&
T
dd
S
<
-
O
S
N
o,
n
)
(=4

‘ https://doi.org/10.1093/plphys/kiac538

PLANT PHYSIOLOGY 2023: 191: 894-903

Plant Physiology*

miRador: a fast and precise tool for the prediction
of plant miRNAs

Reza K. Hammond ®,"? Pallavi Gupta ®,** Parth Patel ® "* and Blake C. Meyers ® “**

Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19714, USA

Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19714, USA

MU Institute for Data Science and Informatics, University of Missouri, Columbia, Columbia, Missouri 65211, USA

Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA

Division of Plant Science and Technology, University of Missouri, Columbia, 52 Agriculture Lab, Columbia, Missouri 65211, USA

VAN W=

*Author for correspondence: bmeyers@danforthcenter.org (B.C.M.)
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the
Instructions for Authors (https://academic.oup.com/plphys/pages/General-Instructions) is Blake C. Meyers (bmeyers@danforthcenter.org).

Abstract

Plant microRNAs (miRNAs) are short, noncoding RNA molecules that restrict gene expression via posttranscriptional regula-
tion and function in several essential pathways, including development, growth, and stress responses. Accurately identifying
miRNAs in populations of small RNA sequencing libraries is a computationally intensive process that has resulted in the mis-
identification of inaccurately annotated miRNA sequences. In recent years, criteria for miRNA annotation have been refined
with the aim to reduce these misannotations. Here, we describe miRador, a miRNA identification tool that utilizes the most up-
to-date, community-established criteria for accurate identification of miRNAs in plants. We combined target prediction and
Parallel Analysis of RNA Ends (PARE) data to assess the precision of the miRNAs identified by miRador. We compared miRador
to other commonly used miRNA prediction tools and found that miRador is at least as precise as other prediction tools while
being substantially faster than other tools. miRador should be broadly useful for the plant community to identify and annotate
miRNAs in plant genomes.

until date, these pathways have been found to be well con-
served in all land plants that have been examined.

Given the importance of miRNAs in gene regulation, a set
of standards was created for the accurate annotation of
miRNAs in the organisms in which they are identified. The

Introduction

Eukaryotic genomes have evolved to encode diverse classes of
small noncoding RNA (sRNA) molecules that function in par-

tially overlapping epigenetic silencing pathways. It is believed

that sRNAs evolved as a means of defense against RNA viral in-
fections and for silencing transposable elements, and that they
later adapted to regulate the expression of endogenous genes
(Borges and Martienssen, 2015; Chen et al, 2018). In plants,
microRNAs (miRNAs) are a subclass of sSRNAs that function
to regulate gene expression via posttranscriptional gene silen-
cing, operating in several pathways important to plants, includ-
ing development, growth, and stress responses. The miRNA
biogenesis and miRNA-induced silencing pathways have been
extensively studied in Arabidopsis (Arabidopsis thaliana), and,

first effort to define standards for miRNA annotation was
published in 2003 and primarily relied on a combination of
evidence of both expression and biogenesis (Ambros et al,
2003); criteria for plant miRNA annotation were not explicit-
ly defined, separate from animals. Evidence of expression in-
cluded, at that time, the accumulation of candidate miRNA
in gel blots and the identification of a candidate miRNA in a
library of cDNAs made from size-fractionated RNAs.
Evidence of biogenesis included the prediction of a fold-back
miRNA precursor and the mature sequence mapping entirely
to a single arm of that hairpin, conservation of the candidate
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miRador for predicting plant miRNAs

miRNA and its predicted precursor secondary structure,
and the detection of increased precursor accumulation in
dicer mutants. By today’s standards, it is understood that
these requirements alone are insufficient to properly classify
miRNAs. In particular, the accumulation of a candidate
miRNA does not differentiate it from the other many classes
of sSRNAs; conservation with a known miRNA assumes that
the sequence is required to be a miRNA in the newly studied
organism and that the original annotation was correct; in
addition, reduced accumulation in dicer mutants ignores
the partial redundancy of plant DICER-LIKE genes (Axtell
and Meyers, 2018).

In 2008, another community effort was made to redefine
miRNA annotation standards for plants, at that point integrat-
ing observations from the then new, deep sequencing
technologies in order to reduce false-positive miRNA annota-
tions. These criteria required, for validation of a candidate
miRNA, that the miRNA:miRNA* duplex is identified on a hair-
pin precursor (Meyers et al, 2008; Axtell and Meyers, 2018).
Those requirements were summarized into eight specific rules
that largely served as the basis of numerous first-generation
plant miRNA prediction tools. Subsequently, in 2018, these
rules were updated to reflect the changes in understanding
of plant miRNAs and their biogenesis that resulted from the
massive amounts of data that had accumulated over a dec-
ade’s worth of sequencing, genomics, and analysis (Table 1).
The motivation for making changes to the criteria was to lever-
age the increased understanding of miRNA biogenesis to fur-
ther minimize false-positive mIiRNA annotations, by
employing stricter annotation requirements for candidate
miRNAs. This update did more than just make the require-
ments stricter, however; some rules were relaxed to prevent
false negatives in miRNA predictions (Axtell and Meyers, 2018).

With the development of these more recent rules, however,
it became imperative to develop a computational tool to im-
prove plant miRNA predictions by implementing and enfor-
cing the rules. For this reason, we developed a plant miRNA
prediction tool, miRador, that utilizes updated rules to create
what we assert is one of the most precise plant miRNA predic-
tion tools available today. In comparison to more commonly
used plant miRNA prediction tools, we found that miRador
is faster and at least as precise as existing plant miRNA predic-
tion tools. We also developed functionality within miRador to
provide users with important conservation insights into pre-
dicted miRNAs that other tools lack. In conjunction with
sPARTA, a target prediction and validation tool (Kakrana
et al, 2014), we found that we can generate high-quality
miRNA predictions in a variety of plant species.

Results

Description of the miRador miRNA prediction
strategy

A flowchart depicting the pipeline is depicted in Figure 1.
Upon initiating a miRNA prediction run with miRador, the
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Table 1 Past and current criteria for plant miRNA annotations

2008 Criteria

2018 Criteria

One or more miRNA:miRNA*
duplexes with two-nucleotide
3" overhangs

Confirmation of both the
mature miRNA and its
miRNA*

miRNA:miRNA* duplex contains
<4 mismatched bases

The duplex has at most one
asymmetric bulge containing
at most two bulged
nucleotides

>75% of reads from exact
miRNA or miRNA*

Replication suggested but not
required

Homologs, orthologs, and
paralogs can be annotated
without expression data,
provided all criteria met for at

Add requirements that exclude
secondary stems or large loops
(larger than five nucleotides) in
the miRNA:miRNA* duplex
and limit precursor length to
300 nucleotides

Disallow confirmation by blot;
sRNA-seq only

Up to five mismatched positions,
only three of which are
nucleotides in asymmetric
bulges

Up to five mismatched positions,
only three of which are
nucleotides in asymmetric
bulges

Include one-nucleotide positional
variants of miRNA and miRNA*
when calculating precision

Required; novel annotations
should meet all criteria in at
least two sRNA-seq libraries
(biological replicates)

Homology-based annotations
should be noted as provisional,
pending actual fulfillment of all
criteria by sSRNA-seq

least one locus in at least one
species

8 miRNA length not an explicit
consideration

No RNAs <20 nucleotide or >24
nucleotides should be
annotated as miRNAs.
Annotations of 23- or
24-nucleotide miRNAs require
extremely strong evidence.

Note: 2008 criteria from Meyers et al., 2008; 2018 criteria from Axtell and Meyers,
2018.

application utilizes the user-provided genome file to identify
inverted repeats within each chromosome using einverted
(Rice et al,, 2000). einverted has several scoring parameters
that can be manually set by the user, or the user can choose
from three preset miRador options to generate a series of in-
verted repeats. These inverted repeats will serve as a base set
of candidate precursor miRNAs and are stored into a Python
dictionary for subsequent analysis.

Small RNA libraries, which can be provided as FASTA,
FASTQ, or tag count (i.e. unique sequence and their read
count) files, are independently processed from start to finish.
Prior to mapping a library to a genome, sSRNA sequences are
read into another Python dictionary with sRNA sequences
as keys and their read count as the attached value. This dic-
tionary is then used to create a FASTA file containing only
unique reads from the library. As this file contains only un-
ique reads, mapping time is substantially reduced as each
sRNA read will only be mapped to the genome once.
Libraries are mapped to the genome with bowtie v1 and
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Figure 1 Pipeline of miRador. miRador requires two sets of input files: (1) a genome FASTA file, and (2) sequenced small RNA files. Processing begins
with the prediction of inverted repeats on each chromosome with einverted. Small RNA sequences are subsequently mapped to the genome for
alignment against inverted repeats, which are the initial set of “candidate precursor miRNAs.” These are then filtered utilizing the 2018 plant miRNA
annotation criteria. Finally, these candidate miRNAs are annotated utilizing known plant miRNAs from miRBase, and replication requirements are

enforced if a candidate miRNA is unique and previously identified.

output in SAM format for immediate processing (Langmead
et al, 2009).

This mapped file is parsed into nested Python dictionaries
with sRNA positional coordinates as keys and a list of se-
quences that map to that position as the attached value.
The use of dictionaries (Python’s built-in implementation
of hash tables) is critical due to the data structure’s speed
at accessing stored data when the index of the stored value
is not known. Unlike lists, dictionaries can be queried on a
string of characters, including numbers, to find their stored
value. The average complexity of a search for a value in an
array is O(n), whereas the average complexity of a search of
a value in a hash table is O(1). The real-world impact of
this design is reflected in the lookup times for cumulative
millions of mapped read locations for which sRNAs need
to be processed for mapping to inverted repeats. The map-
ping process is completed with the normalization of reads
as reads per million (RPM).

For an inverted repeat to be considered a candidate pre-
cursor, a small RNA must map to both arms of the precursor.
Thus, miRador iterates through each position on each arm of
the inverted repeat to identify any SRNA that lies, in its entir-
ety, on an arm of the inverted repeat. The previously created
dictionaries are utilized to identify all sSRNAs that map to
each inverted repeat. Under the current criteria of plant

miRNA annotation, no miRNA can be confirmed without a
corresponding miRNA* (where “miRNA*”, read as miRNA-
star, is the complement in the processed duplex). Thus,
any inverted repeat without an sRNA mapping to both
arms is immediately removed from the analysis. The remain-
ing inverted repeats are analyzed to identify two sequences
on opposite arms that could complete a miRNA:miRNA*
duplex at this precursor. The criteria for a miRNA:miRNA*
duplex are the following: (1) 2-nt 3’ overhangs on the align-
ment of the candidate miRNA and miRNA*, (2) up to five
mismatched positions, only three of which may be nucleo-
tides in asymmetric bulges (G-U pairing assessed % a mis-
match), and (3) at least 75% of read abundance mapping
to the precursor miRNA are from 1-nt positional variants
of miRNA and miRNA*. miRador then assesses the alignment
parameters by identifying the SRNA sequences on the pre-
dicted inverted repeats. If the two alignment criteria are
met, then each 1-nt positional variants of both the candidate
miRNA and the candidate miRNA* are identified to pool
their abundances. If these abundances exceed 75% of the
read abundance mapping to this inverted repeat, and the
candidate miRNA has an abundance of at least 3 RPM per
hit to the genome, then the miRNA:miRNA* duplex will be
classified as a candidate miRNA within the library and will
be analyzed further in the final step.
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Upon the completion of prediction for each library, each
confirmed miRNA:miRNA* duplex on the precursor miRNA
is drawn utilizing RNAFold (Kerpedjiev et al, 2015). The
alignments generated by RNAFold can differ from the ein-
verted alignment due to differences in the scoring systems
of the two tools.

Among the features of miRador is its annotation compo-
nent that classifies candidate miRNAs. There are five classifi-
cations to which a candidate miRNA might be assigned: (1)
known, (2) identical to known, (3) additional member of ex-
isting family, (4) conserved outside the species of study, and
(5) unique and previously unidentified. When miRador initi-
ates, it will automatically download all plant miRNAs that
have been annotated in the selected version of miRBase, if
it has not been downloaded already. In the annotation
step, each candidate miRNA is analyzed for sequence similar-
ity to any known miRNA via Basic Local Alignment Search
Tool (BLAST) (Altschul et al, 1990; Altschul et al, 1997;
Camacho et al, 2009). If the species being analyzed exists
in miRBase, the General Feature Format (GFF) file is down-
loaded to determine the locations at which miRNAs and
their precursors have been previously identified. A miRNA
identified by miRador can only be classified as “known” if
the miRNA was identified at the same position at which it
exists in miRBase (the terms given in quotation marks here
are part of the output of miRador). If the sequence is identi-
cal to a known miRNA, but not at the same location of any
known miRNA, it is classified as “identical to a known
miRNA.” A sequence is classified as a “new member of an ex-
isting family” if there are five or fewer differences to any
known miRNA in the organism of study (a difference is re-
ferred to as a gap, mismatch, or bulge, while a G-U wobble
is given a half point penalty). BLAST analysis may not find
a similar miRNA within the organism of study, but it might
identify a match in another plant. If a miRNA is identified
as having five or fewer differences to any known miRNA out-
side of this organism, it will be classified as “conserved out-
side the organism of study.” This classification and “new
member of an existing family” within the organism of study
are not mutually exclusive, though the classification as a un-
ique and previously undiscovered member within the organ-
ism is given precedence and will appear first in the output
file. Finally, if none of these classifications fit the candidate
miRNA, it will be classified as “novel,” that is, unique and pre-
viously undescribed. Given the capacity of this function and
its general lack of dependency on miRador’s execution struc-
ture, we made this function available to run as a standalone
tool to be used with the results of two of the most used
miRNA prediction tools, ShortStack and miRDeep-P2. This
tool is available in a GitHub repository: https://github.com/
rkweku/mirnaAnnotation.

The final step of miRador filters candidate miRNAs by en-
suring unique and previously unidentified miRNA families
are predicted independently in multiple sRNA libraries.
Upon assignment of the classification of a candidate
miRNA in the annotation step, miRador will determine the
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number of libraries in which the candidate miRNA was pre-
dicted, if the candidate miRNA was not conserved within the
organism of study. If the number of libraries predicting this
candidate miRNA both exceeds one and exceeds 10% of
the number of libraries provided for prediction, the candi-
date miRNA is confirmed by miRador. By requiring a candi-
date miRNA to be present in at least 10% of libraries, we
ensure that miRador does not predict false positives when
operating with numerous libraries.

Assessing the predictive capabilities of miRador

To test miRador, we first predicted miRNAs across 21 individ-
ual Arabidopsis seedling and flower libraries. miRador identi-
fied 228 total miRNAs, 131 of which were already present in
miRBase (Table 2). One miRNA was found to be identical to
an already known miRNA but at a different position of the
genome, 45 were classified as additional members of existing
miRNA families, 19 were classified as conserved miRNAs that
are known in other organisms, and 32 were classified as un-
ique and previously unidentified. From these results, we were
able to determine precision utilizing known miRNAs that are
annotated in miRBase. In the case of Arabidopsis, miRador
had a precision of 0.575.

We next extended our analysis to 30 rice (Oryza sativa) li-
braries. From these data, miRador identified 391 candidate
miRNAs, 252 of which were unique and previously unidenti-
fied (Table 3). Of the remaining predicted miRNAs, 76 were
known, 2 were identical to a known miRNA at a different
position, 45 were classified as additional members of existing
families, and 17 were conserved outside of rice. In the case of
rice, far more unknown miRNAs were predicted, and there-
fore the precision here was 0.194.

Subsequent predictions with 44 maize (Zea mays) anther,
seedling, and tassel libraries identified 173 maize miRNAs
(Table 4). miRador identified few miRNAs that were unique
and previously identified for maize (16 total). However, near-
ly half of the total predictions made by miRador were known
mature miRNA sequences derived from previously identified
MIRNA genes (16) as well as additional members of known
miRNA families (60). Unlike the Arabidopsis and rice predic-
tions, there were very few predictions of unique and

Table 2 Arabidopsis miRNAs predicted by each tool

Category miRador  ShortStack miRDeep-P2

Known 131 60 124

Identical to known miRNAs at 1 0 3
different positions

Additional member of existing 45 7 27
family

Conserved outside this organism 19 9 5

Unique and previously 32 6 8
unidentified (aka “novel”)

Precision—sPARTA 0.338 0.488 0.558

Precision—miRBase miRNAs 0.575 0.732 0.743

Number of miRNAs predicted by each miRNA prediction tool in a dataset of 27
Arabidopsis seedling and flower small RNA libraries.
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Table 3 Rice miRNAs predicted by each tool

Hammond et al.

Table 4 Maize miRNAs predicted by each tool

Category miRador ShortStack miRDeep-P2 Category miRador ShortStack miRDeep-P2

Known 76 38 111 Known 81 18 95

Identical to known miRNAs at 2 0 3 Identical to known miRNAs at 16 4 23
different positions different positions

Additional member of existing 44 7 141 Additional member of existing 60 13 133
family family

Conserved outside this organism 17 1 6 Conserved outside this organism 7 0 3

Unique and previously 252 38 178 Unique and previously 9 6 65
unidentified (aka “novel”) unidentified (aka “novel”)

Precision—sPARTA 0.373 0.190 0.292 Precision—sPARTA 0.595 0.610 0.611

Precision—miRBase miRNAs 0.194 0.452 0.253 Precision—miRBase miRNAs 0.757 0.439 0.298

Number of miRNAs predicted by each miRNA prediction tool in a dataset of 30 rice
anther small RNA libraries.

previously identified miRNAs—only 9 in total. From these re-
sults, we found that miRador had a precision of 0.757.

Comparison to other miRNA prediction tools
To better assess the value of miRador’s predictive capabilities,
we compared its performance with those of two commonly
used plant miRNA prediction tools: ShortStack and
miRDeep-P2. ShortStack (Shahid and Axtell, 2014) is a com-
prehensive analytical tool that classifies mapped sRNA se-
quencing data. miRDeep-P2 is exclusively a plant miRNA
prediction tool and was published as an update to the popu-
lar miRDeep-P (Kuang et al.,, 2018). We used each of the three
prediction tools to predict miRNAs in the same Arabidopsis,
rice, and maize libraries described above. An instance of
miRDeep-P2 performs predictions on a single library, so its
predictions across multiple serialized runs were merged to
create a single set of predicted miRNAs for all libraries within
a dataset. Additionally, miRDeep-P2 utilizes an abundance
cutoff, but it bypasses this cutoff if the candidate miRNA dif-
fers by up to 1 nucleotide from any miRBase miRNA. Since we
wish to address the merits of each of these prediction tools
using their default behavior for all candidate miRNAs, we re-
moved this bypass in our assessment. ShortStack and
miRDeep-P2 miRNA predictions were also annotated using
the miRNA annotation component from miRador for con-
sistency. This approach also has the added benefit of enfor-
cing consistent replication requirements for predictions
from miRDeep-P2 as there is no utility for this built into
miRDeep-P2, due to its capability to only process single
libraries.

miRBase is a repository for miRNA annotations that have
been identified in the peer-reviewed literature (Kozomara
et al, 2018), though it is important to note that it is not a
gatekeeper in enforcing the quality of miRNA annotations
(Axtell and Meyers, 2018). Outdated verification criteria
and poor-quality sequencing libraries have both been impli-
cated as a cause of improper annotation and limited verifica-
tion of miRNAs within miRBase (Taylor et al., 2014; Ludwig
et al, 2017). Despite these limitations of miRBase, previous
miRNA prediction tools have used miRBase miRNAs as a
source of true-positive miRNAs (Shahid and Axtell, 2014;

Number of miRNAs predicted by each miRNA prediction tool in a dataset of maize
anther, seedling, and tassel small RNA libraries.

Kuang et al,, 2018). In addition to assessing the precision of
the predictions with miRBase miRNAs, we opted to deter-
mine the validity of a candidate miRNA as demonstrated
through evidence of cleavage of targets, using PARE
(Parallel Analysis of RNA Ends) libraries (German et al,
2009). This allowed us to determine a better set of true
and active miRNAs within each prediction set. This method
of identifying true miRNAs has the added benefit of assessing
the predictability of previously undescribed miRNAs, a useful
feature given that these prediction tools exist largely for that
purpose—to identify novel miRNAs. We exported predic-
tions made by miRador to evaluate the evidence of mMRNA
cleavage facilitated by miRador-predicted miRNAs via target
prediction and PARE validation with sPARTA (Kakrana et al,,
2014). We also tested the validity of this method by compar-
ing the precision of miRNAs predicted by each of the miRNA
prediction tools in comparison to an empirical distribution
from 100 iterations of 100 randomly sampled 20- to 24-nt
sRNAs from each set of sSRNA sequencing libraries.

We found that miRador and miRDeep-P2 both identified a
similar number of known Arabidopsis miRNAs, 131 and 124,
respectively, while ShortStack identified 60, approximately
half as many. While miRador found the most known
miRNAs, it also predicted far more unique and previously un-
identified miRNAs than the other two tools. In terms of pre-
cision, miRador was the lowest at 0.338 while miRDeep-P2
was the highest at 0.558 (Table 2). Among these precision
values, we found that all three prediction tools had substan-
tially higher precision as compared to the randomly sampled
20- to 24-nt sSRNAs (Figure 2A). We also explored the overlap
between these predictions to determine if any of these predic-
tion tools were encapsulated by one of the others. In the case
of these Arabidopsis libraries, we found that only five of the
total 82 miRNAs identified by ShortStack were exclusive to
it (Figure 3A). While we did observe some overlap between
the predictions made by both miRador and miRDeep-P2,
53.9% of miRador's predictions were not observed by
miRDeep-P2, and conversely 37.1% of miRDeep-P2’s predic-
tions were not observed by miRador (Table 2).

Further predictions conducted in the 30 rice libraries resulted
in slightly contrasting results to the case of Arabidopsis. Here,
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Figure 2 Overlap across the three prediction tools for miRNAs predicted from three plant species. In each panel, the number of distinct candidate
miRNAs that are found by each tool, and those predictions that were found in common by the different prediction tools, are indicated as a Venn
diagram. A, The number of distinct candidate Arabidopsis miRNAs that were found by each tool, and those predictions that were commonly found
by the different prediction tools. B, The number of distinct candidate rice miRNAs that were found by each tool, and those predictions that were
commonly found by the different prediction tools. C, The number of distinct candidate maize miRNAs that were found by each tool, and those
predictions that were commonly found by the different prediction tools.
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miRDeep-P2

Figure 3 Empirical distribution of precision of negative datasets in comparison to miRNA prediction tools. An empirical distribution of positive
predictive values was generated from 100 randomly selected 20- to 24-nt sRNAs separately from our Arabidopsis, rice, and maize datasets.
Precision was determined utilizing PARE evidence at predicted targets of the randomly sampled sRNA sequences. A, Empirical distribution of posi-
tive predictive values of Arabidopsis-negative datasets in comparison to those of three miRNA prediction tools. B, Empirical distribution of positive
predictive values of rice-negative datasets in comparison to those of three miRNA prediction tools. C, Empirical distribution of positive predictive
values of maize-negative datasets in comparison to those of three miRNA prediction tools.

miRDeep-P2 predicted the most (439) miRNAs, 178 of which
were novel. ShortStack predicted the fewest miRNAs (84), while
miRador predicted 357 miRNAs. In the rice libraries, we ob-
served that each tool predicted several miRNAs that no other
tool predicted (Figure 3B). The precision of PARE-validated can-
didate miRNAs predicted by these tools varied greatly;
ShortStack only had a precision of 0.190, miRDeep-P2 had a pre-
cision of 0.292, and miRador had a precision of 0.373 (Table 3).
We also observe that while both miRador and miRDeep-P2 out-
perform the randomly sampled 20- to 24-nt rice sRNAs,
ShortStack however does not (Figure 2B).

We next compared predictions made in 44 maize sRNA li-
braries and found different trends than in the case of
Arabidopsis and rice. Here, miRDeep-P2 predicted the
most miRNAs at 319, miRador predicted 228, and
ShortStack predicted 41 (Table 4). In this case, however,
the precision of PARE-validated candidate miRNAs was near-
ly identical in each of the three tools, with miRDeep-P2 at the
highest at 0.611 and miRador at the lowest at 0.595. The

precision of each prediction tool in this case was far beyond
the randomly sampled 20- to 24-nt maize sRNAs (Figure 2C).

Finally, we compared the runtimes of each tool with sev-
eral Arabidopsis, rice, maize, and wheat (Triticum aestivum)
libraries averaged across three separate runs (Figure 4). We
utilized miRador in its sequential run-mode to compare sin-
gle core executions with ShortStack and miRDeep-P2. Of
note, however, is that ShortStack is a tool that discovers
and annotates sSRNA clusters while also identifying MIRNA
genes. Given this multifunctionality of ShortStack, we
note that a comparison to its runtime is not necessarily
one-to-one. However, given that we have utilized
ShortStack as a comparison of predictability and it is a com-
monly utilized tool for predicting miRNAs, we have opted to
include its runtimes in our comparison. Each run was per-
formed on a server with an Intel Xeon E5-4620 processor
with 256 GB RAM.

In our analysis of runtime performance, we predicted
miRNAs in several libraries from four organisms of diverse
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Maize Wheat

ShortStack

Figure 4 Runtime comparison of miRador to miRDeep-P2 and ShortStack. Comparison of execution times of miRador, miRDeep-P2, and ShortStack
across 21 Arabidopsis in three separate runs (116 Mb genome size), 30 rice (364 Mb), 44 maize (2.1 Gb), and 7 wheat (17 Gb) sRNA libraries.
Execution was run using default parameters on the same server. Error bars represent standard error between runtimes.

genome sizes: Arabidopsis: 116 MB (21 libraries), rice: 364 MB
(30 libraries), maize: 2.1 GB (44 libraries), and wheat: 17 GB
(7 libraries). Given that each tool utilizes bowtie to map libraries
to the genome and both ShortStack and miRDeep-P2 require
bowtie indices to be created prior to execution, we did not
include the optional bowtie-build step of miRador in these
runtimes. As mentioned before, miRDeep-P2 only processes
one library per instance, so its runtime is the summation of
multiple serialized across all test libraries. In our assessment
of Arabidopsis, rice, and maize libraries, we observed that
miRador was the fastest tool. Notably, however, the quick run-
time of ShortStack in its prediction of wheat miRNAs is relative
to its runtime in the other organisms. ShortStack’s runtime
may be beneficial when there are fewer libraries as an input,
and potentially led to it being the fastest tool at predicting
wheat miRNAs at 5.77 h. miRador was only slightly longer at
5.97 h while miRDeep-P2 was the slowest at 63.27 h. The run-
time of miRador for predicting maize miRNAs was particularly
strong, as its predictions across 44 sSRNA libraries completed in
an average of 5.05 h, whereas both other tools took over 3 d to
complete. Overall, we found that the runtime of miRador was,
in our opinion, impressively quick. It outperformed the other
tools in nearly every tested case, and in the case of wheat, it
was nearly as fast as ShortStack. Its demonstrated scalability,
supporting an ability to predict miRNAs in large genomes
with many input libraries. Additionally, miRador has the ability
to utilize multiple cores to improve prediction times, which
can enable far larger analyses than those that we tested.

Discussion

In this paper, we describe miRador, a plant miRNA prediction
tool that utilizes the most recent community-developed

plant miRNA annotation criteria. Unlike previous studies,
we utilized PARE libraries to assess the quality of miRNA pre-
dictions beyond just the sequences that exist in miRBase, giv-
ing a better representation of the predictability of miRNA
prediction tools. In addition to its strong predictive capabil-
ities, we showed that miRador is faster than existing tools
without compromising predictive efficiency. Additionally,
we developed an annotation function to annotate miRNAs
with respect to their presence in miRBase, and similarity to
known miRNAs, and we exported this function for use by
other miRNA prediction tools.

In assessing the utility of miRador for miRNA predictions,
we used PARE to identify the candidate miRNAs that have
evidence of cleavage at their predicted targets, as identified
by sPARTA. We utilized sRNA and PARE libraries from
Arabidopsis, rice, and maize to identify the precision of
miRador, ShortStack, and miRDeep-P2. ShortStack consist-
ently identified the fewest miRNAs, though its predictions
were not completely encapsulated by the predictions of
the other two tools. miRDeep-P2 and miRador had large
overlaps in all organisms, but each tool also uniquely pre-
dicted numerous miRNAs. Overall, our findings suggest
that each tool may be used to predict miRNAs with similar
precision to one another, but none of these tools are all en-
capsulating—that is, none identify the broadest and most
complete set of candidate miRNAs. Thus, there may be utility
in running more than one tool when predicting miRNAs in a
set of SRNA libraries.

In our attempt to validate candidate miRNA activity by
target prediction and authentication with PARE, we utilized
PARE from corresponding tissues from which the sSRNA data
were acquired. Surprisingly, despite utilizing well-staged, low-
input sRNA and PARE sequencing libraries generated in
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triplicates from small amounts of tissue (Jiang et al., 2020), we
found that this dataset showed the poorest precision of the
three datasets. Our belief that these tissue-specific datasets
may provide cleaner results with less noise in the PARE
data than what was found in the Arabidopsis and maize li-
braries ultimately did not prove to be true. We even found
that the precision of candidate miRNAs predicted by
ShortStack did not differ from randomly sampled 20- to
24-nt sRNAs. As with precision of PARE-validated candidate
miRNAs, precision when utilizing miRBase miRNAs as true
positives varied among the three tools depending on the da-
taset. There appear to be cases where each tool could be vi-
able depending on the input dataset (Tables 2-4).

Although we are confident in the quality of miRador, it is not
without limitations. In its identification of candidate miRNA
genes, miRador first searches for inverted repeats in a genome
assembly using einverted. This worked well using high-quality
genome builds with which we performed the tests, but
miRador may miss miRNAs when predicting in newly sequenced
genomes comprised of several disconnected scaffolds and con-
tigs. Presumably, as increasingly complete, long-read-based gen-
ome assemblies become the norm, this weakness will be
mitigated. We also largely utilized the community-established
guidelines for plant miRNA annotations; these guidelines could
be fine-tuned even further with machine learning to minimize
false positives and false negatives. These additional methods
would also allow for confidence scores to be assigned to the re-
sulting predictions. We were aware of these limitations when
building miRador, and thus it was largely developed with modu-
lar functions such that adjustments to its prediction filters can
be made without overhauling the entire tool.

We recognize there is a substantial lack of overlap of can-
didate miRNAs predicted by each of the three tools tested.
We hypothesize that there are fundamental differences in
the implementation of these pipelines that result in these dif-
ferences. As discussed previously, miRador starts with a set of
candidate precursors based on the predicted inverted re-
peats utilizing the reference genome. miRDeep-P2 maps
sRNAs to the genome first and then predicts potential pre-
cursor sequences from the reference using aligned reads as
a guideline. ShortStack exists as a multipurpose SRNA gene
annotation tool largely using clusters of sSRNAs to predict dif-
ferent types of SRNA genes, including miRNAs. Given that no
tool performed best across the board, we believe there are
merits to each method and users may find maximal utility
when combining the results across multiple prediction tools.

Despite these limitations, we assert that we have devel-
oped a tool that is as precise and sensitive as other plant
miRNA prediction tools while being far faster. miRador is
highly scalable, ensuring its ability to predict miRNAs with
large genomes with many sRNA libraries. The additional an-
notation component of miRador, which has been exported
for use by other prediction tools, provides users great insights
into the status of their predicted miRNAs as either known or
not. Altogether, miRador is a highly capable, standalone,
plant miRNA prediction and annotation tool.

Hammond et al.

Materials and methods

Software and data availability

A description of this pipeline and overall algorithm are de-
scribed in the “Results” section above. The entire miRador
pipeline is available on GitHub: https://github.com/rkweku/
miRador. Detailed installation and usability information are
included in the README file. To improve the user experience,
we've included a conda environment file that can be setup
with anaconda or miniconda, and we have also included
test data that can be utilized as a model when running de
novo analyses.

We utilized public Arabidopsis (Arabidopsis thaliana),
rice (Oryza sativa), maize (Zea mays), and wheat
(Triticum aestivum) sRNA and PARE datasets for miRNA
prediction and validation. These libraries, their GEO acces-
sion numbers, and sequencing information are listed in
Supplemental Table 1.

Accession numbers

See Supplemental Table 1 for accession numbers of data used
in this study.

Supplemental data

The following materials are available in the online version of
this article.
Supplemental Table S1. Library Information.
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