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Abstract—Deep Neural Network (DNN) has been applied as
an effective machine learning algorithm to tackle problems in
different domains. However, training a sophisticated DNN model
takes days to weeks and becomes a challenge in constructing
research on large-scale DNN models. Distributed Deep Learning
(DDL) contributes to accelerating DNN training by distributing
training workloads across multiple computation accelerators
(e.g., GPUs). Although a surge of research works has been
devoted to optimizing DDL training, the impact of data-loading
on GPU usage and training performance has been relatively
under-explored. It is non-trivial to optimize data-loading in DDL
applications that need intensive CPU and I/O resources to process
enormous training data. When multiple DDL applications are
deployed on a system (e.g., Cloud and HPC), the lack of a
practical and efficient technique for data-loader allocation incurs
GPU idleness and degrades the training throughput. Therefore,
our work first focuses on investigating the impact of data-loading
on the global training throughput. We then propose a throughput
prediction model to predict the maximum throughput for an
individual DDL training application. By leveraging the predicted
results, A-Dloader is designed to dynamically allocate CPU and
I/O resources to concurrently running DDL applications and use
the data-loader allocation as a knob to reduce GPU idle intervals
and thus improve the overall training throughput. We implement
and evaluate A-Dloader in a DDL framework for a series of DDL
applications arriving and completing across the runtime. Our
experimental results show that A-Dloader can achieve a 23.5%
throughput improvement and a 10% makespan improvement,
compared to allocating resources evenly across applications.

I. INTRODUCTION

Accelerating the training procedure of large-scale Deep

Neural Networks (DNNs) has attracted concerns from both

industry and academia. A remarkable number of solutions

have been proposed in recent years to shrink the training

time for DNNs, including distributed deep learning (DDL) [1],

computation accelerator optimization [2], and communication

overhead reduction [3]. However, data-loading is still one of

the major components that dominate the training time of DDL

applications [4] because GPUs are idle while training kernels

are waiting for loading and transferring training data from

storage drives. Data-loading involves loading data from storage

to memory and pre-processing data, i.e., data augmentation

and normalization. One possible solution to accelerating data-

loading is to cache data in DRAM. However, modern training

data sets range from hundreds of GB to tens of TB [5], making

it impractical to buffer the whole data set in DRAM.

In such a way, data dependency exists between data loading

and GPU kernel training. GPU kernels can be idle to wait for

the preprocessed data before performing training. Intuitively,

users can mitigate this data-loading cost by assigning more

1This work was partially supported by National Science Foundation Award
CNS-2008072.

data-loading workers to DDL applications. As data-loading

workers read and preprocess data simultaneously, increasing

the number of workers can efficiently boost the data-loading

speed. However, resource contention might occur when the

number of workers increases to a certain extent. It thus

becomes challenging to allocate workers to simultaneously

running DDL applications. Users and system managers need

to be aware of resource availability and application charac-

teristics. A heuristic method is to construct experiments on

different combinations of workers for a set of applications

and run part of the applications because DDL applications

are iterative in nature. However, this method is very time-

consuming and cannot guarantee generality.

In this work, we design an Automatic Data-loader allo-

cation mechanism (named A-Dloader) for DDL frameworks,

which allocates CPU and I/O resources among DDL applica-

tions practically and efficiently. Our design targets are to (1)

make effective use of available data-loading workers based on

different DDL model characteristics and resource demands and

(2) shorten GPU idle intervals and thus optimize the overall

training throughput. To achieve this goal, we confront three

challenges: 1) estimate the resource demands (i.e., worker

number) to achieve the maximum throughput for each appli-

cation, 2) design an efficient worker allocation algorithm for

overall throughput optimization, and 3) implement the worker

reallocation mechanism programmatically and efficiently. The

major contributions of this work are summarized as follows.
• Model individual training throughput. We first inves-

tigate the DDL training pipeline and derive a throughput

prediction model (TPM) to model both data-loading and

training phases. We use regression algorithms to learn our

models and achieve a high prediction accuracy (above

90%). We also capture CPU and I/O contentions in TPM

to avoid resource over-provisioning.

• Design a run-time worker allocation mechanism. We

propose an efficient run-time worker allocation algorithm

to optimize the global throughput. The reallocation mech-

anism is supported by an event message communication

system for orchestrating each component. We also de-

velop an application master to perform intra-application

management.

• Implement and evaluate A-Dloader on a real system.
We implement A-Dloader on top of PyTorch and evaluate

A-Dloader in a real testbed by constructing experiments

on both static and dynamic workloads. In all experiments,

we consider different applications with various workload

characteristics. The experimental results show that A-

Dloader can improve up to 23.5% overall throughput and
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10% makespan (i.e., end-to-end execution time).

In the remainder of this paper, we introduce the background

of distributed deep learning and our motivation in Sec. II.

Sec. III proposes TPM and introduce our implementation of

A-Dloader. In Sec. IV, we show the evaluation of A-Dloader

on static and dynamic workloads in a real testbed. Sec. VI

discusses the related work. The conclusion and future work is

shown in Sec. VII.

II. BACKGROUND AND MOTIVATION

A. Deep Neural Network

Deep Neural Networks (DNNs) are generally constructed

of multiple stacked layers. According to the types of layers

used, the DNN can be divided into different categories, such as

the multilayer perceptron (MLP), convolutional neural network

(CNN), recurrent neural network (RNN). In this work, our

study focuses on the training of CNNs that are commonly

used in image classification applications. Besides the types

of DNNs, the network structures of the same type of DNNs

can also vary a lot, leading to a significant difference in

training a neural network. VGG [6] and Resnet [7] are two

common CNNs in a range of computer vision tasks. The

former is a “plain” network with simply stacked convolutional

layers, while the latter introduces a residual learning structure

that mitigates the problem of vanishing/exploding gradients,

making the large-scale network trained quickly.

The backpropagation (BP) algorithm [8] is widely used to

train a CNN model, which propagates the total loss back into

the neural network in iterations. Generally, each iteration of

BP consists of three steps, i.e., forward propagation, backward

propagation, and model updates. The training latency of a neu-

ral network largely depends on the size of the neural network

(e.g., the total number of parameters/weights), the computation

costs (FLOPs), and the number of training samples in each

iteration.

B. Distributed Deep Learning

To train DNNs efficiently on an extensive training data

set, distributed deep learning (DDL) frameworks apply the

concept of data parallelism to distribute the workload across

computation accelerators (e.g., GPUs) and coordinate the

training kernels globally [1]. Fig. 1 shows how modern DDL

frameworks (e.g., PyTorch) read training data sets from storage

drives and perform the DNN training on multiple GPUs.

Specifically, the training data set is first partitioned into batches

based on the predefined batch size that specifies the number

of the training data samples (e.g., images or frames in videos)

in a batch. DDL frameworks train a DNN model in iterations,

where each iteration performs the same operations on a batch

for training. Each batch is further divided into mini-batches

that spread across GPUs evenly. Each GPU saves a replica

of the DNN model and performs the same computation on

different mini-batches. At the end of iterations, the outputs

from each GPU are aggregated into a global result for updating

the model.

As shown in Fig. 1, DDL frameworks typically launch

multiple master (CPU) processes per GPU to distribute mini-

batches across GPUs. Each master process spawns worker

processes to load training data from the storage drive simulta-

neously. A worker process involves loading and preprocessing

mini-batches before sending data to GPUs. A master process

maintains a FIFO (First-In First-Out) queue to transfer the pre-

processed mini-batches to its attached GPU training kernels.

Workers enqueue the preprocessed mini-batches into the FIFO

queue and immediately load the next mini-batch. The training

kernel then fetches enqueued preprocessed mini-batches at the

beginning of each iteration.

Fig. 1. Distributed Deep Learning framework. “W” denotes worker process.

C. DDL Training Pipeline

Fig. 2 shows the DDL training pipeline with two workers for

a single GPU training kernel. As mentioned above, a master

process first spawns multiple workers for data-loading (i.e.,

loading and preprocessing mini-batches). These workers then

start to simultaneously read (I/O related) and preprocess (CPU

related) mini-batches. At the same time, the GPU training

kernel is idle until the preprocessed mini-batch is ready. Once

the master process transfers a preprocessed mini-batch to the

GPU training kernel, the training kernel starts to run the BP

algorithm 1. We denote an execution of BP as a step. The

time between the ends of two consecutive steps is called the

latency of an iteration. The DDL training continues iteratively

until the last mini-batch is consumed. We call the procedure

of training all batches as an epoch. The DDL training repeats

epochs until the accuracy that the model achieves is satisfied.

Therefore, the overall training time depends on the number

of epochs of an application and an epoch’s latency, where the

former mainly relies on the model accuracy while the latter is

mainly determined by the iteration latency.

A surge of research works have been conducted to shrink the

training pipeline by reducing the time cost of steps [1] [2] [3].

However, the impact of data-loading in the DDL training

pipeline has been relatively under-explored. At each iteration,

a training kernel might be idle and waiting for the preprocessed

mini-batch. We can derive the idle time at GPU kernels by

excluding the step time from the iteration duration, see Fig. 2.

Meanwhile, the data-loading and data transfer of iteration i can

1The execution flow of BP algorithm varies across different DDL archi-
tectures, e.g., Parameter Server, All-Reduce, and Ring-Reduce.To simplify
our throughput model, we consider that the forward propagation, backward
propagation, and model updates are executed sequentially in PyTorch.
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Fig. 2. DDL training pipeline. “R” denotes reading data from local/remote
storage. “Pre” refers to preprocessing data. “T” is transferring data from
CPU to GPU. “S” represents the training step, i.e., the execution of the
backpropagation (BP) algorithm on a batch/mini-batch.

overlap with the step of iteration i−1 at GPU training kernels

because the data-loading is independent of the outputs of step.

For example, as shown in Fig. 2, as there are two workers

loading mini-batches, the second iteration can immediately

start the next step. We notice that idle intervals (especially long

ones) at GPU kernels are undesirable because GPU resources

have not been fully utilized for training. If one can shorten

or remove idle intervals, then the DDL training time can

be reduced, and the throughput2 of DDL training can be

increased. Therefore, the goal of this work is to maximize
resource utilization on GPU kernels and obtain high training
throughput by avoiding the idle time at each training kernel.

D. Motivation: Throughput Investigation

One practical way to avoid idle time at training kernels is to

reduce the data-loading time at workers so that GPU kernels

can continuously run steps for preprocessed mini-batches

without any waiting, such as iteration 1 in Fig. 2. It is intuitive

to allocate as many workers as possible to a DDL application

to decrease the data-loading time and thus reduce the idle

time. However, the resources (i.e., CPU and I/O bandwidth)

for workers in the system are limited. When multiple DDL

training applications are launched simultaneously, assigning

too many workers to each application can inevitably cause

severe resource contention at the master and thus contrarily

degrade data loading performance. Therefore, this paper tack-
les the critical problem for the design of a resource (worker)
allocation scheme among multiple applications, aiming to
minimize GPU idle time and maximize the overall training
throughput. It is a non-trivial problem because the allocation

can be affected by many factors, including resource capabil-

ity and availability, application workload characteristics, and

system running status.

We conduct preliminary experiments in real systems to

investigate the impact of worker allocation on the performance

regarding training throughput. In these experiments, we launch

multiple applications simultaneously, with various numbers of

data-loading worker processes allocated to each application.

2The training throughput is defined as the number of training samples
that are processed on training kernels in unit time. Since multiple GPUs are
training on different mini-batches from the same batch simultaneously, the
throughput of a DDL application is calculated by dividing the batch size on
the average iteration latency.

We first equally distribute data-loading workers among ap-

plications, i.e., each application receives the same number of

workers regardless of the variance of their training workloads

caused by different model sizes, batch sizes, and other hyper-

parameters. This is considered as the baseline, referred to as

balance. We also design the other two experiments, where

the number of data-loading workers is proportional (resp.

inversely-proportional) to the model size of each application.

We refer to the “proportional” experiment as proportion and

the “inversely-proportional” experiment as inverse-proportion.

Specifically, we run these experiments on the testbed shown

in Sec. IV. In each experiment, we submit three applications

to simultaneously train three DNNs, including Resnet18 (11.7

million weight parameters) and two small synthetic models

(i.e., mdResnet12 and smResnet20 have 1.8 and 0.9, respec-

tively, million weight parameters). We use ImageNet as our

training data set, and set the same hyper-parameters for all

models, e.g., the batch size is set to 128 images, the learning

rate is 0.1, the momentum is 0.9, and the weight decay

is 0.0001. Each application is distributed across two GPUs

(one GPU is shared across two applications), training the

model with 500 iterations. The performance of applications

is expected to be consistent across iterations.

Fig. 3. Training throughput of three DDL applications. Balance, Inverse-
proportion, and Proportion gives Resnet18, mdResnet12, and smResnet,
(6,6,6), (2,4,12), and (12,4,2) workers, respectively. WAA (our new scheme)
allocates workers dynamically.

Fig. 3 shows the training throughput of each application

under three manual allocation approaches. We will discuss

our dynamic allocation scheme (WAA) later in Sec. IV-B.

We also calculate the overall training throughput under each

approach by summing the individual throughput of the three

applications in each experiment. We observe that all appli-

cations, as expected, have a similar throughput under the

balance, as applications are allocated with the same number

of workers, and the overall throughput is 1, 660 images/sec.

However, when we proportionally allocate more workers to

applications with larger models (a more intuitive way), the

overall throughput, in contrast, drops by 7% (i.e., 1, 554
images/sec). We notice that Resnet18 is a relatively large

model that requires more computation (i.e., long step time)

at GPU training kernels. Allocating too many workers to

Resnet18 can help reduce idle time but not significantly

because step is the bottleneck for training Resnet18. Mean-
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while, the training throughput of the other two applications

with smaller models is dramatically degraded because fewer

workers incur much longer idle intervals. Therefore, under

the inverse-proportion setup, we counter-intuitively give more

workers to applications with smaller models. We found that

although we sacrifice Resnet18’s throughput, the other two

applications (i.e., mdResnet12 and smResnet20) obtain the

throughput boosts that make up the throughput degradation in

Resnet18. The overall training throughput under the inverse-
proportion is thus increased by 14% (1, 928 images/sec),

compared to the balance.

The above throughput improvement under the inverse-
proportion indeed comes from the fact that the inverse-
proportion increases GPU utilization by shortening the GPU

idle time. We remark that such an improvement can sig-

nificantly reduce the overall training time. Considering a

general DNN application training on the ImageNet dataset

with 150 epochs, the inverse-proportion can save 10+ hours

of training time in total. This motivates that optimizing data-

loading has significant potential in accelerating DNN training.

Furthermore, from the above observations obtained in Fig. 3,

we conclude that manually setting the number of workers for

applications with different DNN models cannot fully utilize

resources in the system. This thus motivates us to design

a framework that can automatically and dynamically allo-

cate workers among running applications considering resource

availability and DNN workload features.

III. A-DLOADER DESIGN

A. Problem Formulation and Challenges

Our design focuses on the optimization of the overall

throughput for multiple DDL training applications running si-

multaneously on a multi-GPU node by automatically adjusting

the CPU and I/O resources allocation (i.e., workers) at run-

time. We formulate this problem as a maximization optimiza-

tion problem shown as formula 1, where Ti(di) represents

a throughput function of application i with the number of

workers di allocated to the application as a variable.

{d1,d2,...,dN}
N∑
i=1

Ti(di) (1)

We have the following challenges in solving the problem:

• The first challenge is to formulate the throughput function

Ti with respect to di. The throughput of a DDL training

application is affected by multi-factors, including system

specifications (e.g., I/O bandwidth, CPU processing rate,

and GPU number and processing rate) and workload

characteristics (e.g., batch size, model size, and epoch

number). We need to consider these factors in our for-

mulation for a precise model.

• The second challenge is how to apply our throughput

prediction model to instruct worker allocation to im-

prove system-wide throughput. We need a global worker

allocation scheme to distribute limited CPU and I/O

resources across all applications for throughput optimiza-

tion and consider the contentions caused by potential

Fig. 4. Data-loading and processing rates.

over-provisioning, i.e., worker processes compete for

resources.

• The third challenge is that, as we know, there are no

dynamic worker allocation mechanisms in PyTorch or

other DDL frameworks, nor existing research works on

it. Once the system receives a new application submitted

by users or an application completes, our design needs

to reallocate workers for applications at run-time with a

negligible impact on the system performance.

B. Throughput Prediction Model

In a typical DDL application, the training data (i.e., a batch)

is distributed across multiple training kernels (i.e., GPUs), and

a single training kernel repeats iterations of processing mini-

batches as shown in Fig. 2. Because all training kernels need

to synchronize the updated model at the end of an iteration,

the (average) iteration time of all training kernels is the same.

Therefore, the throughput of an application is defined as how

many training samples are processed per second, as calculated

by formula 2, where B is batch size and titer represents the

average iteration time. We can further break titer to average

idle time (tidle) and average backpropagation (BP) time (tbp).

T =
B

titer
=

B

tidle + tbp
(2)

To derive tidle and tbp, we investigate the data-loading and

training rate at workers and GPU kernels, respectively. Fig. 4

shows the procedure that a master process sends pre-processed

mini-batches to training kernels via a FIFO queue. We use

λ to represent the data-loading rate defined as the number of

mini-batches pre-processed per second. We denote the training

rate (i.e., batch-consuming rate) as μ, indicating the number

of mini-batches consumed by the training kernel per second.

Therefore, we derive tbp from formula 3, and tidle from for-

mula 4. In formula 4, μ < λ means training kernel consumes

mini-batches slower than data-loading, and the training kernel

can (almost) always fetch a mini-batch from the FIFO queue.

Thus the average idle time is approximately zero. Otherwise,

the average idle time is determined by the difference between

the time taken for data-loading and backpropagation.

tbp =
1

μ
(3)

tidle =

{
θ1 ≈ 0 if μ < λ
1
λ − 1

μ if μ ≥ λ
(4)

As λ and μ are determined by multiple factors, including

system performance and workload characteristics, we extend
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λ and μ to functions Fλ(d) and Fμ(ω), where ω repre-

sents parameters representing the application’s characteristics

(such as batch size, model size and FLOPs), and d is the

worker number. Therefore, we have a relationship between the

throughput and the worker number, bridged by the formulation

of λ and μ, as shown in formula 5.

T =

{
B ∗ Fμ(ω) if μ < λ

B ∗ Fλ(d) if μ ≥ λ
(5)

Training Rate. The training rate (Fμ) depends on the

average time cost to complete a backpropagation algorithm.

For each iteration, the average BP time consists of the time

cost of doing forward propagation (i.e., calculating loss),

backward propagation (i.e., calculating local gradients), com-

munications between GPUs, local gradients aggregation, and

model updates, as introduced in Sec. II-C.

Forward propagation executes the same operators on a mini-

batch of samples, as the neural network is predefined. Assume

the mini-batch size is b, and the number of floating-point op-

erators is f , the forward propagation time cost is proportional

to b and f , formulated as α0(b∗f). Backward propagation has

the same computation characteristics as forward propagation

but has two times the computation expense of the forward

propagation [9]. Therefore, we formulate backward propaga-

tion as 2α0(b∗f). The communications involve gathering local

gradients from all GPUs to one and then passing the updated

model to all other GPUs. We denote the communication

bandwidth as S and assume the application uses n GPUs, then

each GPU obtains S/(n−1) bandwidth. As the model has the

same size as the gradient, the time cost of communications

is formulated as α1
2∗M

S/(n−1) , where M represents the model

size. Once gradients derived for all samples are collected

on one GPU, the gradient aggregation happens with a time

cost proportional to the model size and the mini-batch size.

Therefore, the aggregation cost is formulated as α2(b ∗ M).
The last part is the model update, which is only related to the

model size and can be formulated as α3M .

We put S into α1 and all constant numbers into other α’s as

a part of coefficients to learn. We also merge the expression

of forward and backward propagation. Therefore, the training

rate can be modeled as formula 6. It is worth noticing that Fμ

is irrelevant to the number of workers, as the worker number

only affects CPU and I/O resources allocated to an application.

Therefore, given the hyper-parameters of an application, we

can predict the training rate before the application runs.

Fμ = (α0(b∗f)+α1(M ∗n)+α2(b∗M)+α3M+α4)
−1 (6)

We use different regression models to learn α’s by collecting

samples of (b, f,M, n, Fμ). We run each training application

on ImageNet for 500 iterations. Note that due to the iterative

nature of DDL applications, hundreds of iterations should be

enough to collect reliable samples. We try as many as possible

combinations of mini-batch size and number of GPUs (i.e., b
and n) for different DDL model architectures. For each DDL

model architecture, we use THOP [10] to get floating-point

TABLE I
REGRESSION MODEL ACCURACY.

Model Training Rate Data-loading
Linear Regression 0.93 0.98
Polynomial Regression 0.94 0.98
K-Nearest Neighbor 0.84 0.97
Random Forest Regressor 0.87 0.97

operations and the model size (i.e., f and M). Each run takes

about tens to hundreds of seconds. We filter out samples where

the BP time takes 95% of the iteration time to make sure

these samples satisfy μ < λ, i.e., no idle time. We generate

100+ samples and use 60% percent of samples for training and

the other samples for validation. Table I summarizes the used

regression models and their corresponding prediction accuracy.

We choose the Fμ model with the highest accuracy to infer

the throughput prediction.

Data-loading Rate. Data-loading of a mini-batch involves

two sequential procedures i.e., reading samples from storage

drives and executing pre-processing on samples. Therefore, the

data-loading rate (Fλ) can be formulated as (tread + tpre)
−1.

We denote R as I/O bandwidth and U as CPU processing

rate. For a single data-loading worker, without consideration

of contentions, the data-loading rate is (b/R+ b/U)−1, where

R and U are constant for a given worker. As we have d
workers for each GPU, the data-loading rate can be modeled

in formula 7.

Fλ =
d

b
∗ 1

R−1 + U−1
(7)

However, we found that contentions of CPU and I/O re-

sources are unavoidable as the number of workers increases

system-widely. To learn the impact of contentions on Fλ,

we construct experiments on a training application with a

small DDL model, which ensures that μ ≥ λ, i.e., throughput

is determined by arrival rate, i.e., Fλ. Because the worker

processes of applications are scheduled by the OS and are

homogeneous regarding the impact of contentions, we can

use one application to investigate the degradation of the data-

loading rate caused by resource contentions. Fig. 5 shows the

data-loading rate as a function of the number of workers. We

observe that the increasing rate of Fλ drops at 11 workers,

which means it reaches the point where resource contention

starts to degrade the data-loading rate. Finally, Fλ saturates at

around 24 workers as our testbed can only support 24 CPU

threads.

To reflect the above impact of resource contentions, we use

regression models to learn values of R−1 and U−1 instead of

using constant values. Specifically, we divide the function of

F into three stages (i.e., as shwon in Fig. 5) and learn a pair

of {R,U} for each stage. The accuracy of different regression

models is shown in Table I, where the accuracy is as high as

0.98. It is worth noticing that our TPM training cost includes

the overhead of collecting samples and training the model.

The former can be finished by running only a few hundred

of iterations of applications because DDL applications repeat

the same computation across iterations. The latter only takes
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Fig. 5. Data-loading rates under resource contentions. Contention-free stage:
workers range from 1 to 11. Contention stage: workers range from 11 to 24.
Saturation stage: workers larger than 24.

tens of seconds (e.g., 12 seconds in our experiments) because

regression models are less complex.

C. A-Dloader Implementation

As discussed in Sec. III-A, no dynamic worker allocation

mechanisms have presently been supported in existing DDL

frameworks. Because most recently emerging works on data-

loading optimization are implemented on PyTorch (a widely

used DDL framework), and as reported by Facebook [11],

a workload study shows that more than 60% of GPU hours

during 05/11/20 to 06/05/20 were spent on calling PyTorch

packages. Therefore, one of our main contributions is the

implementation of A-Dloader on top of PyTorch to enable

worker reallocation at run-time.

1) System Overview: Fig. 6 shows the architecture of A-

Dloader . Specifically, 1 the user can submit DDL training

applications via the user interface to the scheduler. 2 The

scheduler is responsible for managing and scheduling I/O and

CPU resources for applications at run-time by dynamically

altering the number of workers for applications. 3 The life-
circle monitor tracks the status of applications, and 4 reports

to the worker allocator. The worker allocator also maintains

the information of on-the-fly applications, including both user

specifications and run-time status. Then the worker allocator

makes reallocation decisions by using the throughput pre-

diction model. Finally, 5 the worker allocator instructs the

scheduler to reallocate workers among applications at run-

time.

Fig. 6. A-Dloader Architecture.

2) Worker Allocator: The worker allocator module receives

the run-time status of applications from the life-circle monitor.

It also obtains the application’s information about hyper-

parameters passed by users in submission. Then the worker

allocator uses our throughput prediction model (TPM), see

Sec. III-B, to estimate the training rate and data-loading rate

for each application. With the combination of formulas 5, 6,

and 7, we derive the maximum throughput that each appli-

cation can achieve (e.g., Tmax = B ∗ Fμ when Fμ equals

Fλ). Considering the limited worker processes a node can

support, we design a worker allocation algorithm to maximize

the overall throughput of all running applications, as shown in

Algorithm 1.

The Worker Allocation Algorithm (WAA) takes the hyper-

parameters of all applications, the number of applications, and

the maximum number of CPU threads as input arguments

and returns the number of workers per GPU (master) for

each application to maximize the overall throughput. The

WAA first makes sure each GPU at least has one worker, see

lines 1-2. Then, for each application, the WAA calculates the

training rate by passing the hyper-parameters to formula 6 and

calculates d
′
i that can maximize the throughput, i.e., lines 4-5.

However, d
′
i is a float number, and WAA needs to return the

number of workers per GPU, which is an integer. Therefore,

we denote di to be the ceiling value of d
′
i (i.e., line 6), and

the gap between d
′
i and di is the number of over-provisioned

workers. To avoid over-provisioning, the WAA sorts di by

the over-provisioned workers descendingly in line 8. Finally,

the WAA decreases di by 1 from the most over-provisioned

application until the overall workers are equal to the maximum

CPU threads, i.e., line 10 to 15. We note that the WAA ensures

each application at least obtains one worker per GPU in lines

13-14.

Algorithm 1: Worker Allocation Algorithm

Input: The hyper-parameter set W = {ωi}, maximum CPU threads
C, and application number N

Result: The worker number set D = {di} per GPU
1 if C ≤ N then
2 return di = 1, ∀di ∈ D
3 for i ← 1 to N do
4 μ ← Fμ(ωi)

5 d
′
i ← the worker number under μ = Fλ(d

′
i)

6 di ← the ceiling value of d
′
i

7 end
8 D ← sort D by di − d

′
i descendingly

9 while sum of D > C do
10 for i ← 1 to N do
11 if sum of D < C then
12 return D
13 else if di > 1 then
14 di = di − 1
15 end
16 end

3) Scheduler: The scheduler dynamically reschedules

workers at points where the submission or completion of ap-

plications happens by pausing and retrieving applications with

new worker allocation. In order to trigger worker reallocation

at run-time, we design an event message system for communi-

cations among the scheduler, application masters, and the user
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interface. When a new batch of applications is submitted to the

user interface, the user interface sends an “Arrival” signal to

the scheduler with the applications’ information. The scheduler

first wakes up the worker allocator that takes the information

of the currently running applications and the latest submitted

ones to calculate the new di. The scheduler then sends “Pause”

signals to application masters that need to reallocate workers,

i.e., the new di is different from the previous one. The life-

circle monitor sends a “Paused” signal back to the scheduler

if applications are paused successfully. Then the scheduler

launches the submitted applications and resumes the paused

applications with new worker allocations.

Similarly, when an application is completed, the application

master sends a “Finish” signal to the scheduler via the life-

circle monitor. Then the scheduler wakes up the worker

allocator to check whether it is necessary to reallocate the

spare workers released by the finished application to the other

applications. If the throughput of specific running applications

can benefit from more workers, the scheduler will pause

and retrieve those applications with a new worker number.

Otherwise, the scheduler will keep those release workers idle

until new applications come.

4) Application Master: The application master is responsi-

ble for launching data-loader workers and training kernels. The

application master will be launched first when the scheduler

launches an application. Then the application master spawns

a set of worker processes and training kernels on GPUs. To

communicate between the master and training kernels to track

the application’s information (e.g., heartbeat) at run-time, we

also design an intra-application event message system. Once

the application master receives a “Pause” signal from the

scheduler, the master sends “Pause” signals to all training

kernels and waits for all kernels to exit. Since all training

kernels have the same model at the end of each iteration, the

training kernel with index 0 saves the current model into a

storage drive for future retrieval. When all training kernels

exit, the application master sends a “Paused” signal with the

model path to the life-circle monitor that further notifies the

scheduler.

5) User Interface and Life-circle Monitor: Any submission

or completion of an application can trigger the pause/retrieve

procedure in the scheduler of A-Dloader. High overhead (e.g.,

paused time) may be caused by high trigger frequency. We

thus design two buffers in the user interface and the life-circle

monitor to mitigate this impact. For example, we set a time

window (a configurable parameter) in the user interface for

buffering submitted applications. Suppose multiple applica-

tions arrive within the same time window. In that case, they

are submitted in a batch to the scheduler at the end of the

time window. Similarly, we design a completion buffer at life-

circle monitor to control the reallocation frequency caused by

finishing application. We set the time window of 30 seconds

for both buffers in all of our experiments. Users can adjust

this parameter value based on their workload intensity.

IV. EVALUATION

A. Methodology

Testbed. We evaluate our design on a GPU server with 4

Geforce RTX 2080ti GPUs (11GB memory per GPU), 128GB

RAM, 24 Intel i9-9920X CPUs (3.50GHz), and a Samsung

970 EVO 2TB SSD. Our design is on Ubuntu18.04 with kernel

5.4.0-90-generic. A-Dloader is implemented on top of PyTorch

1.7.1. We apply NCCL [12] (NVIDIA Collective Commu-

nications Library) as the protocol for GPU communications.

We only use 18 CPU cores to avoid the interference of other

background applications. The ImageNet [13] dataset is used

for evaluation with an input image size of 224×224.

Workload Generator. We design a workload generator to em-

ulate the user behavior submitting applications to A-Dloader.

The workload generator generates a list of application submis-

sion requests. Each request includes the arrival time, hyper-

parameters, GPU index to use, and the number of iterations to

finish. As our goal is to maximize the overall throughput and

the change of worker number does not affect prediction accu-

racy, we discard the consideration of accuracy in our work. We

use the VGG and Resnet family models as the representative

DNNs in our experiments. Besides the commonly used model

configurations, such as Resnet18, Resnet34, VGG13, and

VGG16, we also generate a set of synthetic DNN models to

extend our workload variety for learning TPM and an extensive

evaluation. The synthetic models include the Resnet and the

VGG models with the customized number of convolutional

layers (e.g., VGG7, Resnet28) and the corresponding 4× and

2× narrower versions, which are named smResnet, smVGG,

mdResnet, and mdVGG, respectively.

Evaluation Metrics. We use throughput, defined as the num-

ber of training samples processed by GPUs per second, as our

first metric to represent the utilization of GPUs in the system.

We use makespan, defined as the duration between the start

of the first application and the end of the last application,

to investigate the end-to-end latency under different worker

allocation schemes.

Baselines. We have three baselines of worker allocation

schemes. The proportion baseline allocates more workers to

larger models, while the inverse-proportion baseline allocates

more workers to smaller models. The balance baseline gives

the same number of workers to all applications. Whereas, in

a scenario where users submit applications at random time

intervals, our baseline distributes available workers evenly

across applications without exceeding the maximum worker

numbers.

B. Static Workload

We first construct experiments on a static workload, where

all applications are submitted at the same time, to evaluate

the accuracy of our throughput prediction model (TPM) and

the effectiveness of our worker allocation algorithm (WAA).

Under a static workload, the WAA is only triggered at the

beginning of the experiment and the completion of each

application. The same DDL applications (i.e., Resnet18,
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mdResnet12, and smResnet20) as used in Sec.II-D are consid-

ered in this set of experiments. Fig. 3 shows the throughput of

each application under three baselines and our WAA. Table II

also shows the performance comparisons in terms of GPU

idle time, GPU utilization, and execution time under different

schemes.

As shown in Fig. 3, compared to the balance baseline,

our WAA achieves the throughput improvement by 23.5%,

which is slightly better than the inverse-proportion and does

not degrade the throughput of Resnet18 dramatically. We

further observe that by optimizing data-loading, our WAA can

reduce the GPU idle intervals and thus increase the average

GPU utilization, see Table II. As a result, both total training

throughput and average training latency are improved under

WAA. But, we also notice that WAA obtains a slightly longer

makespan than the other two baselines (i.e., balance and

inverse-proportion). This is because the latency of Resnet18

is increased, which causes a longer makespan, although the

latencies of mdResnet12 and smResnet20 decrease. We remark

that when DDL applications use more epochs to train, our

WAA is able to reduce the makespan significantly, see the

results in Sec. IV-C.
TABLE II

WORKER ALLOCATION SCHEME COMPARISON.

balance propotion
inverse-

propotion
WAA

ave. GPU idle (s) 92 125 107 84
ave. GPU util. (%) 28 18 27 30
ave. latency (s) 130 153 147 119
makespan (s) 132 222 163 160

To elaborate on how WAA works, we further show WAA’s

run-time events for allocating workers in Fig. 7. Recall that

the total number of workers available is 18 as we only use 18

CPU cores for data loading in our testbed, see Sec. IV-A.

At the beginning of the execution, we observe that WAA

allocates 2, 8, and 8 workers to Resnet18, smResnet20, and

mdResnet12, respectively. At around 97 seconds, smResnet20

and mdResnet12 are finished and stored in the completion

buffer. After the scheduler receives the completion buffer,

the worker allocation mechanism is triggered to reallocate

the just-released workers to the remaining application, i.e.,

Renset18. Note that Renset18 only needs eight workers to

ensure the data-loading rate equals the training rate. Thus,

after pausing and retrieving, Renset18 is assigned with eight

workers to achieve its maximum throughput, finishing at

around 160 seconds. Lastly, we measure the overhead of one

round of pausing and retrieving, i.e., about 16 seconds, which

is relatively low and ignorable when performing a general

DNN training that usually takes tens and even hundreds of

hours.We contribute the throughput improvement to WAA’s two

designs. First, WAA relies on our TPM to accurately predict

the number of workers that should be allocated to run-

ning applications to maximize the overall training through-

put. Consequently, WAA distributes workers inversely pro-

portionally to the model sizes, which is consistent with the

inverse-proportion method. In addition, WAA ensures no over-

provisioning of CPU and I/O resources to any applications. For

Fig. 7. WAA’s run-time events for worker allocation under static workload.

example, eight workers are sufficient for Resnet18 to reach

the optimal throughput point. Under this consideration, WAA

only allocates eight workers (as shown in Fig. 7) to Resnet18.

This design can avoid reallocation if a new application that

requires less than eight workers comes after 113 seconds in

Fig. 7. Second, our WAA automatically reallocates workers if

spare workers are detected. This design can better utilize CPU

and I/O resources and further improve the overall throughput

compared to the inverse-proportion method.

C. Dynamic Workload

We further construct experiments on dynamic workloads

that have applications arriving and completing at random

points to evaluate our design systematically. Table III summa-

rizes the information of a dynamic workload that we use in

these experiments, where we have totally eight applications

arriving within 800 seconds, and these applications have

different model sizes and workload hyperparameters, such as

batch size, iteration number. We also design this dynamic

workload by considering the resource limit of CPUs and

GPUs in our testbed (see Sec. IV-A for details) to avoid

GPU’s out of memory (OOM) and CPU’s overloading. For

example, we set a small batch size (e.g., 64) for a large model

(e.g., VGG13) to fit its training procedure in GPU’s memory.

Additionally, a resource scheduler (such as Yarn [14] and

Mesos [15]) commonly lets a new application wait in a queue

if the required resource (e.g., virtual CPUs) is more than the

available one. We thus configure the workload with the total

number of workers allocated simultaneously no more than the

limit of CPU cores (e.g., 18) to ensure all applications start

their executions once they are submitted.

Fig. 8. Run-time events for the dynamic workload without worker realloca-
tion. The makespan is 1,200 seconds.

First, we run an experiment on the dynamic workload

where worker reallocation is disabled in WAA during the

run-time, i.e., each application is exactly allocated with the

required workers when they arrive (see “workers” column

in Table III). We use the result of this experiment as the

baseline to evaluate the dynamic worker reallocation module
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TABLE III
DYNAMIC WORKLOAD SUMMARY.

Index Model FLOPs Model Size Batch Size Iterations Workers Arrival Time
app1 mdResnet20 0.5 B 3.4 M 128 1000 6 0
app2 smResnet22 0.2 B 1.2 M 128 1000 6 0
app3 Resnet32 3.4 B 21.5 M 128 1500 6 120
app4 VGG13 11 B 9.9 M 64 1500 2 420
app5 mdResnet12 0.3 B 1.8 M 128 500 6 420
app6 smResnet32 0.2 B 1.4 M 128 500 4 420
app7 Resnet28 3.0 B 19 M 64 1000 6 800
app8 smVGG7 1.4 B 2.4 M 64 1500 4 800

in A-Dloader. Fig. 8 shows the run-time events for worker

allocations in this experiment. Each rectangle represents the

execution of an application, where the height indicates the

worker number allocated to the application, and the length

indicates the duration of the application. We also mark im-

portant timestamps on the x-axis across the execution time.

The y-axis indicates the worker allocation among running

applications. Without worker reallocation, intervals with idle

workers can be frequently observed during the execution time.

For example, only 2 workers are in use to run app4 even after

other applications finish and release their workers, e.g., at the

time of 655 and 1063 seconds. This inevitably under-utilizes

CPU and I/O resources and incurs an extremely long execution

time of app4. Consequently, the makespan (i.e., the end-to-

end execution time of the whole workload) is increased as

well, e.g., 1, 200 seconds in Fig. 8. Then, we run another

Fig. 9. Run-time events for the dynamic workload with worker reallocation.
The makespan is 1,089 seconds.

experiment on the same dynamic workload but enable the

workload reallocation mechanism in WAA. The corresponding

run-time events of worker allocation are shown in Fig. 9.

Each red line represents a worker reallocation triggered by

the arrival or the completion of an application. In addition,

we use a green line to mark the moment that the arrival or

the completion of an application does not trigger the pause

and retrieve procedure. Compared to the baseline in Fig. 8,

WAA’s worker reallocation mechanism significantly reduces

the number of idle workers and thus improves data loading

parallelism and resource utilization during the execution.

For example, all 18 workers (instead of 12 in Fig. 8) are

allocated to two applications (i.e., 10 workers to app1 and

8 workers to app2) at the beginning and then reallocate to

the three applications inversely proportionally to their model

sizes when app3 arrives. As a result, the worker utilization is

maximized and the latency of app1 and app2 drops from 260

seconds in the baseline to 210 seconds in A-Dloader. when

three new applications (i.e., app4, app5, and app6) arrive at

420 seconds, A-Dloader reallocate all 18 workers to the four

applications, where app5 and app6 that train smaller models

receive more workers, i.e., six and eight workers, respectively.

In this way, app5 and app6 can finish faster and then release

workers for reallocation.

Another example, when app8 finishes at time 940 seconds,

WAA reallocates some of the released workers to both app4
and app7, which thus shortens the latency of these two appli-

cations. Consequently, the makespan (i.e., 1,089 seconds) of

A-Dloader drops by around 10%, compared with the baseline

(i.e., 1,200 seconds). Moreover, we found that WAA does

not trigger worker reallocation when app3 and app8 finish.

This is because WAA detects that app4 has already received

enough workers (i.e., 4) to achieve the maximum throughput.

As discussed before, this design can avoid the extra overhead

for pausing and retrieving applications.

D. Impact of Resource Contentions.

As discussed in Sec. III-B, the contention of I/O and CPU

resources happens when the number of workers increases

to some saturating point. our Throughput Prediction Model

(TPM) thus strives to capture the impact of contentions on

the data-loading rate in the model. To evaluate the accuracy

of our TPM under contentions, we conduct an experiment on

a simple workload that has two applications (i.e., Resnet32

and VGG16) under A-Dloader with and without considering

CPU and I/O contentions in the model prediction. Specifically,

when our TPM captures the contention impact in the data

loading rate, A-Dloader allocates eight and ten workers to

Resnet32 and VGG16, respectively and obtains the overall

training throughput as 1, 654 images/sec. Whereas, when the

TPM ignores the contention in the model, Resnet32 gets six

workers and VGG16 gets four workers. The overall throughput

is reduced to 1, 391 images/sec. The reason is that due to re-

source contention, applications need more workers to achieve

the maximum throughput. Our TPM captures this impact and

thus predicts the accurate number of workers allocated to

these applications. We finally remark that it is more critical to

consider the contention impact in the prediction model when

the workload has more applications with larger models.

V. DISCUSSION

Method Generality. To generalize our method to a new

GPU cluster, the user only needs extra efforts to run DDL

applications in hundreds of iterations to collect samples and

train the throughput prediction model. The characteristics of
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heterogeneous devices (i.e., GPUs and CPUs) and environ-

ments (i.e., CUDA version and OS version) are captured by

our throughput formulation.

Scalability. Our method targets to optimize training

throughput by reducing GPU idleness. Although we only eval-

uate A-Dloader on a multi-device node, A-Dloader can also

be extended to multi-node clusters. We notice that network

communication may cause extra latency for transferring data

among nodes in a multi-node cluster.

Model Diversity. Our work currently focuses on the training

of convolutional neural networks (CNNs) because CNNs are

the commonly used DNNs in the deep learning domain. We

notice that other types of DNNs, such as the multilayer

perceptron (MLP) and Transformer, have different features.

The extension of our solutions to different types of DNNs

will be our new research direction in the future.

Fairness Issue. The target of this work is to maximize

the overall throughput system-widely. The worker allocation

algorithm proposed in this work prioritizes applications with

smaller DNN models. It is thus possible that applications with

relatively larger DNNs models are sacrificed with increasing

latency. In addition, DDL applications with similar resource re-

quirements can hardly benefit from A-Dloader. A sophisticated

algorithm can be further designed on top of our A-Dloader to

address the fairness and starvation.

VI. RELATED WORK

A surge of research efforts has been devoted to accelerating

the training process of DNNs by optimizing data-loading.

In [16], several optimizations are adopted to alleviate the

bottleneck of data loading, including using multiprocessing

to add more workers to overlap the loading of different

batches and utilizing multi-threading to parallelize sample

preprocessing. The work [17] proposes DeepIO, an entropy-

aware I/O pipelining framework, which utilizes a temporal in-

memory storage system to avoid redundant data loading from

the backend storage system. DeepIO designs a storage buffer

supported by RDMA to efficiently load training data inter-

computation nodes. Works in [16] and [18] focus on storage

stack optimization for DDL training via cache and pre-fetch,

but lack the analysis and optimization of preprocessing that

becomes the bottleneck in modern DNN training.

In [5], NVIDIA Data Loading Library (DALI) is applied

to optimize the data-loading by migrating data-preprocessing

to GPUs. DALI attempts to share tasks of preprocessing data

between CPUs and GPUs for releasing the CPU intensity of

data-loading. The prior work [19] designs a DS-Analyzer to

analyze and mitigate data stall in DNN training. The DS-

Analyzer measures the latency of each stage of data-loading

to predict the latency of data-loading. However, these existing

works are proposed to optimize a single application without

considering resource contentions and potential resource com-

petition in multi-application scenarios.

VII. CONCLUSION AND FUTURE WORK

We present a throughput prediction model for DDL applica-

tions with consideration of CPU and I/O contentions. We pro-

pose a lightweight training data-loader allocation mechanism

(A-Dloader) to dynamically reallocate data-loading workers at

run-time, which therefore reduces GPU idleness. We evaluate

A-Dloader on a real GPU server by constructing experiments

on static and dynamic workloads. The experimental results

show that our design can achieve 23.5% throughput improve-

ment compared to intuitive worker allocation mechanisms. In

the future, we will extend our approach to other types of DNN

models and multi-node GPU clusters.
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