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Abstract— This work presents a distributed Bayesian
estimation algorithm for time-varying directed sensor net-
works. We consider a network of sensing agents aiming
to estimate continuous variables of interest using direct
observations as well as communication across the net-
work. We aim to obtain a probability density function for
the unknown variables that best explains the collectively
gathered data. To account for point-to-point and broadcast
communication, our formulation considers uniformly and
strongly connected digraphs. Each agent pools neighbor
densities via a weighted geometric average to achieve
consensus. We deal with continuous variables via a novel
application of large deviation analysis to the estimated
probability ratios. Our analysis captures a large class of
probability density functions, including Gaussian mixtures,
and guarantees that the mode of the estimated density con-
verges to the true parameter value at an exponential rate.
The consistency and convergence rate of our algorithm are
demonstrated in cooperative localization and distributed
target tracking simulations.

Index Terms— Sensor networks, Distributed control,
Agents-based systems

I. INTRODUCTION

INTERCONNECTED sensing devices are the bedrock of

the information infrastructure in the Internet of Things

and autonomous robots. In networked cyber-physical systems,

multi-agent interactions enable estimating any quantities of

interest. Scalability and robustness considerations motivate

distributed algorithms relying on inter-agent communication

to achieve similar accuracy and convergence speed as a

centralized estimator.

Consider a sensor network aiming to estimate a variable

of interest x⋆, which dictates the distribution of the sensing

agent’s observations. The agents face a local identifiability

problem in which any single agent’s observations may not be

sufficient to estimate a unique x⋆. To resolve this, the agents

thus need to exchange information. This setting has motivated

consensus [5], social learning [8], and distributed hypothesis

testing [9] techniques. Solutions vary as per the quantity of

interest and the communication network.

The simplest communication network is a connected static

graph typically represented by a doubly stochastic matrix [6].
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Less restrictive row and column stochastic representations

requiring the knowledge of in and out-degrees respectively are

practical for time-varying networks [12]. Uniformly strongly

connected (C-connected) graphs contain a path between any

two nodes in the union of network edges over a given time

period. A further relaxed connectivity constraint imposes the

same requirement on averaged graph adjacency matrices [16].

Distributed estimation can be posed as an optimization

problem over discrete, continuous, or probability spaces and its

variations depend on the underlying communication network.

The seminal non-Bayesian inference algorithm in [8] estimates

a probability mass function (pmf) by arithmetically averaging

one-hop neighbor pmfs in a connected network. The algorithm

assumptions related to belief transfer and independent observa-

tions are discussed in [11]. The distributed hypothesis testing

algorithm developed in [18] uses geometric averaging of one-

hop neighbor densities in static networks. The corresponding

maximum likelihood estimates are shown to converge to the

true parameter, if it is globally identifiable. Assuming that

log-likelihood functions are concave, [18] shows convergence

to the true parameter in probability, whereas [9] shows al-

most sure convergence. For linear observation models, these

distributed Bayesian estimation algorithms specialize to the

Kalman filter [15]. Relaxing the connectivity assumptions to

C-connected networks, [13] uses geometric averages to show

exponential probability decay at sub-optimal hypotheses.

We develop a distributed estimation algorithm for contin-

uous variables in uniformly connected digraphs. Our work

extends the results in Nedić et al. [13] on finite space esti-

mation by relaxing the bounds on the agents’ log-likelihood

ratios, thus enabling estimation for continuous probability

density functions (pdf), such as Gaussian mixtures and Gamma

distributions. This was recognized and relaxed by Lalitha et al.

[9] to achieve distributed hypothesis testing in static networks.

Statement of contributions: We develop a Bayesian dis-

tributed estimation algorithm and analyze convergence for

continuous variables with unbounded log-likelihood ratios in

C-connected networks. For continuous likelihoods, we prove

that any large deviation of the probability ratio at any arbitrary

to optimal hypothesis x⋆ decays exponentially. The corre-

sponding rate of convergence depends on the sum of the KL-

divergence between the agent observation models evaluated

at the hypothesis and x⋆. Using the Borel-Cantelli lemma,

we show that a mode of the estimated pdf observationally

equivalent to x⋆ exists almost surely. In discrete space, our

result implies that the estimated probability mass vanishes
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exponentially almost surely over the non-optimal domain.

II. PROBLEM FORMULATION

Consider a time-varying directed graph Gt = (V, Et, At)
with node set V = {1, . . . , n}, edge set Et ⊆ V × V ,

and adjacency matrix At ∈ R
n×n
≥0 . An element At,ij of the

adjacency matrix is positive only if i = j or when there is a

directed edge from node i to node j, indicating that node i can

message node j. A row stochastic adjacency matrix At can be

used to model any communication graph [6], including fully

distributed one-hop broadcast networks [7]. The graph Gt is

strongly connected at time t if there exists a path connecting

any two nodes. In practice, the communication network may

not be strongly connected at each time t. Instead, we consider

a C-connected network [13] such that the C-step union of

graphs is strongly connected.

Assumption 1. At any time t, the graph Gt satisfies:

1.1 (Row stochastic weights) The adjacency matrix At is

row-stochastic, i.e., At,ii > 0 for all i ∈ V and At1 =
1, where 1 is a vector of ones.

1.2 (C-connectivity) The C-step union (V,∪C−1
k=0 Et+k) of the

graphs Gt, . . . ,Gt+C−1 is strongly connected.

The graph Gt is used to model the communication among

n agents, each associated with a node in Gt. The agents aim

to cooperatively estimate a parameter of interest, x⋆ ∈ X ⊆
R

m. Each agent i is equipped with a sensor that provides

observations zi,t ∈ R
ℓ at each t sampled from an observation

model specified by pdf qi(zi,t|x = x⋆) ∈ Fℓ conditioned on

the true parameter value x⋆. The space Fℓ of pdfs is given as:

Fℓ =

{

g ∈ L1(Rℓ)
∣

∣

∣

∫

g(y)dy = 1, g(y) ≥ 0, ∀y ∈ R
ℓ

}

.

For any agent i, the known conditional density qi(zi,t|x)
serves as the likelihood model. The parameter values in

Agent i’s optimal set X ⋆
i minimize the divergence between the

true qi(·|x⋆) ∈ Fℓ and the evaluated qi(·|x) ∈ Fℓ observation

models. The optimal parameters common across all agents

form the set X⋆ given as:

X⋆ ≡ ∩n
i=1X ⋆

i , X ⋆
i = argmin

x∈X
Hi(x,x⋆). (1)

Here, the KL-divergence term for agent i is Hi(x,x⋆) =

KL(qi(·|x⋆)‖ qi(·|x)) =

∫

qi(z|x⋆) log
qi(z|x⋆)

qi(z|x)
dz, which

quantifies the difference between conditional densities induced

by true and arbitrary values of x.

Assuming conditional independence of observations, the

joint likelihood model of the sensor network is q(zt|x) ,
∏

i∈V qi(zi,t|x) ∈ Fnℓ. Here, the variable zt represents the

collection of observations zi,t over all n agents at time t.

Assumption 2. (Independent observations) The measurements

zi,t ∼ qi(·|x⋆) collected by agent i at time t are independent

across time and agents.

If agent i’s likelihood model assigns equal probabilities at

distinct values x1,x2 ∈ X for any observation, then the values

are observationally equivalent, i.e. qi(·|x1) = qi(·|x2). In

the case of data generated from densities parametrized by a

common x⋆ at each agent, we formulate the problem of finding

a value observationally equivalent to x⋆.

Problem 1. How can each agent i in a C-connected network

estimate a common parameter x⋆ using local observations

from qi(·|x⋆) and estimates communicated by its neighbors?

III. DISTRIBUTED ESTIMATION FOR CONTINUOUS

VARIABLES

In this section, we find the parameters in the set X ⋆ ⊂
R

m by estimating a pdf p⋆ ∈ Fm over the parameter space

X . The product of the known likelihood model with this pdf

p∗ best approximates the joint observation model q(·|x⋆) =
∏

i∈V qi(·|x⋆) in the following sense,

p⋆ ∈ argmin
p∈Fm

∫

KL(q(·|x⋆)‖ q(·|x))p(x)dx. (2)

The objective is a linear, convex function in the minimiz-

ing argument p. To understand the objective, we note that,

q(z|x⋆) 6= q(z|x) a.e. in z for all x /∈ X ⋆, implies that

KL(q(·|x⋆)‖ q(·|x)) > 0 for all x /∈ X ⋆. Since the KL-

divergence is a continuous functional, the objective is positive

for any function p(x) whose support contains a positive

measure subset of X \ X ⋆. In other words, only those pdfs

p(x) that place their mass entirely over X ⋆ will result into

zero expected divergence. Thus, we can reduce the problem of

finding the values X ⋆ to finding an optimal pdf p. The entropy

term q(·|x⋆) log(q(·|x⋆)) is constant w.r.t. the minimizing

argument p ∈ Fm and
∫

p = 1, implying that we can drop

this term from the objective:

p⋆ ∈ argmin
p∈Fm

−
∫
[
∫

q(z|x⋆) log (q(z|x)) dz
]

p(x)dx.

We can switch the order of integration in the objective using

Fubini’s theorem on the finite cross entropy integral. Denoting

F (p, z) = E
x∼p

[− log (q(z|x))], the objective becomes:

p⋆ ∈ argmin
p∈Fm

{
∫

F (p, z) q(z|x⋆)dz

}

. (3)

Since we learn about the data generating density q(·|x⋆) by

sequentially sampling data {zt}Tt=1 from it, we can approxi-

mate the objective function by its sample average:

min
p∈Fm

{

1

T

T
∑

t=1

F (p, zt)

}

.

To accommodate sequential observations and achieve online

inference, we consider the Stochastic Mirror Descent (SMD)

algorithm. The SMD algorithm is a generalization of stochastic

gradient descent, using noisy gradient estimates and a decaying

weight sequence {αt} to solve stochastic optimization prob-

lems, such as (3); see [14] for details:

pt+1 ∈ argmin
p∈Fm

{αt 〈p,− log q(zt|x)〉+KL(p‖pt)} . (4)

As shown in [17], (4) has a closed-form solution which

resembles a Bayesian update:

pt+1(x) ∝ q(zt|x)αtpt(x), (5)
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where ∝ indicates proportionality and the weight αt balances

the contributions of the likelihood and the prior terms.

Now, we consider a distributed-problem counterpart, where

each agent minimizes a portion of the centralized objective.

The independence of observation models in Assumption 2

with q(zt|x) =
∏

i∈V qi(zi,t|x) decomposes the centralized

objective into a separable problem based on agents’ models,

F (p, zt) =
∑

i∈V

Fi(p, zi,t), (6)

where, Fi(p, zi,t) ≡ E
x∼p

[− log (qi(zi,t|x))]. Similarly to

the centralized objective, the gradient of agent i’s local

linear objective δFi

δp (p, zi,t) is the log likelihood sample

− log qi(zi,t|x). Apart from minimizing their objective, the

agents need to maintain consensus across the network by

achieving equality among their estimates, i.e., pi = pj , for

i, j ∈ V . To enable consensus, we introduce KL-divergence

terms in the SMD algorithm in (4), regularizing the deviation

of agent i’s pdf p from the neighbors’ prior densities:

pi,t+1 ∈ argmin
p∈Fm

{α〈p,− log qi(zi,t|x)〉 +
∑

j∈V

At,ij KL(p‖pj,t)},

where At,ij are the network-dependent coefficients from As-

sumption 1 and the step size αt = α > 0 is constant.

Our analysis in Sec. IV guarantees the convergence of this

formulation despite the constant step size and, hence, has

faster convergence rate than updates with decaying weights. A

minimizer follows from equating the gradient of the right-hand

side to zero, which leads to 1+log pi,t+1 = α log qi(zi,t|x)+
∑

j∈V At,ij log(pj,t). Thus, the update rule for agent i is,

pi,t+1(x) ∝ qi(zi,t|x)α
n
∏

j=1

p
At,ij

j,t (x), (7)

where α captures the relative importance between the agent’s

private observation and a geometric average of the neighbors’

priors. For pdfs, geometric averaging is advantageous to al-

gebraic averaging (e.g., in [16]) because the average is less

dispersed and captures the component pdf modes [1]. A similar

algorithm in [13] uses geometric averaging for distributed

estimation over a finite discrete space. The following section

analyzes the proposed algorithm in a continuous domain.

IV. LARGE DEVIATION ANALYSIS

This section analyzes the pointwise convergence and the

mode of the estimated pdf. We extend the large deviation

analysis in [9] to time-varying networks for estimating contin-

uous space pdfs with possibly infinite support. Typical proof

techniques compare the estimated probability at an arbitrary

value to the optimal x⋆, leading to log-probability and log-

likelihood ratios,

ri,t(x) = log

[

pi,t(x)

pi,t(x⋆)

]

, gi,t(x) = log

[

qi(zi,t|x)
qi(zi,t|x⋆)

]

.

This characterization has two benefits: first, the normalization

factor of (7) is simplified. Second, the update rule (7) becomes

linear in terms of the log likelihoods gi,t,

rt+1(x) = At:0r0(x) + α
t
∑

k=1

At:kgk(x). (8)

Here, we use the shorthand matrix-product notation At:k =
At . . . Ak, the stacked vector of log probability ratios

rt = [. . . ri,t(x) . . . ]
⊤, and the log likelihood ratios gt =

[. . . gi,t(x) . . . ]
⊤. Since each communication matrix At is row

stochastic, there exists a vector sequence as follows:

Definition 1 (Absolute probability sequence, [19, Def. 1]).

For any sequence of row-stochastic matrices {At}, an absolute

probability sequence is a sequence of stochastic vectors {φ(t)}
satisfying φ(t)⊤ = φ(t+ 1)⊤At, for all t.

The vector φ(k) is related to the point of convergence for

the matrix product At:k with known rate of convergence as:

Lemma 1 (C-step contraction, [12, Lemmas 2, 4]). Assume

that Gt is C-connected. Then for each time t̄ ≥ 0, there exists

a stochastic vector φ(t̄) such that for all i, j ∈ V and t ≥ t̄,

1) |[At . . . At̄]ij − φj(t̄)| ≤ 2λt−t̄, and,

2) φj(t̄) ≥ δ > 0,

with λ =
(

1− 1
nnC

)1/C ∈ (0, 1) and δ = 1/nnC+1.

The initial log-probability ratio exists only if the agents’

prior pdf is positive on the optimal parameter space X ⋆.

Assumption 3 (Positive priors). The agents’ prior pdf is

positive pi,0(x⋆) > 0 at the optimal values x⋆ ∈ X⋆.

We now show that the prevalent assumption ‖gi,t‖ < L <
∞, ∀i ∈ V does not hold for continuous space densities.

To this end, let us assume that agent-observation models are

given as πi(z|µi, 1), modeling the sampled observation z from

a Gaussian with mean µi and unit variance. As the log-

likelihood ratio is linearly dependent on z, it is unbounded,

log (π1(z)/π2(z)) = 2z(µ1 − µ2) + (µ2
2 − µ2

1).

We instead rely on moment generating functions (mgf) to

bypass the boundedness assumption. The mgf for a ran-

dom variable X w.r.t. its pdf pX , is the function ψ(b) =
E[exp(bX)], for b ∈ R. If the observations are sampled from

π⋆(z|µ⋆, 1), the mgf of the random variable defined by the

log-ratio g12(z) = log(π1(z)
π2(z)

) w.r.t. pdf π⋆(z) is bounded,

E [exp (bg12(z))] =

∫

z

e−(z−µ⋆)
2

√
2π

e2bz(µ1−µ2)+b(µ2

2
−µ2

1
)dz,

= c

∫

exp(−z2 + 2z(µ⋆ + b(µ1 − µ2)))dz <∞.

Assumption 4 (Finite mgf). The mgf of the log-likelihood

ratio gi,t(x) is finite for any x ∈ X and agents i ∈ V .

Large-deviation analysis has been used in conjunction with

mgfs to characterize exponentially decreasing bounds on rare

events. A general application of mgfs is the following Cramer’s

theorem [4]. This result upper bounds the deviation of the sum

of i.i.d. variables St = X1 + · · ·+Xt from their mean with a

probability converging to 1 at an exponential rate.
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Lemma 2 (Cramer’s theorem [4]). Assume that the mgf ψ(b)
of a random variable Xt is finite for some b > 0 and let

µ = E[Xt]. Then, for any a > µ, P(St > at) ≤ exp(−tI(a)),
where I(a) = supb>0{ab− log(ψ(b))} > 0.

Cramer’s theorem was employed in [9] to prove conver-

gence of distributed estimation in static networks to account

for observation models with unbounded support. The theorem

cannot be directly applied to time-varying networks as the

weighted sum of observations are not i.i.d. Therefore, we

develop a theorem with similar guarantees on a sequence of

independent random variables. Fix any agent i ∈ V , then from

the log-linear ratio update in (8), we define,

e0 = [At:0r0]i, ek = α[At:kgk]i, ψk(b) = E[exp(bek)]. (9)

The terms ek are independent but not i.i.d. Thus, we define a

function similar to I(a) in Lemma 2 as follows,

Jt(a) = sup
b>0

(

Dt(a, b) ≡ ab− 1

t

t
∑

k=0

log(ψk(b))

)

(10)

In the following theorem, large deviations are used to show

that the ratio of estimated probability at x /∈ X ⋆ and x⋆

converges to zero at an exponential rate with probability 1.

Theorem 1. Let Assumptions 1-4 hold. For each x /∈ X⋆,

x⋆ ∈ X⋆, there is a t0 ∈ N s.t. ∀ t ≥ t0, pi,t in (7) satisfies,

P

(

pi,t(x)

pi,t(x⋆)
> exp(ā(x,x⋆)t)

)

≤ exp(−tJt0(ā(x,x⋆))).

The exponential rate of convergence ā(x,x⋆) =
−cδ‖H(x,x⋆)‖1 < 0 is defined via the bound

δ ∈ (0, 1) from Lemma 1 and sum of KL-divergence

terms ‖H(x,x⋆)‖1 =
∑

j∈V KL(qi(·|x⋆)‖ qi(·|x)). Any

choice of c ∈ (0, 1) ensures Jt0(ā(x,x⋆)) is positive.

Proof. Fix x /∈ X⋆, and use shorthand notation r ≡ r(x),
g ≡ g(x). Since the terms ek defined for an arbitrary agent i
in (9) are not identically distributed, we work with the running

sum St = e0 +
∑t

k=1 ek. For any a ∈ R and b > 0,

P(St > at) = P(exp(bSt − bat) > 1),

≤ E[exp(bSt − bat)], (Markov’s inequality)

= exp(−bat)E[
t
∏

k=0

exp(bek)],

= exp(−bat)
t
∏

k=0

E[exp(bek)]. (Independence)

From Assumptions 1 and 4, we know that the mgf ψk(b)
exists and satisfies ψk(0) = 1. Using Dt(a, b) from (10),

the preceding inequality is equivalent to P(St > at) ≤
exp(−tDt(a, b)). Since this holds for any a, b, we have,

P(St > at) ≤ exp (−tJt(a)) . (11)

Now, we prove the existence of Jt(a) > 0 for some choice

of a ≡ ā(x,x⋆) < 0 and all t ≥ t0 ≡ t0(x,x⋆) > 0. If

Dt(a, 0) = 0 and the term dDt

db (a, b)
∣

∣

b=0
is positive, then

there exists b > 0 for which Dt(a, b) > 0 for all a and t > t0.

We notice that Dt(a, 0) = 0 and Dt(a, b) is finite for any

b > 0, its derivative at b = 0 is,

dDt

db

∣

∣

∣

∣

b=0

= a− 1

t

t
∑

k=0

ψ′
k(b)

ψk(b)

∣

∣

∣

∣

b=0

= a− 1

t

t
∑

k=0

E[ek].

We will show the existence of a time t0 such that the running

average 1
t

∑t
k=0 E[ek] is bounded above by some a < 0 for all

times t > t0. Adding and subtracting the expected weighted

likelihoods with weights φ(k) from Lemma 1,

ek = α[
(

At:k − 1φ(k)⊤
)

gk]i + αφ(k)⊤gk. (12)

The expected value of the stochastic average of the log

likelihood samples φ(k)⊤gk is evaluated by computing the

expectation w.r.t. the true observation model q(zt|x⋆),

E[φ(k)⊤gk] =

∫

q(zt|x⋆)
∑

i∈V

φi(k) log

[

qi(zi,t|x)
qi(zi,t|x⋆)

]

dzt,

= −
∑

i∈V

φi(k)KL[qi(·|x⋆))‖ qi(·|x))] = −φ(k)⊤H(x,x⋆).

Since a product of stochastic matrices remains stochastic, we

can upper bound E[At:0r0]i ≤ |r0(x)|1. The matrix product is

also independent of the observations, so we can use Lemma 1

to bound the first term of ek in (12),

E[(At:k − 1φ(k)⊤)gk]i = [
(

At:k − 1φ(k)⊤
)

H(x,x⋆)]i

∈ (−λt−k‖H(x,x⋆)‖1, λt−k‖H(x,x⋆)‖1). (13)

From Lemma 1, the stochastic vector terms satisfy φi(k) >
δ > 0 for all agents i ∈ V and time k ≥ 1, implying,

1

t

t∑

k=0

E[ek] ≤
1

t
|r0(x)|1 +

α

t
‖H(x,x⋆)‖1

t∑

k=1

(λt−k − δ).

The upper bound is strictly negative for all t > t0 = λ
δ(1−λ) +

|r0(x)|1
αδ‖H(x,x⋆)‖1

. The initial time t0 is same for all agents in V ,

and depends on the network characteristics (δ, λ), the initial

probability ratio |r0(x)|1 and the divergence sum at (x,x⋆).
We can choose ā(x,x⋆) using any c ∈ (0, 1) as,

ā(x,x⋆) = −cδ‖H(x,x⋆)‖1 < 0. (14)

Given the decreasing upper bound on the term 1
t

∑t
k=1 E[et],

this choice for a = ā(x,x⋆) implies that dJt

db

∣

∣

b=0
> 0 for

all t > t0. Upon choosing ā(x,x⋆) and Jt0 in (11), we show

that the probability of log probability ratio exceeding a linearly

decreasing value diminishes exponentially at x,

P(ri,t+1(x) > ā(x,x⋆)t) ≤ exp(−tJt0(ā(x,x⋆))). �

Remark 1. If the algorithm weighs the likelihood terms

by square-summable αk in (7), then our analysis does not

guarantee convergence of the probability ratio in (8) to zero.

Remark 2. As per our analysis, higher sum of divergence

‖H(x,x⋆)‖1 implies higher rate of convergence ā(x,x⋆)
and lower starting time t0, meaning that the estimate starts

converging sooner and at a faster rate.

This probabilistic result on convergence of log-ratio prob-

ability in Theorem 1 holds over several distinct sequences of
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estimates pi,t. Therefore, we use Borel-Cantelli Lemma to gain

insight into the convergence of an individual sequence.

Definition 2. For a sequence of events {Et}, we define the

events (a) Et occurs infinitely often, (i.o.) ≡ lim sup
t→∞

Et ≡
∞∩
t=0

∞∪
k=t

Ek, and (b) Et occurs eventually, (e.v.) ≡ lim inf
t→∞

Et ≡
∞∪
t=0

∞∩
k=t

Ek. Also, we have Et i.o. = (Ec
t e.v.)c.

Lemma 3 (Borel-Cantelli Lemma [3]). For any event se-

quence {Et}∞t=1,

1) if
∑∞

t=1 P(Et) <∞, then P(Et i.o.) = 0, and

2) if
∑∞

t=1 P(Et) = ∞ and the event sequence {Et} is

independent, then P(Et e.v.) = 1.

Proposition 1. As t→ ∞, a mode of the pdf pi,t(x) estimated

by agent i almost surely lies in the set of optimal parameters

X⋆ as defined in (1).

Proof. We proceed by contradiction. For an arbitrary agent

i, suppose that all modes of limt→∞ pi,t(x) almost surely

lie outside of X⋆. Hence, for any δ0 > 0, there exists t1
such that any mode x1 almost surely satisfies pi,t(x1) >
pi,t(x⋆) + δ0 for all x⋆ ∈ X⋆ and all t ≥ t1. We show that

this assumption is contradicted by the fact that |pi,t(x1) −
pi,t(x⋆) exp(ā(x1,x⋆)t)| a.s.→ 0 as established in Theorem 2.

Two random sequences Yt and Zt satisfy |Yt − Zt| a.s.→ 0 if

and only if ∀ǫ ≥ 0, P[|Yt − Zt| ≤ ǫ e.v.] = 1, which holds if

and only if ∀ǫ ≥ 0, P[|Yt − Zt| > ǫ i.o.] = 0.

Let Et(ǫ) denote the event that |pi,t(x1) −
pi,t(x⋆) exp(ā(x1,x⋆)t)| > ǫ. From Theorem 1, for

t > t0, P[Et(ǫ)] ≤ P[Et(0)] ≤ exp(−tJt(a)) with

Jt(a) > 0. Since
∑∞

t=1 exp(−tJt(a)) < ∞, we have that
∑∞

t=1 P[Et(ǫ)] < ∞. By the Borel-Cantelli Lemma, this

implies that P[Et(ǫ) i.o.] = 0 for all ǫ ≥ 0, and, hence,

|Yt − Zt| → 0 a.s. In other words,

P[ lim
t→∞

|pi,t(x1)− pi,t(x⋆) exp(ā(x1,x⋆)t)| = 0] = 1. (15)

The above result implies that there exists t2 such that almost

surely |pi,t(x1)−pi,t(x⋆) exp(ā(x1,x⋆)t)| ≤ δ0 for all t ≥ t2.

Since ā(x1,x⋆) < 0, exp(ā(x1,x⋆)t) ≤ 1 and we have:

pi,t(x1)−pi,t(x⋆) ≤ pi,t(x1)−pi,t(x⋆) exp(ā(x1,x⋆)t) ≤ δ0.

However, for any t ≥ max{t1, t2} the above result contradicts

with the assumption that pi,t(x1) > pi,t(x⋆) + δ0. �

Corollary 1 (Uniqueness). If the optimal hypothesis set X⋆ is

globally identifiable i.e. X⋆ = {x⋆}, then the unique mode of

the estimated pdf almost surely lies at x⋆.

Proof. The claim follows from eventually almost sure exis-

tence of mode in pdf estimates in Proposition 1. �

Corollary 2 (Discrete probabilities). If the estimated prob-

ability density pi,t is bounded above by some γ > 0 as is

the case for probability mass functions, then the probability

estimated at any x1 ∈ X\X⋆ satisfy, pi,t(x1) → 0 a.s.

Proof. From Theorem 2, we know that |pi,t(x1) −
pi,t(x⋆) exp(ā(x1,x⋆)t)| a.s.→ 0. With the property pi,t(x) < γ
for all x ∈ X and our choice ā(x1,x⋆) < 0, there exists some

t2 > 0 such that we have for any arbitrary δ0 > 0 and t > t2,

pi,t(x1) ≤ γ exp(ā(x1,x⋆)t)+δ0 almost surely. With t→ ∞
and arbitrary δ0 > 0, pi,t(x1) → 0 a.s. �

V. EVALUATION

This section demonstrates the proposed algorithm in two

examples: cooperative localization and target tracking. In the

first example, the sensing agents measure relative position

to their one-hop neighbors to infer sensor locations. For a

linear observation model w.r.t. the agent positions, a Gaussian

algorithm is derived. In the second example, a sensors in a

C-connected network apply particle version of our algorithm

on non-linear range measurements to track a moving target.

Cooperative localization: Consider n = 10 sensors posi-

tioned at {xi ∈ R
2, i ∈ V}. Sensor 1 is an anchor with known

position x1 = [0, 0]⊤, while the positions xi of the remaining

sensors are unknown and need to be estimated. Each sensor

i measures the relative position of its neighbors in a static

conntected measurement graph (V, Em). The relative position

measurement zi,j,t made by sensor i of sensor j at time t
follows a Gaussian distribution:

zi,j,t ∼ N (xj − xi, I2), ∀(i, j) ∈ Em. (16)

All measurements received by sensor i at time t are:

zi,t ∼ N (Hix, (Ω
z
i )

−1), (17)

where Hi and (Ωz
i )

−1 are obtained by stacking the ex-

pressions in (16). While the sensor receive relative-position

measurements zi,t at every time t, the communication among

them is unreliable. The communication network is described

by a randomly-generated uniformly-connected graph Gt =
(V, Et, At). The updates to the information matrix Ωi,t and

the mean µi,t at agent i, derived from (7) are:

Ωi,t+1 =
∑

j∈V

At,ijΩj,t + αH⊤
i Ωz

iHi,

µi,t+1 = Ω−1
i,t+1(

∑

j∈V

At,ijΩj,tµj,t + αH⊤
i Ωz

i zi,t).
(18)

The update equations appear similar to those of a distributed

Gaussian filter [15] but differ due to the term α, weighting

the effect of the measurement, and due to the time-varying

communication weights At,ij . Fig. 1 presents the neighbors

observing relative positions, a communication network sample,

and the estimated mean of agent 2’s position by other agents

for increasing values of the likelihood weight α.

Target tracking: Consider the problem of estimating the

center x⋆ ∈ R
2 of a circular maneuver of a target. Other

fixed parameters defining the target motion are the initial angle

θ0 = 0, radius r = 1 and angular velocity ω = 0.2. The target

position y
d
t at time t is,

θk = θk−1 + ω∆t, yd
t = x⋆ + r[cos(θt), sin(θt)]

⊤ (19)

We aim to distribute estimation of variable x over a network

of n range sensors using Time-of-Arrival measurements. The

noisy measurements for sensor i located at ys
i is,

zi,t(y
s
i ,y

d
t ) = |ys

i − y
d
t |2 + η, η ∼ N (0, 1). (20)
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