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Highlights 

x First assessment of activated ferrate pre-oxidation at continuous-flow pilot scale  

x Activation generally improved effluent compared to traditional ferrate oxidation  

x FeSAOP effectively oxidizes aromatic and double-bonded EfOM compounds  

x Activated ferrate can be a viable alternative pre-oxidant for water reuse systems 

x FeSAOP pre-oxidation generates headloss faster than Fe(VI) pre-oxidation, one notable 

system tradeoff  
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Abstract 

)HUUDWH�LV�D�SURPLVLQJ��³JUHHQ´��L�H���LURQ-based) pre-oxidation technology in water 

treatment, but there has been limited research on its potential benefits in a water reuse 

(wastewater recycling) paradigm. Recent studies have shown ferrate treatment processes can be 

improved by activation, the addition of reductants (i.e., sulfite) to the reaction. Prior bench scale 

experimentation suggests sulfite-activated ferrate may be a feasible option for water reuse 

applications; however, extent questions need to be addressed. This study evaluated the viability 

of sulfite-activated ferrate in water reuse treatment through continuous-flow experiments using 

synthetic and field-collected secondary wastewater effluents. The effluents were processed 

through the piloting system which included various physicochemical processes including ferrate 

pre-oxidation, coagulation, clarification, and dual-media filtration. In each trial, the system was 

run continuously for eight hours with data collected via grab samples and online instrumentation 

with real-time resolution. Results demonstrate that reuse systems using activated ferrate pre-

oxidation can produce effluents with water quality meeting most regulatory requirements without 

                  



major impacts on downstream physicochemical processes. When compared to traditional ferrate 

pre-oxidation, activation showed several improvements such as lower byproduct yields. 

Operationally, activated ferrate does increase the development of headloss across the dual-media 

filter. In general, sulfite-activated ferrate is viable in a water reuse setting, resulting in several 

improved water quality outcomes. Results from this work create a pathway for adaptation at 

scale.  
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byproducts. 

 

1. Introduction 

 Global water stress has generated demand for recycling municipal wastewater effluent 

(i.e., water reuse) (Miller, 2006). Water reuse may be especially advantageous for rural and arid 

areas which are generally more impacted by water stress (Bauer, 2020). However, water reuse 

comes with associated public health risks including presence of pathogenic organisms and 

residual effluent organic matter (EfOM) which may include various organic contaminants of 

emerging concern (Crockett, 2007; Roberts and Thomas, 2006). Successful water reuse treatment 

must address these risks. Common approaches for risk mitigation include implementation of 

ozonation or radical-based advanced oxidation processes (AOPs) (Blackbeard et al., 2016; 

Gerrity and Snyder, 2011; James et al., 2014). However, Ozone and AOPs require significant 

auxiliary systems for generation, which may not be appropriate for small or rural systems. 

                  



 High valent iron species (i.e., ferrate (Fe(VI)) have emerged as an alternative oxidant to 

ozone, and other strong oxidants (Sharma et al., 2015). Implementation of Fe(VI) can transform 

organic contaminants (Jiang, 2014) and inactivate pathogens (Daer et al., 2021; Schink and 

Waite, 1980), while offering operational simplicity over other oxidation technologies (Goodwill 

et al., 2016). Fe(VI) can be produced on-site via an electrochemical (Jiang et al., 2009) or wet 

chemical process (Thompson et al., 1951), or purchased from commercial suppliers as a stable 

salt (e.g., K2FeO4, Monzyk et al., 2013). Fe(VI) has also been shown to produce fewer 

brominated DBPs when compared to ozonation (Huang et al., 2016; Jiang et al., 2019, 2016). 

)H�9,��PD\�EH�³DFWLYDWHG´�via several methods including addition of acids (Manoli et al., 2016), 

UV irradiation (Dar et al., 2022; Mai et al., 2022), or common chemical reductants (e.g., 

thiosulfate, sulfite, etc.) (Feng et al., 2018; Sun et al., 2018). Activation with sulfite has gained 

attention due to sulfites existing acceptance in the water industry (Amirhor et al., 1993) and its 

rapid reaction with Fe(VI) [k = 1012 M-2 s-1] (Johnson and Bernard, 1992). The sulfite-based 

)H�9,��DFWLYDWLRQ��L�H���³)H6$23´��SURFHVV�JHQHUDWHV�D�FRPELQDWLRQ�RI�)H�9,�-decay 

intermediates (i.e., Fe(IV)/Fe(V)) and radical species (e.g., SO4
-����2+��WKDW�FDQ�OHDG�WR�LPSURYHG�

transformation of contaminants (Shao et al., 2020, 2019). In this way, activated ferrate can be 

considered a novel AOP that generates radicals from stable salts, an advantage over more 

complex AOPs (e.g., ozone/UV or ozone/peroxide).  

Utilization of FeSAOP may be especially advantageous for water reuse systems as a 

simple alternative AOP and allow traditional water treatment systems to implement an AOP as 

needed in response to an urgent water quality concern (Goodwill et al., 2021). However, there 

has been no continuous flow, larger scale (e.g., pilot) exploration of the activated Fe(VI) process, 

with existing pilot studies only examining non-activated Fe(VI) in conventional surface water 

                  



(Goodwill et al., 2016) and wastewater treatment (Jiang et al., 2009). There are several extant 

research questions blocking full scale water reuse adaptation of FeSAOP including: (1) what are 

the performance benefits of FeSAOP compared to standard nonactivated Fe(VI) pre-oxidation, 

(2) what impacts does implementation of FeSAOP have on downstream physicochemical 

treatment processes, and (3) can a water reuse system using FeSAOP pre-oxidation produce 

effluent water quality that meets common water quality goals (e.g., the US Safe Drinking Water 

$FW��6':$��DQG�RU�WKH�&DOLIRUQLD�'HSDUWPHQW�RI�3XEOLF�+HDOWK�7LWOH����³5HJXODWLRQV�5HODWHG�WR�

5HF\FOHG�:DWHU´��&$����"�7KH�RYHUDUFKLQJ�JRDO�RI�WKLV�UHVHDUFK�ZDV�WR�UHVROYH�WKHVH�)H6$23�

research gaps in a continuous flow treatment system using synthetic and field-collected 

wastewater effluent, creating a pathway towards adaptation.  

 

2. Material and methods 

2.1. Continuous Flow Apparatus and Instrumentation 

A continuous flow experimental apparatus (CFA) was designed, constructed, and 

operated to replicate a full-scale water treatment process with pre-oxidation, coagulation, 

clarification, and dual media filtration (Figure 1). A full description of operational specifications 

and additional images of the CFA are provided in the supporting information (see Text S1 and 

Figure S1). The CFA was equipped with online instrumentation to continuously monitor major 

water quality parameters, in addition to benchtop instruments used to periodically analyze grab 

samples (Table 1). A full description of continuous and grab sampling is also given in Text S1. 

All experiments consisted of 8-hour (480-minute) filter runs at a hydraulic loading rate of 3 

gpm/ft2 (i.e., 7 m/h). High-purity (>95%) K2FeO4, produced by Element 26 Technology (League 

City, TX), was continuously added from a chilled (5 °C) 2mM stock solution into a static mixer. 

                  



Flow was then activated approximately 40 seconds downstream in a static mixer with sodium 

sulfite (i.e., FeSAOP) at a sub-stoichiometric activation ratio (0.5 µM SO3:1.0 µM Fe(VI)) , 

following activation conditions recommended by Spellman et al., 2022. Activation ratio 

accounted for Fe(VI) decay during the 40 seconds between Fe(VI) dosing and activation. The 

resulting solution was allowed to react for 30 minutes in a pipe reactor with near plug-flow 

characteristics before particle removal steps (see Text S1). Filter effluents were subject to 

chlorination to quantify the regulated total trihalomethane (TTHM) DBP yield. Samples were 

buffered with borate at pH 7.0, chlorinated at 3 and 20 mg/L Cl2 and then incubated 20 °C for 

72-hours following a published method for examining Fe(VI) pre-oxidation on regulated DBPs 

(Goodwill et al., 2016).  Average values presented in section 3 represent the average of all 

samples (grab or continuous) collected during the entirety of the eight-hour system runtime.  

                  



 

Figure 1: (A) Process flow diagram and (B) image of the continuous-flow pilot water treatment apparatus 

constructed for this study. Detailed description of processes is provided in SI Text S1. 

 

 

 

 

 
Table 1: Summary of continuous (cont.) and grab sample monitoring of pilot system. A detailed 
description of parameters below is provided in Text S1. 

Parameter Type (Frequency) Method 

pH Cont. (5 min) Dual-junction electrode 

Surface charge Cont. (2 min) Streaming current (Dentel et al., 1989) 

                  



Pressure (headloss) Cont. (1 min) Digital pressure transducer 

Particle size (2-100µm) Cont. (2 min) Light obscuration count 

Turbidity Cont. (2 min) Hach Method 10258 

UV254 Grab (15 min) Standard Method 5910 

Iron, total & dissolved (<0.45µm) Grab (Hourly) Standard Method 3500 

Organic carbon, dissolved (<0.45µm) Grab (Hourly) Standard Method 5030 

Nitrogen, dissolved (<0.45µm) Grab (Hourly) ASTM Method D5176-91 

Anions (NO3, PO4) Grab (Hourly) Ion Chromatography (EPA Method 300.1) 

Caffeine Grab (Hourly) Liquid Chromatography (Nayak et al., 2013) 

Pathogens Grab (Bihourly) AOAC Method 991.14 

Excitation-Emission Grab (2 samples) Fluorescence spectrometry 

Particle size (<1.6µm) Grab (1 sample) Dynamic Light Scattering 

 

2.2. Pilot Run Using Synthetic MWW  

A pilot run was conducted on the CFA utilizing synthetic MWW effluent, with raw water 

chemistry listed in Table S1. The synthetic effluent was spiked with 2.1 mg/L caffeine, a low-

toxicity target contaminant found in MWW effluents (Shon et al., 2006) that has been examined 

in bench-scale Fe(VI) experiments (Manoli et al., 2017a; Nie et al., 2020; Pan et al., 2020). 

Fe(VI) was dosed at 48 (±3) µM (2.8 mg/L as Fe), and then activated at [SO3
2-]:[Fe(VI)] of 0.53 

(±0.05), an activation ratio previously shown to be beneficial in reuse applications (Spellman et 

al., 2022). After the pre-oxidation reaction (30 min), the solution was dosed with FeCl3 at 12 

(±1.6) mg/L as Fe to achieve coagulation mainly via the adsorption-destabilization mechanism 

(see Figure S2) (Johnson and Amirtharajah, 1983), the desired mechanism when operating up-

flow clarification. Coagulant dose in all runs was adjusted to maintain a streaming current (see SI 

text S1) after coagulation of 0 (±30). The pH of the flow was not adjusted after coagulation (avg 

                  



= 5.7). The up-flow clarifier was backwashed using DI water for 10 minutes after 270 minutes of 

run time to remove build-up of collected Fe particles and extend the media filter run time.  

 

2.3. Pilot Runs Using Field-Collected MWW 

Two additional comparative runs were conducted on the CFA with activated and non-

activated Fe(VI) pre-oxidation of field collected MWW. The non-chlorinated effluent utilized in 

these runs was collected at the Mattabassett District Water Pollution Control Facility, directly 

from the facility's secondary effluent flume (facility details provided in SI Text S2 and Figure 

S3). Average raw water quality conditions used for both runs are found in Table S2. The raw 

water was spiked with 9.1 mg/L of caffeine. Although higher than typical concentrations found 

effluents (Thomas and Foster, 2005), similar elevated caffeine concentrations have been utilized 

in prior activated-Fe(VI) experiments (e.g., Manoli et al., 2017) allowing for comparison of this 

work to bench scale experimentation. Solutions were coagulated using Nacrolyte 8100 (Nalco 

Water, Saint Paul, MN) cationic polymer by dosing until the solution had a circumneutral 

streaming current value (0±15). Coagulant was switched to polymer for these comparative runs 

so that all iron particles resulted from Fe(VI) and enable particle comparisons between Fe(VI) 

and FeSAOP.  

 

 

 

3. Results & Discussion 

3.1. Performance Examination of FeSAOP in Synthetic MWW 

3.1.1. Water Quality Improvements 

                  



The eight-hour averaged water quality improvements (e.g., changes between filter effluent 

and raw influent) resulting from continuous flow FeSAOP experiments are presented in Figure 2. 

FeSAOP pre-oxidation followed by coagulation, clarification, and filtration generally led to 

improved overall water quality relative to raw water. Greater than 95% of turbidity, PO4, and 

total Fe were removed across the treatment system. High performance of the clarifier and dual 

media filter was demonstrated by the low turbidity and effluent particle counts (discussed further 

below). PO4 was removed below detection in filter effluent, with grab sampling between 

clarification and filtration indicating almost all removal occurred during clarification. This PO4 

removal is likely from adsorption onto Fe particles present in the oxidant reactor and clarifier 

that originated from pre-oxidation and Fe-based coagulation. This also supported by the similarly 

high (~99%) removal of total Fe (Fe from Fe(VI) and FeCl3). Although coagulation and pre-

oxidation introduced 19 mg/L Fe, effluent continuously reported < 0.2 mg/L Fe.  

 

Figure 2: Activated Fe(VI) performance with synthetic MWW related to key filter effluent water quality 

parameters. Columns show the average hourly (i.e., n = 8) removals with error bars representing the 

99% confidence interval. Note: Total Fe includes Fe from Fe(VI) and FeCl3 

                  



Organic matter (e.g., EfOM, caffeine) and nitrogen (e.g., TDN and NO3) exhibited some 

level of removal, but to a far lesser extent (<30%). An oxidant dose four times the caffeine 

concentration (by mol) resulted in a 25% decrease in caffeine during our continuous-flow 

experiments. These results are in agreement with previous activated Fe(VI) literature which 

showed similar removal of caffeine in wastewater effluent (Manoli et al., 2017b). The 

incomplete transformation of caffeine is likely due to oxidant demand driven by EfOM that may 

react with oxidant species faster than with caffeine (Manoli et al., 2017b). Prior bench-scale 

experiments by Feng et al. with sub-stoichiometric thiosulfate activation obtained just 45% 

caffeine removal under ideal conditions (i.e., no EfOM) with Fe(VI) present at 100x the caffeine 

concentration (Feng et al., 2018). Removals of caffeine by continuous flow FeSAOP in this 

study did exceed those by Fe(VI) alone in the aforementioned bench-scale study by (Feng et al., 

2018)Higher removals of caffeine (near 100% transformation) absent of competing organic 

matter has been reported for other Fe(VI) activation methods such as acid-activated (Manoli et 

al., 2016), likely due to elevated Fe(VI) oxidation potential at lower pH, and silica gel-enhanced 

activated (Manoli et al., 2017a), where Fe(VI) adsorbs to the gel surface decreasing the kinetics 

of Fe(VI) decomposition. However, caffeine oxidation by silica-gel activation was also 

significantly impeded by the presence of competing organic matter (Manoli et al., 2017a). 

Furthermore, both activation methods have additional downstream considerations, including 

significant pH adjustment and large (>30µm) SiO2 particles, respectively, which may prohibit 

scale adaptation. Comparatively, caffeine removals were lower than ozonation at pilot and full 

scale where transformation of caffeine was demonstrated as high as 90%, but with orders of 

magnitude more O3 than caffeine in waters with relatively low initial UV254 (<0.050) suggesting 

fewer competing organic compounds (Broséus et al., 2009).  

                  



Although overall transformation of organics (EfOM and caffeine spike) across the system 

were relatively low, implementation of FeSAOP did alter characteristics of organic matter. The 

significant change in UV absorbance with a lower total DOC removal suggests the FeSAOP 

processes was effective at transforming aromatic electron arrangements and double-bonded 

organics (e.g., humic acids), but did not target remaining straight-chain aliphatic compounds 

(e.g., caffeine). The shift in DOC structure is also demonstrated by the 60% decrease in specific 

UV absorbance (SUVA). Influent SUVA exceeded 6.5 implying the raw water carbon was 

largely made up of high molecular weight, hydrophobic, and aromatic compounds (e.g., caffeine 

which comprised 39% of influent DOC) while lower effluent SUVA (2.8) suggests remaining 

DOC had a lower molecular weight and was more aliphatic (Edzwald, 1993). The decreased 

fraction of aromatic DOC compounds demonstrated with SUVA results are also supported by 

excitation-emission matrices (EEMs), where there was a notable decrease in fluorescent DOC 

between the system influent and the filter effluent (Figure S4).   

 

  

3.1.2. Steady-state Performance of Surrogate Parameters 

Data for key continuously monitored effluent parameters are shown in Figure 3. Turbidity 

was continuously removed at >95% and never exceeded the CA22 2.0 NTU limit for no direct-

contact reuse (e.g., irrigation, toilet flushing, etc.) nor the 0.3 NTU Treatment Technique 

requirement in the SDWA (see Figure 3A). The UV254 absorbance was also removed across the 

system throughout the run at a relatively high rate (e.g., 73%) and never exceeded 0.050 cm-1 

(Figure 3B). Effluent turbidity and UV absorbance levels are similar to those achieved in 

previous Fe(VI) continuous flow experiments on surface waters (Goodwill et al., 2016).  

                  



 

Figure 3: Continuous monitoring of dual-media filter effluent turbidity (A), UV254 absorbance (B), and 

particle counts (C). Vertical dashed line represents the filter run time where the clarifier was 

backwashed. 

Particles generated during the treatment process were quantified. Average effluent particle 

counts (2-���ȝP��IURP�WKH�OLJKW-blockage method) for the duration of the run were 5 

SDUWLFOHV�P/��)LJXUH��&��ZLWK�DYHUDJH�VL]H����ȝP��������Counts during a representative period 

of steady state performance (i.e., 60-420 min) averaged 2 particles/mL. Representative particle 

size distributions (0.01-���ȝP���FRPELQLQJ�PHDVXUHPHQWV�E\�G\QDPLF�OLJKW�VFDWWHULQJ�DQG�ODVHU-

light blockage, before and after filtration are presented in Figure 4. Prior to filtration, particle 

distribution covered much of the measured size spectrum with particles ranging from 0.02 to 

��ȝP��$IWHU�ILOWUDWLRQ��SDUWLFOH�GLVWULEXWLRQ�QDUURZHG�ZLWK�PRVW�SDUWLFOHV�JHQHUDOO\�EHWZHHn 0.2 

DQG��ȝP��$�FRQVHUYDWLYH�HVWLPDWH�RI�DQWLFLSDWHG�ILOWHU�SHUIRUPDQFH�EDVHG�RQ�IXQGDPHQWDO�

physical properties was calculated by the single-collector efficiency transport model, assuming 

favorable chemical conditions (i.e., high coagulation efficiency, ჴ, =1.0), and is represented by 

                  



the blue line in Figure 4 �7RELDVRQ�DQG�2¶0HOLD��������<DR�HW�DO��������. The performance 

PRGHO�SUHGLFWHG�!����UHPRYDO�RI�SDUWLFOHV�!�ȝP�DQG������ȝP�DQG�FRPSOHWH�UHPRYDO�RI�DOO�

SDUWLFOHV�!�ȝP��:KLOH�ODUJHU��!�ȝP��SDUWLFOHV�Zere removed similar to model predictions, the 

distributions shown in Figure 4 suggest filter performance exceeded model predictions for 

UHPRYLQJ�SDUWLFOHV�����ȝP��QHDUO\�GRXEOLQJ�WKH�SURMHFWHG�UHPRYDO��,W�LV�QRW�XQFRPPRQ�IRU�

media filters to outperform model expectations, especially for smaller particles, since the model 

always assumed a clean collector as first demonstrated by Yao et al. (1971). True filter 

performance may exceed model predictions due to a variety of phenomena which may include 

coagulation within filter media pores (i.e., not just on collector surface), particles removed from 

suspension acting as additional collector area, and/or oversimplifications in the model itself such 

as the Stokes equation being assumed to accurately represent the velocity distribution within a 

packed bed which it likely does not (Yao et al., 1971).        

                  



 

Figure 4: Bars represent the relative particle size distribution (i.e., fraction of total particles) from grab 

VDPSOHV�FROOHFWHG�EHIRUH�DQG�DIWHU�ILOWUDWLRQ��1RWH��3DUWLFOHV�!�ȝP��KDWFKHG�EDUV��ZHUH�TXDQWLILHG�YLD�WKH�

laser light blockage method while particles <2ȝP��VROLG�EDUV��ZHUH�TXDQWLILHG�E\�'/6��7KH�EOXH�OLQH�

represents the predicted particle removal calculated according to Yao et al. (1971) at high attachment 

efficiencies (ჴ = 1.0). Model  calculations and parameters are listed in Text S3.1 and Table S3, 

respectively. 

3.1.3. Disinfection and Byproducts  

 The regulated total trihalomethanes (i.e., TTHMs) DBP yield was measured after 

chlorinating filter effluent at a low and high dose of Cl2 (Figure 5 and SI Text S3.2). Control 

samples (i.e., effluent before chlorination) had TTHM concentrations < 3µM. Both Cl2 doses 

resulted in relatively low TTHM production. No sample exceeded 16 µg/L of TTHMs after 72-

hours of controlled conditions, significantly lower than the CA22 and SDWA maximum 

                  



contaminant level (MCL) of 80 µg/L. Experimental yields were lower than those predicted by 

empirical TTHM models from Solarik et al. (2000) which estimated the effluent would have 

produced 41 and 54 µg/L TTHMs (see SI Text S3). Experimental yields were 11.3 and 15.9 µg/L 

after Cl2 doses of 3 and 20 mg/L, respectively. Modelling showed chlorinating the influent at 3 

and 20 mg/L would have resulted in 58 and 89 µg/L TTHMs, respectively, showing FeSAOP 

decreased TTHM yields more than what may have been anticipated by models. The relatively 

low effluent TTHM yields are most likely a result of FeSAOP transforming aromatic and 

unsaturated bonded carbon compounds which, in general, would have been more readily 

oxidized during chlorination (Hua et al., 2015; Reckhow et al., 1990). This is demonstrated by 

the decrease in UV254 absorbance across the treatment train (discussed above), as presence of 

aromatic and unsaturated bonding in system effluent would have showed more elevated UV 

absorbance (Edzwald et al., 1985).  It is noteworthy that brominated species accounted for nearly 

all TTHM with limited formation of trichloromethane under both doses. This is in agreement 

with prior studies that suggest brominated DBPs are of elevated concern in water reuse 

applications (Spellman et al., 2022). The elevated formation of brominated THMs is attributable 

that chlorine oxidizing effluent bromide to HOBr, plus existing HOBr formed during FeSAOP 

(Spellman et al., 2022), which substitutes faster with active sites on residual organics than HOCl, 

leading to increased yields of brominated THMs (Hua et al., 2006; Symons et al., 1981). 

Although brominated DBPs are of concern with FeSAOP in reuse scenarios (Spellman et al., 

2022), yields would likely be less than if the same water was ozonated, as Fe(VI)-based 

oxidation generally produces fewer brominated DBPs than O3 due to the slower kinetics between 

Fe(VI) reactive species and Br- (Jiang et al., 2019, 2016).  

 

                  



 

Figure 5: Formation of regulated Trihalomethanes in filter effluent at two Cl2 dosages. Conditions: pH 

7.0, 72-hour contact time, incubated at 20 °C. 

 
3.2. Direct Comparison of FeSAOP and Fe(VI) in Field MWW 

3.2.1. Removal of Select Contaminants 

Figure 6 compares the relative performance removing select contaminants by FeSAOP and 

non-activated Fe(VI) (based on effluent quality) during two identical experiments using field-

collected MWW. In general, FeSAOP outperformed Fe(VI) as a pre-oxidant with greater 

transformation of organic constituents (DOC, UV254, and caffeine). The improved 

transformation of a target organics with FeSAOP in this work was similarly demonstrated by 

(Spellman et al., 2022) (15% and 18% improvements, respectively) in effluent collected from the 

same MWW facility (Spellman et al., 2022). Additionally, FeSAOP demonstrated a notable 

decrease in effluent NO3 concentrations relative to Fe(VI). It is possible, however, that the 

improved NO3 removal with FeSAOP may have resulted from generation of nitrated-organics 

during FeSAOP pre-oxidation, which could late serve as precursors for nitrogenous-DBPs (e.g., 

                  



chloropicrin) formation during chlorination (Shah and Mitch, 2012). The formation pathways for 

nitrogenous-DBPs during ferrate pre-oxidation in the presence of NO3 are not well studied and 

require further research as there may be implications for water reuse systems.   

 

Figure 6: Relative performance of key filter effluent water quality parameters comparing Non-Activated 

Fe(VI) and FeSAOP pilot runs. Columns represent average hourly removals with error bars showing the 

99% confidence interval for each parameter. Note: PO4 error bars are small due to most results being 

non-detect. 

Both pre-oxidation methods resulted in near complete removal (>99%) of PO4 and fecal 

coliform pathogens, as well as high removal (>96%) of total residual Fe. Elevated removal of Fe 

and PO4, even with the coagulant switched from FeCl3 to polymer (see Section 2.3), suggests the 

particles resulting from pre-oxidation are primarily responsible for PO4 removal via adsorption. 

However, the treatment system was ~15% less effective at decreasing turbidity after FeSAOP 

pre-oxidation when compared to Fe(VI) alone, resulting in an increase in average effluent 

turbidity from 0.35 to 0.42 NTU. Average effluent particle counts also more than doubled in 

FeSAOP filter effluent from 7 particles/mL to 17 particles/mL, but were not exceedingly high in 

either trial. Average effluent particle size also changed significantly with non-activated pre-

                  



R[LGDWLRQ�SURGXFLQJ�SDUWLFOHV�DYHUDJLQJ�����ȝP�������ZKLOH�DFWLYDWHG�SDUWLFOHV�ZHUH�RQO\�

���ȝP��������VLPLODU�WR�WKRVH�SURGXFHG�LQ�WKH�V\QWKHWLF�ZDWHU�H[SHULPHQWV��7KHVH�UHVXOWV�DUH�

consistent prior studies which demonstrated FeSAOP shifts particle size distribution towards an 

elevated number of relatively smaller particles, likely due to the nearly instant particle 

precipitation mechanism where dimeric Fe hydroxo-species are rapidly supplied in hydrolysis 

resulting in more amorphic iron particles (Bzdyra et al., 2020; Goodwill et al., 2015).     

3.2.2. Impact on Organics 

Implementation of both pre-oxidation methods significantly altered the characteristics of 

organic matter during continuous flow experiments. Figure 7 gives the changes in fluorescent 

organic matter resulting from Fe(VI) and FeSAOP pre-oxidation. Regions presented in each 

EEM represent different types of organic matter components expected at each excitation-

emission fluorescence, as originally presented by Chen et al. (2003). The raw field-collected 

MWW exhibited the highest intensities in Regions II, III and V, indicating significant amounts of 

aromatic proteins, fulvic acid-like, and humic acid-like organic matter, respectively, which is 

typical for a MWW effluent EEM (e.g., Zheng et al., 2014). The treatment process with both pre-

oxidation methods were relatively successful at decreasing fluorescence in all regions. The 

largest change in regional intensity (see Text S3.3) appeared in region V, with a 47% and 54% 

decrease compared to influent for Fe(VI) and FeSAOP, respectively. This intensity decrease in 

region V (i.e., humic acids) is expected as humic-like compounds are generally more susceptible 

to oxidation and coagulation processes, due to the presence of electron rich moieties and anionic 

polyelectrolytic properties of humic substances  (Amy et al., 1�����2¶0HOLD�HW�DO��������. While 

both runs were effective at removing humic-like substances, implementation of FeSAOP resulted 

in a notably larger decrease in intensity volume in region IV and V between excitation 260-280 

                  



(56% versus 37% decrease) suggesting improved transformation of organics with FeSAOP 

compared to Fe(VI). This is attributable to the presence of SO4
-���2+�DQG�)H�,9��)H�9��IRUPHG�

during FeSAOP (Shao et al., 2020), which have previously been shown to have a high affinity 

for humic substances (McKay et al., 2014; Yang et al., 2015), and are known to improve 

transformation of electron-rich moieties when compared to Fe(VI) alone (Feng et al., 2018; 

Spellman et al., 2022).  

 

Figure 7: Comparison of organic matter fluorescence (i.e., EEM) in field wastewater and filter effluent 

(run time = 260 min) from both non-activated Fe(VI) and FeSAOP pre-oxidation. Regions I-V from Chen 

et al., 2003 indicate aromatic protein (I & II), fulvic acid-like (III), microbial by-product (e.g., 

Tryptophan) like (IV), or humic acid-like (V) organic matter. 

A difference between Fe(VI) and FeSAOP was also noted in TTHMs yield. When 

chlorinated with 29 mg/L Cl2, FeSAOP decreased TTHM yield from 77.4 to 58.8 µg/L, a 24% 

decrease in TTHMs compared to Fe(VI). THM modeling from Solarik et al. (2000) suggested 

TTHM yields would be lower in FeSAOP effluent than Fe(VI), but to a greater extent (33% less) 

than what was observed experimentally (24% less). However, the TTHM yields in both 

conditions were lower than model predictions in both experiments. Similarly, the lower THM 

yield with FeSAOP compared to Fe(VI) scaled with differences in both filter effluent UV254 

absorbance (see Figure 6) and region V fluorescence (see Figure 7) where FeSAOP 

                  



outperformed Fe(VI). THM yield was also directly proportional to decreases (influent to 

effluent) in SUVA, where FeSAOP decreased SUVA 31% while Fe(VI) only decreased SUVA 

by 5%. These results demonstrate FeSAOP is more effective at oxidizing aromatic and double-

bonded (i.e., DBP-forming) compounds (Hua et al., 2015; Reckhow et al., 1990). This improved 

transformation of THM precursor compounds is likely due to the presence of highly reactive 

Fe(IV)/Fe(V) and SO4
-���2+�GXULQJ�)H6$23��as both SO4

-��DQG��2+��KDYH�VKRZQ�DIILQLW\�IRU�

oxidizing DBP precursor organics (Sarathy et al., 2011; Wang et al., 2014).   

 

3.2.3. Operational Considerations 

 Operational parameters were also considered during both runs where polymer was used 

as coagulant. Figure 8 compares the development of headloss across the media filter during both 

runs. The headloss presented is normalized to the filters calculated clean bed headloss (i.e., 

headless = 0 at 0 min). Headloss increased linearly and modestly, with both runs resulting in < 

28 in-H2O (2.3 ft) after 8 hours. The final 8-hr headloss in both studies was relatively low 

compared to maximums typically set for media filters (e.g., 75-120 inches; Davies and Wheatley, 

2012; Stoddart and Gagnon, 2015), implying filters could have had notably longer run times. The 

relatively slow development of headloss is attributable to significant Fe particle removal 

occurring prior to filtration in the clarifier (i.e., total Fe after clarification <0.60 mg/L).  The 

predicted headloss in each run was modeled according to Ives (1970), assuming the majority of 

particles collected in the filter were iron-oxides (Figure 8). Experimental headloss data fit well 

with the modeled headloss having strong (>0.99) correlation in both trials. There were key 

differences in modeled and measured headloss when comparing the two pre-oxidation methods. 

FeSAOP implementation developed headloss at a ~50% faster rate than non-activated (1.6 in- 

                  



H2O/hr and 1.1 in- H2O/hr, respectively), a notable operational tradeoff between the examined 

oxidation methods. This increase in headloss development from FeSAOP is driven by two main 

factors: (i) the aforementioned relatively smaller FeSAOP average particle size, which would be 

collected more-efficiently by the media filter (e.g., Figure 4), and (ii) slight variations in the way 

FeSAOP particles are arranged on the media after collection likely attributable to morphological 

differences (Tobiason and Vigneswaran, 1994).  

 

Figure 8: Development of headloss (presented in inches of H2O) across the dual-media filter after (A) 

Non-Activated Fe(VI) and (B) FeSAOP pre-oxidation and the filter effluent turbidity (panels C and D, 

respectively). Headloss values reported are normalized to the filters calculated clean bed headloss. Solid 

OLQH�UHSUHVHQWV�WKH�GDWD¶V�OLQHDU�WUHQGOLQH�ZKLOH�GDVKHG�OLQH�UHSUHVHQWV�WKH�PRGHOHG�KHDGORVV�DFFRUGLQJ�WR�

(Ives, 1970)) (See Text S3.4 and Table S3). 

 The chemical operating cost of FeSAOP, an important operational consideration for scale 

adaptation, has not previously been discussed in the activated Fe(VI) literature. While bulk costs 

of reduced sulfur compounds that could be used for FeSAOP (e.g., sulfite, bisulfite, etc.,) are 

                  



readily available and approximated to be ~$1.30/gallon of bulk solution (Narragansett Bay 

Commission, 2022), the bulk cost of potassium ferrate (K2FeO4) powders are currently unknown 

due to current lack of mass production at water treatment scale. However, manufacturers 

approximate electrochemically-generated K2FeO4 powder (Monzyk et al., 2013) would cost 

between $3-45 per dry pound (varying with exact method used), calculated with known electric 

demands and raw chemical costs for production (Ramchandran and Goodwill, 2022). Using these 

estimates, the chemical operating cost for FeSAOP (not including pumping or mixing) per 

100,000 gallons (~3.8x105 L) of raw water under operating conditions presented in section 2.2 

would be approximately $25 per 100,000 gallons.   

 

4. Conclusions 

In general, continuous flow evaluations demonstrate FeSAOP as a viable pre-oxidation 

technology in a water reuse setting, resulting in several improved water quality outcomes, as 

supported by the data presented herein. The following conclusions will help create a pathway for 

FeSAOP adaptation at scale: 

x Reuse systems with FeSAOP pre-oxidation can produce water quality meeting most 

CA22 and SDWA requirements, such as effluent turbidities <0.14 NTU 

x FeSAOP does not have appreciable detriment to downstream processes and may improve 

physicochemical treatment effectiveness. However, FeSAOP does result in 50% faster 

development of headloss across media filters, a notable tradeoff compared to Fe(VI)  

x Operating with FeSAOP pre-oxidation generally produced higher-quality water than the 

system using traditional Fe(VI) 

                  



x FeSAOP effectively transforms aromatic and double-bonded EfOM compounds. 

However, effective EfOM transformation hinders oxidation of target compounds (i.e., 

caffeine), similar to comparable strong oxidants.  

x PO4 is effectively removed via adsorption onto particles resulting from both FeSAOP and 

Fe(VI) pre-oxidation methods 

x FeSAOP transforms DBP precursor organic matter and lowers yields by 25% when 

compared to Fe(VI) alone. However, formation of nitrogenous-DBPs in waters with 

elevated NO3 requires additional research as there may be implications for water reuse 

systems. 
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