2022 IEEE 61st Conference on Decision and Control (CDC) | 978-1-6654-6761-2/22/$31.00 ©2022 IEEE | DOI: 10.1109/CDC51059.2022.9993158

2022 IEEE 61st Conference on Decision and Control (CDC)
December 6-9, 2022. Cancuin, Mexico

NNSynth: Neural Network Guided Abstraction-Based Controller
Synthesis for Stochastic Systems

Xiaowu Sun and Yasser Shoukry

Abstract—In this paper, we introduce NNSynth, a new
framework that uses machine learning techniques to guide
the design of abstraction-based controllers with correctness
guarantees. NNSynth utilizes neural networks (NNs) to guide
the search over the space of controllers. The trained neural
networks are “projected” and used for constructing a ‘“local”
abstraction of the system. An abstraction-based controller is
then synthesized from such “local” abstractions. If a controller
that satisfies the specifications is not found, then the best
found controller is ‘“lifted” to a neural network for further
training. Our experiments show that this neural network-guided
synthesis leads to more than 50x or even 100x speedup in high
dimensional systems compared to the state-of-the-art.

I. INTRODUCTION

Abstraction-based control synthesis techniques have
gained considerable attention in the past decade. These tech-
niques provide tools for automated, correct-by-construction
controller synthesis from complex specifications, typically
given in the form of a Linear Temporal Logic (LTL)
formulae [1]. It is then unsurprising the vast amount of
developed software tools that can handle a wide variety of
nonlinear control systems including Pessoa [2], CoSyMa [3],
SCOTS [4], QUEST [5], FAUST [6], StocHy [7], and
AMYTISS [8]. At the heart of all these tools is the need
to obtain discrete abstraction of continuous-time dynamical
systems using various quantization methods for state and
input spaces. The resulting discrete abstraction is then tra-
versed to search for a feedback controller that conforms to
the required LTL specification. A significant drawback of
discrete abstraction is the vast number of combinations of
quantized states and inputs that need to be considered. The
problem is exacerbated in high-dimensional state and input
spaces, leading to the so-called curse of dimensionality.

Motivated by the recent success of machine learning
techniques in efficiently searching over the space of feedback
controllers (e.g., imitation learning and reinforcement learn-
ing), we ask the following question: Can machine learning
techniques be used to accelerate the process of synthesizing
abstraction-based controllers from LTL specifications? On
the one hand, machine learning techniques enjoy favor-
able scalability properties and eliminate the dependency on
state-space quantization. On the other hand, these learning-
based feedback controllers (or policies) do not come with
the guarantee that they conform to the LTL specifications.

This work was partially sponsored by the NSF awards #CNS-2002405,
#CNS-2013824, and #EECS-2139781 and C3.Al Digital Transformation
Institute.

Xiaowu Sun and Yasser Shoukry are with the Department of Electri-
cal Engineering and Computer Science, University of California, Irvine
{xiaowus, yshoukry}Quci.edu

This motivates the need to closely integrate the scalability
of learning-based techniques with the provable guarantees
provided by the abstraction-based techniques.

Toward this end, we propose NNSynth, a new frame-
work for synthesizing abstraction-based controllers from
LTL specifications. Unique to NNSynth is the use of ma-
chine learning techniques to train a neural network (NN)
based controller, which will guide the synthesis of the final
abstraction-based controller. The advantages of the proposed
NN-guided abstraction-based controller synthesis are multi-
fold. First, it utilizes the empirically proven advantages of
machine learning algorithms to search the space of feedback
controllers without relying on expensive quantizations of
state and input spaces. Second, it limits the search over the
quantized spaces only to the neighborhood of the controllers
proposed by the NN training. That is, our approach uses NN
training to guide the search over the quantized abstract sys-
tem and eliminates the need to consider all combinations of
quantized states and inputs. Third, the use of neural networks
to guide the design of the abstraction-based controller opens
the door to encoding human preference on how a dynamical
system should act. Such human preference is crucial in
several real-world settings where a human user or an operator
interacts with an autonomous dynamical system. Current
research found that human preference can be efficiently
captured using expert demonstrations and preference-based
learning, but is hard to be accurately captured in the form
of logical formulae or reward functions [9]. We demonstrate
these advantages using several key applications and show
that NNSynth scales more favorably compared to the state-
of-the-art techniques by achieving more than 50x or even
100x speedup in high dimensional systems.

Related Work. The closest results to our work are those
reported in [10], [11], which propose a neurosymbolic frame-
work to train control policies represented by short programs
in a symbolic language. Similar to our approach, the work
in [10], [11] trains a NN controller, projects it to the space of
symbolic controllers, analyzes the symbolic controller, and
lifts it back to the space of NN policies for further training.
Differently, our approach focuses on designing a finite-state,
abstraction-based controller instead of short programs in a
symbolic language. This difference (short programs versus
finite-state controllers) manifests itself in all the framework
steps, particularly the NN training, projection, and lifting.
We confine our focus to synthesizing finite-state controllers
due to the extensive literature on analyzing such controllers
in tandem with the controlled physical systems [1]. Another
line of related work is reported in [12], [13] which study the

978-1-6654-6761-2/22/$31.00 ©2022 IEEE 2905

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 02,2023 at 23:22:24 UTC from IEEE Xplore. Restrictions apply.

problem of extracting a finite-state controller from a recurrent
neural network controller. We note that in our framework,
NN policies are not the final produced controllers, but are
used to guide the search for abstraction-based controllers.

II. PROBLEM FORMULATION
A. Notation

We denote the set of real numbers, positive real numbers,
and natural numbers by R, R™, N, respectively. Let | X| be
the cardinality of a set X and Int(X) be the interior of a
set X. Let |z| be the Euclidean norm of a vector z € R"
and = be the transpose of x € R™. Let the inner product
of two functions h; : X — R™ and hy : X — R™ be
defined as (h1,hs) = [h1(z) " he(x)dz, which induces a
norm |hy]| = y/(h1, h1). We use VJ to denote the Fréchet
gradient of a functional J, and use the big O notation for
upper bounds.

B. Dynamical Model

We consider discrete-time nonlinear dynamical systems of
the form:

2D = £@®,u) + (2, u®), (1)

where z(!) € X c R” is the state and u® € U c R™
is the control input at time step ¢ € N. The dynamical
model consists of the priori known nominal model f and
the unknown model-error g capturing unmodeled dynamics.
Both functions f and g are assumed to be locally Lipschitz
continuous. As a well-studied technique to learn unknown
functions from data, we assume the model-error g can be
learned using Gaussian Process (GP) regression [14]. We
use Q’P(,ug,af]) to denote a GP regression model with
the posterior mean and variance functions be p, and 03,
respectively. Given the dynamical system (1) with the model-
error g learned by GP(pug,02), let 7 : X x X xU — [0, 1] be
the corresponding conditional stochastic kernel. Specifically,
given the current state * € X and input v € U, the
distribution 7(-|z,u) is given by the Gaussian distribution
N(f(.]?, U) + ,ug(a:, U), Ug(x’ u))

We treat the nonlinear system (1) with the model-error
g learned by GP(uy,07) as a continuous Markov Decision
Process (MDP) denoted by a tuple ¥ £ (X, U, 7). We denote
by T(A|x,u) the transition probability of reaching a subset
ACX in one step from state x € X with input ueU:

T(Alz,u) = / 7(2 |z, u)dz'. ()
A

This integral can be easily computed since 7(-|x,u) is a
Gaussian distribution.

C. Abstraction-based Controller and Specification

We consider to control the continuous MDP X (i.e., the
nonlinear system (1) with the model-error learned by GP)
using abstraction-based controllers. An abstraction-based
controller considers to partition the continuous state space
X C R™ into a finite set of abstract states X = {1, -, qn}s
where each abstract state ¢; € X is an infinity-norm ball in

R™. The partitioning satisfies X = |J, .5 ¢ and Int(g;) N
Int(g;) = 0 if i # j. We denote by A € R* the pre-
specified grid size used for partitioning the state space. Let
abs : X — X map a state z € X to the abstract state
g = abs(z) that contains z, ie,x €q and ct : X = X
map an abstract state ¢ € X to its center ct(¢) € X, which
is well-defined since abstract states are infinity-norm balls.
With some abusAe of notation, we denote by g both an abstract
state, i.e., ¢ € X, and a subset of states, i.e., ¢ C X.

Given a partitioning of the state space, an abstraction-
based controller ¥ : X — U assigns the same control input
to all the states in the same abstract state, i.e., U(z1) =
U(xy) if abs(zy) = abs(zz). We denote by S the set
of all abstraction-based controllers, where the underlying
partitioning of the state space can be different for different
abstraction-based controllers in S.

For the high-level specifications, though our framework
can be easily extended to general Linear Temporal Logic
(LTL) specifications in a bounded time horizon, we describe
our algorithms with safety and liveness specifications for
simplicity. Let £, v : {1,..., H} — X denote a closed-loop
trajectory of the system (1) that starts from the state o € X
and evolves under the control law ¥ in a bounded time
horizon H. Them we use fwo,\lf): ¢Safety and 59;0,\1/ ': ¢liveness
to denote a trajectory &, w satisfying the safety and liveness
specifications, respectively, i.e.,

gxo,\ll ’: ¢safety = Vtc {L e H}7 §z0,‘11(f) € XObS[a
fro,‘ll ': d)liveness — It S {17 .. H}, gzo,\ll(t) € Xgoala

where Xgoa C X and X C X represent the goal and the
obstacles, respectively. Given a specification ¢ = @ggery A
Dliveness» We denote by Pr (Xg | ¢) the average probability
that the continuous MDP ¥ controlled by U satisfies the
specification ¢ (averaged over initial states).

D. Main Problem

The goal of this paper is to synthesize an abstraction-based
controller ¥ € S for the continuous system (1) to satisfy the
given specifications ¢ while minimizing some given cost.
The cost functional of a controller ¥ is defined as J(¥) =
Jx c(z, ¥(x))dpu” (z), where c(x,u) is the state-action cost
and 1% is the distribution of states induced by the controller
W. Now, we can define the problem of interest as follows:

Problem 2.1: Given a cost functional .J, a high-level spec-
ification ¢ and a user defined threshold p, we are interested
in synthesizing an abstraction-based controller ¥ : X — U
for the continuous MDP ¥ to minimize the cost J(¥) while
satisfying the specification ¢ with probability at least p:

U* = argmin J(¥) s.t. Pr(Zy = ¢) > p. (3)
ves
III. NNSYNTH FRAMEWORK

Our framework is featured by the use of neural networks to
guide the search for abstraction-based controllers satisfying
the specification ¢, and the ability to utilize policy gradient
approaches for abstraction-based controllers to minimize the
cost functional J. In this section, we first give an overview

2906

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 02,2023 at 23:22:24 UTC from IEEE Xplore. Restrictions apply.

OLNN X U

D= {&,6,...}

O g;- NN Projection

Fig. 1. A cartoon figure summarizing the NNSynth framework. NNSynth starts by training a neural network controller AN using the data provided by the
expert D. The obtained neural network is then projected to an abstraction-based controller by evaluating the neural network on the representative points of
abstract states, i.e. using the control actions AV{ct(g)). The obtained finite-state abstraction is then augmented with control actions in the neighborhood
of the actions proposed by the neural network AV{ct(z)) & id. A controller is then synthesized from the augmented model. In case a controller was not
found, the “best” controller so far is then lifted to a neural network controller which is further trained using the expert data D to obtain a new A/N. The

loop continues until an abstraction-based controller is found.

Algorithm 1 NNSYNTH (Dexp, ¢, H, p, <, 1)

1: Initialize ANy with random weights

2: AV = UPDATE(ANinit, Dexp, 17)

3: Wo, Viyg = PROJECT-BY-SYNTH(ANuit, ¢, H)

4. for k=0,..., K —1do

5 if Viyg > p + < then

6: Return Uy, Vi

70 NN = LIFT(¥y)

8: ANii1 = UPDATE(AN, Dexp, 1)

9: Wiiq, Viye = PROJECT-BY-SYNTH(ANk41, ¢, H)
0: Return W, Vi,

—

of our framework and then present each step separately in
the following subsections.

The overview of the proposed NNSynth is depicted in
Figure 1. Algorithm 1 outlines the framework. After ini-
tializing an abstraction-based controller ¥y (line 1-3 in
Algorithm 1), NNSynth lifts the abstraction-based controller
U, to a neural network ANV}, through imitation learning of
the data generated by Wy (line 7 in Algorithm 1), updates
the neural network through either imitation learning of the
expert dataset Dey, or reinforcement learning (by providing
the state-action cost function c instead of expert data) with
learning rate 1 (line 8 in Algorithm 1), and finally synthesizes
a new abstraction-based controller Wy, under the guidance
of AWx41 (line 9 in Algorithm 1). This loop iterates until the
satisfaction probability Ve is no less than the pre-specified
threshold p + ¢ (line 5 in Algorithm 1).

A. Step 1: NN Training

Starting from the expert-provided trajectories Deyp, =
{&1,&2,...}, we use imitation learning to train a neural
network controller AV for the continuous MDP X. Alter-
natively, the NN controller can be trained by reinforcement
learning, which requires the expert to provide the state-action
cost ¢ : X x U — R instead of the dataset Dey,. Neural
networks are highly parameterized and can be updated using
gradient-based approaches ANgi1 = AN, — nVJ(ANNg),
where 7 € RY is the learning rate. The gradient V.J(ANp)
of a neural network parameterized by weights 6 can be
approximated using samp}&d gajectories:

VJ(ANg) =~ % Z Z VoNNg (uie|zie) Q))

i=1 t=1

where M is the number of trajectories, H is the bounded
time horizon, and Q§ is the estimated cost-to-go. We use the
neural network to improve the controller’s performance (i.e.,
minimizing the cost functional J) although the gradient of
an abstraction-based controller, denoted by V.J(¥), does not
exist. Detailed optimality analysis is given in Section IV.

B. Step 2: NN Projection

Regardless of the use of imitation learning or reinforce-
ment learning, the resulting neural network AN is not
guaranteed to satisfy the specification ¢ and hence can not be
used directly as a controller. Nevertheless, the neural network
contains relevant control actions that can be used to obtain
the final controller. To that end, NNSynth constructs a finite-
state abstraction guided by NN. Given a partitioning of the
state space, we denote by X = {q1, ..., gy} the correspond-
ing set of abstract states, where the partitioning grid size A €
R+ is determined based on the theoretical guarantees to be
achieved (see Section 1V). Then, the finite-state abstraction
induced by AV is given as a tuple SV £ ()A(, UMV, TV)
with X = {q1,...,qn}, U = {AM(ct(q)) | ¢ € X}, and

T(q'|ct(q),u) if u=ANct(q))

T\J\W / u) =
(¢l u) 0 otherwise,

where the transition probabilities 7'(¢'|ct(q), u) can be com-
puted as (2). In other words, the finite-state abstraction SV
considers only one control action AV{ct(q)) at each abstract
state ¢ and discards all other possible control actions. Com-
puting such abstraction XMV is straightforward and entails
evaluating the NN controller at the center of each abstract
state and computing the transition probabilities associated
with these actions.

C. Step 3: System Augmentation

As shown in Figure 1, the finite-state abstraction AV
may contain transitions that violate the given specification ¢.
This stems from the fact that SV considers only the actions
taken by the trained network AJV. Therefore, the next step is
to “augment” YV with additional transitions corresponding
to control actions that are close to those given by AV. This
augmentation will provide the controller synthesis algorithm

2907

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 02,2023 at 23:22:24 UTC from IEEE Xplore. Restrictions apply.

with more freedom to choose other control actions. Given a
precision § € R and a range parameter I € N (§ and I are
determined based on theoretical guarantees in Section IV),
we construct the augmented finite-state abstraction SAV+HS &
(X, UMV Thnees) where:

X={q,....,qn}, ®)
UM — {AMet(q)) +i6 g€ X, i=0,1,...,1}, (6)
T(q'|ct(q),u) if ue€ {ANMct(q)) =+ id|
TN (g, u) = i=0,1,...,1}
0 otherwise,
@)

where with some abuse of notation, we use AN(ct(q)) +
i0 to denote ANV(ct(q)) + [Fi1d, +i20, ..., £ind] T with
Q1,12 .. im € {0,1,...,I}. In other words the augmented
abstraction SANHI takes into account all the control actions
that are 4,24,...15 away from those given by the neural
network AN, where the distance is considered for each
dimension of the control input u € R™.

D. Step 4: Controller Synthesis

The next step is to_synthesize a controller U for the
augmented abstraction SANES 1o satisfy the specification ¢.
We emphasize that though the controller ¥ : X — U is
synthesized for the finite-state abstraction ENN”, it yields
an abstraction-based controller ¥ : X — U for the con-
tinuous system ¥ by letting ¥(xz) = ¥(abs(x)). In other
words, the controller ¥ controls the continuous system X by
applying the same control action \If() at all states = € g,
where ¢ € X. The difference in the probabilities of satisfying
the specification ¢ for the finite-state abstraction SAN+o
controlled by ¥ and the continuous MDP 3 controlled by
W can be bounded [15] (see Section IV). R

With the notations introduced above, let E§W+6 be the

finite-state abstraction S V9 controlled by W. Given the
boundgd time horizon H, we define the value function
V : X x{0,....,H} — [0,1] by letting V(q,t) be the
probability of satlsfymg the glven specification ¢ in H — 1
time steps when the system SAVHS gtarts from q € X. Then,
the average probability of satisfying the specification ¢ is

given by:
Vs £ Pr (S0 b=) = = Z V(g,0 ®)
le

Algorithm 2 presents details on the abstraction-based con-
troller synthesis, which summarizes Subsections III-B, III-
C, and III-D. To maximize the probability of satisfying
@liveness (similarly for @gfery), we solve the following dynamic
programming (DP) recursion:

=2 Vil

qGX

) TNV (¢'|q,) ©)

Vi) = Qu(q,u)
with the initial condition Vj(q) = 1 if ¢ C Xgou and
0 otherwise, where ¢ = H —1,...,0, and the transition
probability matrix TN g given by (7). Critical to the

max (10)
uwe{ANM(ct(q))+£id|i=0,...,I}

Algorithm 2 PROJECT-BY-SYNTH (AN, ¢, H)

1: if ¢ == Safety then

2 V(q,H)_lforallqEX
3: else
4
5:

H):Oforallqe)?
Uutter (q) = set() for all g € X

6: fort =H —1,...,0do_

7: fOI‘ q € X \ (goal UXobst) do

Via,

8: for u € {NN(ct(q),t) £idli = 0,...,I}\ Upusrer(q) do
9: Ubuffer(q)‘a/\dd(u) R

10: Compute T'(¢'|q,) for all ¢ € B,(f(ct(q),u))

11: if ¢ # Safety then

12: Compute transition prob to the goal T(coal|[q, W)
13: (q |q, u) = 0 for all q € Xg(ml

14: for qE< X \ (goal UXobsl) do

15: Vmax =0

16: for u € {\M(ct(q),t) £idli =0,...,1} do

17: Qg,u) = Zq 1€ B, (f(ct(q),u)) (q'lq, w)V(q',t+1)
18: if ¢ # Safety then

19: Q(qa) Q() + T(80"1|q7 ’LL)

20: if Q(q,u) > Vmax then

21: Vinax = Q(q;w)

22: U(g,t) =u

23 V(q, t) = ‘/max

X
25: U(x,t) =
26: Return VU, Vi,

speedup of NNSynth is that entries 7"N*9(¢/|q, u) are
nonzero only when v € {AMNct(q)) + idli = 0,...,I},
i.e., the control actions are close to that suggested by the
neural network. This avoids computing all the transition
probabilities T(q |g, u), and searching for the optimal actions
(that maximize Q¢(g,u) in (10)) over the whole discretized
input space, which are the computational bottlenecks for
abstraction-based controller synthesis.

In Algorithm 2, NNSynth first computes entries of T
that are suggested by the neural network AV (line 7-13 of
Algorithm 2). In particular, line 8 of Algorithm 2 checks
if control action u is close to the action given by NN, and
computes the corresponding entries of 7" only if u has not
been considered before at g, i.e., 4 & Upyfrer(¢). The optimal
control action at each state is determined by maximizing the
Q-function (line 14-23 in Algorithm 2). Unique to NNSynth,
it only searches the local action space that contains NN{g, t)
at ¢ (line 16 in Algorithm 2). Since the optimal policy is in
general time-dependent, we explicitly include the time steps
t in the input feature to the neural network ANV. In line 10
and 17 of Algorithm 2, B,(f(ct(q),w)) denotes the subset
of abstract states that are in a ball centered at f(ct(q),u)
with radius p, where p is a user-provided probability cut-off
(when probability is smaller than the cut-off, the probability
is treated as zero), which allows further speedup by limiting
the transitions due to the model-error [8].

E. Step 5: Lift to NN

To further minimize the cost J(W¥), NNSynth “lifts” the
abstraction-based controller ¥, found in the previous step
to a neural network ANV, which allows us to employ the
well-developed deep policy gradient approaches to update the

2908

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 02,2023 at 23:22:24 UTC from IEEE Xplore. Restrictions apply.

controller. Such lifting can be done by imitation learning with
sampled trajectories of the continuous MDP 3 controlled
by Wy. The obtained neural network is then used as an
initialization for further training by either reinforcement
learning or imitation learning of the expert dataset D. In
Section IV, we analyze the performance of the synthesized
controllers by taking into account the error due to the lift.
This loop of training a NN, obtaining a local abstract model,
synthesizing a controller, and lifting back to a NN is then
continued until a controller is found.

IV. THEORETICAL ANALYSIS
A. Specification Satisfaction Guarantee

We provide theoretical guarantees of NNSynth in both
satisfying the given specification ¢ and minimizing the
cost functional J in this section. The satisfaction of ¢
with pre-specified probability is correct-by-construction. In
particular, the procedure PROJECT-BY-SYNTH (Algorithm 2)
maximizes the probability for the finite-state abstraction
SMNHS satisfy ¢, and the difference in the satisfaction
probability is bounded between the finite-state abstraction
and the original continuous system [15, Theorem 2.1]:

‘Pr (igﬂ‘f” = ¢) ~Pr(Sy)| S AHAL,, (11)
where ¥(z) = \/I}(abs(x)), A is the grid size in partitioning
the state space, H is the bounded time horizon, A is the
Lebesgue measure of the state space X, and L, is the
Lipschitz constant of the stochastic kernel 7. Therefore, we
only need to set the margin ¢ = NHAL, in Algorithm 1
to ensure that the continuous MDP Yy satisfies ¢ with the
pre-specified probability p.

Theorem 4.1:Consider Algorithm 1 returns an abstraction-
based controller ¥;, with average probability Ve > p +,
where ¢ = AH AL . Then, the continuous MDP ¥ controlled
by ¥y is guaranteed to satisfy the given specification ¢ with
probability at least p, i.e., Pr(Xy, E &) > p.

B. Optimality Guarantee

Now, we focus on the performance analysis of NNSynth,
i.e., the optimality of controllers returned by Algorithm 1
in terms of minimizing the cost functional J. In Algo-
rithm 1, the procedure UPDATE (line 8 in Algorithm 1)
improves the neural network AN} using its gradient, i.e.,
MNjy1 = NN, — nVJ(AN), where 7 is the learning
rate and V.J(ANVy) can be evaluated as (4). This can be
treated as an approximation of updating the abstraction-based
controller ¥, directly through Yy = U — nVJ(¥y),
where Y1 : X — U is not necessarily an abstraction-based
controller and need to be projected back to the abstraction-
based controller space S. We take into account this gradient
approximation error, along with the lift and projection errors
corresponding to line 7 and line 9 in Algorithm 1, to provide
the overall performance guarantee of NNSynth in terms of

regret as follows:

Theorem 4.2: Consider the loop (line 4-9) in Algorithm 1
executes K iterations and the abstraction-based controller
obtained at the end of each iteration is Wy, k =1,..., K.

TABLE I
COMPARISON BETWEEN NNSYNTH AND AMYTISS.

\ Benchmark [2-d Robot | 5-d Room Temp. | 5-d Traffic |
Specification ¢ Reach-avoid Safety Safety
Specification horizon H 16 8 7
Problem complexity | X| x |U] 705600 3429216 1.25 x 108

Satisfaction Probability Vayg 96% 95% 80%
NNSynth (time) [s] 49.0 319.1 367.7

AMYTISS (time) [s] 108.4 34640.0 23100.0
Speedup 2 x 108 x 62 x

Let U* be the optimal abstraction-based controller, i.e., ¥* =
argming . sJ (V) s.t. Pr (X = ¢) > p. Then, the regret over
K iterations is upper bounded as follows:

K

= > (8- I =0 (%K + AL A+ n) .
12)
In the above theorem, 7 is the learning rate, A is the grid
size in partitioning the state space, and I are the precision
and range parameters in system augmentation, respectively
(see (6)), and Ly, is the Lipshitz constant of the trained
neural network AV, ie., [NMz1) — ANV(z2)| < Lpn|z1 —
o, Vx1,29 € X. Due to the space limit, we present the

proof of Theorem 4.2 in the extended version [16].

V. RESULTS

We implemented NNSynth in Python and evaluated its
performance on a Macbook Pro 15 with 32 GB RAM and
Intel Core 19 2.4-GHz CPU. To compare with existing tools,
we run all experiments on a single CPU core without using
GPUs to accelerate neural network training.

We compared the performance of NNSynth with the
state-of-the-art tool in synthesizing controllers for stochastic
systems, AMYTISS [8], on three benchmarks with increasing
complexity. Table I summarizes the comparison results. For
each of the benchmarks, we list the specification ¢ used in
the experiment along with its horizon H, the complexity
of the problem measured by the number of abstract states
times the number of discretized control actions | X | x |U|, the
average probability of satisfying the specification (averaged
over the state space) V,y,, the execution time for each of the
two tools, and the corresponding speedup. Indeed, the last
row in Table I empirically proves that using neural networks
to guide the controller synthesis provides significant im-
provement to the overall execution time. Below, we provide
more details about each of the benchmarks.

Experiment #1: 2-d Robot. Consider a 2-dimensional
robot model given by:

= 0ol +
20 = 280 4 ulDsin(ul?) + &P,

where the state space X = [—10,10] x [—10,10], control
input space U = [—1,1] x [—1,1], and the noise (1,¢2)
follows a Gaussian distribution with covariance matrix ¥ =
diag(0.75,0.75). We are interested in the task of steering
the robot into a goal set [5, 7] x [5, 7] in 16 time steps, while
avoiding the obstacle set [—2,2] x [—2,2] (see Figure 3).
To construct the abstraction-based controller, we partition
the state space with discretization parameters (0.5, 0.5), and
the input space with (0.1,0.1). NNSynth starts by training a

2909

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 02,2023 at 23:22:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 2.

neural network using imitation learning with a total of 121
expert trajectories. The neural network consists of two hidden
layers and ten neurons per hidden layer. We used Keras to
train the neural network with the default adaptive learning
rate optimization algorithm ADAM. The controller synthesis
is then executed to find a controller ¥ that maximizes the
probability of satisfying the specification, and one was found
in 49.0 seconds with an average satisfaction probability of
96%. In Figure 3, we present 8 example trajectories under
the control of ¥, by sampling some initial states. Using the
same discretization parameters, AMYTISS was able to find
a controller that satisfies the specs with 93% probability in
108.4 seconds. This shows a 2.2x speedup of our tool with
an increase in the satisfaction probability.

Experiment #2: 5-d Room Temperature Control. This
example considers temperature regulation of 5 rooms each
equipped with a heater and connected on a circle [8]. The
state variables are temperatures of individual rooms, and the
evolution of the 5 room temperatures is described as:

T = 0, TY + AThul? 4w + BT.,+0.016" i € {1,3}
T = b, T + qw® + BT +0.016", i € {2,4,5}

where a;; = (1 —2n— (3 — ’yu§t)), bii = (1 —2n—pB), and
w" =T + 7Y, (with Ty = Ts and Ts = Ty), and the
parameters n = 0.3, § = 0.022, v = 0.05, Te; = —1, T}, = 50.
We consider a safety specification that requires the tem-
perature of each room to maintain in the safe set [18.8,21.2]
for at least 8 time steps. As shown in Table I, NNSynth
achieves a satisfaction probability of 95% and 108x speedup
compared to AMYTISS. In Figure 2, we sample 100 initial
states and present the evolution of the 5 state variables, which
are all maintained within the safe set for at least 8 steps under

the abstraction-based controller provided by NNSynth.

Experiment #3: 5-d Road Traffic Network. This exam-
ple considers a road traffic network divided into 5 cells, and
state variables x; denote the number of vehicles per cell [8].
The 5-d road traffic network is modeled as:

TU TV
it = (1 -)2l + Zwf + 6ul” +0.76"
Ly Ls
TV TU;— .
xitﬂ) =(1- L—l - q)xgt) + #wgt) + 0.7§i(t), i€{2,4}
i i—1
Vs (%
métH) =(1- Q)zgt) + Qwéw + 8u§t> + 0.7€§t>
L3 Lo
TV TV
ef™ = (1 - 22l + Tl 4 0.7¢Y
Ls Ly
where wgt) = :&1 (with w9 = x5). Given the state space

X = [0,10]5, the input space U = [0,1]?, and a noise
covariance matrix ¥ = diag(0.7,0.7,0.7,0.7,0.7), we are
interested in designing a control strategy that keeps the
number of vehicles per cell in a safety set [0, 10] for at least
7 steps. As shown in Table I, NNSynth was able to solve this
problem in 367.7 seconds achieving more than 60x speedup
compared with AMYTISS.

State trajectories sampled from different initial conditions using the synthesized controller in Experiment #2.

Fig. 3. Closed-loop trajectories sampled from different initial states using
the synthesized controller in Experiment #1.

' REFERENCES

[1] P. Tabuada, Verification and control of hybrid systems: a symbolic
approach. Springer Science & Business Media, 2009.

[2] M. Mazo, A. Davitian, and P. Tabuada, “Pessoa: a tool for embedded
controller synthesis,” in International conference on computer aided
verification. ~ Springer, 2010, pp. 566-569.

[3] S. Mouelhi, A. Girard, and G. Gossler, “CoSyMA: a tool for controller

synthesis using multi-scale abstractions,” in Proceedings of the 16th

international conference on Hybrid systems: computation and control,

2013, pp. 83-88.

M. Rungger and M. Zamani, “SCOTS: a tool for the synthesis

of symbolic controllers,” in Proceedings of the 19th international

conference on hybrid systems: Computation and control, 2016, pp.

99-104.

P. Jagtap and M. Zamani, “QUEST: a tool for state-space quantization-

free synthesis of symbolic controllers,” in International conference on

quantitative evaluation of systems. Springer, 2017, pp. 309-313.

[6] S.E.Z. Soudjani, C. Gevaerts, and A. Abate, “FAUST 2 . Formal ab-
stractions of uncountable-state stochastic processes,” in International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2015, pp. 272-286.

[7] N. Cauchi and A. Abate, “StocHy-automated verification and synthesis
of stochastic processes,” in Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, 2019, pp.
258-259.

[8] A. Lavaei, M. Khaled, S. Soudjani, and M. Zamani, “AMYTISS:
parallelized automated controller synthesis for large-scale stochastic
systems,” in International Conference on Computer Aided Verification.
Springer, 2020, pp. 461-474.

[9] M. Palan, G. Shevchuk, N. Charles Landolfi, and D. Sadigh, “Learning
reward functions by integrating human demonstrations and prefer-
ences,” in Robotics: Science and Systems, 2019.

[10] G. Anderson, A. Verma, 1. Dillig, and S. Chaudhuri, “Neurosymbolic
reinforcement learning with formally verified exploration,” Advances
in neural information processing systems, 2020.

[11] A. Verma, H. Le, Y. Yue, and S. Chaudhuri, “Imitation-projected pro-
grammatic reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 32, pp. 15752-15763, 2019.

[12] G. Weiss, Y. Goldberg, and E. Yahav, “Extracting automata from
recurrent neural networks using queries and counterexamples,” in
International Conference on Machine Learning. PMLR, 2018, pp.
5247-5256.

[13] S. Carr, N. Jansen, and U. Topcu, “Verifiable rnn-based policies
for pomdps under temporal logic constraints,” in Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence,
2020, p. 4121-4127.

[14] C. E. Rasmussen and C. Williams, “Gaussian processes for machine
learning,” the MIT Press, 2006.

[15] A. Lavaei, S. Soudjani, A. Abate, and M. Zamani, “Automated
verification and synthesis of stochastic hybrid systems: A survey,” in
Automatica, 2021.

[16] X. Sun and Y. Shoukry,
abstraction-based controller
arXiv:2111.08853, 2022.

[4

=

[5

[t}

“NNSynth: Neural network guided
synthesis for stochastic systems,”

2910

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 02,2023 at 23:22:24 UTC from IEEE Xplore. Restrictions apply.

