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Abstract— This paper proposes a novel active Simultaneous
Localization and Mapping (SLAM) method with continuous
trajectory optimization over a stochastic robot dynamics model.
The problem is formalized as a stochastic optimal control
over the continuous robot kinematic model to minimize a cost
function that involves the covariance matrix of the landmark
states. We tackle the problem by separately obtaining an open-
loop control sequence subject to deterministic dynamics by iter-
ative Covariance Regulation (iCR) and a closed-loop feedback
control under stochastic robot and covariance dynamics by
Linear Quadratic Regulator (LQR). The proposed optimiza-
tion method captures the coupling between localization and
mapping in predicting uncertainty evolution and synthesizes
highly informative sensing trajectories. We demonstrate its
performance in active landmark-based SLAM using relative-
position measurements with a limited field of view.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has been

instrumental for enabling autonomous robots to transition

from controlled, structured, and fully known environments to

operation in a priori unknown real-world conditions [7], [24].

Many current SLAM techniques, however, remain passive

in their utilization of sensor data. Active SLAM [11] is an

extension of the SLAM problem which couples perception

and control, aiming to acquire more information about the

environment and reduce the uncertainty in the localization

and mapping process. Active SLAM introduces unique chal-

lenges related to keeping the map and location estimation

processes accurate, and yet computing and propagating un-

certainty over many potential sensing trajectories efficiently

to select an informative one.

Many existing works in active perception decouple the

localization and mapping problems and assume known robot

states when planning active mapping trajectories. The lit-

erature on active mapping can be categorized according to

the map representation it employs. Some techniques use

volumetric mapping, which represents occupancy (e.g., occu-

pancy grid) or obstacle distance (e.g., signed distance field)

at a finite number of voxels obtained by discretizing the envi-

ronment. Other techniques employ landmark-based mapping,

which represents positions of a finite number of landmarks

(e.g., objects or visual features) in the environment. While

a volumetric representation captures the complete geometric

structure of the environment, landmark-based mapping re-

quires much less memory. One of the earliest approaches for
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active mapping [28] is based on detecting and planning a

shortest path to frontiers (boundaries between explored and

unexplored space) in a volumetric map. Information-theoretic

planning is an alternative approach, which utilizes an infor-

mation measure to quantify and minimize the uncertainty in

the map, as developed first in [12] and subsequently used

widely in robotics [20], [13], [14]. Efficient computation

methods for computing uncertainty of volumetric maps have

been proposed in [10] for Cauchy-Schwarz quadratic mutual

information (CSQMI), and in [29] for fast Shannon mutual

information (FSMI). Active mapping for truncated signed

distance field (TSDF) reconstruction has been considered in

[25] and multi-category semantic maps have been studied

in [3]. Existing methods are, however, limited to discrete

control spaces, typically with a finite number of possible

control inputs, such as [25], [10], [29]. Recently, in [16], we

have developed a continuous trajectory optimization method

for active mapping, named iterative Covariance Regulation

(iCR). We have introduced a differentiable field of view

in sensing model, and apply gradient descent method for

obtaining an open-loop control sequence to maximize the

differential entropy of the map.

In applications other than mapping, motion planning under

uncertainty in the robot states has been developed for several

robotics tasks, such as reaching a goal without collisions

with obstacles. To cope with the uncertainty in the motion

model, the probability density function of the robot state

given a sensory data is constructed, named as belief space.

An important work in this area is Belief Roadmaps [22],

which projects a roadmap from the state space to the belief

space and seeks an optimal path in the constructed graph.

Such a sampling-based method has been further developed in

[2], [1]. Alternatively, continuous-space optimization meth-

ods have also been proposed for belief space planning.

Representative work by [27] applies an iterative LQG [26],

which computes both a nominal open-loop trajectory and a

feedback control policy through iterative solutions of a dy-

namic programming. The authors have utilized iLQG for the

belief dynamics consisting of the mean and the covariance

of the robot state through EKF estimate utilizing a sensory

data. However, the method in [27] limits the observation

model to be smooth for enabling the gradient computation

in iLQG, while a typical measurement by a camera field

of view does not follow such a smooth observation model.

Recently, [23] has relaxed the assumption by introducing

a probabilistic visibility model in sensing, and proposed a

novel motion planning method with guaranteeing a constraint

on the uncertainty in the robot state to be satisfied, via



employing an augmented Lagrangian method. This paper

differs from the belief space planning proposed in [27], [23]

in the sense that we take into account a target dynamics

as a belief state and propose a method of solving an open-

loop trajectory and closed-loop policy separately, which is

computationally efficient since the iteration is needed only

for an open-loop trajectory under a deterministic dynamics.

Active SLAM is a challenging problem due to the mutual

dependence among the accuracy of the robot localization, the

performance of the mapping, and the trade-off between ex-

ploring new areas and exploiting uncertainty minimization in

visited areas. Several techniques in the literature approach the

active SLAM problem with a landmark-based mapping using

greedy planning over a discrete control space, see [8] for

instance. To avoid the costly global planning with long time

horizons, in [18], the authors have introduced an attractor

in landmark-based active SLAM, which incorporates global

information about the environment for the local planner,

and applied a model predictive control approach. Utilizing

the idea of introducing the attractor, in [5], a decentralized

nonmyopic approach to a multi-robot landmark-based active

SLAM has been proposed via exploiting the sparsity in

the information filter. In [15], a multi-robot landmark-based

active SLAM has been tackled by develoing a scalable

sampling-based planning. While almost all of the literature

in active SLAM have employed a discretized control space

planning, [19] has developed an online path planning method

for active SLAM under a continuous control space by a

Bayesian optimization for updating a parameter in a control

policy. However, the method requires a sampling of the state

propagation to approximate a mean square error of SLAM

and an iteration of policy search, which renders a difficulty

in the real-time implementation with an online planning.

Unlike existing active SLAM techniques which commonly

consider a discretized control space and known robot poses,

this work develops an active SLAM method with continuous

trajectory optimization over a stochastic robot dynamics

model utilizing offline planning. A major advantage of

the proposed method is its ability to capture the coupling

between localization and mapping in predicting uncertainty

evolution and to synthesize highly informative sensing tra-

jectories due to the continuous-space optimization, which

is computationally efficient and capable of real-time imple-

mentation through an offline computation. We first provide a

general formulation of the active information acquisition as

studied in [4], [25], [16]. Apart from the previous literature,

we include a stochastic process noise in the robot dynamics,

which needs to be dealt with in application to active SLAM.

Next, we propose a method for obtaining a nominal open-

loop trajectory via iCR for deterministic robot dynamics

and a closed-loop control policy by LQR for a linearized

stochastic system around the iCR trajectory. Then, we apply

these techniques to active SLAM to estimate the positions

of a finite number of landmarks.

II. PROBLEM STATEMENT

We consider a sensing system with state xk ∈ R
nx and

control input uk ∈ R
m at time tk ∈ R+ where {tk}

K
k=0 for

some K ∈ N is an increasing sequence. The task is to reduce

uncertainty in a target state, denoted as yk ∈ R
ny , through

on-board sensors which receives a sensor measurement zk ∈
R

nz as a function of both the sensing system and target

states. We consider a stochastic nonlinear dynamics of the

system state, a linear stochastic dynamics of the target state,

and a linear observation model with respect to the target

state, described by

xk+1 = f(xk,uk,wk),

yk+1 = Ayk + Ξ
1/2
k ξk,

zk = H(xk)yk + V (xk)
1/2vk,

(1)

where wk ∼ N (0,Wk), ξk ∼ N (0, Iny
), vk ∼ N (0, Inz

),

Wk ∈ S
nx×nx

≻0 , Ξk ∈ S
ny×ny

≻0 , V : Rnx → S
nz×nz

≻0 , and H :
R

nx → R
nz×ny . Sn×n

≻0 is a set of positive definite matrices

within R
n×n.

Active information acquisition is a motion planning prob-

lem for a system dynamics aiming to minimize some un-

certainty measure of the target state. One representative

candidate for the measure is the differential entropy in

the target state conditioned on the sensor states and mea-

surements. In [17], for deterministic system dynamics (i.e.,

wk = 0), the problem of minimizing the differential entropy

is shown to be equivalent to minimizing the log determinant

of the covariance matrix of the target state as a determin-

istic optimal control, which is known as D-optimality in

optimal experimental design [21]. There are several other

criteria in optimal experimental design, such as A-optimality,

minimizing the trace of the covariance, and E-optimality,

minimizing the maximum eigenvalue [9]. Here, we consider

a general cost function over the covariance matrix to capture

all possible optimality criteria.

We approach the problem of minimizing an uncertainty

criterion over the target state subject to motion and sensor

models in (1) by extending the formulation in [4] to include

stochastic noise in the robot dynamics. Let Σk ∈ S
ny×ny

≻0

be the covariance matrix of the target state. Then, the

optimization problem in this paper is written as:

min
U∈RmK

E

{

K−1
∑

k=0

c̄k (Σk) + c̄K (ΣK)

}

, (2)

s.t. xk+1 = f(xk,uk,wk),

Σk+1 = A
(

Σ−1
k +M(xk+1)

)−1
A⊤ + Ξk, (3)

M(x) = H(x)⊤V (x)−1H(x), (4)

where c̄k : S
ny×ny

≻0 → R for k ∈ {0, . . . ,K} is an

objective function with respect to the covariance matrix,

M : Rnx → R
ny×ny is the so-called “sensor information

matrix” . In D-optimal design to minimize the differential

entropy, we can set c̄k = 0 for k ∈ {0, . . . ,K − 1} and

c̄K(ΣK) = log det(ΣK). In this paper, we keep setting a

general objective function c̄k.



We tackle the optimal control problem by a separate plan-

ning of an open-loop trajectory optimization (iCR) developed

in [16], and a closed-loop feedback control by LQR. While

iCR in [16] has been developed for a robot motion model

with an SE(3) pose state represented by a matrix, a typical

LQR approach is applicable to dynamics described with re-

spect to a vector state. Therefore, we reformulate the Riccati

update (3) of the covariance matrix by the dynamics of the

vector state. Let σk ∈ R
nσ , where nσ := ny(ny+1)/2, be a

vector representation of the covariance matrix Σk defined by

σk := vech(Σk), where vech(·) : S
ny×ny

≻0 → R
ny(ny+1)/2 is

a half-vectorization operator applied to a symmetric matrix.

By reformulating the Riccati update in (3) and rewriting

the cost function (2) with respect to the vector state σ, the

optimization problem we consider can be recast as follows.

Problem. Obtain a control policy uk = πk(xk,σk), where

πk : R
nx+nσ → R

m for k = 0, . . . ,K − 1 to solve the

following stochastic optimal control problem:

min
π0,...,πK−1

E

{

K−1
∑

k=0

ck(σk) + cK(σK)

}

(5)

where ck : Rnσ → R, subject to

xk+1 = f(xk,πk(xk,σk),wk), (6)

σk+1 = g(σk,xk+1). (7)

III. PLANNING METHOD

This section proposes a method to solve (5)–(7) by design-

ing an open-loop control sequence and closed-loop control

policy separately.

A. Linearized system around iCR trajectory

iCR proposed by [16] provides the solution to the deter-

ministic case (i.e., wk = 0) of the optimal control stated

above, for active exploration and mapping with the cost of

log determinant of the covariance matrix. Extending iCR to

minimizing a general cost, we obtain a nominal open-loop

trajectory {x̄k+1, ūk, σ̄k+1}
K−1
k=0 which is a solution to

[ū1, . . . , ūK−1] = argmin
ū1,...,ūK−1

(

K−1
∑

k=0

ck(σ̄k) + cK(σ̄K)

)

,

s.t. x̄k+1 = f(x̄k, ūk, 0), σ̄k+1 = g(σ̄k, x̄k+1).

The solution is obtained via gradient-descent for a multi-

step control sequence U = [ū⊤
1 , . . . , ū

⊤
K−1]

⊤, via iterative

update of the control sequence by U ← U − α∂JU

∂U with a

step size α and the cost JU =
∑K−1

k=0 ck(σk) + cK(σK),

where the gradient ∂JU

∂U is computed analytically. Around the

nominal open-loop trajectory {x̄k+1, ūk, σ̄k+1}
K−1
k=0 and the

mean of the noise wk = 0, the nonlinear stochastic dynamics

(6), (7) can be described by a linear time-varying system as

a first-order approximation through Taylor expansion (see

[30]). Let us define the error variables: x̃k = xk− x̄k, σ̃k =
σk − σ̄k, π̃k(x̃k, σ̃k) = πk(xk,σk) − ūk. Then, lineariz-

ing the dynamics (6), (7) around the nominal trajectory

{x̄k+1, σ̄k+1}
K−1
k=0 , the dynamics for the error variables are

x̃k+1 = Ekx̃k +Bkπ̃k(x̃k, σ̃k) +Dkwk,

σ̃k+1 = Fkσ̃k +Gk(Ekx̃k +Bkũk +Dkwk),

where

Ek =
∂f

∂x

∣

∣

∣

∣

(x̄k,ūk,0)

, Bk =
∂f

∂u

∣

∣

∣

∣

(x̄k,ūk,0)

, Dk =
∂f

∂w

∣

∣

∣

∣

(x̄k,ūk,0)

,

(8)

Fk =
∂g

∂σ

∣

∣

∣

∣

(x̄k,ūk,0)

, Gk =
∂g

∂x

∣

∣

∣

∣

(x̄k,ūk,0)

. (9)

We aim to minimize the cost (5) subject to the linearized

stochastic dynamics by designing a control policy π̃k(x,σ).
Applying the Taylor expansion to (5) around the nominal tra-

jectory and approximating by second-order accuracy yields

ck(σk) ≈ σ̃⊤
k Ckσ̃k + b̄⊤

k σ̃k + ck(σ̄k), (10)

Ck :=
∂2ck
∂σ2

(σ̄k), b̄⊤
k :=

∂ck
∂σ

(σ̄k). (11)

At the same time, to validate the linearization, the trajectories

should stay around the nominal trajectories, namely, the error

variables should stay around zero. Pursuing these two objec-

tives, and introducing the new state variable sk ∈ R
nx+nσ

defined by sk = [x̃⊤
k , σ̃

⊤
k ]

⊤, π̃k(sk) = πk(xk,σk)− ūk the

dynamics and the cost function can be written with respect

to sk as

sk+1 = Aksk + Bkπ̃k(sk) +Dkwk, (12)

J̃ = E

{

K−1
∑

k=0

(s⊤k Qksk + b⊤
k sk + π̃k(sk)Rkπ̃k(sk))

}

+ E
{

s⊤KQKsK + b⊤
KsK

}

, (13)

where ns = nx + nσ , Ak ∈ R
ns×ns , Bk ∈ R

ns×m, Dk ∈
R

ns×nx , Q ∈ R
ns×ns , b ∈ R

ns are defined by

Ak =

[

Ek 0
GkEk Fk

]

,Bk =

[

Bk

GkBk

]

,Dk =

[

Dk

GkDk

]

, (14)

Qk =

[

Q
(1)
k 0

0 Q
(2)
k + Ck

]

, bk =

[

0

b̄k

]

, (15)

where Q
(1)
k ∈ R

nx×nx , Q
(2)
k ∈ R

nσ×nσ , and Rk ∈ R
m×m

are weight matrices to be determined by the user.

B. LQR-based closed-loop feedback control

We derive a closed-loop feedback control policy to min-

imize (13) subject to (12). Note that, unlike the standard

LQR, the cost function (13) includes a linear term b⊤
k sk, in

both stage and terminal costs. Even then, one can show that

the optimal control policy is a linear feedback control with

a time-varying constant term, as stated below.

Proposition 1. The closed-loop control

π̃k(sk) = L∗
ksk + ε∗k, (16)

L∗
k = −(R+ B⊤k Pk+1Bk)

−1B⊤k Pk+1Ak, (17)

ε∗k = −
1

2
(R+ B⊤k Pk+1Bk)

−1B⊤k dk+1, (18)



where Pk ∈ R
ns×ns , dk ∈ R

ns , and δk ∈ R at k = K are

given by PK = QK ,dK = bK , δK = 0, and recursively

updated from k + 1 to k for k = K − 1,K − 2, . . . , 0 as

follows:

Pk = Qk +A⊤
k Pk+1Ak

−A⊤
k Pk+1Bk(R+ B⊤k Pk+1Bk)

−1B⊤k Pk+1Ak, (19)

dk = bk +A⊤
k dk+1

−A⊤
k Pk+1Bk(R+ B⊤k Pk+1Bk)

−1B⊤k dk+1, (20)

δk = δk+1 + tr(D⊤
k Pk+1DkWk)

−
1

4
d⊤
k+1Bk(R+ B⊤k Pk+1Bk)

−1B⊤k dk+1 (21)

minimizes the cost function (13) subject to the system dy-

namics (12) with optimal cost:

min
ũ0,...,ũK−1

J̃ = V0(s) = s⊤P0s+ d⊤
0 s+ δ0,

for a given initial condition s0 = s.

The proof is done using a dynamic programming method,

and is omitted in this paper due to space constraints.

IV. APPLICATION TO ACTIVE SLAM

We apply the proposed planning method to an active

SLAM problem, where a set of landmarks in the environment

is regarded as the target state. The task is to estimate the

landmark positions and the pose of a sensing robot, and to

plan motion that reduces the uncertainty in these estimates.

A. Differential-drive motion model and its linearization

Let x = [p⊤, θ]⊤ ∈ R
3 be the state of a ground robot,

where p ∈ R
2 is the robot position and θ ∈ [−π, π) is the

robot’s heading angle. Let u ∈ [v, ω] ∈ R
2 be the robot’s

control input, where v is the linear velocity and ω is the

angular velocity. We model the robot dynamics f : R
3 ×

R
2 × R

3 → R
3 in (6) using a differential-drive kinematic

model with time discretization τ :

f(xk,uk,wk) = xk + τ





vksinc (ak) cos (θk + ak)
vksinc (ak) sin (θk + ak)

ωk



+wk,

(22)

where ak := ωkτ
2 .

B. Limited field-of-view sensing model

The landmarks are modeled as points y(j) ∈ R
2 in the

environment, for all j ∈ {1, . . . , nl}, where nl is a number

of landmark. Noting that the landmark location is static, the

matrices in the target dynamics given in (1) are set as:

A = I2nl×2nl
, Ξk = 02nl×2nl

. (23)

For a given robot state x ∈ R
3 and the position y(j) ∈

R
2 of the j-th landmark, we consider the robot body-frame

coordinates of y(j):

q
(

x,y(j)
)

= R⊤(θ)(y(j) − p), (24)

where R : R → SO(2) ⊂ R
2×2 is a 2-D rotation matrix

of the robot pose. Here, we define the set of indices of the

landmarks within the field of view F ⊂ R
2 of the robot, as

follows:

Ik,F =

{

∀j ∈ {1, . . . , nl}

∣

∣

∣

∣

q
(

xk,y
(j)
)

∈ F

}

(25)

We suppose to have both range and bearing measurements,

which capture the relative landmark positions in robot frame

as follows:

zk =
[

{z̄(xk,y
(j))}j∈Ik,F

]

∈ R
2|Ik,F |, (26)

z̄(x,y(j)) = q(x,y(j)) + Γ1/2(x,y(j))v, (27)

where Γ : R3 × R
2 → S

2×2
≻0 is the sensor noise covariance

and v ∼ N (0, I2). Notice that the sensing model (27)

is nonlinear with respect to the target state, while up to

the previous sections we have considered a linear sensing

model. In the application to active SLAM in this section,

we deal with the nonlinear sensing model by employing the

linearization around some estimate of the target state, and

utilize it for both planning and SLAM.

C. Differentiable field of view

One special characteristic of the sensing model (26) with

a limited field of view (FoV) is that the measurement

dimension is dependent on the robot pose state at time k.

This is caused by a binary (observable or unobservable)

sensing within the FoV, which makes the sensing model non-

differentiable with respect to the state and hence the control

input. To deal with the challenge, we use a differentiable FoV

proposed in [16], where the measurement is supposed to be

obtained for all landmark states, while the noise covariance is

supposed to become approximately infinity outside the FoV.

Namely, the measurement function h : R3 × R
2nl → R

2nl

and the noise covariance matrix are formalized as:

h(x,y) = [q(x,y(1))⊤, . . . ,q(x,y(nl))⊤]⊤, (28)

V (x) = diag(V̄ (x, ŷ(1)), . . . , V̄ (x, ŷ(nl))) ∈ R
2nl×2nl ,

where ŷ(j) ∈ R
2 is an initial estimate of the j-th landmark

state, V̄ (x,y(j)) : R3×R
2 → R

2×2 is a noise covariance of

j-th landmark with differentiable FoV, given by

V̄ (x,y(j)) =
(

1− Φ(d(q(x,y(j)),F))
)−1

Γ(x,y(j)),

where Φ : R → [0, 1] is the Gaussian CDF defined by

Φ(x) = 1
2

[

1 + erf
(

x√
2κ
− 2
)]

and d(q,F) is a signed

distance function defined below.

Definition 1. The signed distance function d : R
2 → R

associated with a set F ⊂ R
2 is:

d(q,F) =

{

−minq∗∈∂F ‖q− q∗‖, if q ∈ F ,

minq∗∈∂F ‖q− q∗‖, if q /∈ F ,
(29)

where ∂F is the boundary of F .

A 2-D plot of 1 − Φ(d(q(x,y(j)),F), which is the

amplification factor in the differentiable FoV, is shown in





(a) Closed-loop iCR + LQR (b) Open-loop iCR

Fig. 2: Active SLAM via closed-loop and open-loop control

policies. The green dotted line shows the robot ground

truth trajectory. The blue dot shows robot pose, while

the surrounding ellipse corresponds to the covariance of

robot position. Red dots indicate the ground truth landmark

positions. Cyan dots and ellipses indicate the mean and

covariance of landmarks, respectively.

F. EKF-SLAM

We construct the estimator of both the landmark

position and the robot position by Extended Kalman

Filter (EKF). The probabilistic landmark position and

the robot position are set as a Gaussian distribution:
[

xk

y

]

|z1:k ∼ N

([

x̂+
k

ŷk

]

,Σ+
k ,

)

for posteriori estimate,

and

[

xk+1

y

]

|z1:k ∼ N

([

x̂−
k+1

ŷk

]

,Σ−
k+1,

)

for a priori

estimate. Once the measurement is obtained as given in (26),

which is a measured landmark relative position in robot-

body frame within FoV, we reconstruct the measured state

as zk = [z
(1)
k , z

(2)
k , . . . , z

(nl)
k ] ∈ R

2nl , where

z
(j)
k =

{

z̄(xk,y
(j)), if j ∈ Ik,F

q(x̂−
k , ŷ

(j)
k−1), otherwise

(31)

Using the reconstructed sensor state (31), we implement EKF

for SLAM by updating the mean and covariance of both

priori and posteriori estimates. Note that, since the innovation

term in EKF is zk−h(x̂−
k , ŷk−1), where h is given by (28),

the reconstructed sensor state (31) makes the innovation term

zero in j-th landmark estimate for all j /∈ Ik,F . Namely, all

the landmark estimate outside FoV does not have an update

through applying (31) to EKF-SLAM.

A diagram depicting the structure of the entire proposed

algorithm is shown in Fig. 1.

G. Evaluation

We examine the performance of the proposed method in

a simulated environment with dimensions 100[m] × 70[m],

where the landmarks are located following a uniform random

distribution. The robot follows the SE(2) motion model of

(22) with Wk = diag (0.1, 0.1, 0.01), and its on-board sensor

measures the relative position of visible landmarks in the

robot frame. The field of view F is set as an isosceles triangle

with height 20 [m] and the angle between the two legs equal

to 120◦. The relative position measurements are corrupted by

an additive Gaussian noise with zero mean and covariance

Γ = diag (0.1, 0.1). The control uk and measurements

zk+1 are given to EKF-SLAM for state estimation, where

we assume the noise covariances Wk and Γ are known

to EKF-SLAM. We initialize the mean
[

x̂+
0 ŷ

+
0

]⊤
with the

ground truth position of the robot and landmarks, added by

a Gaussian noise with variance 25 [m2], while the state

covariance is initialized as Σ+
0 = 25Ins×ns

. During each

planning phase, we begin by computing the initial iCR

control sequence ū0:K−1 for planning horizon K = 5, where

the differentiable FoV is parameterized by κ = 10 and the

gradient decent update is done for 10 iterations with α =
diag (0.005, 0.0005). The obtained control sequence ū0:K−1

is regularized by LQR where Q
(1)
k = diag (10, 10, 1), Q

(2)
k =

Inl×nl
⊗diag (1, 0.1, 1), and Rk =

[

20 5
5 10

]

. The closed-

loop control uk is applied to the robot for K steps while

the state mean and covariance are updated on each step.

Fig. 2 shows examples of active SLAM using open-loop

and closed-loop control policies. We observe that the LQR

closed-loop control allows for larger exploration of the envi-

ronment since the trajectory is constantly corrected by LQR,

while for the case of open-loop policy, landmark entropy

increases after execution of the control sequence, which

encourages re-visiting the nearby landmarks and resulting

in limited exploration.

Fig. 3 summarizes simulation results for a random policy,

open-loop control obtained from iCR, and LQR closed-

loop control over iCR output. Both open-loop and closed-

loop policies outperform the random policy; however, the

policy regulated by LQR shows more long-term stability and

uncertainty reduction. This can be directly attributed to the

cost function for LQR, where stability and landmark position

uncertainty are explicitly factored in the model.

V. CONCLUSION

This paper developed a method for continuous trajectory

optimization for active information acquisition problems.

The problem is formalized as a stochastic optimal control

problem to minimize an uncertainty measure over the target

state. The novelty of the proposed method lies in (i) taking

into account the process noise in robot dynamics, (ii) intro-

ducing a differentiable field of view for enabling the gradient

computation, and (iii) planning an open-loop trajectory by

iCR and a closed-loop control policy by LQR applied to a

linearized system around iCR trajectory. We demonstrated

the efficacy of the proposed method in a simulation of

landmark-based active SLAM, aiming to map the landmarks

and localize robot accurately.
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