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Abstract—Cloud providers tend to support dynamic computing resources reallocation (e.g., Autoscaling) to handle the bursty workload
for web applications (e.g., e-commerce) in the cloud environment. Nevertheless, we demonstrate that directly scaling a bottleneck
server without quickly adjusting its soft resources (e.g., server threads and database connections) can cause significant response time
fluctuations of the target web application. Since soft resources determine the request processing concurrency of each server in the
system, simply scaling out/in the bottleneck service can unintentionally change the concurrency level of related services, inducing
either under- or over-utilization of the critical hardware resource. In this paper, we propose the Scatter-Concurrency-Throughput (SCT)
model, which can rapidly identify the near-optimal soft resource allocation of each server in the system using the measurement of each
server’s real-time throughput and concurrency. Furthermore, we implement a Concurrency-aware autoScaling (ConScale) framework
that integrates the SCT model to quickly reallocate the soft resources of the key servers in the system to best utilize the new hardware
resource capacity after the system scaling. Based on extensive experimental comparisons with two widely used hardware-only scaling
mechanisms for web applications: EC2-AutoScaling (VM-based autoscaler) and Kubernetes HPA (container-based autoscaler), we
show that ConScale can successfully mitigate the response time fluctuations over the system scaling phase in both VM-based and

container-based environments.

Index Terms—Scalability, auto-scaling, soft resource, cloud-based applications

1 INTRODUCTION

FOR modern cloud platforms, scalability is an important
requirement, which enables an application to scale its
computing resources under varying workloads dynami-
cally. Such ability is especially meaningful for modern web-
facing applications (e.g., e-commerce) due to their naturally
bursty workloads [1]. For instance, the number of users vis-
iting the Amazon website over holidays (e.g., Black Friday)
can be 10X than that in normal periods [2]. The traditional
strategy that always provisions sufficient resources for the
peak workload of the system will waste massive amounts of
computing resources and power because of low resource
utilization (e.g., averagely 18% [3]). Hence, automatically
adjusting the scale of a web application system to deal with
workload variations is extremely significant.
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Effectively scaling a web application is more challeng-
ing than parallel batch workloads (e.g., MapReduce or
Hadoop) for two reasons. The first reason is that most
web applications have strict Quality of Service (QoS)
requirements. For instance, web search requires stringent
bounded response time (e.g., 99th percentile response
time < 300ms [4], [5], [6]). Due to the bursty nature of
web application workloads (e.g., Slashdot effect [7]), intel-
ligently scaling the necessary computing resource to
adapt to the runtime workload variations and always sat-
isfy the QoS requirement can be difficult. The system will
encounter temporary overloading unavoidably even if we
apply reactive [8] or proactive [9], [10] autoscaling mecha-
nisms. For instance, Fig. 1 displays the large response
time fluctuations of a 3-tier RUBBoS benchmark applica-
tion (detailed experiment setup is included in Section 5.1)
adopting the EC2-AutoScaling mechanism' to scale the
number of VMs to deal with the bursty workload. We
noticed that the temporary overloading during the system
scaling phase causes large latency spikes in a real cloud
computing environment enabling autoscaling.

Besides adjusting hardware resources, soft resource allo-
cation (e.g., server threads or connections) plays a crucial
role in web application performance. Previous research [11]
demonstrates that scaling by adjusting the number of run-
ning VMs in an n-tier system can unintentionally change the
request processing concurrency of individual servers, which
can incur either over- or under-utilization of the critical

1. EC2-AutoScaling allows users to set a simple resource utilization
threshold (e.g., CPU utilization > 80%) for scaling decisions [8].
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Fig. 1. Large response time spikes of an n-tier RUBB0S application dur-
ing the system scales (through EC2-AutoScaling strategy) due to bursty
workload.

hardware resource of the system [12]. Therefore, without soft
resource re-adaption, the hardware-only scaling mecha-
nisms [9], [10], [13] such as EC2-AutoScaling may not make
full use of newly added hardware resources. Even for some
recent container-based autoscalers designed for mono-
lithic [14], [15] or microservice-based system [16], [17], such
uncoordinated scaling mechanisms may still negatively
affect the system performance due to the mismatch between
the soft and the hardware resources [18]. To handle such a
problem, a recent research [11] implements a framework
named DCM that applies a concurrency adaption manage-
ment (through soft resource reallocation) after the hardware
resource scaling. Concretely, DCM adopts a trial-and-error
offline-profiling approach to determine their concurrency
adaption policies before the production phase. However, the
static offline profiling approach is very time-consuming
since it needs to run extensive experiments to build the per-
formance model. Furthermore, frequent model reconstruc-
tion and retraining are required once the production runtime
environment conditions (e.g., the critical hardware resource,
the system state, and workload characteristic) vary from that
in the offline-profiling phase. Thus, offline models cannot
provide timely soft resource re-adaption for SLO-oriented
web applications that have strict latency requirements (in
milliseconds level).

In this paper, we develop an online Scatter-Concurrency-
Throughput (SCT) model to rapidly identify the near-opti-
mal concurrency for component servers using the real-time
measurement of each server’s application-level metrics (e.g.,
concurrency and throughput). Assuming each server in a
web system records the arrival and the departure time-
stamps of each request at millisecond granularity via a
request accessing log, we can measure each server’s real-
time throughput and concurrency by calculating the request
completion rate and the number of concurrent requests
within short time intervals (e.g., 50ms), respectively. Accord-
ing to the classic Utilization Law [19], the optimal concur-
rency setting for a server is the minimum of concurrency
when the server reaches the highest throughput. Thus, by
correlating the fine-grained throughput and concurrency
measured in continuous short time windows, our model can
recommend a rational concurrency of each server during
runtime.
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We implement a Concurrency-aware system Scaling
(ConScale) framework, which coordinates the rational soft
resource allocation recommended by our SCT model with
hardware resource scaling. By analyzing fine-grained mea-
sured throughput and concurrency, the SCT model continu-
ously recommends each server’s near-optimal concurrency
setting on the fly. Specifically, our ConScale framework
takes two actions during a system scaling phase: First,
adding or removing hardware resources via a classic thresh-
old-based scaling mechanism (e.g., EC2-AutoScaling for
VM-scaling or Kubernetes HPA for container-scaling).
Second, re-adapting the soft resources of the related server
as recommended by the SCT model after hardware scaling.
Integrating both critical hardware resource scaling with
runtime rational soft resources adapting, our ConScale
framework can mitigate the system response time fluctua-
tions during the temporary overloading phases over the
system scaling processes.

In brief, our work makes the following contributions:

e Develop the online SCT model, which can rapidly
provide the updated optimal concurrency setting of
each server in a web system according to runtime
environment conditions (Section 3).

e Reveal three factors that can cause the shifting of the
optimal concurrency setting of component servers
(e.g., Tomcat or MySQL) in a web system (Sec-
tions 2.2 and 3.4).

e Implement the ConScale framework to realize fast
and intelligent soft resources adaption to handle
temporary overloading in system scaling scenarios
in clouds (Section 4).

e Conduct an extensive evaluation of the performance
of ConScale with a realistic bursty workload for scal-
ing monolithic (i.e., n-tier) and microservice-based
applications (Section 5).

We outline the rest of this paper as follows. Section 2 dis-
plays that the optimal concurrency for component servers
shifts as system condition changes (e.g., the critical hard-
ware resource scaling and system state change). Section 3
presents the online Scatter-Concurrency-Throughput model
and our empirical study on factors that may affect optimal
concurrency based on the SCT model. Section 4 introduces
the design of our ConScale framework and implementation
details. Section 5 discusses the experimental evaluation
under six categorized realistic workloads. Section 6 summa-
rizes the related work, and Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

2.1 Experiment Setup

We use a representative n-tier application benchmark RUB-
BoS [20], which is one of the bulletin board applications
modeled after Slashdot [7]. The RUBBoS benchmark can be
configured as 3-tier (i.e., web server tier, application server
tier, and database server tier) or 4-tier (add load balancer
tier like HAProxy [21] or cache tier like Memcached [22]).
The benchmark application consists of 24 servlets such as
“StoriesOfTheDay”. We use two types of workload genera-
tors. First, we use a revised RUBBoS workload generator,
which sets zero think time for sending consecutive requests
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Fig. 2. Experimental setup of the VMware ESXi cluster.

to stress the target server with precisely controlled concur-
rency in Section 2.2. Second, we use the original RUBBoS
workload generator, which simulates a number of concur-
rent users by generating a request rate that follows a Pois-
son distribution in Section 5. Both two workload generators
provide two types of workload: “browse-only” CPU-inten-
sive and “read /write-mix” I/O intensive workload.

Fig. 2 displays the experimental setup including software
stack, hardware specification, and sample topology of our
experiments. We conduct our experiments in a private
VMware ESXi cluster [23]. We adopt a three-digit notation
#Web/# App/# DB to denote the number of servers in each
tier (i.e., web tier, application tier, and database tier) in the
system. For instance, Fig. 2b displays a 1/1/1 sample topol-
ogy, referring to one Apache, one Tomcat, and one MySQL.
Each individual server is deployed in a virtual machine or a
container running in a dedicated physical node in our pri-
vate cluster. We evaluate three representative soft resources:
the thread pool in a web server and an app server, and the
DB connection pool® in an app server. These three soft
resources determine the maximum level of the request
processing concurrency in Apache, Tomcat, and MySQL,
respectively. We denote such three soft resources as
#Wth'rcuds_ #Ath'rcads - #DB(107L7Lcctia'rL5~ For example/ the soft
resource allocation can be 100-100-20 in a 1/1/1 hardware
topology (see Fig. 2b), which indicates 100 Apache threads,
100 Tomcat threads, and 20 DB connections.

2.2 Shifting of Optimal Concurrency Setting as
Environmental Condition Changes

This section shows an experimental study of the shifting
of optimal concurrency settings in component servers of a
3-tier system due to environmental condition changes. Indus-
try practitioners [24] and academic researchers [12] com-
monly adopt a brute-force profiling on various concurrency
workloads to identify the optimal concurrency settings. Fig. 3
displays the performance variation at increasing workload

2. The maximum request processing concurrency of the DB server is
limited by the DB connection pool size in the upstream application
server.
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concurrency for tuning the optimal Tomcat thread pool allo-
cation. We set the same number of threads in the correspond-
ing server along with the increasing concurrency level to
exclude the queue overflow problem [11].

We study two common environmental condition change
scenarios in the production phase. First, the vertical scaling
for the critical resource (e.g., add/remove # CPU cores for
one instance) can affect the optimal concurrency setting. For
example, Figs. 3a and 3b show the optimal concurrency set-
ting in Tomcat shifts from 10 to 20 after we manually scale
up the Tomcat CPU from 1-core to 2-core. Our experimental
results indicate that vertical scaling which is adopted by
many autoscalers (e.g., Cloudscale [25] and Kubernetes
VPA [26]) would lead to the optimal concurrency setting
being sub-optimal after the system scaling.

Second, system state change also incurs the shifting of
the optimal concurrency setting. We note that the dataset
for web services updates continuously [27], which would
cause the service rate variation and further affect the opti-
mal concurrency level of the application server (e.g., Tom-
cat). Figs. 3b and 3c show that the optimal concurrency
setting shifts from 20 to 15 after the dataset is manually
enlarged, even though such two cases have the same critical
hardware resource (e.g., 2-core CPU) under the same work-
load. Consequently, the optimal concurrency setting for
Tomcat is sensitive to the system state change.

So far our experimental results demonstrate that the envi-
ronmental condition changes have a considerable impact on
the optimal concurrency settings in component servers of a
web system. To adapt to environmental condition changes,
static optimal soft resource allocation, which is based on
offline brute-force search, is very time-consuming due to
exhaustive profiling and constant model retraining. Further-
more, considering the unpredictable web system state,
dynamic resource arrangement in scaling scenario, and natu-
rally bursty workload of web applications, online optimal
concurrency estimation and fast runtime soft resource adapt-
ing should be integrated into the web system scaling manage-
ment design.

3 SCATTER-CONCURRENCY-THROUGHPUT MODEL

We develop an online Scatter-Concurrency-Throughput
(SCT) Model which can quickly generate an updated near-
optimal concurrency setting for the component server of a
web system. Inspired by a statistical intervention analysis
for detecting system bottleneck [28], our model extends
such analysis by considering the non-trivial multithreading
overhead of the server under high request processing con-
currency. The objective of our model is to generate the latest
near-optimal concurrency setting for each server along with
the runtime environmental condition, which can guarantee
stable response time together with high throughput at the
same time.

3.1 Model Description

According to the classic Utilization Law [19], the server’s
throughput grows linearly as the workload concurrency
increases until the server is saturated. As the workload
concurrency continuously increases, the throughput is on
a plateau or even decreases because of the non-trivial
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Fig. 3. Tomcat performance variation along with increasing request processing concurrency in a 3-tier system. Figs. 3a and  3b show the vertical
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the system state change (e.g., dataset size increase) can change the optimal concurrency setting (20 to 15) in Tomcat.

multithreading overhead [11], [29], [30], [31]. Meanwhile,
the response time increases significantly and causes Service
Level Objectives (SLO) violations under high workload con-
currency. Therefore, there is a range of rational concurrency
settings that contribute to the highest system throughput.
Fig. 4 characterizes the correlations among a server’s thro-
ughput, response time, and concurrency, respectively,
which help us further identify the server’s rational concur-
rency range.

We determine the lower bound of a rational concurre-
ncy setting range (i.e., Qiouer) based on correlation between
throughput and concurrency. The server throughput makes
a linear growth until reaching the highest throughput 7P,
as workload concurrency increases. The highest throughput
depends on the average critical resource expense per request
since the server only reaches the highest throughput when
its critical resource is fully utilized. Beyond saturation, the
server can maintain the maximum throughput G.e., 75,,,)
along with the concurrency increase. We can tune the Qjoyer
by identifying that the ratio of the increment of through-
put approaches to zero. In the meantime, we can achieve
the minimum response time under the Q. concurrency
setting.

The server performance would start to degrade finally
along with the server concurrency further increases and
exceeds the upper bound of that server rational concur-
rency setting (i.e, Qupper). For example, throughput drop
along with long response time is widely common in servers
(e.g., MySQL) which adopts a thread-based synchronous
mechanism. Such type of server arranges a dedicated thread

Real-time Metrics Estimation Phase

Collection Phase = a
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Fig. 4. lllustration of SCT model workflow for rational concurrency range
determination.

for processing a single request [18]. Previous research stud-
ies [11], [29], [30], [31] prove that thread-based servers serv-
ing high-level concurrency would present considerable
multithreading overhead due to many factors (e.g., thread
contention or consistency penalty [11], [31]). Such multi-
threading overhead caused by too many concurrent requests
processing may force a non-linear system throughput drop
and long response time. To avoid the SLO violations due
to the high concurrency setting, we can specify a latency
threshold and tune the corresponding concurrency as Qpper
based on the correlation between response time and its
concurrency.

Our Scatter-Concurrency-Throughput (SCT) model deter-
mines a rational concurrency range (i.e., [Qiowers Qupper]) by
correlating the runtime metrics measured from an individual
server and modeling the relationships between performance
metrics (e.g., throughput and response time) and concur-
rency. Fig. 4 illustrates the workflow of rational concurrency
range determination, which consists of two major phases:
Real-time Metrics Collection Phase and Rational Concur-
rency Range Estimation Phase.

Real-Time Metrics Collection Phase. The SCT model collects
a series of tuples {Qy,,TP,,, RT;,} during a short time
period (e.g., 3 minutes). Each tuple consists of a server’s
real-time concurrency, throughput, and response time mea-
sured at a fine granularity (e.g., 50ms). As a server’s real-
time concurrency under practical workload varies, we
denote the server concurrency region during such time
period as [Qmin, Qmas]. For certain server concurrency
Qn(Qn € [Quin, Qmaz]), we calculate the average throughput
TP, and average response time RT), to represent the system
performance. After that, we extract the main sequence curve
(i.e., blue lines in Fig. 4), which consists of the processed
data tuples {Q,,TP,, RT, }.

Rational Concurrency Range Estimation Phase. Our SCT
model aims to identify the rational concurrency range from
the extracted main sequence curve. We apply the statistic
intervention analysis [28] to estimate the minimum rational
concurrency setting (i.e., Qiouer). Moreover, we determine
the maximum rational concurrency setting (i.e., Qupper) by
referring to the SLO requirements for each application. We
are capable of generating the rational concurrency range
[Qiower, Qupper] Of a typical server as shown in Fig. 4. Consid-
ering the strict bounded response time for modern web sys-
tems, we select the Qo as the optimal concurrency setting
since we need to guarantee a low response time and make a
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trade-off between throughput and response time. (see the
dashed line in Fig. 4).

3.2 Fine-Grained Throughput and Concurrency
Correlation

Real-time fine-grained measurement of a server’s applica-
tion-level metrics is one of the key points for correctly charac-
terizing the performance of the component server in a web
system under the bursty workload. We calculate the real-
time throughput by counting the number of completed
requests within a sufficiently short time interval (e.g., 50ms);
the real-time response time and concurrency are obtained by
calculating the average response time of completed requests
and counting the number of concurrent requests within the
same time interval, respectively. Figs. 5a, 5b, and 5c show
the concurrency, throughput, and response time of a MySQL
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Fig. 6. The correlations between MySQL concurrency, throughput, and
response time measured at 50ms granularity during a 12-minute experi-
ment. Through two scatter graphs, the SCT model can generate a ratio-
nal concurrency range for MySQL. We choose the lower bound of such
rational range as the optimal concurrency setting (i.e., 10 in Fig. 6a)
because the corresponding throughput reaches the maximum and
response time gets to the minimum within the range.

server after the system scales from 1/1/1 to 1/2/1. The bot-
tleneck in the system shifts from Tomcat to MySQL
after adding a new Tomcat. We note that the concurrency,
throughput, and response time in MySQL all present large
fluctuations after scaling out Tomcat servers, indicating
MySQL suffers from less CPU efficiency.

We quantitatively validate that high request processing
concurrency causes less CPU efficiency in MySQL through
correlating the MySQL’s application-level metrics (i.e.,
throughput, response time, and concurrency) in Fig. 6.
Fig. 6a correlates the MySQL concurrency and throughput
during a 12-minute experiment, and each point refers to a
pair of MySQL concurrency and throughput measured at
the same time interval. We also plot Fig. 6b by correlating
the pairs of MySQL concurrency and response time. Each
marked point (i.e., Point 1, 2, and 3) in Fig. 6 can be local-
ized in Fig. 5. Fig. 6a presents a three-stage pattern for
throughput along with concurrency increase, and response
time increases significantly after concurrency exceeding
Qupper in Fig. 6b, which are consistent with our previous
analysis in Section 3.1.

Recall our online SCT model (Section 3.1) on the perfor-
mance of the component server in the system under a realis-
tic workload, we observe that either too small (e.g., < Qiower)
or too large (e.g., > Qupper) Of the request processing concur-
rency can lead to inferior performance of a server, which is
caused by low CPU efficiency and high multithreading over-
head. Thus, to guarantee both good performance and high
resource efficiency during the system scaling phases, we
should adapt soft resources fast and appropriately in the sys-
tem, which determines the maximum request processing
concurrency flowing to related servers.

3.3 Impact of Monitoring Time Interval

Based on our empirical studies, the accuracy of our SCT
model highly depends on the main sequence curve extrac-
tion from the correlations between throughput and concur-
rency (see Fig. 6a), and such process would be affected by
many factors in practice. The monitoring time interval of
the runtime metrics measurement is one of the critical fac-
tors. For example, if the time interval is too long, we would
not get enough points to estimate the range precisely and
lose the ability to capture short-term congestion. On the
other hand, if we set a too short monitoring time interval,
the main sequence curve extraction can be negatively
affected due to large variations for throughput and concur-
rency measurement. Concretely, the proper monitoring
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time interval should provide sufficient valid data and
ensure minimized variation among data samples.

We formulate the impact of monitoring time interval on
main sequence curve extraction as a function with two statis-
tical metrics: Percentage of Valid Data (PVD) and Coefficiency
of Variation (CV). First, PVD is designed to identify whether
a scatter graph has sufficient data for main sequence
curve extraction. For each specific concurrency Q,(Q, €
[Qmin, Qmaz]), we validate the throughput samples follows
the normal distribution (i.e., TPy, ~ N(u, 02)) through Kol-
mogorov-Smirnov test [32]. To mitigate the impact of data
samples variation, we only extract the valid data samples
which fall in the 95% confidence interval: [ — 20, 1 + 20]
and then the percentage of valid data for current concur-
rency should be a ratio of the number of valid data and num-
ber of data, denote as PVDg,, = Npyp/N. Fig. 7a shows the
comparison of the average PVD when we choose different
monitoring intervals, we notice that we cannot set a too long
time interval since we would not get sufficient valid data to
arrange the estimation. After we set the time interval longer
than 50ms, the percentage of valid data starts to decrease; for
example, we only have 49% valid data when we set 1s time
interval. Fig. 8a visualizes the scatter graph when we set the
monitoring time interval to be 1s. Compared with Fig. 6a,
insufficient data points make our model lose the ability to
capture the short-term congestion of a server and our algo-
rithm cannot estimate the optimal concurrency setting.

Second, we use coefficiency of variation (i.e., relative
standard deviation) to evaluate the dispersion of through-
put samples distribution, defined as CVp, = TP/opp. This
is because large variations for throughput measurement
would degrade the main sequence curve extraction. For
example, if we count the number of completed requests
within a short time interval (e.g., 10ms), the requests would
last several consecutive time intervals and too few requests
would complete in a small interval. Then the throughput
measurement would present large variations for each cer-
tain concurrency level (see Fig. 8b) and further blur the
shape of the expected main sequence curve to degrade the
estimation algorithm accuracy. From Fig. 7b, we finally
select 50ms as a proper time interval setting since it can
both have high PVD (> 90%) and guarantee low CV (< than
10%) at the same time.

In summary, we should both consider the percentage of
valid data and the coefficiency of variation to choose the
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Fig. 8. The correlations between server concurrency and throughput
when choosing too long a time interval (1s) and too short a time interval
(10ms). Compared with Fig. 6b, a too long time interval would not pro-
vide sufficient valid data points to arrange the estimation, while a too
short time interval would blur the shape of the expected main sequence
curve due to the increased variation of throughput.

proper monitoring time interval. However, we cannot set
constant thresholds for the two metrics to judge whether
the metrics reach optimal because such a proper time inter-
val is workload-dependent. We will study an automatic
way to choose a proper time interval in future research.

3.4 Factors That Affect Optimal Concurrency
Setting

In this section, we use our SCT model to explore the rela-
tionship between optimal concurrency setting and runtime
environment conditions. We study three common factors
that could affect optimal concurrency setting in a web sys-
tem scaling scenario: different hardware scaling strategies,
system state change, and external workload type change.
Our SCT model can capture the rapid shifts of the optimal
concurrency without extensive profiling experiments requ-
ired by offline performance model approaches.

1) Critical Resource Scaling Strategy: Vertical Scaling and Hor-
izontal Scaling. Recall our experimental results in Section 2.2.
We introduce that vertical scaling may incur the Tomcat serv-
er’s optimal concurrency change through a set of profiling
experiments. Unlike the offline profiling approach, the SCT
model only requires collecting runtime metrics under the
normal workload. For example, we configure our system
with 1/4/1 hardware topology to serve browse-only CPU-
intensive workload as in production, which causes MySQL
to become the single bottleneck server in the system. We
initially allocate a 1-core CPU for MySQL and gather the
application-level metrics (sampled at 50ms granularity) for
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Fig. 9. The throughput-concurrency scatter graphs when server with different CPU allocations, RUBB0S dataset size, and serving workload types.
Figs. 9a and 9d show the impact of CPU scaling up (e.g., 1-core to 2-core). Figs. 9b and  9e show the impact of dataset size change. Fig. 9c and
9f show the impact of workload types change. These case studies show that SCT model can capture the optimal concurrency shifting as runtime envi-

ronment condition changes.

estimating the optimal concurrency. Moreover, we scale up
the CPU to be 2-core and further generate another correlation.
Figs. 9a and 9d display the correlations of MySQL through-
put and concurrency under the 1-core MySQL and 2-core
MySQL scenarios, respectively. Our SCT model shows that
the optimal concurrency Qjou.r doubles from 10 to 20 after
vertical scaling.

We also study how horizontal scaling (i.e., add/remove #
of instances) affects optimal concurrency settings. We allo-
cate a 1-core CPU for MySQL and configure the system to
be 1/4/2 hardware topology, indicating that we add a new
MySQL server into the system. We notice that such horizon-
tal scaling would not cause the optimal concurrency shifting
due to the unchanged request service rate of the individual
servers. However, horizontal scaling may incur perfor-
mance variation since the capacity for the bottleneck tier
has been changed. Soft resource re-adaption is still neces-
sary for mitigating response time.

2) System State Change: Enlarge/Shrink RUBBoS Dataset.
We prove that system state change caused by dataset
updates can change server optimal concurrency settings.
This is because the system state change would affect the
degree of computation and further cause the request service
rate variation. For instance, the dataset of web applications
always updates due to continuous data refresh and syn-
chronization, then the request service rate would oscillate
along with the dataset size. We configure our system with
1/1/4 hardware topology to make Tomcat the bottleneck
server. We exploit the default and a manually enlarged
RUBBoOS dataset. Comparing Figs. 9b with 9e, we observe
the change of optimal Tomcat concurrency setting drops
from 20 to 15 after RUBBoS dataset size-changing via con-
currency-throughput correlation.

3) Workload Type Change: From CPU-intensive to 1/O inten-
sive. We also study how the workload type change affects
the optimal concurrency settings for component servers.

We use the original RUBBoS workload generator to send
CPU-intensive workload (e.g., “ViewStory”) and I/O-inten-
sive workload (e.g., “StoreStory”) separately. We prepare
our system with 1/4/1 hardware topology to make MySQL
the single bottleneck in the system. However, the critical
hardware resource could change from CPU to disk I/O.
Therefore, the server’s capacity may change significantly
due to such workload type change. Figs. 9c and 9f present
the concurrency-throughput correlation of MySQL experi-
encing the CPU-intensive workload and the I/O-intensive
workload, respectively. We observe that the optimal conc-
urrency Qower drops from 15 to 5 after we change the
“ViewStory” workload to the “StoreStory” workload.

These phenomena validate that the online SCT model can
capture the near-optimal concurrency based on scatter
graphs under various runtime environments, which builds
the foundation to arrange dynamic soft resource realloca-
tion for component servers in a web system.

4 CONCURRENCY-AWARE SYSTEM SCALING
DESIGN AND IMPLEMENTATION

We have introduced our SCT model that can quickly recom-
mend the optimal concurrency settings of component serv-
ers in a web system on the fly. These experimental analyses
prove the hardware-only scaling mechanisms cannot main-
tain the stable response time due to the mismatch between
static soft resources allocation and shifting optimal concur-
rency setting along with the runtime environment changes
(see Fig. 1). Hence, a fast rational adaption of soft resources
becomes the key point to realize good performance and
maintain high resource efficiency in an auto-scaling sce-
nario. In this section, we implement the Concurrency-aware
system Scaling (ConScale) framework, which combines the
SCT model (see Section 3) with a hardware resource scaling
mechanism to fast arrange an optimal resource adaption in
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Fig. 10. The architecture of our ConScale framework.

the system during runtime. Fig. 10 introduces four compo-
nents in our ConScale framework: Metric Warehouse,
Online Optimal Concurrency Estimator, Decision Control-
ler, and Actuators.

4.1 System Design

Metric Warehouse gathers system- and application-level met-
rics (e.g., CPU utilization and throughput) through the
monitoring agents within each VM or container at every
one second (step 1 in Fig. 10). We use Kafka [33] to serve as
intermediate storage to coordinate the distributed monitor
agents and generate available data for optimal concurre-
ncy estimation and threshold checking. Decision Controller
decides the timing and actions to turn on/off VMs or con-
tainers in accordance with the system need and retrieves
the soft resource allocation recommended from the Optimal
Concurrency Estimator. It extracts threshold-related metrics
from Metric Warehouse with a fixed time interval to decide
whether initiate hardware scaling and soft resource reallo-
cation. Actuators execute VM-scaling (or container-scaling)
and soft resource reallocation decided by Decision Control-
ler. Optimal Concurrency Estimator generates the optimal
concurrency setting of key servers by continuously pulling
metrics required by the SCT model (e.g., concurrency and
throughput) from the metric warehouse asynchronously.
Furthermore, it continuously updates the historical result
table after a new optimal setting is generated based on the
current workload. We set three minutes for building a new
SCT model in our experiments. It is a reasonable time inter-
val as it is long enough to gather sufficient metrics while
short enough to adapt to runtime dynamics coordinating
with autoscaling.

4.2 Implementations

VM-Scaling. Considering that the underlying hypervisor in
clouds already provides sufficient APIs to manipulate VMs,
we can easily manage the VMs by remotely calling these
APIs. Nevertheless, we still mainly have two problems for
VM scaling. First, scaling out stateful servers (e.g., database
server) is tough work owing to the complex data consis-
tency problem [34]. We can solve this problem by replicat-
ing the entire database when MySQL scales out since
RUBBOS has a small dataset (i.e., 150MB archived). In the
production environment, industry practitioners tend to set
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Fig. 11. Realistic workload traces used in our experiments.

a long preparation period before launching each new VM.
We set such a preparation period to be 15s after reasonable
profiling tests.

Second, we should deal with the load balancing problem
among the existing servers in the system with the newly
added servers after scaling. We use HAProxy [21] as a load
balancer for managing the traffic to the application tier and
the database tier since it supports both HTTP and TCP
proxying. In other words, HAProxy would dispatch the
requests from the upstream tier (e.g., web tier or app tier) to
the downstream tier following pre-defined rules (i.e., load
balancing policies). We adopt leastconn policy for both
app tier and database tier balancing.

Container-Scaling. Our ConScale framework also applies
to web applications deployed in a container-based virtuali-
zation system. Unlike the solution to data consistency and
load balancing when we arrange VM-scaling, we choose to
work with deployed container orchestration (e.g., Kuber-
netes[35]) to realize runtime container management such as
load balancing and horizontal scaling. Load balancing dis-
tributes and loads among multiple container instances
according to custom policy (e.g., leastconn). Horizontal
scaling allows to add and remove containers during runtime
with a very short period compared with launching VMs.

Soft Resource Re-Adaption. The Decision Controller auto-
matically reallocates soft resources to control the maxi-
mum workload concurrency level of each server. In our
implementation, we select two soft resource allocations:
the thread pool size and DB connection pool size, which
can limit the workload concurrency within the Tomcat
server and MySQL server, respectively. Specifically, the
latest Tomcat [36] supports Java Management Extensions
(JMX [37]) technology to adapt the Tomcat thread pool
size on the fly. Our software agent can arrange the thread
pool size reconfiguration via RMI (Remote Method Invoca-
tion). Moreover, we slightly modified the RUBBoS source
code to expose the interfaces of the DB connection pool
size management and then applied RMI to realize runtime
re-configuration for the database connection pool managed
by JDBC.

5 EXPERIMENT EVALUATION

We evaluate the strengths of our ConScale framework by
comparing it to three auto-scaling solutions under the real-
istic bursty workload. To illustrate the applicability and
effectiveness of our ConScale framework, we prepared two
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(b) The system maintains stable response time serving the “Slowly
Varing” workload and the system throughput matches the work-
load variations as shown in Figure 11(a).

Fig. 12. System applying EC2-AutoScaling presents large response time spikes during the scaling phase when serving the “Slowly Varying” work-
load. The left three figures refer to the EC2-AutoScaling case and the right three figures summarize the ConScale case. ConScale outperforms EC2-
AutoScaling and it helps the system maintain a stable response time since it limits the server concurrency to a rational level via soft resource

reallocation.

virtualization environments (i.e., VM-based and container-
based) in our private cluster and set up two widely used
hardware-only autoscalers for comparison: Amazon EC2-
AutoScaling [8] and Kubernetes [35] default scaling solution:
Horizontal Pod Autoscaler (HPA) [38]. We also compare
ConScale with a state-of-the-art concurrency adapting man-
agement (i.e., DCM framework enabled concurrency-aware
model [11]). ConScale outperforms the above three auto-scal-
ing solutions in mitigating the response time fluctuations
and producing high throughput thanks to the runtime opti-
mal concurrency setting adaption recommended by our
online SCT model.

5.1 Evaluation in VM-Based Virtualization System

Experimental Setup. Three auto-scaling frameworks (.e.,
EC2-AutoScaling, DCM, and ConScale) are deployed in our
private VMware ESXi cluster. EC2-AutoScaling monitors
the usage of hardware resources (e.g., CPU or memory) by
monitoring tools (e.g., Amazon CloudWatch [39]). Once the
monitored target resource usage exceeds the pre-defined
threshold (e.g., average CPU utilization > 80%), the con-
troller within such framework automatically adds/removes
VMs to the bottleneck tier in the system. The DCM frame-
work integrates dynamic soft resource reallocation accord-
ing to the concurrency-aware model, which decides the soft
resources via offline profiling before the production phase.
We adopt the “quick start but slow turn off” strategy to
avoid performance instability problem [9] and set a 15-sec-
ond control period to handle data/state consistency prob-
lems caused by stateful server scaling. We evaluate three
auto-scaling frameworks under six representative realistic
workload traces (see Fig. 11). These workload traces are

derived from real-world traces by Gandhi [9]. We continu-
ously conduct a 12-minute experiment with 7500 maximum
concurrent users.

Performance Comparison Between ConScale and EC2-AutoScal-
ing.Fig. 12 presents the performance comparison between
EC2-AutoScaling and ConScale frameworks when system
serving the same “Slowly Varing” workload (see Fig. 11). The
left three figures (Fig. 12a (i), (ii), (iii)) belong to the EC2-
AutoScaling case, and the right three figures (Fig. 12b (i), (ii),
(ii1)) describe the ConScale case. We initialize our system from
1/1/1 hardware topology and 1000-60-40 soft resources
allocation.

The system applying both EC2-AutoScaling and ConScale
scales out key servers once the average CPU utilization of an
individual tier exceeds a threshold (i.e., 80%). From Figs. 12a
(i) and 12b(i), our ConScale helps system realize stable res-
ponse time and throughput during the 12-min experiment
period than that in the EC2-AutoScaling case. For instance,
throughput drops and large response time spikes at the scal-
ing out phases (e.g., periods 300s~420s in Fig. 12a(i)) can be
distinctly found in the EC2-AutoScaling case. Taking the
period 300s~320s in Fig. 12a(i) for example, Fig. 12a(ii) dis-
plays that MySQL scales out at 306s since the average CPU
utilization of the original MySQL tier exceeds the threshold.
Once the newly-added MySQL gets ready to serve incoming
requests, the bottleneck tier shifts to Tomcat Tier, and the
MySQL tier requires doubled concurrent requests since the
total database connection pool size increases to 80. However,
the total thread pool size in the upstream Tomcat restricts
only 60 concurrent requests (see in Fig. 12a(iii)), leading to
low efficiency of MySQL and further incurring the response
time spike. The response time drops because new hardware
resources are added after the control period to deal with the
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Fig. 13. ConScale framework supports the system maintains the optimal after the runtime environment condition changes. Comparing to the training
process, we manually shrink the default RUBBoS dataset and the system presents a sub-optimal performance in the DCM case since the offline

model cannot detect such variation.

system overload. On the other hand, Fig. 12a(i) presents
moderate response time fluctuations along with the system
scaling phase. This is because our ConScale adapts the opti-
mal soft resource recommended by the SCT model after
hardware resource scaling, which can guarantee high effi-
ciency of component server’s hardware resources and realize
more stable performance than that in the EC2-AutoScaling
case. Beyond the scaling phases, ConScale achieves lower
response time since the soft resource reallocation resolves
the mismatch of soft and hardware resources. Compared
with Figs. 12a(iii) and 12b(iii), ConScale can maintain the
server concurrency limit at a rational level all the time via
soft resource reallocation.

Performance Comparison between ConScale and DCM. We
further validate the reliability and adaptiveness of our
online SCT model by comparing the performance between
ConScale and DCM, which uses the offline Concurrency-
Aware model based on queueing network model [11]. The
offline model requires a necessary training process to deter-
mine optimal soft resource allocation of key servers in the
system under a specific workload. However, once the run-
time system condition (e.g., critical resource, system state,
and workload type) changes, DCM applying the previous
“optimal” concurrency setting may lead to sub-optimal per-
formance compared with our ConScale framework.

We work on the “Large Variation” trace and CPU-inten-
sive workload. For DCM training, we configure an enlarged
RUBBoOS dataset in MySQL, and it recommends 15 for the
thread pool size and 30 for the DB conn pool size in Tomcat.
However, we manually reduce the dataset size to simulate
the dataset updates in the production system. ConScale cap-
tures such environment condition change and estimates the
new optimal concurrency setting of Tomcat shifts to 20,
which is consistent with the analysis in Section 3.4. Fig. 13

shows that the DCM framework only achieves sub-optimal
performance since the soft resource allocation in the system
does not fit in the updated environment condition. For
example, DCM generated an “optimal” concurrency setting
for Tomcat should be 15 based on the previous system state.
However, according to the recommendation of the SCT
model, we should allocate 20 Tomcat threads for the new
environment. Previous thread pool size setting becomes too
low (comparing with Figs. 13a(iii) and 13b(iii)) and it may
incur the under-allocation effect [18] on Tomcat server, i.e.,
low utilization of the hardware resources (e.g., CPU). Fur-
thermore, the low efficiency of the Tomcat CPU impacts the
system performance as shown in Fig. 13a(i). On the other
hand, stable response time and controlled concurrency level
in Fig. 13b(i) validate the accuracy and effectiveness of our
online SCT model.

5.2 Evaluation in Container-Based
Virtualization System

Experimental Setup. We implement and configure Kubernetes
on eight two-core VMs in our private VMware ESXi cluster.
Kubernetes is a commonly used lightweight open-source
container management platform that can orchestrate con-
tainers and provide Horizontal Pod AutoScaler (HPA) to
add or remove containers to handle the bursty workload.
Kubernetes defines that a pod can be a group of containers
that are tightly coupled together with a shared IP address
and port space [40] We simply regard one pod refers to a sin-
gle container. Kubernetes HPA exploits a control loop algo-
rithm based on CPU utilization reported by each Pod to
determine the correct number of pods to keep the average
CPU utilization at a target value (e.g., 80%). On the other
hand, ConScale collects each pod CPU usage and adapts
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(b) The system response time is stable and low under the same
workload in (a) since ConScale HPA limit soft resource allocation
both for Tomcat and MySQL service.

Fig. 14. Our ConScale framework can maintain a more stable response time compared to the Kubernetes HPA case. The performance degradation
caused by liberal soft resource allocation still exists when we shift to deploy the service using containers. Our approach can also be applied to each

individual Pod/Container of a microservice system.

Decision Controller to adopt the same algorithm as Kuber-
netes HPA to decide when to adjust the number of pods and
further arranges soft resource allocation after pod scaling.

We conduct the evaluation experiments to compare the
performance when the system applies Kubernetes HPA and
our ConScale framework under six realistic workload traces
in Fig. 11. We decreased the maximum concurrent users
during 12 minutes to be 1000 to adapt to the Kubernetes
Pod with 2-core vCPU allocation.

Performance Comparison Between ConScale and HPA.We
further adapt our ConScale to container-based cloud sys-
tems (e.g., Microservice systems). Microservice systems
always exploit lightweight container-based virtualization in
comparison to Virtual Machines(VMs) since the container
can be instantiated, terminated, and managed very quickly,
which provides better auto-scaling improvements on appli-
cation response time [41]. Our approach can be applied to
each individual container of a microservice system based on
runtime metrics from the container.

Here we compare the performance between Kubernetes
HPA and ConScale in the container-based virtualization sys-
tem. Comparing Figs. 14a(i) with 14b(i), ConScale presents
relatively stable response time during the whole experiment
period in contrast to Kubernetes HPA case. We found that
the response time spikes in Fig. 14a(i) match the scaling out
actions of Tomcat and MySQL Pods. Similar to the EC2-
AutoScaling case, even though the Kubernetes HPA adopts
an algorithm to calculate the correct number of pods to
workload, adding or removing component pods can implic-
itly change the concurrency of upstream and downstream
pods thus impacting the overall performance. Fig. 14b(ii),
(iii) show the server concurrency would not be limited at a
rational level via default soft resource arrangement for the
whole experiment period. Our ConScale adjusts the soft
resource allocation for individual pod according to runtime

optimal concurrency setting estimation made by our SCT
model. From Fig. 14b(i), (ii), and (iii), we found that during
the scaling out phase, the large response time spikes are miti-
gated after we apply the optimal concurrency setting.

Table 1 summarizes the tail response time (i.e., 95th
and 99th percentile) comparison between EC2-AutoScaling,
DCM, Kubernetes, and ConScale cases under six categories
of workload traces (see Fig. 11). Our results demonstrate that
ConScale can restrict the 95th and 99th response time below
500ms (the requirement for most web applications [42])
when the system serves all categories of traces.

5.3 Quantitaive Analysis of Overhead of ConScale
Framework
ConScale collects application-level metrics for optimal con-
currency setting estimation based on each component server’s
request processing log, which records the arrival and the
departure timestamps of individual requests within that
server at millisecond granularity. We utilize each server’s
default logging function to avoid causing additional overhead
to the server. Based on our current experimental setup, we
have two servers to be monitored (e.g., Tomcat and MySQL).
For the Tomcat server, we directly extract the request process-
ing timestamps from localhost access.log. For the MySQL
server, we record the query timestamps when each query is
sent from Tomcat to MySQL and when Tomcat receives the
corresponding response from MySQL. To reduce the over-
head caused by the amount of data, we only note the arrival
and departure timestamps of individual requests in Tomcat.
We conduct experiments to quantitatively evaluate the
overhead caused by such request/query logging. We set up
the system in 1/1/4 hardware topology to make Tomcat the
bottleneck server. At each workload, we ran experiments
for three minutes and measure the average Tomcat CPU
utilization. Fig. 15a shows the comparison of average CPU
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TABLE 1
Comparison of Tail Latency (I.E., 95Th and 99Th Percentile Response Time) When the System Applies EC2-AutoScaling, DCM,
Kubernetes HPA and ConScale to Serve Six Categories Workload Traces, Respectively

Percentile Response Large Quick Slowly Big Dual Steep Tri
time [ms] Variation Varying Varying Spike Phase Phase
RTgs4, EC2- 462 157 1135 687 225 101
AutoScaling
DCM 274 92 157 367 192 75
VM-based ConScale 157 48 85 179 81 56
AutoScaling
RTogy, EC2- 2345 684 3252 3981 1153 1259
AutoScaJing
DCM 1080 443 1499 1376 606 537
ConScale 465 229 218 479 328 171
RTgsy, Kubernetes- 213 120 276 252 121 164
HPA
Container-based ConScale 79 36 56 60 85 49
AutoScaling RTogm, Kubernetes- 1004 707 1534 1103 962 876
HPA
ConScale 266 121 276 246 187 159

utilization of the Tomcat server with logging turned on/off at
each workload. We can see that the overhead is always at a
low level, reaching the maximum of 1.1% at workload 18000.
On the other hand, Fig. 15b shows that logging MySQL
queries cause more overhead than logging Tomcat requests
since the number of queries is more than requests (one client
request to Tomcat may trigger multiple queries to MySQL).
Nevertheless, this figure shows a maximum of 3.4% overhead
at workload 15000, which is still at a low level for the whole
system. Such quantitative overhead analysis demonstrates
the overall low overhead of our ConScale framework.

We simply analyze why our ConScale framework main-
tains such a low-level overhead on request logging. First of
all, the logging tools we used (Tomcat Access logging and
Apache Log4j) are mature in respect of avoiding overhead.
The Access Log Valve uses self-contained logic to write its
log files[43] and Log4j uses asynchronous logging to guar-
antee high throughput[44]. Second, we take the initiative to
avoid overhead by regulating the pattern for request/query

I:I ‘Tomca‘t Reqs ‘Loggixj‘g OFF‘ I:IMySQi Quer‘y Loggi‘ng OFi?
§ 100 L mmmm Tomcat Regs Logging ON § 100 - Emm MySQL Query Logging ON
s g
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< <
S 3
=} =]

A B -
) S 4
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” . 20
0
3K 6K 9K 12K 15K 18K 3K 6K 9K 12K 15K 18K
Workload [# of Users] Workload [# of Users]

(a) The comparison of average (b) The comparison of aver-

CPU utilization of Tomcat server
when ConScale turns on/off Tom-
cat requests logging at each work-

age CPU utilization of Tom-
cat server when ConScale turns
on/off MySQL queries logging at

load. each workload.

Fig. 15. Quantitative analysis of overhead of recording request/query
processing log. We conduct experiments to measure the average CPU
utilization of Tomcat when ConScale turns on/off recording request/
query processing log at each workload. Our framework only causes a
maximum 4.82% overhead at peak workload.

logging. We only record the arrival and departure time-
stamps, which helps control the amount of data. Third, we
guarantee the hard disk I/O not be the bottleneck. Even the
CPU cycles occupied by logging increase at peak workload,
the majority of CPU cycles are still utilized by service,
which accounts for the limited CPU utilization increasing in
Fig. 15. Hence, our ConScale framework can maintain a
low-level logging overhead and can be easily integrated
into existing system scaling mechanisms.

6 RELATED WORK

Rule-Based Auto-Scaling Mechanism is commonly used for
computing resource management in clouds among industry
and academia. The benefit of such rule-based auto-scaling is
the convenience for deploying, however, how to decide such
a threshold becomes an obstacle to maintain good perfor-
mance under bursty workloads. For VM-based autoscalers,
Dutreilh et al. [45] proposes that such auto-scaling mecha-
nism should consider the reaction of the system to scaling
actions by setting up cool-down or inertia period. Hasan
et al. [46] set a detailed threshold for scaling decision that
depends on multiple resources (e.g., CPU, memory, or net-
work) correlation. On the other hand, many approaches for
scaling containers also contribute to threshold design. Horo-
vitz et al. [17] use reinforcement learning to adapt the scaling
thresholds on the fly. Gotin et al. [47] investigate which per-
formance metrics to be used by a threshold-based auto-
scaler. Our work similarly correlates hybrid metrics consist-
ing of average CPU usage of each tier and application-level
metrics from the key server (e.g., concurrency and through-
put) to compose a robust and reliable threshold.

Auto-Scaling Mechanism With Resource Adaption. Past stud-
ies [48], [49] illustrate that the multiple dependencies among
individual tiers in an n-tier system may impact system per-
formance in scaling scenario. Many past studies contribute to
the study that integrating critical resource adaption with
common system scaling can handle such problems in clouds.
Nathuji ef al. [48] implement Q-clouds, which can be aware of
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QoS of applications and adjust hardware resource allocations
to handle performance interference effects. Kalyvianaki et al.
[50] integrates the Kalman filter with feedback controllers to
detect and adapt to unpredictable workload changes via
CPU resource reallocation of each VM in the cluster. Sun et al.
[49] develop ROAR, which uses model-based analysis and
load test to generate optimal cloud resource allocations to
meet the QoS requirement. Our work contributes to generat-
ing updated soft resources configuration for optimal perfor-
mance during runtime and integrates such resource adaption
management with the existing auto-scaling schema.

Software Reconfiguration to optimize system performance
has been explored extensively before. For example, Sriraman
etal. [4] develop puTune to select load-optimal threading mod-
els for the application server to mitigate SLO violations. Gun-
ther et al. [51] characterize the relationship between threads
concurrency and server performance in a single server envi-
ronment. Zhang et al. [52] build machine learning models to
automatically generate optimal database configurations for
improving throughput. Maji ef al. [53] study the impact of
parameters (e.g., MaxClients and KeepaliveTimeout) inside
Apache web server on overall performance in a shared cloud
environment. Our work studies the impact of soft resource
allocation on hardware resource efficiency rather than param-
eter tuning, which complements their work by using a run-
time correlation model to tune soft resource allocation in each
individual server of an n-tier system.

7 CONCLUSION

We studied that the online identification of the optimal con-
currency for individual servers in a web system contributes
to dynamically adapting soft resources to maintain stable
response time along with hardware resource variation in
the auto-scaling scenario. Based on experiments using the
RUBBO0S n-tier benchmark, we reveal that several factors
lead to the shifting of optimal concurrency to reach the
highest throughput (Sections 2.2 and 3.4). We then develop
a Scatter-Concurrency-Throughput (SCT) model to deter-
mine the optimal concurrency of a server in a web system
during runtime via fine-grained application-level metrics
(Section 3). Furthermore, we implement a Concurrency-
aware system Scaling (ConScale) framework which can fast
and intelligently adapt optimal soft resource of key servers
recommended by the SCT model along with hardware
resource scaling (Section 4). Our evaluation experiments
compared to state-of-the-art system scaling managements
show that ConScale can help various large-scale systems
effectively maintain a stable response time and guarantee
low long-tail latency (Section 5).
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