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Abstract

It is inherently difficult to plan water systems for a future that is non-predictive. This paper
introduces a novel perspective for the design and operation of potable water systems under
increasing water quality volatility (e.g., a relatively rapid and unpredicted deviation from
baseline water quality). Increased water quality volatility and deep uncertainty stress water
systems, confound design decisions, and increase the risk of decreased water system
performance. Recent emphasis on resilience in drinking water treatment has partly addressed this
issue, but still establishes an adversarial relationship with change. An antifragile system benefits
from volatile change. By incorporating antifragility, water systems may move beyond resilience
and improve performance with extreme events and other changes, rather than survive, or fail and
quickly recover. Using examples of algal blooms, wildfires, and the COVID-19 pandemic, this
work illustrates examples of fragility, resilience, and antifragility within physicochemical
process design including clarification, adsorption and disinfection. Methods for increasing
antifragility—both individual process options and new system design tools—are discussed. Novel
physicochemical processes with antifragile characteristics include ferrate preoxidation and
magnetic iron (nano)particles. New design tools that allow for systematic evaluation of
antifragile opportunities include artificial neural networks and virtual jar or pilot “stress testing”.
Incorporating antifragile characteristics represents a trade-off with capital and/or operating cost.
We present a real options analysis approach to considering costs in the context of antifragile
design decisions. Adopting this antifragile perspective will help ensure water system improved
performance during extreme events and a general increase in volatility.

Water Impact Statement

Raw water quality volatility driven by extreme events presents a grand challenge to potable
water systems. This work describes a new perspective of antifragility that allows water systems
to thrive despite an uncertain future. Individual processes that have antifragile characteristics are
introduced and discussed, as well as new tools for water system design that allow for
considerations of antifragility. Incorporation of the antifragile paradigm developed here will
enable a shift towards more sustainable water systems less reliant on stationarity and prediction
of future conditions.

Introduction
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Engineered systems that produce and distribute potable water are critically important to public
health. Potable water systems (PWS) have led to dramatic decreases in waterborne diseases,! at a
low cost relative to public value.? PWS face challenges, especially related to uncertainty and
volatility. For example, source water quality and quantity may be affected by extreme events and
phenomena such as chemical spills,? harmful algal blooms,* hurricanes,> and wildfires.”® Some
water changes may be driven by climate change, although predictive modeling of this
relationship is difficult at the watershed spatial scale.” PWS may also be impacted by complex
socioeconomic processes such as economic globalism, leading to population loss (e.g. “shrinking
cities”) and corresponding water age increases,!? and possible water quality problems.!! These
processes generally contribute to volatility, uncertainty, complexity and ambiguity (VUCA).
This combination of stressors contributes to a “deep uncertainty” that confounds the design and
planning of water systems.!?

Water treatment processes have historically been designed using a deterministic approach.!314 In
the deterministic approach, modeling efforts intended to assist in process optimization have
tended to assume that the influent water quality conditions, water demands, and model
parameters are fixed and known. This assumption has proven dubious as new types of
contamination (e.g. perfluorinated compounds, pharmaceuticals) have emerged, and surface
water quality variability has increased.!> More recently, researchers have advocated for the
incorporation of variability and uncertainty of source water quality in water treatment plant
design and operation, but have continued an optimality paradigm with regard to water treatment
plant effluent.'®!® The deterministic approach remains the current dominant paradigm in water
treatment process design and operation, and is enshrined in published process selection guidance
(see [13] as an example).

An example consequence of the optimality paradigm is the exclusion of clarification from some
PWS treatment trains (e.g., direct filtration). Given source water of sufficient average historical
quality (i.e., the constraint), water treatment plants have been designed to minimize lifetime
construction and operation costs (i.e., the objective). This model has been generally successful;
however, a loss of (perceived) stationarity undermines the optimality paradigm, with accelerating
rates of change and more numerous extreme events projected.!®2° The optimality paradigm is
highly constrained and fragile to baseline water quality deviations, and is not appropriate for
cases of deep uncertainty, as is now faced by water treatment plant operators and planners.?!
Also, it is highly dependent upon the quality of simulation models representing the water
treatment system; unfortunately, we know the quality of the available models to be relatively
poor.'%22 Further, common physical models such as jar testing and pilot testing informing PWS
decision making provide no information about future water conditions or performance. Elements
of the outcome for the optimality paradigm approach therefore contain stochastic elements,
making the outcomes also inherently stochastic.?? An alternative decision making analytical
approach is needed.

PWS decision making has been shifting to the incorporation of robustness, resilience and
adaptation.?*? In the United States, The National Infrastructure Advisory Council (NIAC)
defined resilient infrastructure as able to anticipate, adsorb or adapt to, and/or recover from a
disruptive event, and encourages planners and designers to aim for resilience in designs for
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infrastructure.?%-?’ Similarly, America’s Water Infrastructure Act requires most PWS to conduct a
risk and resilience assessment by the end of 2021.22 Common design changes to increase
resilience in PWS include additional redundancy and capacity. 2! These changes have decreased
risk of water system failure; however, this approach is still somewhat dependent on prediction of
future events, and limiting service disruptions, not improving service in the face of volatility. If
volatility is increasing, then the adversarial relationship with it inherent in resilience is
unsustainable.

This paper describes a novel perspective for achieving an antifragility paradigm in PWS design
and operation, including cost trade-offs. The antifragile concept was popularized in the financial
domain,?® but has been applied in other fields, such as computer science and transportation
planning,3° as an approach to risk. In the antifragility paradigm, a system benefits from volatility,
rather than being harmed by it.?° In this way, antifragility extends resilience/robustness
frameworks. Robust infrastructure resists failure, often through the adoption of conservative
designs that include excess capacity. Resilient infrastructure systems fail, but not
catastrophically, and recover somewhat quickly. The key benefit of antifragility is that
performance actually improves in volatile periods. It also is less reliant on prediction of the
future. The overarching objective of this paper is to introduce the antifragility paradigm across
domains into PWS, and frame raw water quality volatility and extreme (e.g., “black swan”)
events in the water supply sector that may be better managed with via antifragility. We also
include examples of novel physicochemical processes that have antifragile characteristics and
summarize new design tools that allow for systematic consideration of antifragility in the field of
water treatment.

Black Swan Events

We define volatility as the (relatively) rapid and unpredicted deviation from a baseline (i.e.,
“normal”). Specific instances of volatility can be labeled as a Black Swan Event. The term Black
Swan Event (BSE) was also popularized in the financial domain, and is generally taken to mean
a low probability event, with casual opacity, that is difficult to predict.3! Quantitively, this can be
summarized as an event more than a few standard deviations away from the mean of prior data;
an outlier. Casual opacity may also be a characteristic, leading to uncertainty in what initiated the
low probability event. These characteristics of BSEs ultimately make them impossible to predict
with confidence. Often, insufficient data (e.g. sample size) make the nature of the event
probability unknowable, and leave it unclear if a system follows as Gaussian distribution, or
another distribution with skewness (e.g. gamma family), or fat tails (e.g. Cauchy). 3>33

Here, we take this concept cross domain into the environmental engineering context, focused on
PWS. Water systems are exposed to BSEs. Examples receiving recent attention include lake
recovery,>* and forest fires.>> Both of these BSE examples have impacts to source water quality
that are an extreme departure from historical averages.’® Also, the cause of these events is
difficult to determine. Lake recovery is a relatively rapid increase in organic productivity or
“browning” of a surface water driven by a complex combination of nutrient loadings, warming
air temperatures (e.g. climate change),’” and decreases in sulfur deposition from upwind
sources.’® In Atlantic Canada, decreases in sulfur deposition followed the amendments of the US
Clean Air Act, illustrating the causal opacity and deep complexity of secondary effects in PWS
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design. Similarly, large-scale forest fires may form via anthropogenic or natural phenomena and
are likely exasperated by climate change, invasive insect activity, and forest management
policies. The total annual acreage burned by wildfires in the US more than tripled from 1983 to
2016.3 Wildfires are known to cause changes in watersheds that impact water quality including
increases in turbidity, nitrate, phosphate, and disinfection byproduct precursors that may persist
for several years postfire.3%40

The problem caused by exposure to a BSE by a PWS often presents in difficulty achieving
treatment goals following dramatic changes in raw water quality. These source water shifts may
exceed the design capacity of any physicochemical process that comprises a given drinking
water treatment plant. Two examples of this situation are presented in Figure 1, which includes
raw water organics (color or total organic carbon) and turbidity for two different source waters:
(1) A reservoir before and after lake recovery—Pockwock Lake,** and (2) a river draining an
alpine forest before and after a major wildfire-Poudre River.® Figure 1 also includes regions of
recommended clarification design from Valade et al., 2009 based primarily on American Water
Works Association survey of utilities.*! Gaussian distributions were assumed for both organics
and turbidity.
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Figure 1. Results of 365 statistical resamplings of distributions based on average raw water
quality from Pockwock Lake (PL) in 1999 (gray circle) and 2015 (green circle) and from the
Poudre River (PR) from 2008-2011 (gray triangle) and 2013 (red triangle). PL plots are Color vs.
Turbidity; PR plots are TOC vs. Turbidity. Regions of typical particle removal designs include
direct filtration (DF), dissolved air flotation (DAF) and conventional sedimentation from Valade
et al., 2009. Relative scaling of color and TOC within design regions also taken from Valade et
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al., 2009. Raw water quality statistical information from PL and PR taken from Anderson et al.,
2017 and Hohner et al., 2016, respectively.

Figure 1 demonstrates that shifts in raw water quality from BSEs can change the optimal design
of a DWTP. Optimal clarification design guidance is summarized in Valade et al., 2009 and
Gregory and Edzwald, 2011 (see Table 9.9 in that work).#? Utilizing raw quality data from
Pockwock Lake (PL) in 1999, a designer using the optimality paradigm may recommended
direct filtration (DF) to save costs by excluding any clarification step.!3 Similarly, an optimality-
based designer presented with PR data in 2011 may consider DAF clarification in an attempt to
save space and capital costs. DAF systems can be operated at a loading rate 10-20 times greater
than conventional gravity sedimentation.*> However, a DAF design may struggle post wildfire,
as resampled turbidities are significantly greater than the pre-fire condition. The J.D. Kline
Water Supply Plant (JDKWSP) utilizing PL was designed as a direct filtration facility. This
design was optimal at the time; in 1999 water quality was within the DF design region in 92% of
simulations. However, JDKWSP is now straining to meet treatment goals due to lake recovery as
the raw water typically exceeds the recommended limits for a DF facility. Figure 1 shows raw
water quality exceeding the recommended color limit of the DF design region 58% of
simulations. As a DF facility, few mitigative options are available. For the first time in 35 years,
the JDKWSP recently increased its coagulation (alum) dose by 50%,* which may have negative
higher-order effects associated with increased levels of effluent aluminum and subsequent
changes on distribution system corrosion.* Recent pilot-scale research at JDKWSP has also
examined cationic polymers, and larger filter media. Neither mitigation approach was completely
successful and now physical plant upgrades are being considered. To what conditions the plant
might be optimized in the future remains unclear.** The situation at JDKWSP exemplifies
difficulties presented by BSEs to drinking water systems. The Fort Collins Water Treatment
Facility, which treats surface water from the Poudre River watershed, rapidly constructed a
presedimentation basin as a response to observed turbidity volatility following a major wildfire.>®

Fragile, Resilient, and Antifragile

Future BSEs and general volatility are difficult to predict, so it is more profitable to define a
system based on relative impact from stress. This approach has again been popularized in
financial markets through stress testing.*® The three primary relationships to stress may be
described as fragile, resilient, and antifragile. A fragile system has severe negative outcomes
from volatility, a resilient system has minor negative outcomes from volatility with relatively
quick recovery, while an antifragile system has positive outcomes from volatility. Mathematical
expressions of all three terms exist;*” however, model-free and probability-free heuristics can
also be used to assess fragility, resilience, and antifragility based on a convex relationship to
volatility.*® Fragile and antifragile systems have negative and positive convex relationships with
volatility, respectively, while resilience has a linear relationship with volatility. Here, we apply a
heuristic approach to identifying fragile, resilient, and antifragile PWS based on convexity using
data from full-scale DWTPs,

Fragility, resilience/robustness, and antifragility are currently present in contemporary full-scale
DWTPs. Examples of each include the Lake Major Water Supply Plant (#1 Fragile); the
Providence Water System (#2 Resilient) and for two surface water sourced DWTPs in New
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England (#3 Antifragile). The Lake Major Water Supply Plant and the Providence Water System
are also both surface water sourced systems.

Fragile. The Lake Major Water Supply Plant (LMWSP) was commissioned in 1999 as a
conventional sedimentation facility treating a high-quality source, Lake Major (LM). The
LMWSP serves the same general population as JDKWSP: Halifax, Canada. Similar to Pockwock
Lake, Lake Major has also experienced lake recovery since commission, resulting in an increase
in raw water algal organics, as noted by color measurements, shown in Figure 2. Algae challenge
conventional sedimentation-based DWT plants in two ways: the algal organic matter exhibits an
increased coagulant demand, and algal particles settle quite slowly due to specific gravities < 1.4°
The LMWSP has few mitigative operational controls, and has increased alum dosing in response
to increased water color. Figure 2 shows an exponential (e.g., convex) relationship between raw
water color and required alum dose. This indicates accelerating problematic fragility to further
increases in water color. For example, an increase in color 5 units from 25 to 30 resulted in an
alum increase of 20%, while the same 5 unit increase from 42 to 47 resulted in an alum increase
of almost 50%. Results indicate accelerating problems and risk of system failure with further
increase in raw water color, even if only incremental. Significant increases in alum dose carry
the potential for numerous negative second-order effects, such as increased chemical costs,
decreased filter run times, increased solids handling stress, and increased distribution system
corrosion.**
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Figure 2. Yearly mean raw water color and corresponding coagulant dose at the Lake Major
Water Supply Plant from 1999 through 2015. Data from Anderson et al., 2017. Note the non-
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linear (e.g., convex) relationship between color and required alum dose demonstrating fragility.
Incremental increases in color above 40 CU led to exponential increases in alum dose.

Resilient. The Providence Water Supply Board (PW) operates the largest conventional DWTP in
the Northeast USA. PW has a history of providing safe water service but recent, occasional
issues with disinfection byproducts (DBPs), especially total trihalomethanes (TTHMs), have
occurred including an maximum contaminant limit (MCL) violation in 2018.3° One particular
DBP monitoring site tends to control MCL compliance; a large elevated storage tank in a remote
part of the system. PW had recently installed a THM-stripping aeration system in the tank, just
prior to the BSE of the COVID-19 pandemic. Changes in commuting and other behavioral
patterns led to changes in water usage within the service area’s urban core. Water ages increased,
and thus the THM formation also increased. Trihalomethane formation potential (THMFP) is a
function of several drivers including precursory organic carbon, residual chlorine concentrations,
temperature, and water age.’! Methods exists for estimating site-specific THMFP based on
dissolved organic carbon (DOC), UV absorbance, and other water quality parameters.’>>3 Using
an approach outlined in [52] the THMFP for PW effluent is estimated to range from 100 to 150
ug/L, significantly greater than the 80 pg/LL MCL for TTHMs.

The increase in water age created stress on the PW system to meet the MCL. Results in Figure 3
show rapidly increasing THMs in March 2020, with one sample above 70 pg/L. Aeration was
initiated in April. Aeration within the storage tank was effective at decreasing THMs in the
delivered water, and THM values decreased to well below the MCL. The impact of aeration is
also noted in July 2020 when aeration was temporarily ceased. The use of aeration represents a
form of resilience for PW. Given serious stress from the COVID-19 BSE (increase in THMs),
the system was able to mitigate the damage, and continue to meet treatment goals, after a
temporary increase in delivered water THMs. There is a linear (non-convex) relationship
between volatility and THMs as the presence of aerators provides a switch-on recovery option
that can be utilized as needed. This THM mitigative approach generally meets the NIAC
definition of resilience: “the ability to reduce the magnitude and/or duration of disruptive events
through the ability to anticipate, absorb, adapt to, and/or rapidly recover.”?’
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Figure 3. Total trihalomethane (TTHM) concentrations measured as at an elevated storage tank
within a problematic water age area of the Providence Water (PW) system from December 2019
through November 2020. Shaded regions represent periods when an aeration system inside the

elevated storage tank was in operation. PW THM formation potential estimated to be 100 to 140

ng/L.

Resilience may also be considered at the system level. In general, the more diverse a system is
(e.g. multiple sources and/or production) the more resilient it is to a particular disruption; while a
highly centralized system is more fragile.?’ The relationship between centralization and fragility
has been commonly explored in a financial context (e.g. “a diversified portfolio”), however,
recent work has advocated for water supply systems to not be reliant upon a single source of
water.>* A comparison between the water systems of Rhode Island, USA and Singapore
demonstrates this difference. The PW system, consisting of one conventional water treatment
plant, provides water to approximately two-thirds of Rhode Island residents, as many
communities outside of Providence are wholesale customers through interconnections. While
this is efficient, it also fragile as any BSE or other disruption at the PW treatment plant would
impact potable water access to much of the state. Contrastingly, the Singapore Four National
Taps approach includes water imports, direct potable reuse (i.e., NEWater), desalination, and
runoff from local catchments. These four sources, each with different treatment processes,
represents a semi-decentralized system with much less fragility from a BSE that might disrupt an
individual component of the PWS. Decentralized water infrastructure has been described as a
distinguishing characteristic of the “Water Sensitive City”,>> with the aim of reducing the harm
from extreme events and ensuring service security for residents.>¢

Page 8 of 25
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Decentralized systems also support intergenerational equality and environmental justice.’® In the
electricity planning field, one tool to accomplish this is “islanding”, whereby decentralized
energy suppliers are managed in a way to protect consumers from blackouts, ensuring the
security of supply.>’-3° Within water networks, infrastructure that can be disconnected from the
main centralized water system if it is compromised would continue as a source of clean water
when in island mode, promoting public health and safety, supply security, and overall regional
livability.

Antifragile. Options for incorporating antifragility in PWS are available. For example,
Manganese (Mn) is a contaminant of concern in the drinking water field, based on emerging
health risks, aesthetic concerns, and recent regulation by Health Canada.®° Current USEPA non-
enforceable guidance on Mn is through a secondary maximum contaminant level (SMCL) of 50
ug/L, although there is no scientific basis for this SMCL, and aesthetic concerns still commonly
occur at this level.! The typical treatment goal for finished water Mn is 20 ug/L.®> Mn presents
challenges to surface water systems, as raw water Mn concentrations can be highly variable;
changing an order of magnitude or more within days.® This volatility challenges chemical
oxidation treatment, such as meeting stoichiometry.®* However, auto-catalytic Mn(II) (e.g.
“greensand”) adsorption and subsequent free chlorine regeneration has been successful Mn
removal approach. This auto-catalytic process exhibits antifragile characteristics, as the adsorbed
Mn from the source water is rapidly converted by free chlorine to MnO sites for additional
Mn(II) adsorption.® Thus, increases in raw water Mn produce increased adsorption capacity of
subsequent raw water Mn(Il), creating a positive, reinforcing cycle.

Figure 4 includes raw and combined filter effluent (CFE) Mn concentrations for two surface
water sourced DWTPs in New England. For both facilities, CFE Mn levels were lower as raw
water Mn increased. In other words, treatment improved as contaminant concentrations
increased. There is a positive convex relationship between raw water Mn and CFE Mn. Plant S
more consistently achieved CFE Mn treatment goals when influent Mn was > 50 pg/L, and met
the treatment goal despite raw water Mn far exceeding 100 pg/L. This process is clearly beyond
resilient and improves as raw water conditions deteriorate. Adequate Mn treatment does not
require precise prediction or measurement of raw water Mn, nor a full understanding of the
causes of raw water Mn fluctuations. Loss of MnOy coating from media surfaces is a likely cause
of CFE Mn exceeding raw water Mn in the case of both facilities in Figure 4. This coating loss is
a function several parameters including free chlorine residual across the media, backwashing
practices, and filter run times.®® MnOj coating loss can be controlled by balancing these
operational parameters with other water quality objectives on a case-by-case basis.®?
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Figure 4. Combined filter effluent manganese (Mn) concentrations as a function of influent raw
water Mn concentration for two surface water treatment plants with seasonal manganese
problems. Data from Goodwill, 2006.

The use of coagulation for the removal of DBP precursors (e.g., “enhanced coagulation” but
perhaps best called “multi-objective coagulation”)®” is another example of an antifragile process
common in water treatment systems. Aromatic, hydrophobic, higher molecular weight (MW)
carbon compounds are more preferentially addressed by coagulation with metal salts due to
charge interactions between cationic metal hydrolysis products and anionic humic
macromolecules with carboxyl and phenolic groups.5®%° This is fortunate, as these same fractions
of NOM also tend to have higher halogenated DBP yields due to the same unsaturated and
aromatic moieties that have relatively high electron-donating capability.’®’! Therefore, as
concentrations of higher DBP-forming compounds in raw water increases greater removals via
enhanced coagulation are expected. This antifragile characteristic is acknowledged in The
USEPA Stage 1 D/DBP Rule which requires higher removals of organic matter as aromatic and
hydrophobic portion increases, as quantified by specific ultra-violet absorbance (SUVA).%7

Incorporating the Antifragility Paradigm into Potable Water Systems

Antifragility can be incorporated into a PWS by applying physicochemical processes that are
known to do well under a given set of raw water quality volatility. This process requires two
general steps: (1) knowledge of individual processes that increase antifragility and (2) a design
evaluation approach that enable antifragile process selection under a given volatility parameter
(e.g., what processes have positive convexity to this volatility parameter?). We present two
examples of emerging antifragile treatment processes and describe new design tools and how
they may be used. Diverging from the optimality paradigm will inherently lead to increased

10
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costs, and we also present opportunities to include real options analysis for the assessment of
antifragile and financial trade-offs.

Individual Processes. Two examples of emerging, individual processes that may increase
antifragility of PWS include: (1) ferrate (Fe(VI)) preoxidation and (2) magnetic (nano)particulate
iron oxides.

Fe(VI), a high-valent oxo-anion of iron,”? has been considered and evaluated as a potential
preoxidant (i.e. occurring before the primary particle removal step) in DWT.”® Preoxidation is
sometimes utilized as a response to BSEs, such as chemical spills,’* wildfires,” and algal
blooms’% to mitigate organic contaminants and/or improve downstream performance. Fe(VI) has
a high reduction potential that is comparable to other strong oxidants in DWT such ozone (O3)
and chlorine dioxide (Cl0O,).”” Similar performance in oxidative transformation of organic and
inorganic targets between Fe(VI) and Os has been noted, including DBP precursors,’®
manganese,’® arsenic,’® and algal toxins.3! Unlike O; and ClO,, however, Fe(VI) does not require
on-site generation. A production method for stable, high-purity K,;FeO,(s) salts has been
developed,?? which forms the basis for recent commercial applications. Also Fe(VI) generally
leads to lower yields of active bromide and bromate than 03,33 due to the simultaneous in situ
formation of H,O, during Fe(VI) decay,®* which reduces HOBr to Br.3> Fe(VI) does not form
chlorite or chlorate, unlike ClO, and is not known to directly from any other regulated
byproducts.”?

This difference in generation between O3/ClO,; (on-site) and K,FeO, (off-site) makes Fe(VI) a
way for increasing antifragility of a water system. K,FeO, can be acquired as needed, stored
onsite as a stable salt, and added as conditions dictate. In this way, use of K,FeO, is similar to
powdered activated carbon usage for managing urgent events. However, Fe(VI) leads to benefits
to multiple water treatment physicochemical processes including (pre)oxidation, coagulation,
clarification, and disinfection.”>3¢ These multimodal benefits enable production of water quality
better than baseline, in spite of a sudden deterioration in raw water quality. For example, bench-
scale testing has demonstrated lower post-clarification water turbidities following an algae spike
than was otherwise achievable.?” Similar results related to ferrate use in natural disaster
emergency contexts have been noted at the point-of-use (POU) scale.38%

K,FeO, dissolves in water to produce Fe(VI) which is a relatively strong oxidant, leading to the
transformation of various reduced targets stemming from a BSE including algae and algal toxins,
9091 chemical spills (e.g. Methyl tert-Butyl Ether).%? This Fe(VI) can also be activated using
common shelf-stable reductants, such as sulfite, forming radicals Fe(V) and SOy in situ that are
capable of transforming recalcitrant organics.”>** Following oxidation, Fe(VI/V) is reduced to
Fe(IIT) which is insoluble in most water treatment contexts. These in sifu formed iron particles
have unique characteristics including polydisperse diameters,’> magnetism,’® and core-shell
architecture.”’ Ferrate resultant particles then participate in coagulation,”® flocculation,®!
clarification, and adsorption processes.”’-?° This multimodal action enables antifragility in
response to volatility. For example, a water utility experiencing an unforeseen chemical spill
could deploy ferrate as needed to oxidize the pollutant, while simultaneously decreasing
disinfection byproducts, and improving coagulation beyond typical baseline operations. Thus,
the as needed deployment of shelf stable K,FeO, as represents a step towards antifragility. In

11
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contrast to MnOy, Fe(VI)-derived benefits are from the use of the technology itself, not a
synergistic effect of the degraded water quality. Fe(VI), in several forms, could also be
conducive to consistent use as part of baseline operations.

Iron oxide nanoparticles (IONPs), exclusive of the ferrate context, also provide antifragility to
PWS through the combination of adsorption and magnetic separation.!? Iron oxide nanoparticles
comprised of magnetite (Fe;04) or maghemite (y-Fe,O3) exhibit superparamagnetic properties
and relatively high adsorption capacities for various drinking water contaminants. These IONPs
can be synthesized off site, stored and used as needed by a PWS, like powdered activated carbon.
However, unlike PAC, IONPs can be selectively recovered via magnetic separation, and
reused.'”! TONPs were found to decrease the concentration Rhodamine B dye in aqueous solution
by > 60% with no significant decrease in adsorption capacity after five cycles of magnetic
separation and chemical regeneration. Magnetic-based separations have demonstrated
effectiveness of > 95%, using commercially available permanent magnet systems.!?-192 The use
of magnets may also improve flocculation and separation of non-magnetic particles assuming
attachment to an IONP. Magnetic attraction between superparamagnetic IONPs in a magnetic
field would serve to increase aggregation rate, from a DLVO perspective. Therefore, addition of
IONPs in response to an algal bloom, forest fire, or chemical spill could enable improved water
quality more than if the BSE had not occurred. For example, modeling magnetic filtration of
activated sludge particles comprised of 10% IONPs by volume with stainless steel wool (M =
0.2T) indicate filtration performance 100-times more effective than a conventional gravity filter
with media collectors.!® In this way, IONPs represent a “switch on” method for achieving
antifragility (similar to K,FeO,); however, they may also be used outside of periods of volatile
water quality and provide benefits during more typical periods.

Design Tools. A water system designer interested in incorporating antifragile processes into a
drinking water plant requires new tools for guidance and evaluation. Current and historical
process design under the optimality paradigm follows a multistep deterministic approach: (1)
characterization of raw water quality and establishment of treatment goals; (2) jar testing and
pilot studies and (3) selection of treatment processes optimized to conditions during jar testing
and piloting. This approach produces treatment facilities that are generally minimized for cost
given a required baseline performance. However, a six-month pilot test has a low probability of
evaluating a BSE, and the system design has opacity to what future conditions a particular
process might need to be antifragile to. In other words, incorporation of antifragile processes
requires a lens to systematically evaluate weakness prior to picking antifragile processes. This
establishes a potentially beneficial relationship with future volatility that is a key characteristic of
an antifragile system.?’

Artificial neural networks (ANNs) are a biologically-inspired computational model generally
consisting of an input layer, hidden layer(s), and an output layer.'®* There are many different
forms of ANNs and their corresponding models are trained and built using multiple methods and
calibrated using large data sets such that the weights between different neurons and hidden layers
can be estimated.'? ANNs offer several advantages over traditional modeling approaches and
are well-suited for drinking water treatment applications because: (1) associations between
inputs and outputs are “learned” from historical data without having to specify the form of the
model; (2) results of ANN runs are robust to noisy or discontinuous data; (3) a detailed
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understanding of the processes (i.e. treatment process) is not necessary, only an understanding of
the factors that influence the processes; and (4) they are fast (increases in computer processing
speeds have reduced the time needed to train and evaluate these models).!%¢197 For example,
Shariff et al. 2004 used an ANN for modelling a full-scale drinking water treatment facility lime
clarification process and reported r-squared value of 0.92 for the ANN model versus 0.41 for the
USEPA Water Treatment Plant Model. ANNs have been used for simultaneous prediction of
turbidity and DOC removal for a conventional surface water treatment plant configuration as a
function of source water quality parameters and chemical use.!?® Results from Kennedy et al.,
2015 indicate that ANNs can be used to provide an evaluation of the impact on DOC changes (as
measured by individual parallel factor analysis components) on the coagulation process and
turbidity removal. This enables virtual jar testing of future water quality scenarios that were not
present during the original experiments. Coagulation of the turbidity and/or DOC event caused
by a BSE (e.g., wildfire, accelerating lake recovery, or hurricane) can be evaluated prior to
occurrence, allowing for development of antifragile elements into the physicochemical
processes. In other words, shifts in water quality presented in Figure 1 could be simulated to
“stress test” and assess impact on coagulation/clarification performance before they occur, and
identify potential chemical combinations and operational settings that perform better as the same
shifts occur.

Beyond bench-scale, pilot testing can also be improved with digital tools to achieve antifragility,
primarily by simulating performance during extreme events prior to their occurrence.
Developments in pilot-testing have led to the development of “proven perfect” pilot-scale
systems that closely replicate their full-scale counterparts, as demonstrated by paired 7 tests to
confirm the production of statistically equivalent water quality.'® Knowles et al., 2012 describes
this process for the JDKWSP. This particular pilot system has been used to established possible
physicochemical solutions to lake recovery, albeit after the negative impacts from lake recovery
were realized.** Pilot-scale systems that are proven to represent full-scale performance can be
combined with digital twins to “stress test” a proposed process system design before problems
arise, and proactively select and incorporate antifragile processes. A digital twin is a dynamic
simulation model that visually integrates system components, and can be combined with data
variations to understand the sensitivity of a physical system to input perturbation.!!?

Essentially, these digital twins enable the typical process design question to be flipped: what
types of future BSEs is the system fragile (e.g., negative convexity)? Curl et al. 2020 refers to
this approach as “failure analysis”. In this application the failure is virtual, and information
generated can be used to select processes that would perform better when the same BSE occurs
(e.g., positive convexity). In this way the designer is empowered to systematically increase the
antifragility of a water treatment system. The drinking water treatment space is currently
experiencing early adoption of digital twins. For example, the City of San Diego (California,
USA) is developing a digital twin of its North City Pure Water Facility, a component of their
water reuse program.'!® This digital twin operates via one-second time steps, and fully replicates
system hydraulics and process performance. The city intends to employ the digital twin to
improve future performance to operational challenges.

Investment Considerations. Investments in antifragility may require capital cost outlays,
behavioral changes and localized downtime or inconvenience as systems are altered from the
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original deterministic designs. Investment in antifragility therefore requires demonstration of
benefits that outweigh the costs — benefits such as improved performance, increased long-term
(i.e., intergenerational) water security. Tradeoff analysis such as this is the realm of decision
science, and the application to antifragility investment follows.

Tradeoff analysis is the analytical core of Decision Making under Deep Uncertainty.!'!! Figure 5
summarizes one approach. For the sake of illustration, we select four desired attributes of the
proposed water treatment system: 1) low capital cost; 2) low operating costs; 3) high baseline
performance; and 4) low fragility. The three design options in this case, as presented in Figure 1,
are direct filtration (DF), sedimentation (Sed.), and dissolved air flotation (DAF). In the
illustration, DF has the lowest capital costs and sedimentation has the highest capital costs. Why,
then, would one choose to build sedimentation over DF? One motivating factor might be the
higher baseline performance offered by sedimentation. But that baseline performance is
calculated, as discussed in the Design Considerations section above, with reference to the
particular raw water characteristics observed in the historical case, and it changes depending on
whether the designer believes that those historical raw water characteristics will continue into the
future or shift in some anticipatable fashion. Shifts in raw water characteristics will affect
estimates of operating costs, and the system fragility.
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Figure 5. Real options analysis decision tree framework for the comparison of three clarification
designs: Direct filtration (DF), gravity sedimentation (e.g., conventional settling), and dissolved
air flotation (DAF). Capital and operational costs, and baseline performance taken from Gregory

and Edzwald, 2011.

One method for navigating uncertainty in future raw water characteristics when designing a

water system is to enumerate a decision tree.!!> This approach, sometimes referred to (especially

in applications to financial decision making) as real options analysis (ROA, see for example
Ranger et al. (2010)),!'3 involves stepping through branches of distinct uncertainties. Each

uncertainty is discretized into easily understood categories of exogenous variable such as “high”,
“medium”, or “low”. Endogenous variables (such as “build this” or “build X amount of that” or
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“don’t build”) are decision points at the left-hand side of decision trees. In higher-order complex
decision trees, endogenous decision points can be interspersed throughout the branches of the
tree to represent decision staging and adaptive design. Figure 5 includes only a single
endogenous decision point (build DF or Sedimentation or DAF), and two exogenous variables to
which the performance of the treatment plant is sensitive: climate change, discretized into
“high”, signifying rapid global warming over the treatment plant’s design life, and “low”
signifying less rapid global warming; and forest management, discretized into “yes” or “no”.
Climate change increases ambient air temperatures and speeds the hydrologic cycle, resulting in
lower base flows during dry periods and higher velocity flow during wet periods. Each condition
creates raw water quality challenges, as described in the introduction. Forest management is
costly (and controversial), but has potential to reduce evapotranspiration, reduce forest fire risks,
and improve soil retention. Forest management also benefits source water protection,'!'# which
can be considered the first step in water treatment,''> from a multiple barrier perspective by
decreasing contaminant load in source waters. For the sake of illustration, these two variables are
presented as independent, i.e., forest management policy has no bearing on climate change
magnitude, and climate change magnitude has no bearing on forest management policy.

Scenarios are formulated as combinations of the fully enumerated decision tree, in this case: high
climate change and forest management, high climate change without forest management, low
climate change and forest management, low climate change without forest management. Once
the scenarios are enumerated, variable values (e.g., water temperature, sediment load) are
assigned to represent each condition, and the performance of each treatment option is simulated
for each variable setting. Simulations might be accomplished with an ANN, a physically based
model, or a “digital twin”, as discussed earlier. As shown in Figure 5, the baseline performance
of each treatment option is differently responsive to the altered conditions. In the case of low
climate change and forest management, DF might be the preferred choice as it is lowest in cost
with comparable baseline performance, and only slightly elevated fragility. However, in the case
of high climate change and no forest management, sedimentation might be the preferred choice,
with its high baseline performance and relatively low fragility. DAF appears the best option in
the case of low climate change without forest management, with its moderate costs, high baseline
performance and very low fragility. Probabilistic weighting and risk hedging is needed before a
final decision can be made.

Climate change carries deep uncertainty. The Intergovernmental Panel on Climate Change
(IPCC) Sixth Assessment Report presents possible climate futures as a function of potential
reductions in carbon dioxide and other greenhouse gas emissions. The extent of realized global
warming will affect the climate system in numerous ways, including precipitation extremes, and
more intense tropic cyclones.!!¢ It is impossible to know whether “high” climate change or “low”
will occur, and it is impossible to know whether the next set of politicians will opt for forest
management or not. However, in order to overcome the paralysis created by the uncertainty
regarding future watershed conditions, we weight possible future conditions by likelihood of
occurrence and calculate the expected value of each performance metric across the uncertainty
space as shown in Equation 1.

§ =2, Psss Vs (Equation 1)
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Where &; is the value of the realization of the particular performance metric under consideration
in some future aggregate scenario (climate change level and forest management condition) s, and
p is the probability of that aggregate scenario. & is the expected value of the performance metric
across the likelihood-weighted future conditions.

Expected values are not the only metrics of interest and depending on the risk aversion (or
relative optimism) of the particular decision maker, there might be more or less focus placed on
extreme values — best-case and worst-case performance of each water treatment plant design
option. Finally, likelihoods could be assigned in this case, for example, by consulting the most
up-to-date science on global climate change produced by the Intergovernmental Panel on
Climate Change, and local experts on the history and likely future management of local forests.
The process of likelihood weighting is inexact, and best subjected to sensitivity analysis (i.e.,
repeated evaluation changing likelihoods and re-determining the preferred decision). See Ray et
al. (2012) for an example exploration of the sensitivity of staged climate change adaptation
decisions to changes in scenario likelihoods.!!”

Conclusion

The deterministic approach to drinking water system design has served society well and led to
safe supplies of water at low costs; however, these optimized water systems carry the indirect
cost of fragility. This fragility has become increasingly problematic as source water volatility and
other extreme events have increased. This increased variability makes reliance on stationarity
unsustainable. Water system design has begun to increase emphasis on resilience, although this
paradigm still has an adversarial relationship with volatility. Pursuing antifragility in water
systems creates a different relationship with change, whereby system processes are placed in a
position to perform better as conditions change with less reliance on future forecasts. Processes
conveying antifragility can be included into PWS designs by new tools powered by ANNS,
including virtual jar and pilot testing, that allow for systematic evaluation of convexity.
Including antifragile components into a PWS will inherently cost more than an option optimized
for lowest cost. Therefore, developing antifragile characteristics represents a trade-off between
performance and cost. Real options analysis is one way for water system designers to consider
this trade-off. Ultimately, more research on antifragile designs and costs is required to ensure
long-term performance and sustainability of public water systems in an era of increasing
volatility.
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