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Abstract—It is useful to quantify electrical distribution sys-
tem resilience based on historical performance. This paper
systematically extracts resilience curves from historical utility
outage data, extracts resilience metrics such as duration, average
recovery rates, and maximum number of simultaneously outaged
components, and examines the statistics of these resilience metrics
for small, medium, and large events. The resilience metrics and
their typical variabilities are expected to be helpful in predicting
and bounding the likely outcomes of future resilience events.
For example, we can calculate the restoration time that will be
achieved with 95% confidence.
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I. INTRODUCTION

Maintaining a continuous energy supply to customers is the
goal of utilities, but threats such as aging infrastructure, bad
weather, and indigenous wildlife are the most common culprits
for unplanned disruption of electrical services in electrical
distribution systems [1]. When the outage happens, customers
invariably want to know when the power supply will come
back. The current method of estimating restoration time is
based on the field reports of various crews after an event has
occurred, and the utility makes a “best guess” estimate of the
restoration time [1], [2]. But this method is approximate and
delayed as the utility has to wait for the damaged areas to be
safe for crews entering and reports from the inspection crews.
We think that the determination of the restoration time can
be usefully augmented by suitably processing historical data
from previous events. Our approach uses detailed outage data
that is routinely collected by many utilities.

To aid utilities with providing quicker estimation of the
outage duration and restoration time, many researchers have
used resilience curves as a credible method to model and
evaluate system vulnerability and the ability to recover from
hazards or adverse events. In [3], the entire life cycle of
failure and recovery of large scale power failures is considered,
but lesser events are ignored, which tends to exaggerate the
typical impacts of events. The work in [4] statistically analyzed
factors that affect outage duration but did not predict the
duration or its variability. Authors in [1] used the text from
inspection reports (without considering the number of outages)
to predict outage duration to facilitate customer preparation.
In these studies, extreme weather events are considered as
isolated events and are used to observe the impacts of extreme
conditions on the system’s performance. But they omit the less
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extreme and more typical events that also contribute to the
system’s overall resilience.

In this paper, we systematically detect and extract the
resilience curves from historical outage data of one United
States utility. These resilience curves represent all the events
that have disrupted the normal condition of the distribution
system. The events are detected by processing the cumulative
number of outages as a function of time. The cumulative
number of outages is the number of outages present at a
given time that have not yet been restored. Threshold values
on the cumulative number of outages are used to define
the beginning and end of the resilience events and classify
the events into small, medium and large. The classification
into small, medium and large events allows the resilience
metrics of each size of event to be calculated, as well as
the variability of the metric. Resilience curves of the same
magnitude are grouped together into a large set of curves
for analysis instead of re-sampling from one isolated event
repetitively. The outage propagation and restoration stages
are evaluated using resilience triangles on a large data set
to assess: (a) variability of duration for outage and recovery
processes to help with predictions; (b) average outage and
recovery rates during events to help with assessment and
predictions. By systematically detecting resilience curves, we
are able to gain better insight on the overall performance of the
system and generate statistics of the duration of outage and
recovery processes from multiple events instead of focusing
on one single event.

The rest of the paper is organized as follows: section II de-
scribes the resilience analysis framework and event extraction
procedure and the metrics calculated. The utility data set and
its metrics and their variabilities are presented in section III,
and section IV concludes the paper.

II. RESILIENCE AND SYSTEMATIC DETECTION
A. The Three Stages of Resilience

Resilience is the ability to prepare for, absorb, adapt to,
and/or rapidly recover from adverse events [2], [5], [6], [7].
Resilience curves are used to model a system’s response
before, during, and after a hazard [2], [8], [9], [10]. The three-
stage framework depicted on the resilience curve in Fig. 1 is
a generalized model to capture a system’s recovery process
as it progresses in each stage [2], [11], [12]. The first stage
focuses on hazard prevention (0 < t < tg). This is when the



system maintains normality before a hazardous event starts.
The second stage is the outage propagation (ts < t < ty),
where the successive outages occur at a faster rate while the
hazard is absorbed by the system. The third stage of restoration
(tnv <t <tpg) is the recovery of the system back to normal
operation. We regard the second and third stage as a resilience
event. We now explain how the resilience event is extracted
from real data.
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Fig. 1. The three stages of resilience shown on an extracted resilience curve.

B. Extracting Events

The cumulative number of outages varies with time as
outages occur and are restored. Under normal conditions the
cumulative number of outages stays near zero because outages
are generally infrequent and are restored quickly. But under
stressed conditions, outages are more frequent and accumulate
before they can be restored, and the cumulative number of
outages has excursions away from zero. These accumulations
of outages are the resilience events. The resilience events are
extracted from the data by detecting when the cumulative
number of outages passes and returns to a threshold number
of outages. We now give more details of this extraction.

Since the utility data includes the outage and restore time
for each component, it is straightforward to sort these times
by their order of occurrence and then calculate

C(t) = —(cumulative total outages at time ¢ minus
cumulative total restores at time ¢)

= —(number of simultaneous outages at time ¢t) (1)

The threshold number of outages is zero or a small negative
number of outages Cpase; We use Chase = 0 as a simple case.
Under normal conditions C'(¢) is at or above Ch,ge. The start
time ¢ of an event is defined by C(t) decreasing below Chase
and the end time {5 of an event is defined by C'(t) increasing
t0 Chase- Then C(t) for tg <t < tg is a resilience curve for
the event as shown in Fig. 1. The minus sign in (1) ensures
compatibility with standard resilience curves.

C. Nadir, Resilience Triangles, and Metrics

In Fig. 1, the lowest point of the resilience event curve C(t),
called the nadir, occurs at ¢x. The nadir C(ty) corresponds
to the maximum number of simultaneously occurring outages
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Fig. 2. The outage propagation process begins when the curve decreases from
the baseline at zero and ends at the nadir. The recovery process starts at the
nadir and ends when the curve increases to the baseline.

in an event. (In the exceptional case of several lowest points
occurring at exactly the same level in the same event, we
choose the last one to be the nadir.) We use the nadir to
locate the end of the propagation process and the beginning of
the restoration process. Note that dividing the event time into
separate propagation and restoration processes in this way is
idealized, since in real data these processes overlap somewhat
as shown in Fig. 3. We will address this in future work.

After these definitions, metrics of duration follow easily
from the widths of the resilience triangles. The duration of
propagation is ty — tg, and the duration of restoration is
tg —tn. The event duration is ¢t —tg. These duration metrics
can aid in explaining the impact of a disruptive event and
predict the impacts of future events [8].

Average rate metrics follow easily from the slopes of
the resilience triangles. The average outage process rate is
—C(ty)/(ty — ts) and the average recovery process rate is
—C(tn)/(te — tN).

The maximum number of simultaneously outaged compo-
nents, the duration of an event, the restoration time, and the
average outage and recovery rates are important metrics that
we extract from from previous events to help a utility to
estimate these metrics for an anticipated or ongoing event.
In particular we calculate the statistics of these metrics from
previous events to be able to estimate a 95% upper bound
confidence interval for the restoration time. This can help
provide the customers of the utility with an upper bound
estimate of the restoration time with a reasonable certainty.

Events are grouped into small, medium, or large depending
on the nadir C(ty) of their resilience curve:

Small events have —3 > C'(ty) > —9.
Medium events have —10 > C'(ty) > —19.
Large events have —20 > C(ty).

D. Customer resilience curves

Since the outage data also includes the number of customers
outaged and restored, we can also form the cumulative number
of customers out C°"S*(¢) as a function of time, similarly to the
definition of C'(¢) in (1) except that “outages” are replaced by
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Fig. 3. Component resilience curve examples. Small event (Orange) causes are scheduled maintenance or minor physical damage. Medium event (Gray)
causes are moderate weather/storm or moderate physical damage. Large event (Teal) causes are extreme or severe weather/storm or severe physical damage.

“customers”. Then the customer resilience curves for an event
occurring for tg < t < tg is the portion of the cumulative
customer curve CUS(¢) for tg < t < tg (see Fig. 4). The
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Fig. 4. The customer resilience curve shows the cumulative number of
customers outaged during the event corresponding to Figure 2.

area above the customer resilience curve is the total customer
hours outaged in the event. If the event were to be included in
the SAIFI calculation, this customer area would directly add
to the SAIFI numerator. The average customer recovery rate
is —CCUSt(tN)/(tE — tN).

III. RESULTS

The historical outage data was gathered by one distribution
utility from 2011 to 2016. 32,291 outages were reported during

this time and 15,648 pole locations were identified. The start
and end time of the outages were recorded by fuse cards
equipped to record the time at which an outage begins and
ends based on the loss of power. The raw data is private.
The probability density functions for propagation, restora-
tion and total event durations for all events are shown in Fig. 5.
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Fig. 5. Distributions of propagation, restoration and total event durations.

The cause code of each outage and restore within an event
was tracked to determine the most common cause of outages
for the event. There were 34,945 outages with causes reported
and 63 types of cause codes. About 5% of those causes were
weather-related, and 14% were animal-related. The remaining



causes were mostly component malfunctions, tree limbs, and
debris. The top causes for all events were tree limbs near the
clearance zone of lines and squirrels. The top three weather-
related causes were wind, rain, and lightning.

A. Small, Medium and Large Events

1486 events were extracted and grouped by size using
the methods of Section II. There were 910 small events,
75 medium events, and 50 large events found in the data.
The events in Fig. 3 are samples of these events. The large
events had more outages caused by weather than the small
and medium events. A common pattern of many large events
is that outages caused by weather are followed by outages
caused by tree limbs and other debris.

B. Nadir

The statistics for the resilience curve nadirs are summarized
in Table I. In Table I, it can be seen that the utility can expect
at least 5 simultaneously outaged components for any event.
The average number of simultaneously outaged components
expected in large events is over twice the average for medium
events and over 8 times the average for small events.

TABLE 1
NADIR C(tn)

Events Mean Median  Std.Dev.
Small -5.25 -5 1.36
Medium -13.81 -13 2.75
Large -42.52 -34 22.13
All -7.67 -5 9.59

C. Event Duration

The average event duration and their variabilities are sum-
marized in Table II, and the survival function of the event
duration for each event size is shown in Fig. 6. The average
event duration is 13 hours, but the variability is high. Small
events are over within 24 hours with 95% confidence, but the
corresponding upper bounds for the medium events are two
times longer and the large events are four times longer. The
utility will be able to make an assessment of the event duration
for the event and also scale the estimate of the duration up or
down if necessary for sudden changes to conditions.

TABLE 11
EVENT DURATION (HOURS)

Events Mean Median  Std.Dev.  95%CI
Small 9.50 7.65 6.74 24
Medium  32.11  21.63 51.99 55
Large 4948  41.42 23.31 99
All 13.07 8.5 19.07 36

D. Outage Propagation Process

The estimation and variability of the duration for the outage
propagation process are shown in Table III, and the survival
function of the distribution of the propagation process for each
group is in Fig. 7. The duration of propagation during any
event is less than 18 hours with 95% confidence.
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Fig. 6. Survival functions of event duration.
TABLE III
PROPAGATION PROCESS DURATION (HOURS)
Events Mean Median  Std.Dev.  95%CI
Small 5.01 3.5 4.66 15
Medium  17.79  7.82 50.77 43
Large 1478  10.92 11.91 40
All 6.41 3.93 15.06 18

E. Recovery Process

The estimation and variability of the duration for the recov-
ery process are shown in Table IV and the survival functions
of the recovery process duration for each events size are shown
in Fig. 8. The expected duration of recovery during any event
is less than 22.6 hours with 95% confidence. This upper bound
on duration for any event is about four times lower than the
upper bound on duration for large events and twice that of
small events.

TABLE IV
RESTORATION DURATION (HOURS)

Events Mean  Median  Std.Dev.  95%CI
Small 4.5 3.35 3.97 13
Medium 1431 119 10.89 30
Large 34.7 28.37 21.77 85
All 6.67 3.73 9.58 22.6
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Fig. 7. Survival functions of the propagation process duration.
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E Customer Impact

The customer resilience curves for each event and the
customer area under each curve were computed, and the
statistics are shown in Table V. Table V shows that for all
events, the customer hours of outage are less than 2399 with
95% confidence.

TABLE V
CUSTOMER AREA (CUSTOMER HOURS)
Events Mean Median  Std.Dev. 95%CI
Small 405 168 812 1466
Medium 1442 982 1944 5297
Large 2501 1972 204 5534
All 581 209 1145 2399

G. Average Outage and Recovery Rates

The average recovery process rate and the average outage
process rate are calculated from the resilience triangles by
dividing the magnitude of the nadir by the duration of the
process. Table VI shows that for medium and large events,
the average recovery rate is slower than the average outage
rate. The 95% confidence interval for the average recovery rate
shown in Table VI is a one-sided lower confidence interval.
That is, the probability that the average recovery rate is more
than the given value is 0.95. After the nadir of a resilience
event, when the damage has been inspected and the current
number of outages is known, the average recovery rate and its
95% confident lower bound can be multiplied by the number
of outages to estimate the expected recovery time and its 95%
confident upper bound recovery time.

TABLE VI
AVERAGE OUTAGE AND RECOVERY RATES (PER HOUR)

Average outage rate Average recovery rate

Events Mean Median StdDev Mean Median StdDev 95%CI
Small 048  0.68 0.42 0.45 0.66 0.35 0.37
Medium 0.50  0.55 0.70 0.68 097 0.95 0.22
Large 0.19 0.32 0.18 0.63 0.66 0.95 0.27
All 045  0.66 0.38 047  0.67 0.37 0.37

IV. CONCLUSIONS

This paper systematically detects and extracts resilience
curves from 5 years of distribution utility outage data for each
resilience event in which outages accumulate. For each event,
the resilience curve is divided into an outage propagation
period and a recovery period using the nadir of the resilience
curve. The events are classified into small, medium, and large,
and the statistics of resilience metrics such as the durations of
the event, propagation and recovery and the customer hours
lost are computed for each size of event. In contrast to previous
work, we compute statistics of groups of typical resilience
events rather than focusing on single resilience events. The
statistics for the average durations and their variability should
be helpful in estimating event and recovery times for future
events before or while they are occurring. Further work
studying the events and their associated cause codes in more
detail is indicated.
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