


CSQMI evaluated at cell centers. Our work is most similar to

[10] and [11], where the authors formulate the information

gain as a sum of informative elements weighted by a discount

factor. In particular, [10] defines informative elements as

frontier cells between free and unexplored areas visible from

a candidate pose. However, unlike the mutual information

between the map and a sensor observation, using visible

frontier size as a proxy for information gain does not take

into account the effect of sensor noise which is inevitable in

real-world sensing applications [9], [12].

The present work distinguishes itself from the prior meth-

ods by proposing an active mapping strategy that allows

gradient ascent optimization of the Shannon mutual infor-

mation (SMI) between the grid map and a sequence of

beam-based observations. As opposed to the discrete-space

active mapping methods [9], [13]–[15] that aim to plan

an informative robot path through evaluating a finite set

of candidate trajectories, the current work finds an optimal

trajectory over the continuous space of the robot state. Fig. 1

illustrates the proposed gradient-based active mapping using

a depth sensor. Our main contributions are:

1) a differentiable interpolation of the SMI as well as a

closed-form gradient expression,

2) decomposition of the SMI into additive terms over a

robot trajectory in SE(3), under sufficient assumptions

for the interpolation method.

Unlike the previous works that used map entropy or visible

number of frontiers, directly utilizing the SMI allows incor-

porating the range sensor noise specifications to the objective

function; leading to more accurate exploration. Moreover,

gradient-based methods allow augmenting the objective func-

tion with other differentiable terms (e.g. localization accuracy

[16], path cost [17]). With the addition of a differentiable

collision penalty to the objective function, we propose an

occlusion and collision-aware robot exploration.

II. PROBLEM STATEMENT

Consider a robot with pose Xt ∈ SE(3) at time t:

Xt :=

[

Rt pt

0⊤ 1

]

, (1)

where Rt ∈ SO(3) is the robot orientation and pt ∈ R
3 is

the robot position. The robot is navigating in an environment

composed of occupied and free space. A mounted range

sensor, e.g. LiDAR or depth camera, provides the robot with

a stream of beam-based observations zt ∈ R
B , where B is

the number of beams in a laser scan or pixels in a depth

image, measuring the distance from the robot’s position to

the closest obstacle along the beam. We model the map m

as a grid of cells mi, i ∈ I := {1, . . . , N}, where each

cell can take one of the two states: free or occupied. To

model measurement noise, we consider a probability density

function (PDF) p(zt | m,Xt) for each observation. Let

pt(m) = p(m | Ht) be the probability mass function

(PMF) of the map m given the history of robot poses and

observations Ht = {(Xτ , zτ )}
t
τ=1. A new observation zt+1

made from robot pose Xt+1 can then be integrated into the

map estimation process using Bayes rule:

pt+1(m) ∝ p(zt+1 | m,Xt+1)pt(m). (2)

The goal is to choose a collision-free pose trajectory to

obtain maximally informative measurements for constructing

an accurate map. As shown by Julian et al. [18], maximizing

the Shannon Mutual Information (SMI) between the map m

and a sequence of potential future measurements zt+1:t+T

yields an efficient active mapping strategy. The SMI is

defined as:

I(m; zt+1:t+T | Xt+1:t+T ,Ht) :=
∑

m∈2N

∫

· · ·

∫

p(m, zt+1:t+T | Xt+1:t+T ,Ht)×

log
p(m, zt+1:t+T | Xt+1:t+T ,Ht)

p(m | Ht)p(zt+1:t+T | Xt+1:t+T ,Ht)

T
∏

τ=1

dzt+τ ,

(3)

where Ht represents the realized history of robot poses

and observations and, hence, does not appear as an inte-

gration variable. Throughout this paper, we assume that the

robot pose Xt is known for all t. The SMI is a function

I(.) : SE(3)T → R≥0 of the robot trajectory Xt+1:t+T

parameterized by Ht.

Problem. Given a map PMF pt(m) obtained from prior

robot poses and observations Ht and a finite planning

horizon T , find a pose trajectory Xt+1:t+T ∈ SE(3)T that

maximizes the SMI between the map m and the future

observations zt+1:t+T with PDF in (2):

max
Xt+1:t+T∈SE(3)T

(

I(m; zt+1:t+T |Xt+1:t+T ,Ht)− (4)

γcC(Xt+1:t+T )
)

,

where C(Xt+1:t+T ) is a penalty term capturing the cost of

collisions along Xt+1:t+T and γc ≥ 0 is the weight of the

collision penalty.

In the next section, we propose a differentiable approxi-

mation of the SMI function that can be utilized for gradient-

based optimization of (4).

III. PROPOSED METHOD

A. Notation

We overload (̂.) to denote the mapping from an axis-angle

vector θ ∈ R
3 to a 3× 3 skew-symmetric matrix θ̂ ∈ so(3)

as well as from a vector ξ ∈ R
6 to a 4× 4 twist matrix:

ξ =

[

ρ

θ

]

∈ R
6 ξ̂ :=

[

θ̂ ρ

0⊤ 0

]

∈ se(3). (5)

We define an infinitesimal change of pose X ∈ SE(3)
using a right perturbation X exp(ξ̂) ∈ SE(3). The functions

log(.) : SE(3) → se(3) and (.)∨ : se(3) → R
6 denote the

inverse mappings associated with exp(.) and (̂.), respectively.

Please refer to [19, Ch.7] for details.





The above conditions are sufficient for decomposing the

approximate SMI of trajectory Xt+1:t+T to T independent

additive terms, resulting in a computationally feasible tra-

jectory optimization formula. The main idea comes from

the fact that, given the above conditions, observations zi
and zj (i 6= j) made from viewpoints inside G(Xi) and

G(Xj), respectively, are independent random variables. In

practice, active sensors such as lasers have bounded FOV

which can meet these conditions. For passive sensors (e.g.

cameras), it is commonplace to limit the effective range since

the estimation accuracy diminishes as we get farther from the

sensor; leading to a limited applicable FOV.

Proposition 1. Under Cond. 1 and 2, the approximated SMI

can be expressed as the sum of individual SMI approxima-

tions for each pose in the trajectory Xt+1:t+T :

Ĩ(m; zt+1:t+T | Xt+1:t+T ,Ht) =
T
∑

τ=1

Ĩ(m; zt+τ | Xt+τ ,Ht).
(10)

Proof. See Appendix A.

The result of Prop. 1 enables computationally feasible

trajectory optimization for robot exploration in an unknown

environment. Since each term in (10) is only dependent upon

a single pose in the trajectory, the gradient ascent rule in

(7) can be directly employed to update each robot pose

Xt+τ , τ ∈ {1, . . . , T}. In the following part, we introduce

a practical gradient-based solution to the problem of active

mapping stated in (4).

D. Active Mapping via Gradient Ascent

A key advantage of gradient-based optimization is the

possibility of adding various reward or penalty terms to the

objective function, enabling achievement of a more complex

optimization goal. We begin by defining the collision penalty

term C(Xt+1:t+T ) in the objective function of (4), which is

responsible for driving the optimized robot pose away from

obstacles within the environment. However, since we do not

know the map a priori, we resort to the estimation of the

map to extract the obstacles.

Definition 2. Let Êf (pt(m)) be the maximum-likelihood

estimation of the free space at time t. For a position p ∈ R
3,

we define free distance as follows:

d(p, pt(m)) = min
b∈∂Êf (pt(m))

‖p− b‖2. (11)

It is important to consider that large mutual information

occurs near the boundary between the free space and the

unknown parts of the map [18]. Therefore, one should

seek a balance between large clearance from obstacles and

informativeness of observation made from the resulting robot

pose. We define the collision cost C(Xt+1:t+T ) as sum of

the log-values of inverse free distance for each pose Xt+τ

with position pt+τ in the trajectory:

C(Xt+1:t+T ) = −
T
∑

τ=1

log (d(pt+τ , pt(m))). (12)

Using a logarithmic scale causes a large penalty for poses

close to obstacles, while it does not discourage approaching

the unknown region from a safe distance due to its sup-

pressed gradient over large inputs.

In addition to the collision cost, we add a penalty term

to the objective function to enforce Cond. (2) during each

planning phase, minimizing the overlap among the sensor

FOVs Xt+τ
¯
F in the candidate trajectory. We consider a pair-

wise penalty term for poses within the trajectory as follows:

q(pi,pj) = max {0, 2δq − ‖pi − pj‖2}
2

δq = |F|+ ξmax,
(13)

where pi and pj are robot positions for poses Xi and Xj ,

respectively, |F| is the diameter of F , and ξmax denotes

the maximum distance from robot pose X to a viewpoint in

Ḡ(X) (cf. Cond. 1). The penalty term (13) effectively dis-

courages the case where the 2-norm ball B(pi, δq) centered

around pi with radius δq coincides with B(pj , δq). Since

B(pi, δq) contains U(Xi), q(pi,pj) = 0 is sufficient to en-

sure Cond. (2) is not violated for a pair of poses Xi and Xj .

Note that Cond. (1) is an inherent property of the weighting

function αV(X) and can be evaluated offline. Putting all the

components together, the differentiable objective function for

gradient-based active mapping is expressed as follows:

f(Xt+1:t+T ) =
T
∑

τ=1

(

∑

V∈Ḡ(Xt+τ )

αV(Xt+τ )[I(m; z | V,Ht)+

γc log(d(v, pt(m)))]−
γq

2

T
∑

τ ′=1
τ ′ 6=τ

q(pt+τ ,pt+τ ′)

)

,

(14)

where v, pt+τ , and pt+τ ′ are the corresponding positions

of poses V, Xt+τ , and Xt+τ ′ .

So far we assumed a general definition for the differen-

tiable weighting function αV(X) that satisfies Cond. 1 and

2. We use the following definition for αV(X):

αV(X) =
υ(δ(ξ

X,V))(1 + cos δ(ξ
X,V))

∑

U∈G υ(δ(ξ
X,U))(1 + cos δ(ξ

X,U))
, (15)

where δ(ξ
X,V) is the distance between poses V,X ∈SE(3):

δ(ξ
X,V) =

π

ξmax

√

ξ⊤
X,VΓξ

X,V, ξ
X,V = log(X−1V)∨.

(16)

Here, Γ is a diagonal matrix containing positive coefficients

and ξ
X,V is the difference of two SE(3) poses in the local

frame of X. The indicator function υ(δ(ξ
X,V)) in (15)

is equal to one only when 0 ≤ δ(ξ
X,V) ≤ π and zero

otherwise, which in effect limits the SMI approximation to

the viewpoints within the radius ξmax from X, satisfying

Cond. 1. Note that the discontinuity of υ(δ(ξ
X,V) occurs at

the same point where 1 + cos δ(ξ
X,V) = 0; hence αv(X)

is differentiable with respect to all poses X ∈ SE(3). Fig. 3

shows an example of the accurate SMI evaluation at different

robot positions compared to the approximate SMI of (6)

using the weighting function of (15). Note that, while being









extending the proposed method to multiple agents, where we

expect gradient-based optimization to also be significantly

more efficient than discrete space search.

APPENDIX A PROOF OF PROP. 1

Cond. (1) and (2) effectively state that for any pair of

viewpoints V ∈ Ĝ(Xi) and U ∈ Ĝ(Xj), the two sets of map

cells inside the FOVs of V and U do not intersect. This is

true since the spaces inside V
¯
F and U

¯
F are always subsets

of U(Xi) and U(Xj), respectively, while Cond. (2) states

that U(Xi) ∩ U(Xj) = ∅. Consequently, the observations

made from V and U are independent random variables,

resulting in the following decomposition of the SMI:

I(m; zv, zu | V,U,Ht) =

I(m; zv | V,Ht) + I(m; zu | U,Ht).

Following Cond. (2), the above decomposition can be applied

for any set of viewpoints V := Vt+1:t+T where Vt+τ ∈
Ĝ(Xt+τ ), τ ∈ {1, . . . , T}. Hence we have:

T
∑

τ=1

∑

V∈GT

AV(Xt+1:t+T )I(m; zt+τ | Vt+τ ,Ht) =

T
∑

τ=1

Ĩ(m; zt+τ | Xt+τ ,Ht)
∑

V−Vt+τ∈GT−1

AV(Xt+1:t+T )

αVt+τ
(Xt+τ )

.

Based on the definition of AV(Xt+1:t+T ), the inner sum is

equal to 1, which yields the expression in (8).

APPENDIX B PROOF OF PROP. 2

Since the approximate SMI in (6) is linear with respect

to αV(X) terms, the overall gradient computation can be

reduced to a weighted sum of individual gradients of αV(X)
with respect to robot pose X. Also, it is only needed to

compute gradients for viewpoints where υ(δ(ξ
X,V)) = 1

since the rest of the viewpoints do not affect the derivations:

[∇ψαV(X exp (ψ̂))]|⊤ψ=0 =
∂ cos δ(ξ

X exp (ψ̂),V)

∂ψ
η(X)− (1 + cos δ(ξ

X,V))∂η(X exp (ψ̂))
∂ψ

η2(X)
,

where η(X) is defined in (17). Both partial derivations in the

numerator require computing
∂ cos δ(ξ

X exp (ψ̂),V)

∂ψ
. Applying

the chain rule, we have:

∂ cos δ(ξ
X exp (ψ̂),V)

∂ψ
=

∂ cos δ

∂δ

∣

∣

∣

∣

δ=δ(ξ
X,V)

×
∂δ(ξ)

∂ξ

∣

∣

∣

∣

ξ=ξ
X,V

∂ log(exp(−ψ̂)X−1V)∨

∂ψ

∣

∣

∣

∣

ψ=0

.

The first two partial derivatives can be obtained via differen-

tiation in R and R
6, respectively. The last partial derivative

can be obtained via applying small perturbation ψ in the

robot frame:

∂ log(exp(−ψ̂)X−1V)∨

∂ψ

∣

∣

∣

∣

ψ=0

= JR(−ξX,V)JR(ξX).

Summing over all V ∈ Ĝ leads to the expression in (17).
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