exp (qa) _pe A, n, XD (g»)- An optional mask layer can be placed before the softmax to
mask out undesired actions. The final output is a probability distribution over all feasible actions

3.4 RL Training

GiPH uses a policy gradient method REINFORCE for training (Williams [1992]). During each
episode, a placement problem (G, N) is sampled from a training set Gr x Ap. Starting from a
random placement sg, the agent collects observations (s, a,7¢) at each step t = 0,...,2|V| — 1
following the current policy 7. It updates its policy parameters at the end of each episode

21V|—1 21V|—1
0«0+« Z 7'V log mo(az|st) Z Yy by | 2
=0 =t

where « is the learning rate, vy is the discounting factor, and b, is a baseline for reducing the variance
of the policy gradient (Weaver and Tao [2001]).

To improve the sample efficiency and force exploration, we mask out actions that do not change the
current placement (e.g., ag, a; at state My in the example Fig. 2(b)) because no new information
will be acquired by taking those actions. We also mask out actions that will move the same task node
as the immediate previous action did as moving the same node consecutively is inefficient.

4 Experiments

In this section, we evaluate the performance of our proposed GiPH for makespan minimization. We
assume a heterogeneous computing environment where the computation time and communication
time can be estimated from compute (task) and communication (data link) features of the device
network (task graph). We consider randomly generated task graphs and device networks and compare
GiPH with the following baseline algorithms:

* Random placement sampling: generate random placements of the task graph by sampling
a feasible placement for each task from a uniform random distribution. This random baseline
is representative of the average placement “quality” without GiPH’s intelligent search.

* Random task selection + earliest finish time device selection: a heuristic for placement
search, where at each step a task in the graph is randomly selected and placed to a feasible
device that is expected to finish the task the earliest (Topcuoglu et al. [2002]).

* GiPH task selection + EFT device selection: the version of GiPH without using gpNet. At
each step, instead of deciding both a task and a device, the RL agent only selects a task. The
task is then placed to a feasible device that can finish the task the earliest.

¢ Placeto (Addanki et al. [2019]):

* HEFT (Topcuoglu et al. [2002]): one of the most well-known heuristic offline scheduling
algorithm for heterogeneous computing, which assumes the perfect knowledge of compute
and communication times.

Evaluation Metrics We compare 1) the placement quality of these placement algorithms and 2)
the generalizability.

For the placement quality, we consider an objective of minimizing the makespan, which is the duration
from the start to the end of the excution of the task graph. Since the makespan can vary significantly
across different problem instances, it is necessary to normalize the makespan to a problem-dependent

255

256
257
258
259
260

261
262
263

264

266
267
268
269
270
271
272
273

274

275
276
277
278
279

281

282
283
284
285
286
287

288

290
291
292

294
295
296
297

299
300

lower bound. We use the Schedule Length Ratio (SLR) defined by
makespan

SLR = -)
ZWECPMIN ming; e D; Wi,j

3)

where w; ; is the expected time of running task v; on device d;. This metric is first introduced
in(Topcuoglu et al. [2002]). The denominator is the sum of the minimum computation cost of tasks
along the critical path C'Py;; . The placement algorithm that gives the lowest SLR is the best with
respect to the placement performance. Average SLR of different problem instances is used in the
experiments for testing.

We measure the generalizability of the algorithms by testing how well they can adapt to network
changes. The test is done by gradually removing devices and then putting new devices back in one by
one. We record the placement quality of each algorithm as the device network become more different.

Dataset We implement a random task graph generator and a random device network generator with
various characteristics depending on input parameters. For task graphs, those parameters include:
the number of tasks, the depth/width ratio of the DAG, the edge connection probability, the average
compute requirements of tasks, the average amount of data transmission, and the heterogeneity
across tasks in a graph. For device networks, the input parameters include: the number of devices,
the average communication bandwidth and delay, the average compute speed of devices, and the
heterogeneity across devices in the network. Each task graph and device network has compute and
communication properties that are draw from a uniform distribution centered around the average
value with a range defined by the heterogeneity parameters. Our simulation-based framework allows
assigning sets of values to the parameters used by the generators.

4.1 Placement Performance

We train GiPH and other learning-based methods using the same training dataset Giyqin X Nirain
and evaluate them every five episodes with a separate set of evaluation cases Gg x Ng. The training
stops when there is no further performance improvement on the evaluation set. Then, a larger set of
test cases Giesr X Niest is used to test the performance of each learned policy. To demonstrate the
generalizability, the training set and test set are generated separately using different sets of random
seeds to make sure the learned policy is evaluated on task graphs and device networks that are not
seen during training (except for the single-device-network case).

For a given test case (composed of an arbitrary task graph and device network), all search-based
policies start from the same initial placement for fair comparison. The episode length is set to twice
the number of computational tasks in the 2|V'|. Since Placeto fixes the number of search steps to
|V'|, we start a new search episode for Placeto after |V| steps. Each policy outputs the SLR of the
best placement found so far within a the episode. The average SLR across test cases is record as a
function of the number of samples as each policy searches through the solution space.

Single-device-network case (task-graph generalization) We first evaluate GiPH’s performance
when there is only one single device network with and without 20% noise added to the computation
and communication times. The noise is intended to model the randomness (unpredictability) of the
communication and computation times in real systems. The training set contains 300 task graphs,
and the learned policies are tested on a separate set of 300 graphs.

The average SLR across test cases as a function of the number of the search step is shown in
Fig.4a. In all cases, our GiPH policy outperforms other search policies and more rapidly finds better
placements within fewer number of search steps. It achieves up to 30.4% speadup compared to the
random baseline, which represents the average placement “quality”. GiPH also exhibits resistance
to variance in the communication and computation times (noise). In contrast, the Placeto policy
degrades considerably probably because the agent cannot de-couple the noise sources without a proper
presentation of the device network. Fig.4b shows the SLR of the final placements found by different
algorithms with respect to the depth of the task graph. GiPH outperforms other search-based methods

301
302

303
304
305
306
307
308
309
310
311

312
313
314

single network, noise=0 single network, noise=0.2

13 A
.. ..
3. Bs.
3$\ .. L X 25 Y
124 % LTS - 4444
\.‘\x LR O-Q-Q-Q.Q.’_‘_‘._‘”’_.‘ S A-'A-.A..A._A..A..A..A..A..A..A.A
o BN L0
n Y : “x
n 11 . ' - ‘n,
) \'g Ry R\ ‘x.\xx
o)) AT ey n ‘., XS
© ® \ e N
C 10 A ® Ny - W *. Xy
CI>) \\ N N u .y "
‘.. &S THe
Z .\. * . x‘-x‘)6 ‘1 » “'.:.)é.x\xﬁ(
94 bt * .y - -\. *. 5. .
- Rt ®-%.9 ™ -‘.-._._
'I-._._. "-l-..._.
8 = 8-uan -
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
of samples/# of tasks in the graph # of samples/# of tasks in the graph
-®m- GiPH --#%- GiPH-task-eft Placeto --¢- Random Samples —=» =~ Random-task-eft
(a) Placement search efficiency when trained and tested on a single network
single network, noise=0 single network, noise=0.2
30 - 3 —-==- GiPH =+ Random Samples
: «-#- GiPH-task-eft Placeto

—w =~ Random-task-eft <> HEFT

SLR

10 20 30 40 50 10 20 30 40 50
Depth of the task graph Depth of the task graph

(b) Average SLR with respect to the depth of the task graph

in most of the cases and are comparable to the state-of-the-art HEFT. The results demonstrate the
generalizability of the GiPH policy to unseen task graphs.

Multiple-device-network case (device-network generalization) We also look at the case where
multiple device networks are used for training and testing. Since Placeto only works for a fixed number
of devices, we generate fixed-sized device networks but with varying compute and communication
capacities per device across generated networks instances. 10 device networks and 120 task graphs
(a total of 1200 combinations for train cases), and the learned policies are tested on 500 sampled
placement problems from 10 test device networks and 120 test graphs. In terms of average SLR
across test cases (Fig. 5a), our GiPH policy again outperforms other search policies and find good
placements within fewer steps. Placeto, on the other hand, is not able to distinguish between different
device networks without encoding any device-level information. The policy could be even biased
during the training process towards some false local optima that no longer exist in a new device
network. Thus, with a biased sampling strategy, Placeto performs even worse than the random policy.
The results demonstrate the generalizability of the GiPH policy across device networks.

315

316

317
318
319
320
321
322
323

324

325
326
327

328
329

multiple networks, noise=0 multiple networks, noise=0.2

10.0 A S A
9.5 %\’ 4. N o
VX 9. X $-g.
' *p. N AR e
5 \\ ; x 449 X R0 .4 \':Kx *-4 Q--Q«'Q'-Q--Q....,,'_'_'
" 9.0 R e > - ® %
VT
% h X.,‘.X\xx \w y\x
I | . R BN _ Row, e
= 85 9 LI T - * "
2 - R Tl m x""x i B
< \ & “m * =
8.0 1 L] * - m *®.
h - Ty
Rt iy il 2%
. b 8 »
7.5 ot B R | .
. - 8-mgy "i—li-.
OTO ofs er 1f5 2fo ofo ofs l.O 1.5 2.0
of samples/# of tasks in the graph # of samples/# of tasks in the graph
-m- GiPH --%- GiPH-task-eft Placeto -4+ Random Samples -» - Random-task-eft
(a) Placement search efficiency when trained and tested on multiple networks
multiple networks, noise=0 multiple networks, noise=0.2
18 1 -=- GiPH -+¢- Random Samples
1) -+ GiPH-task-eft Placeto 5}
- -w~- Random-task-eft ~ --»: HEFT o
4 yx +
- { N
! r_'.«?";;%
- 1)
£
¥
\’4
- I
g .|
- f\
1'0 1'5 2'0 2'5 3'0 3'5 4'0 4'5 1'0 1'5 2'0 2'5 3'0 3'5 4'0 4'5
Depth of the task graph Depth of the task graph

(b) Average SLR with respect to the depth of the task graph

4.2 Generalizability

5 Conclusion

We presented GiPH, an RL-based framework for learning generalizable placement policies. We
formulate the learning problem as a search problem such that the policy outputs incremental placement
improvement steps. To generalize across different problem instances, we devise gpNet, a graph
representation of placement for any task graphs and device networks. This novel graph representation
together with a scalable and generalizable neural network design enables learning from an arbitrary
placement problem. We demonstrate that GiPH is able to learn generalizable policies that produce
better placement results than other baseline algorithms on unseen task graphs and device networks.

References

Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, and Mo-
hammad Alizadeh. Placeto: Learning generalizable device placement algorithms for distributed
machine learning, 2019.

H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems, 13(3):

10

330

331
332
333

334
335
336

260-274, 2002. doi: 10.1109/71.993206.

Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforcement learning. In
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, UAT’01, page
538-545, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558608001.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Mach. Learn., 8(3—4):229-256, may 1992. ISSN 0885-6125. doi: 10.1007/BF00992696.
URL https://doi.org/10.1007/BF00992696.

11

https://doi.org/10.1007/BF00992696

	Introduction
	Placement Problem
	GiPH
	MDP Formalism
	gpNet Representation
	Neural Network Design
	RL Training

	Experiments
	Placement Performance
	Generalizability

	Conclusion

