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Abstract—Deep Neural Network (DNN) has been applied as
an effective machine learning algorithm to tackle problems in
different domains. However, training a sophisticated DNN model
takes days to weeks and becomes a challenge in constructing
research on large-scale DNN models. Distributed Deep Learning
(DDL) contributes to accelerating DNN training by distributing
training workloads across multiple computation accelerators
(e.g., GPUs). Although a surge of research works has been
devoted to optimizing DDL training, the impact of data-loading
on GPU usage and training performance has been relatively
under-explored. It is non-trivial to optimize data-loading in DDL
applications that need intensive CPU and I/O resources to process
enormous training data. When multiple DDL applications are
deployed on a system (e.g., Cloud and HPC), the lack of a
practical and efficient technique for data-loader allocation incurs
GPU idleness and degrades the training throughput. Therefore,
our work first focuses on investigating the impact of data-loading
on the global training throughput. We then propose a throughput
prediction model to predict the maximum throughput for an
individual DDL training application. By leveraging the predicted
results, A-Dloader is designed to dynamically allocate CPU and
1/0 resources to concurrently running DDL applications and use
the data-loader allocation as a knob to reduce GPU idle intervals
and thus improve the overall training throughput. We implement
and evaluate A-Dloader in a DDL framework for a series of DDL
applications arriving and completing across the runtime. Qur
experimental results show that A-Dloader can achieve a 23.5%
throughput improvement and a 10% makespan improvement,
compared to allocating resources evenly across applications.

[. INTRODUCTION

Accelerating the training procedure of large-scale Deep
Neural Networks (DNNs) has attracted concerns from both
industry and academia. A remarkable number of solutions
have been proposed in recent years to shrink the training
time for DNNSs, including distributed deep learning (DDL) [1],
computation accelerator optimization [2], and communication
overhead reduction [3]. However, data-loading is still one of
the major components that dominate the training time of DDL
applications [4] because GPUs are idle while training kernels
are waiting for loading and transferring training data from
storage drives. Data-loading involves loading data from storage
to memory and pre-processing data, i.e., data augmentation
and normalization. One possible solution to accelerating data-
loading is to cache data in DRAM. However, modern training
data sets range from hundreds of GB to tens of TB [5], making
it impractical to buffer the whole data set in DRAM.

In such a way, data dependency exists between data loading
and GPU kernel training. GPU kernels can be idle to wait for
the preprocessed data before performing training. Intuitively,
users can mitigate this data-loading cost by assigning more
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data-loading workers to DDL applications. As data-loading
workers read and preprocess data simultaneously, increasing
the number of workers can efficiently boost the data-loading
speed. However, resource contention might occur when the
number of workers increases to a certain extent. It thus
becomes challenging to allocate workers to simultaneously
running DDL applications. Users and system managers need
to be aware of resource availability and application charac-
teristics. A heuristic method is to construct experiments on
different combinations of workers for a set of applications
and run part of the applications because DDL applications
are iterative in nature. However, this method is very time-
consuming and cannot guarantee generality.

In this work, we design an Automatic Data-loader allo-
cation mechanism (named A-Dloader) for DDL frameworks,
which allocates CPU and I/O resources among DDL applica-
tions practically and efficiently. Our design targets are to (1)
make effective use of available data-loading workers based on
different DDL model characteristics and resource demands and
(2) shorten GPU idle intervals and thus optimize the overall
training throughput. To achieve this goal, we confront three
challenges: 1) estimate the resource demands (i.e., worker
number) to achieve the maximum throughput for each appli-
cation, 2) design an efficient worker allocation algorithm for
overall throughput optimization, and 3) implement the worker
reallocation mechanism programmatically and efficiently. The
major contributions of this work are summarized as follows.

« Model individual training throughput. We first inves-
tigate the DDL training pipeline and derive a throughput
prediction model (TPM) to model both data-loading and
training phases. We use regression algorithms to learn our
models and achieve a high prediction accuracy (above
90%). We also capture CPU and I/O contentions in TPM
to avoid resource over-provisioning.

« Design a run-time worker allocation mechanism. We
propose an efficient run-time worker allocation algorithm
to optimize the global throughput. The reallocation mech-
anism is supported by an event message communication
system for orchestrating each component. We also de-
velop an application master to perform intra-application
management.

« Implement and evaluate A-Dloader on a real system.
We implement A-Dloader on top of PyTorch and evaluate
A-Dloader in a real testbed by constructing experiments
on both static and dynamic workloads. In all experiments,
we consider different applications with various workload
characteristics. The experimental results show that A-
Dloader can improve up to 23.5% overall throughput and
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10% makespan (i.e., end-to-end execution time).

In the remainder of this paper, we introduce the background
of distributed deep learning and our motivation in Sec. IIL
Sec. III proposes TPM and introduce our implementation of
A-Dloader. In Sec. IV, we show the evaluation of A-Dloader
on static and dynamic workloads in a real testbed. Sec. VI
discusses the related work. The conclusion and future work is
shown in Sec. VIL

II. BACKGROUND AND MOTIVATION

A. Deep Neural Network

Deep Neural Networks (DNNs) are generally constructed
of multiple stacked layers. According to the types of layers
used, the DNN can be divided into different categories, such as
the multilayer perceptron (MLP), convolutional neural network
(CNN), recurrent neural network (RNN). In this work, our
study focuses on the training of CNNs that are commonly
used in image classification applications. Besides the types
of DNNs, the network structures of the same type of DNNs
can also vary a lot, leading to a significant difference in
training a neural network. VGG [6] and Resnet [7] are two
common CNNs in a range of computer vision tasks. The
former is a “plain” network with simply stacked convolutional
layers, while the latter introduces a residual learning structure
that mitigates the problem of vanishing/exploding gradients,
making the large-scale network trained quickly.

The backpropagation (BP) algorithm [8] is widely used to
train a CNN model, which propagates the total loss back into
the neural network in iterations. Generally, each iteration of
BP consists of three steps, i.e., forward propagation, backward
propagation, and model updates. The training latency of a neu-
ral network largely depends on the size of the neural network
(e.g., the total number of parameters/weights), the computation
costs (FLOPs), and the number of training samples in each
iteration.

B. Distributed Deep Learning

To train DNNs efficiently on an extensive training data
set, distributed deep learning (DDL) frameworks apply the
concept of data parallelism to distribute the workload across
computation accelerators (e.g., GPUs) and coordinate the
training kernels globally [1]. Fig. 1 shows how modern DDL
frameworks (e.g., PyTorch) read training data sets from storage
drives and perform the DNN training on multiple GPUs.
Specifically, the training data set is first partitioned into batches
based on the predefined batch size that specifies the number
of the training data samples (e.g., images or frames in videos)
in a batch. DDL frameworks train a DNN model in iterations,
where each iteration performs the same operations on a batch
for training. Each batch is further divided into mini-batches
that spread across GPUs evenly. Each GPU saves a replica
of the DNN model and performs the same computation on
different mini-batches. At the end of iterations, the outputs
from each GPU are aggregated into a global result for updating
the model.
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As shown in Fig. 1, DDL frameworks typically launch
multiple master (CPU) processes per GPU to distribute mini-
batches across GPUs. Each master process spawns worker
processes to load training data from the storage drive simulta-
neously. A worker process involves loading and preprocessing
mini-batches before sending data to GPUs. A master process
maintains a FIFO (First-In First-Out) queue to transfer the pre-
processed mini-batches to its attached GPU training kernels.
Workers enqueue the preprocessed mini-batches into the FIFO
queue and immediately load the next mini-batch. The training
kernel then fetches enqueued preprocessed mini-batches at the
beginning of each iteration.
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Fig. 1. Distributed Deep Learning framework. “W” denotes worker process.

C. DDL Training Pipeline

Fig. 2 shows the DDL training pipeline with two workers for
a single GPU training kernel. As mentioned above, a master
process first spawns multiple workers for data-loading (i.e.,
loading and preprocessing mini-batches). These workers then
start to simultaneously read (I/O related) and preprocess (CPU
related) mini-batches. At the same time, the GPU training
kernel is idle until the preprocessed mini-batch is ready. Once
the master process transfers a preprocessed mini-batch to the
GPU training kernel, the training kernel starts to run the BP
algorithm !. We denote an execution of BP as a step. The
time between the ends of two consecutive steps is called the
latency of an iteration. The DDL training continues iteratively
until the last mini-batch is consumed. We call the procedure
of training all batches as an epoch. The DDL training repeats
epochs until the accuracy that the model achieves is satisfied.
Therefore, the overall training time depends on the number
of epochs of an application and an epoch’s latency, where the
former mainly relies on the model accuracy while the latter is
mainly determined by the iteration latency.

A surge of research works have been conducted to shrink the
training pipeline by reducing the time cost of steps [1] [2] [3].
However, the impact of data-loading in the DDL training
pipeline has been relatively under-explored. At each iteration,
a training kernel might be idle and waiting for the preprocessed
mini-batch. We can derive the idle time at GPU kernels by
excluding the step time from the iteration duration, see Fig. 2.
Meanwhile, the data-loading and data transfer of iteration i can

!The execution flow of BP algorithm varies across different DDL archi-
tectures, e.g., Parameter Server, All-Reduce, and Ring-Reduce.To simplify
our throughput model, we consider that the forward propagation, backward
propagation, and model updates are executed sequentially in PyTorch.
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Fig. 2. DDL training pipeline. “R” denotes reading data from local/remote
storage. “Pre” refers to preprocessing data. “T” is transferring data from
CPU to GPU. “S” represents the training step, i.e., the execution of the
backpropagation (BP) algorithm on a batch/mini-batch.

overlap with the step of iteration ¢ — 1 at GPU training kernels
because the data-loading is independent of the outputs of step.
For example, as shown in Fig. 2, as there are two workers
loading mini-batches, the second iteration can immediately
start the next step. We notice that idle intervals (especially long
ones) at GPU kernels are undesirable because GPU resources
have not been fully utilized for training. If one can shorten
or remove idle intervals, then the DDL training time can
be reduced, and the throughput?> of DDL training can be
increased. Therefore, the goal of this work is to maximize
resource utilization on GPU kernels and obtain high training
throughput by avoiding the idle time at each training kernel.

D. Motivation: Throughput Investigation

One practical way to avoid idle time at training kernels is to
reduce the data-loading time at workers so that GPU kernels
can continuously run steps for preprocessed mini-batches
without any waiting, such as iteration 1 in Fig. 2. It is intuitive
to allocate as many workers as possible to a DDL application
to decrease the data-loading time and thus reduce the idle
time. However, the resources (i.e., CPU and I/O bandwidth)
for workers in the system are limited. When multiple DDL
training applications are launched simultaneously, assigning
too many workers to each application can inevitably cause
severe resource contention at the master and thus contrarily
degrade data loading performance. Therefore, this paper tack-
les the critical problem for the design of a resource (worker)
allocation scheme among multiple applications, aiming to
minimize GPU idle time and maximize the overall training
throughput. It is a non-trivial problem because the allocation
can be affected by many factors, including resource capabil-
ity and availability, application workload characteristics, and
system running status.

We conduct preliminary experiments in real systems to
investigate the impact of worker allocation on the performance
regarding training throughput. In these experiments, we launch
multiple applications simultaneously, with various numbers of
data-loading worker processes allocated to each application.

>The training throughput is defined as the number of training samples
that are processed on training kernels in unit time. Since multiple GPUs are
training on different mini-batches from the same batch simultaneously, the
throughput of a DDL application is calculated by dividing the batch size on
the average iteration latency.
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We first equally distribute data-loading workers among ap-
plications, i.e., each application receives the same number of
workers regardless of the variance of their training workloads
caused by different model sizes, batch sizes, and other hyper-
parameters. This is considered as the baseline, referred to as
balance. We also design the other two experiments, where
the number of data-loading workers is proportional (resp.
inversely-proportional) to the model size of each application.
We refer to the “proportional” experiment as proportion and
the “inversely-proportional” experiment as inverse-proportion.

Specifically, we run these experiments on the testbed shown
in Sec. IV. In each experiment, we submit three applications
to simultaneously train three DNNs, including Resnet18 (11.7
million weight parameters) and two small synthetic models
(i.e., mdResnet12 and smResnet20 have 1.8 and 0.9, respec-
tively, million weight parameters). We use ImageNet as our
training data set, and set the same hyper-parameters for all
models, e.g., the batch size is set to 128 images, the learning
rate is 0.1, the momentum is 0.9, and the weight decay
is 0.0001. Each application is distributed across two GPUs
(one GPU is shared across two applications), training the
model with 500 iterations. The performance of applications
is expected to be consistent across iterations.
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Fig. 3. Training throughput of three DDL applications. Balance, Inverse-
proportion, and Proportion gives Resnetl8, mdResnetl2, and smResnet,
(6,6,6), (2,4,12), and (12,4,2) workers, respectively. WAA (our new scheme)
allocates workers dynamically.

balance proportion

Fig. 3 shows the training throughput of each application
under three manual allocation approaches. We will discuss
our dynamic allocation scheme (WAA) later in Sec. IV-B.
We also calculate the overall training throughput under each
approach by summing the individual throughput of the three
applications in each experiment. We observe that all appli-
cations, as expected, have a similar throughput under the
balance, as applications are allocated with the same number
of workers, and the overall throughput is 1,660 images/sec.
However, when we proportionally allocate more workers to
applications with larger models (a more intuitive way), the
overall throughput, in contrast, drops by 7% (i.e., 1,554
images/sec). We notice that Resnetl8 is a relatively large
model that requires more computation (i.e., long step time)
at GPU training kernels. Allocating too many workers to
Resnetl8 can help reduce idle time but not significantly
because step is the bottleneck for training Resnet18. Mean-
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while, the training throughput of the other two applications
with smaller models is dramatically degraded because fewer
workers incur much longer idle intervals. Therefore, under
the inverse-proportion setup, we counter-intuitively give more
workers to applications with smaller models. We found that
although we sacrifice Resnet18’s throughput, the other two
applications (i.e., mdResnetl2 and smResnet20) obtain the
throughput boosts that make up the throughput degradation in
Resnet18. The overall training throughput under the inverse-
proportion is thus increased by 14% (1,928 images/sec),
compared to the balance.

The above throughput improvement under the inverse-
proportion indeed comes from the fact that the inverse-
proportion increases GPU utilization by shortening the GPU
idle time. We remark that such an improvement can sig-
nificantly reduce the overall training time. Considering a
general DNN application training on the ImageNet dataset
with 150 epochs, the inverse-proportion can save 10+ hours
of training time in total. This motivates that optimizing data-
loading has significant potential in accelerating DNN training.
Furthermore, from the above observations obtained in Fig. 3,
we conclude that manually setting the number of workers for
applications with different DNN models cannot fully utilize
resources in the system. This thus motivates us to design
a framework that can automatically and dynamically allo-
cate workers among running applications considering resource
availability and DNN workload features.

III. A-DLOADER DESIGN

A. Problem Formulation and Challenges

Our design focuses on the optimization of the overall
throughput for multiple DDL training applications running si-
multaneously on a multi-GPU node by automatically adjusting
the CPU and I/O resources allocation (i.e., workers) at run-
time. We formulate this problem as a maximization optimiza-
tion problem shown as formula 1, where T;(d;) represents
a throughput function of application ¢ with the number of
workers d; allocated to the application as a variable.

N
{di,dz,nrdn } ZTi(di)
=1

We have the following challenges in solving the problem:

(1

o The first challenge is to formulate the throughput function
T; with respect to d;. The throughput of a DDL training
application is affected by multi-factors, including system
specifications (e.g., I/O bandwidth, CPU processing rate,
and GPU number and processing rate) and workload
characteristics (e.g., batch size, model size, and epoch
number). We need to consider these factors in our for-
mulation for a precise model.

o The second challenge is how to apply our throughput
prediction model to instruct worker allocation to im-
prove system-wide throughput. We need a global worker
allocation scheme to distribute limited CPU and I/O
resources across all applications for throughput optimiza-
tion and consider the contentions caused by potential
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Fig. 4. Data-loading and processing rates.

over-provisioning, i.e., worker processes compete for
resources.

o The third challenge is that, as we know, there are no
dynamic worker allocation mechanisms in PyTorch or
other DDL frameworks, nor existing research works on
it. Once the system receives a new application submitted
by users or an application completes, our design needs
to reallocate workers for applications at run-time with a
negligible impact on the system performance.

B. Throughput Prediction Model

In a typical DDL application, the training data (i.e., a batch)
is distributed across multiple training kernels (i.e., GPUs), and
a single training kernel repeats iterations of processing mini-
batches as shown in Fig. 2. Because all training kernels need
to synchronize the updated model at the end of an iteration,
the (average) iteration time of all training kernels is the same.
Therefore, the throughput of an application is defined as how
many training samples are processed per second, as calculated
by formula 2, where B is batch size and £;;., represents the
average iteration time. We can further break #;;., to average
idle time (Z;4;.) and average backpropagation (BP) time (Z;).

B B )

T=—=——
titer tidle + tbp

To derive #;4;c and &y, we investigate the data-loading and
training rate at workers and GPU kernels, respectively. Fig. 4
shows the procedure that a master process sends pre-processed
mini-batches to training kernels via a FIFO queue. We use
A to represent the data-loading rate defined as the number of
mini-batches pre-processed per second. We denote the training
rate (i.e., batch-consuming rate) as p, indicating the number
of mini-batches consumed by the training kernel per second.
Therefore, we derive ¢, from formula 3, and #;4,. from for-
mula 4. In formula 4, ;1 < A means training kernel consumes
mini-batches slower than data-loading, and the training kernel
can (almost) always fetch a mini-batch from the FIFO queue.
Thus the average idle time is approximately zero. Otherwise,
the average idle time is determined by the difference between
the time taken for data-loading and backpropagation.

_ 1
lpp = — (3)
P
_ 0 ~0 ifpu<A
tidle: {1_1 if >\ (4)
pY w=

As X and p are determined by multiple factors, including
system performance and workload characteristics, we extend
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A and p to functions F)(d) and F),(w), where w repre-
sents parameters representing the application’s characteristics
(such as batch size, model size and FLOPs), and d is the
worker number. Therefore, we have a relationship between the
throughput and the worker number, bridged by the formulation
of X\ and u, as shown in formula 5.

B F,(w)
B % Fy\(d)

if p<A
if > A

&)

Training Rate. The training rate (F),) depends on the
average time cost to complete a backpropagation algorithm.
For each iteration, the average BP time consists of the time
cost of doing forward propagation (i.e., calculating loss),
backward propagation (i.e., calculating local gradients), com-
munications between GPUs, local gradients aggregation, and
model updates, as introduced in Sec. II-C.

Forward propagation executes the same operators on a mini-
batch of samples, as the neural network is predefined. Assume
the mini-batch size is b, and the number of floating-point op-
erators is f, the forward propagation time cost is proportional
to b and f, formulated as ao(bx* f). Backward propagation has
the same computation characteristics as forward propagation
but has two times the computation expense of the forward
propagation [9]. Therefore, we formulate backward propaga-
tion as 2 (b* f). The communications involve gathering local
gradients from all GPUs to one and then passing the updated
model to all other GPUs. We denote the communication
bandwidth as S and assume the application uses n GPUs, then
each GPU obtains S/(n—1) bandwidth. As the model has the
same size as the gradient, the time cost of communications
is formulated as o 5/2(*%, where M represents the model
size. Once gradients derived for all samples are collected
on one GPU, the gradient aggregation happens with a time
cost proportional to the model size and the mini-batch size.
Therefore, the aggregation cost is formulated as ao(b % M).
The last part is the model update, which is only related to the
model size and can be formulated as ag M.

We put S into «; and all constant numbers into other «’s as
a part of coefficients to learn. We also merge the expression
of forward and backward propagation. Therefore, the training
rate can be modeled as formula 6. It is worth noticing that F),
is irrelevant to the number of workers, as the worker number
only affects CPU and I/O resources allocated to an application.
Therefore, given the hyper-parameters of an application, we
can predict the training rate before the application runs.

F

= (ao(bxf)+ay(Msn)+az(bxM)+azsM+ay) ™" (6)

We use different regression models to learn o’s by collecting
samples of (b, f, M,n, F,,). We run each training application
on ImageNet for 500 iterations. Note that due to the iterative
nature of DDL applications, hundreds of iterations should be
enough to collect reliable samples. We try as many as possible
combinations of mini-batch size and number of GPUs (i.e., b
and n) for different DDL model architectures. For each DDL
model architecture, we use THOP [10] to get floating-point
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TABLE I
REGRESSION MODEL ACCURACY.

Model Training Rate | Data-loading
Linear Regression 0.93 0.98
Polynomial Regression 0.94 0.98
K-Nearest Neighbor 0.84 0.97
Random Forest Regressor | 0.87 0.97

operations and the model size (i.e., f and M). Each run takes
about tens to hundreds of seconds. We filter out samples where
the BP time takes 95% of the iteration time to make sure
these samples satisfy p < A, i.e., no idle time. We generate
100+ samples and use 60% percent of samples for training and
the other samples for validation. Table I summarizes the used
regression models and their corresponding prediction accuracy.
We choose the F}, model with the highest accuracy to infer
the throughput prediction.

Data-loading Rate. Data-loading of a mini-batch involves
two sequential procedures i.e., reading samples from storage
drives and executing pre-processing on samples. Therefore, the
data-loading rate (F) can be formulated as (£,cqq + tpre) t
We denote R as I/O bandwidth and U as CPU processing
rate. For a single data-loading worker, without consideration
of contentions, the data-loading rate is (b/R+b/U) ™1, where
R and U are constant for a given worker. As we have d
workers for each GPU, the data-loading rate can be modeled

in formula 7.
d 1

b RIU

However, we found that contentions of CPU and I/O re-
sources are unavoidable as the number of workers increases
system-widely. To learn the impact of contentions on F},
we construct experiments on a training application with a
small DDL model, which ensures that @ > A, i.e., throughput
is determined by arrival rate, i.e., F. Because the worker
processes of applications are scheduled by the OS and are
homogeneous regarding the impact of contentions, we can
use one application to investigate the degradation of the data-
loading rate caused by resource contentions. Fig. 5 shows the
data-loading rate as a function of the number of workers. We
observe that the increasing rate of F)\ drops at 11 workers,
which means it reaches the point where resource contention
starts to degrade the data-loading rate. Finally, F\ saturates at
around 24 workers as our testbed can only support 24 CPU
threads.

To reflect the above impact of resource contentions, we use
regression models to learn values of R~ and U ! instead of
using constant values. Specifically, we divide the function of
F into three stages (i.e., as shwon in Fig. 5) and learn a pair
of {R, U} for each stage. The accuracy of different regression
models is shown in Table I, where the accuracy is as high as
0.98. It is worth noticing that our TPM training cost includes
the overhead of collecting samples and training the model.
The former can be finished by running only a few hundred
of iterations of applications because DDL applications repeat
the same computation across iterations. The latter only takes

Fy, = @)
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Fig. 5. Data-loading rates under resource contentions. Contention-free stage:
workers range from 1 to 11. Contention stage: workers range from 11 to 24.
Saturation stage: workers larger than 24.

tens of seconds (e.g., 12 seconds in our experiments) because
regression models are less complex.

C. A-Dloader Implementation

As discussed in Sec. III-A, no dynamic worker allocation
mechanisms have presently been supported in existing DDL
frameworks. Because most recently emerging works on data-
loading optimization are implemented on PyTorch (a widely
used DDL framework), and as reported by Facebook [11],
a workload study shows that more than 60% of GPU hours
during 05/11/20 to 06/05/20 were spent on calling PyTorch
packages. Therefore, one of our main contributions is the
implementation of A-Dloader on top of PyTorch to enable
worker reallocation at run-time.

1) System Overview: Fig. 6 shows the architecture of A-
Dloader . Specifically, 1 the user can submit DDL training
applications via the user interface to the scheduler. 2 The
scheduler is responsible for managing and scheduling I/O and
CPU resources for applications at run-time by dynamically
altering the number of workers for applications. 3 The life-
circle monitor tracks the status of applications, and 4 reports
to the worker allocator. The worker allocator also maintains
the information of on-the-fly applications, including both user
specifications and run-time status. Then the worker allocator
makes reallocation decisions by using the throughput pre-
diction model. Finally, 5 the worker allocator instructs the
scheduler to reallocate workers among applications at run-
time.

User Interface

Application
Worker | | Training

Application
Scheduler Master
Worker Life-circle
Allocator Monitor

Fig. 6. A-Dloader Architecture.
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2) Worker Allocator: The worker allocator module receives
the run-time status of applications from the life-circle monitor.
It also obtains the application’s information about hyper-
parameters passed by users in submission. Then the worker
allocator uses our throughput prediction model (TPM), see
Sec. III-B, to estimate the training rate and data-loading rate
for each application. With the combination of formulas 5, 6,
and 7, we derive the maximum throughput that each appli-
cation can achieve (e.g., Trnae = B * F), when F,, equals
F). Considering the limited worker processes a node can
support, we design a worker allocation algorithm to maximize
the overall throughput of all running applications, as shown in
Algorithm 1.

The Worker Allocation Algorithm (WAA) takes the hyper-
parameters of all applications, the number of applications, and
the maximum number of CPU threads as input arguments
and returns the number of workers per GPU (master) for
each application to maximize the overall throughput. The
WAA first makes sure each GPU at least has one worker, see
lines 1-2. Then, for each application, the WAA calculates the
training rate by passing the hyper-parameters to formula 6 and
calculates d; that can maximize the throughput, i.e., lines 4-5.
However, d, is a float number, and WAA needs to return the
number of workers per GPU, which is an integer. Therefore,
we denote d; to be the ceiling value of d; (i.e., line 6), and
the gap between d; and d; is the number of over-provisioned
workers. To avoid over-provisioning, the WAA sorts d; by
the over-provisioned workers descendingly in line 8. Finally,
the WAA decreases d; by 1 from the most over-provisioned
application until the overall workers are equal to the maximum
CPU threads, i.e., line 10 to 15. We note that the WAA ensures
each application at least obtains one worker per GPU in lines
13-14.

Algorithm 1: Worker Allocation Algorithm

Input: The hyper-parameter set W = {w; }, maximum CPU threads
C, and application number N

Result: The worker number set D = {d;} per GPU
if C < N then

| returnd; =1,
for i < 1 t0 N do
/J/<_ Fu(wi) ,
d,; < the worker number under p = F(d,)
d; < the ceiling value of d;

Vvd; € D

end
D < sort D by d; — d; descendingly
while sum of D > C do
for i < 110 N do
if sum of D < C' then
12 | return D
else if d; > 1 then
14 ‘ di = di -1
end

e ® N v s W=

-
15

end

3) Scheduler: The scheduler dynamically reschedules
workers at points where the submission or completion of ap-
plications happens by pausing and retrieving applications with
new worker allocation. In order to trigger worker reallocation
at run-time, we design an event message system for communi-
cations among the scheduler, application masters, and the user
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interface. When a new batch of applications is submitted to the
user interface, the user interface sends an “Arrival” signal to
the scheduler with the applications’ information. The scheduler
first wakes up the worker allocator that takes the information
of the currently running applications and the latest submitted
ones to calculate the new d;. The scheduler then sends “Pause”
signals to application masters that need to reallocate workers,
i.e., the new d; is different from the previous one. The life-
circle monitor sends a “Paused” signal back to the scheduler
if applications are paused successfully. Then the scheduler
launches the submitted applications and resumes the paused
applications with new worker allocations.

Similarly, when an application is completed, the application
master sends a “Finish” signal to the scheduler via the life-
circle monitor. Then the scheduler wakes up the worker
allocator to check whether it is necessary to reallocate the
spare workers released by the finished application to the other
applications. If the throughput of specific running applications
can benefit from more workers, the scheduler will pause
and retrieve those applications with a new worker number.
Otherwise, the scheduler will keep those release workers idle
until new applications come.

4) Application Master: The application master is responsi-
ble for launching data-loader workers and training kernels. The
application master will be launched first when the scheduler
launches an application. Then the application master spawns
a set of worker processes and training kernels on GPUs. To
communicate between the master and training kernels to track
the application’s information (e.g., heartbeat) at run-time, we
also design an intra-application event message system. Once
the application master receives a “Pause” signal from the
scheduler, the master sends ‘“Pause” signals to all training
kernels and waits for all kernels to exit. Since all training
kernels have the same model at the end of each iteration, the
training kernel with index O saves the current model into a
storage drive for future retrieval. When all training kernels
exit, the application master sends a ‘“Paused” signal with the
model path to the life-circle monitor that further notifies the
scheduler.

5) User Interface and Life-circle Monitor: Any submission
or completion of an application can trigger the pause/retrieve
procedure in the scheduler of A-Dloader. High overhead (e.g.,
paused time) may be caused by high trigger frequency. We
thus design two buffers in the user interface and the life-circle
monitor to mitigate this impact. For example, we set a time
window (a configurable parameter) in the user interface for
buffering submitted applications. Suppose multiple applica-
tions arrive within the same time window. In that case, they
are submitted in a batch to the scheduler at the end of the
time window. Similarly, we design a completion buffer at life-
circle monitor to control the reallocation frequency caused by
finishing application. We set the time window of 30 seconds
for both buffers in all of our experiments. Users can adjust
this parameter value based on their workload intensity.
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IV. EVALUATION
A. Methodology

Testbed. We evaluate our design on a GPU server with 4
Geforce RTX 2080ti GPUs (11GB memory per GPU), 128GB
RAM, 24 Intel i9-9920X CPUs (3.50GHz), and a Samsung
970 EVO 2TB SSD. Our design is on Ubuntu18.04 with kernel
5.4.0-90-generic. A-Dloader is implemented on top of PyTorch
1.7.1. We apply NCCL [12] (NVIDIA Collective Commu-
nications Library) as the protocol for GPU communications.
We only use 18 CPU cores to avoid the interference of other
background applications. The ImageNet [13] dataset is used
for evaluation with an input image size of 224 x224.
Workload Generator. We design a workload generator to em-
ulate the user behavior submitting applications to A-Dloader.
The workload generator generates a list of application submis-
sion requests. Each request includes the arrival time, hyper-
parameters, GPU index to use, and the number of iterations to
finish. As our goal is to maximize the overall throughput and
the change of worker number does not affect prediction accu-
racy, we discard the consideration of accuracy in our work. We
use the VGG and Resnet family models as the representative
DNNS in our experiments. Besides the commonly used model
configurations, such as Resnetl8, Resnet34, VGGI13, and
VGG16, we also generate a set of synthetic DNN models to
extend our workload variety for learning TPM and an extensive
evaluation. The synthetic models include the Resnet and the
VGG models with the customized number of convolutional
layers (e.g., VGG7, Resnet28) and the corresponding 4 x and
2x narrower versions, which are named smResnet, smVGG,
mdResnet, and mdVGG, respectively.

Evaluation Metrics. We use throughput, defined as the num-
ber of training samples processed by GPUs per second, as our
first metric to represent the utilization of GPUs in the system.
We use makespan, defined as the duration between the start
of the first application and the end of the last application,
to investigate the end-to-end latency under different worker
allocation schemes.

Baselines. We have three baselines of worker allocation
schemes. The proportion baseline allocates more workers to
larger models, while the inverse-proportion baseline allocates
more workers to smaller models. The balance baseline gives
the same number of workers to all applications. Whereas, in
a scenario where users submit applications at random time
intervals, our baseline distributes available workers evenly
across applications without exceeding the maximum worker
numbers.

B. Static Workload

We first construct experiments on a static workload, where
all applications are submitted at the same time, to evaluate
the accuracy of our throughput prediction model (TPM) and
the effectiveness of our worker allocation algorithm (WAA).
Under a static workload, the WAA is only triggered at the
beginning of the experiment and the completion of each
application. The same DDL applications (i.e., Resnetl§,
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mdResnet12, and smResnet20) as used in Sec.II-D are consid-
ered in this set of experiments. Fig. 3 shows the throughput of
each application under three baselines and our WAA. Table 11
also shows the performance comparisons in terms of GPU
idle time, GPU utilization, and execution time under different
schemes.

As shown in Fig. 3, compared to the balance baseline,
our WAA achieves the throughput improvement by 23.5%,
which is slightly better than the inverse-proportion and does
not degrade the throughput of Resnet18 dramatically. We
further observe that by optimizing data-loading, our WAA can
reduce the GPU idle intervals and thus increase the average
GPU utilization, see Table II. As a result, both total training
throughput and average training latency are improved under
WAA. But, we also notice that WAA obtains a slightly longer
makespan than the other two baselines (i.e., balance and
inverse-proportion). This is because the latency of Resnetl8
is increased, which causes a longer makespan, although the
latencies of mdResnet12 and smResnet20 decrease. We remark
that when DDL applications use more epochs to train, our
WAA is able to reduce the makespan significantly, see the
results in Sec. IV-C.

TABLE II
WORKER ALLOCATION SCHEME COMPARISON.
balance propotion oo WAA
propotion

ave. GPU idle (s) 92 125 107 84
ave. GPU util. (%) 28 18 27 30
ave. latency (s) 130 153 147 119
makespan (s) 132 222 163 160

To elaborate on how WAA works, we further show WAA’s
run-time events for allocating workers in Fig. 7. Recall that
the total number of workers available is 18 as we only use 18
CPU cores for data loading in our testbed, see Sec. IV-A.
At the beginning of the execution, we observe that WAA
allocates 2, 8, and 8 workers to Resnetl8, smResnet20, and
mdResnet12, respectively. At around 97 seconds, smResnet20
and mdResnetl2 are finished and stored in the completion
buffer. After the scheduler receives the completion buffer,
the worker allocation mechanism is triggered to reallocate
the just-released workers to the remaining application, i.e.,
Renset18. Note that Rensetl8 only needs eight workers to
ensure the data-loading rate equals the training rate. Thus,
after pausing and retrieving, Renset18 is assigned with eight
workers to achieve its maximum throughput, finishing at
around 160 seconds. Lastly, we measure the overhead of one
round of pausing and retrieving, i.e., about 16 seconds, which
is relatively low and ignorable when performing a general
DNN training that usually takes tens and even hundreds of
hoWs. contribute the throughput improvement to WAA’s two
designs. First, WAA relies on our TPM to accurately predict
the number of workers that should be allocated to run-
ning applications to maximize the overall training through-
put. Consequently, WAA distributes workers inversely pro-
portionally to the model sizes, which is consistent with the
inverse-proportion method. In addition, WAA ensures no over-
provisioning of CPU and I/O resources to any applications. For
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Fig. 7. WAA'’s run-time events for worker allocation under static workload.

example, eight workers are sufficient for Resnetl8 to reach
the optimal throughput point. Under this consideration, WAA
only allocates eight workers (as shown in Fig. 7) to Resnet18.
This design can avoid reallocation if a new application that
requires less than eight workers comes after 113 seconds in
Fig. 7. Second, our WAA automatically reallocates workers if
spare workers are detected. This design can better utilize CPU
and I/O resources and further improve the overall throughput
compared to the inverse-proportion method.

C. Dynamic Workload

We further construct experiments on dynamic workloads
that have applications arriving and completing at random
points to evaluate our design systematically. Table III summa-
rizes the information of a dynamic workload that we use in
these experiments, where we have totally eight applications
arriving within 800 seconds, and these applications have
different model sizes and workload hyperparameters, such as
batch size, iteration number. We also design this dynamic
workload by considering the resource limit of CPUs and
GPUs in our testbed (see Sec. IV-A for details) to avoid
GPU’s out of memory (OOM) and CPU’s overloading. For
example, we set a small batch size (e.g., 64) for a large model
(e.g., VGG13) to fit its training procedure in GPU’s memory.
Additionally, a resource scheduler (such as Yarn [14] and
Mesos [15]) commonly lets a new application wait in a queue
if the required resource (e.g., virtual CPUs) is more than the
available one. We thus configure the workload with the total
number of workers allocated simultaneously no more than the
limit of CPU cores (e.g., 18) to ensure all applications start
their executions once they are submitted.

A
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Workers
I S
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~

0 120 260 420 655 800

Execution Time (s)

Fig. 8. Run-time events for the dynamic workload without worker realloca-
tion. The makespan is 1,200 seconds.

First, we run an experiment on the dynamic workload
where worker reallocation is disabled in WAA during the
run-time, i.e., each application is exactly allocated with the
required workers when they arrive (see “workers” column
in Table III). We use the result of this experiment as the
baseline to evaluate the dynamic worker reallocation module

1063 1200

Authorized licensed use limited to: Northeastern University. Downloaded on April 03,2023 at 01:36:44 UTC from IEEE Xplore. Restrictions apply.



TABLE III
DYNAMIC WORKLOAD SUMMARY.

Index Model FLOPs | Model Size | Batch Size | Iterations | Workers | Arrival Time
appl | mdResnet20 | 0.5 B 34 M 128 1000 6 0
app2 | smResnet22 | 0.2 B 1.2 M 128 1000 6 0
app3 Resnet32 34 B 215 M 128 1500 6 120
app4 VGG13 11B 99 M 64 1500 2 420
app5 | mdResnetl2 | 0.3 B 1.8 M 128 500 6 420
app6 | smResnet32 | 0.2 B 1.4 M 128 500 4 420
app7 Resnet28 30B 19 M 64 1000 6 800
app8 smVGG7 14 B 24 M 64 1500 4 800

in A-Dloader. Fig. 8 shows the run-time events for worker
allocations in this experiment. Each rectangle represents the
execution of an application, where the height indicates the
worker number allocated to the application, and the length
indicates the duration of the application. We also mark im-
portant timestamps on the x-axis across the execution time.
The y-axis indicates the worker allocation among running
applications. Without worker reallocation, intervals with idle
workers can be frequently observed during the execution time.
For example, only 2 workers are in use to run app4 even after
other applications finish and release their workers, e.g., at the
time of 655 and 1063 seconds. This inevitably under-utilizes
CPU and I/0 resources and incurs an extremely long execution
time of app4. Consequently, the makespan (i.e., the end-to-
end execution time of the whole workload) is increased as
well, e.g., 1,200 seconds in Fig. 8. Then, we run another
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Fig. 9. Run-time events for the dynamic workload with worker reallocation.
The makespan is 1,089 seconds.

experiment on the same dynamic workload but enable the
workload reallocation mechanism in WAA. The corresponding
run-time events of worker allocation are shown in Fig. 9.
Each red line represents a worker reallocation triggered by
the arrival or the completion of an application. In addition,
we use a green line to mark the moment that the arrival or
the completion of an application does not trigger the pause
and retrieve procedure. Compared to the baseline in Fig. 8,
WAA’s worker reallocation mechanism significantly reduces
the number of idle workers and thus improves data loading
parallelism and resource utilization during the execution.

For example, all 18 workers (instead of 12 in Fig. 8) are
allocated to two applications (i.e., 10 workers to appl and
8 workers to app2) at the beginning and then reallocate to
the three applications inversely proportionally to their model
sizes when app3 arrives. As a result, the worker utilization is
maximized and the latency of appl and app2 drops from 260
seconds in the baseline to 210 seconds in A-Dloader. when
three new applications (i.e., app4, app5, and app6) arrive at
420 seconds, A-Dloader reallocate all 18 workers to the four

applications, where app5 and app6 that train smaller models
receive more workers, i.e., six and eight workers, respectively.
In this way, app5 and app6 can finish faster and then release
workers for reallocation.

Another example, when app$§ finishes at time 940 seconds,
WAA reallocates some of the released workers to both app4
and app7, which thus shortens the latency of these two appli-
cations. Consequently, the makespan (i.e., 1,089 seconds) of
A-Dloader drops by around 10%, compared with the baseline
(i.e., 1,200 seconds). Moreover, we found that WAA does
not trigger worker reallocation when app3 and app8 finish.
This is because WAA detects that app4 has already received
enough workers (i.e., 4) to achieve the maximum throughput.
As discussed before, this design can avoid the extra overhead
for pausing and retrieving applications.

D. Impact of Resource Contentions.

As discussed in Sec. III-B, the contention of I/O and CPU
resources happens when the number of workers increases
to some saturating point. our Throughput Prediction Model
(TPM) thus strives to capture the impact of contentions on
the data-loading rate in the model. To evaluate the accuracy
of our TPM under contentions, we conduct an experiment on
a simple workload that has two applications (i.e., Resnet32
and VGG16) under A-Dloader with and without considering
CPU and I/O contentions in the model prediction. Specifically,
when our TPM captures the contention impact in the data
loading rate, A-Dloader allocates eight and ten workers to
Resnet32 and VGGI16, respectively and obtains the overall
training throughput as 1,654 images/sec. Whereas, when the
TPM ignores the contention in the model, Resnet32 gets six
workers and VGG16 gets four workers. The overall throughput
is reduced to 1,391 images/sec. The reason is that due to re-
source contention, applications need more workers to achieve
the maximum throughput. Our TPM captures this impact and
thus predicts the accurate number of workers allocated to
these applications. We finally remark that it is more critical to
consider the contention impact in the prediction model when
the workload has more applications with larger models.

V. DISCUSSION

Method Generality. To generalize our method to a new
GPU cluster, the user only needs extra efforts to run DDL
applications in hundreds of iterations to collect samples and
train the throughput prediction model. The characteristics of
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heterogeneous devices (i.e., GPUs and CPUs) and environ-
ments (i.e., CUDA version and OS version) are captured by
our throughput formulation.

Scalability. Our method targets to optimize training
throughput by reducing GPU idleness. Although we only eval-
uate A-Dloader on a multi-device node, A-Dloader can also
be extended to multi-node clusters. We notice that network
communication may cause extra latency for transferring data
among nodes in a multi-node cluster.

Model Diversity. Our work currently focuses on the training
of convolutional neural networks (CNNs) because CNNs are
the commonly used DNNs in the deep learning domain. We
notice that other types of DNNs, such as the multilayer
perceptron (MLP) and Transformer, have different features.
The extension of our solutions to different types of DNNs
will be our new research direction in the future.

Fairness Issue. The target of this work is to maximize
the overall throughput system-widely. The worker allocation
algorithm proposed in this work prioritizes applications with
smaller DNN models. It is thus possible that applications with
relatively larger DNNs models are sacrificed with increasing
latency. In addition, DDL applications with similar resource re-
quirements can hardly benefit from A-Dloader. A sophisticated
algorithm can be further designed on top of our A-Dloader to
address the fairness and starvation.

VI. RELATED WORK

A surge of research efforts has been devoted to accelerating
the training process of DNNs by optimizing data-loading.
In [16], several optimizations are adopted to alleviate the
bottleneck of data loading, including using multiprocessing
to add more workers to overlap the loading of different
batches and utilizing multi-threading to parallelize sample
preprocessing. The work [17] proposes DeeplO, an entropy-
aware 1/O pipelining framework, which utilizes a temporal in-
memory storage system to avoid redundant data loading from
the backend storage system. DeeplO designs a storage buffer
supported by RDMA to efficiently load training data inter-
computation nodes. Works in [16] and [18] focus on storage
stack optimization for DDL training via cache and pre-fetch,
but lack the analysis and optimization of preprocessing that
becomes the bottleneck in modern DNN training.

In [5], NVIDIA Data Loading Library (DALI) is applied
to optimize the data-loading by migrating data-preprocessing
to GPUs. DALI attempts to share tasks of preprocessing data
between CPUs and GPUs for releasing the CPU intensity of
data-loading. The prior work [19] designs a DS-Analyzer to
analyze and mitigate data stall in DNN training. The DS-
Analyzer measures the latency of each stage of data-loading
to predict the latency of data-loading. However, these existing
works are proposed to optimize a single application without
considering resource contentions and potential resource com-
petition in multi-application scenarios.

VII. CONCLUSION AND FUTURE WORK
We present a throughput prediction model for DDL applica-
tions with consideration of CPU and I/O contentions. We pro-
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pose a lightweight training data-loader allocation mechanism
(A-Dloader) to dynamically reallocate data-loading workers at
run-time, which therefore reduces GPU idleness. We evaluate
A-Dloader on a real GPU server by constructing experiments
on static and dynamic workloads. The experimental results
show that our design can achieve 23.5% throughput improve-
ment compared to intuitive worker allocation mechanisms. In
the future, we will extend our approach to other types of DNN
models and multi-node GPU clusters.
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