
SRC: Mitigate I/O Throughput Degradation in Network Congestion
Control of Disaggregated Storage Systems

Danlin Jia‡, Yiming Xie∗, Li Wang∗, Xiaoqian Zhang†, Allen Yang†, Xuebin Yao‡,
Mahsa Bayati‡, Pradeep Subedi‡, Bo Sheng† and Ningfang Mi∗

∗Department of Electrical and Computer Engineering, Northeastern University, Boston, USA
†Department of Computer Science, University of Massachusetts Boston, Boston, USA

‡Samsung Semiconductor Inc., San Jose, CA, USA

Abstract—The industry has adopted disaggregated storage
systems to provide high-quality services for hyper-scale archi-
tectures. This infrastructure enables organizations to access
storage resources that can be independently managed, configured,
and scaled. It is supported by the recent advances of all-flash
arrays and NVMe-over-Fabric protocol, enabling remote access
to NVMe devices over different network fabrics. A surge of
research has been proposed to mitigate network congestion
in traditional remote direct memory access protocol (RDMA).
However, NVMe-oF raises new challenges in congestion control
for disaggregated storage systems.

In this work, we investigate the performance degradation of
the read throughput on storage nodes caused by traditional
network congestion control mechanisms. We design a storage-side
rate control (SRC) to relieve network congestion while avoiding
performance degradation on storage nodes. First, we design an
I/O throughput control mechanism in the NVMe driver layer to
enable throughput control on storage nodes. Second, we construct
a throughput prediction model to learn a mapping function
between workload characteristics and I/O throughput. Third,
we deploy SRC on storage nodes to cooperate with traditional
network congestion control on an NVMe-over-RDMA architec-
ture. Finally, we evaluate SRC with varying workloads, SSD
configurations, and network topologies. The experimental results
show that SRC achieves significant performance improvement.

Index Terms—Disaggregated Storage System, Network Con-
gestion Control, Storage Throughput Prediction and Control,
NVMe-oF

I. INTRODUCTION

In recent years, resource disaggregation has been commonly

adopted in hyper-scale cloud systems and data centers to

enable easy configuration, isolation, and scale-up of resources.

Storage disaggregation has drawn significant attention since

the emergence of high I/O speed storage media and serial

buses, such as NVMe (Non-Volatile Memory express) SSDs

with PCIe Gen 4 [1]. The advanced storage solution can

provide up to 8 GB/s throughput but requires high CPU

utilization to take advantage of it. Disaggregated storage sys-

tems decouple the compute and storage nodes, which provides

flexibility in system management.

While possessing the desired features of enterprise stor-

age systems, storage disaggregation relies on the support

of networking frameworks, NVMe-over-Fabric (NVMe-oF)

protocol has been developed to enable the submission of

NVMe commands to a remote NVMe SSD through different

This work was partially supported by the National Science Foundation
Awards CNS-2008072 and the Samsung Semiconductor Inc. Research Grant.

network fabrics. It serves as a fundamental building block for

disaggregated storage systems. There are multiple options for

the underlying network fabric for NVMe-oF, such as Ethernet,

Fibre Channel, and InfiniBand [2], and this paper considers

the RoCE protocol [3], the Remote Direct Memory Access

(RDMA) over Converged Ethernet protocol, that guarantees

lossless data delivery. More details will be reviewed in Sec. II.

When the I/O requests and the corresponding data blocks are

transferred between computing nodes and storage hosts, the

network performance becomes a critical component in storage

operations. A large-scale disaggregated storage system would

demand extremely low network latency, especially when pro-

cessing a heavy I/O workload. On the other hand, network

congestion, one of the top challenges in the networking field,

would degrade the storage system’s performance.

In the literature, there have been solutions for network

congestion control in data center networks that yield high

throughput and microsecond-level latency [4]–[6]. However,

traditional network congestion control mechanisms of RoCE

only consider network performance optimization but omit the

performance degradation on storage nodes. When network

congestion happens, the control mechanism sends a signal to

the data sender to limit the data sending rate by buffering

the data in the network socket. However, storage devices are

unaware of the data throttling happening at network protocols

and keep the same request processing rate to retrieve data, e.g.,

in read requests. Consequently, the high performance of the

storage devices suffers from the bottleneck of network conges-

tion control and results in overall performance degradation.

In this work, we propose a storage-side rate control (SRC)

mechanism to mitigate the performance degradation of storage

devices caused by network congestion. SRC cooperates with

the network congestion control mechanism to reduce the data

sending rate of storage nodes by precisely controlling read and

write throughput. We first design a throughput control mecha-

nism that prioritizes read and write requests when a congestion

signal is received. The goal of the throughput control is to

mitigate the degradation of aggregated throughput on storage

nodes. We further develop a throughput prediction model to

learn the mapping between workload characteristics to read

and write throughput while using our control mechanism.

Finally, SRC utilizes the learned knowledge of the throughput

prediction model to help limit the data-sending rate on storage

nodes and mitigate performance degradation. As we know,

268

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/23/$31.00 ©2023 IEEE
DOI 10.1109/IPDPS54959.2023.00035

20
23

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d 

Pr
oc

es
si

ng
 S

ym
po

si
um

 (I
PD

PS
) |

 9
79

-8
-3

50
3-

37
66

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IP

D
PS

54
95

9.
20

23
.0

00
35

Authorized licensed use limited to: Northeastern University. Downloaded on May 15,2025 at 19:12:26 UTC from IEEE Xplore.  Restrictions apply. 



SRC is the first work that systematically investigates and op-

timizes storage performance affected by network congestion of

disaggregated storage systems. In summary, the contributions

of this work are as follows.

• Investigate the architecture of disaggregated storage
systems. We explore the current network congestion control

mechanisms in NVMe-oF with RoCE. We study the current

stack of NVMe-oF to understand the bottleneck incurred in

the network congestion control mechanism.

• Design a separate submission queue. We develop a

throughput control mechanism on storage nodes that submits

I/O requests to different queues (read or write). A weighted

round-robin is used to prioritize read and write requests.

• Develop a throughput prediction model. We construct a

Random Forest Regression model to predict the read and

write throughput of a black-box SSD, given an I/O work-

load. We further involve the parameters of the throughput

control mechanism in the prediction model.

• Build and evaluate the storage-side control architecture.
We propose a dynamic adjustment algorithm that combines

throughput control and prediction to adjust the data sending

rate. We finally construct a simulated system by adopting

widely adopted network and storage simulators to evaluate

our design.

In the remainder of this paper, we introduce the background

and our motivation in Sec. II. We present the detailed approach

and the algorithms of SRC in Sec. III. Sec. IV evaluates

SRC across different workloads and system specifications. The

conclusion and future work are presented in Sec. V.

II. BACKGROUND AND MOTIVATION

A. Disaggregated Storage Systems

Disaggregated storage is one type of resource disaggre-

gation infrastructure to enable organizations to access stor-

age resources that can be managed, configured, and scaled

independently. In a disaggregated storage system, storage

resources can be isolated from compute resources physically

and transmit data over the network fabrics. Such a composable

infrastructure provides elasticity, scalability, and efficiency in

modern data center management. Specifically, administrators

can scale out storage resources with the slightest consideration

of the characteristics of computing nodes because storage re-

sources are no longer tightly attached to computing resources.

Therefore, disaggregated storage systems provide a promising

solution for skewed data and over-provisioning [7]. Conse-

quently, the network plays a more critical role in deploying

disaggregated storage systems because resource pools rely on

network fabrics to transfer massive amounts of data.

1) NVMe-over-Fabric: NVMe-over-Fabric (NVMe-oF) [8]

is an extension of the NVMe standard, which enables access to

remote NVMe devices over different types of network fabrics.

NVMe-oF is commonly adopted in disaggregated storage sys-

tems since it provides < 10μs latency by eliminating protocol

translations in the traditional remote data access protocols,

such as from SCSI to NVMe [9]. NVMe-oF exposes the

parallel submission queues of NVMe drives to remote nodes

transparently via network fabrics so that remote users can

submit NVMe commands as sent to their local drives.

There are four significant fabrics in NVMe-oF, i.e., TCP/IP,

RDMA-based (RoCE and iWARP), Fiber Channel, and Infini-

Band [8]. NVMe-oF using TCP/IP is supported after Linux

Kernel 5.0 and is also present in the Storage Performance

Development Kit (SPDK). Compared to the traditional TCP/IP

protocol, Remote Direct Memory Access (RDMA) supports

data transfer without CPU involvement, which can signif-

icantly reduce remote data access latency. RoCE requires

specific hardware support on network switches. iWARP is an

RDMA protocol on TCP/IP that can be deployed on existing

software transport frameworks to fit RDMA at the cost of

implementation of a complex mix of layers. Consequently,

iWARP fails to deliver high throughput, low latency, and low

CPU utilization as RoCE [10]. Fiber Channel is a facto stan-

dard for enterprise Storage Area Networking (SAN) solutions

that support traditional SCSI and NVMe protocols [11]. In-

finiBand is primarily proposed to construct I/O Area Network

(IAN) and is now mainly used to build a preferred network

interconnection technology for GPU servers [2].

2) NVMe-over-RDMA: Our study focuses on congestion

control of NVMe-over-RDMA protocols. RDMA is designed

natively for direct memory access to remote memory. NVMe-

oF extends RDMA to the storage domain by transferring

NVMe commands directly over fabrics. Fig. 1 shows the data

flow in NVMe over RDMA. We denote storage nodes as

Targets and the nodes sending I/O requests as Initiators. In

Fig. 1, we simplify the architecture with N Initiators and M
Targets to a 1:1 system to clearly illustrate the structures of

Target and Initiator. The outbound flows represent I/O requests

and data sent from Initiators to Targets, while the inbound

flows represent data sent from Targets back to Initiators.

Specifically, user applications submit NVMe commands to

the transaction queue (TXQ) of RDMA Driver via NVMe-

oF Initiator Driver. When RDMA Driver on Targets receives

commands, NVMe-oF Target Driver delivers commands to

the submission queue (SQ) of the NVMe Driver. The queue

depth (QD) parameter controls how many commands can be

fetched to SSD flash at once. Given upon data-processing is

finished, SSD sends data (for read requests) and completion

acknowledgment (for write requests) to the completion queue

(CQ) of the NVMe Driver. The entries in CQ are sequentially

transferred into TXQ of RDMA Driver on Targets. Ultimately,

Initiators forward the received completion entries to user

applications. It is worth noting that most inbound flows are

data retrieved by read requests, while outbound flows are data

sent by write requests majorly.

B. Traditional Network Congestion Control

Network congestion control in RDMA has drawn research

concentrations since it was proposed. The existing congestion

control mechanisms can be categorized as rate control-based

and packet scheduling-based. The rate control-based mech-

anisms can be further divided into end-to-end and hop-by-
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hop [5]. The end-to-end control is a transport layer solution,

and the TCP congestion control [12] is one of the most

traditional end-to-end control algorithms. On the other hand,

the hop-by-hop control or flow control is a link-layer solution.

In the case of congestion, where the queue length is more than

a threshold, the switch informs its upstream device to stop

sending (called Priority Flow Control or PFC [13]) or to slow

down (called Quantized Congestion Notification or QCN [14])

to resolve the congestion.

Fig. 1. Architecture of NVMe over RDMA.

Additionally, a packet marking mechanism, named

ECN [15], can be used with PFC and QCN. ECN marks

a packet by flipping the 1-bit in that packet’s header if the

queue length at the congestion point exceeds a threshold.

Many current congestion control solutions combine PFC,

QCN, and ECN to control network traffic on end-to-end

and hop-by-hop levels. For example, DCTCP [16] is built

based on TCP and ECN. DCQCN [4] is another significant

congestion control scheme built upon QCN and can be used

with PFC to ensure a lossless network [4]. PCN [5] is a more

recent scheme built upon DCQCN and PFC. In this work, we

use DCQCN as our network congestion control mechanism.
The extension of RDMA to NVMe-oF raises new challenges

in network congestion control. Traditional network congestion

control policies regard all nodes in the network topology

homogeneously. When a Target/Initiator node receives a quan-

tized congestion notification (QCN), DCQCN stacks data in

the data transaction queue (TXQ) to limit the data sending rate.

However, an NVMe-oF architecture differentiates Initiators

and Targets, which imposes different effects on the read and

write throughput.
For example, for congestions caused by outbound flows (i.e.,

data from Initiators to Targets for write requests), DCQCN

buffers the data in the TXQ on Initiators while SSDs on

Targets can still serve to write requests at their regular (not

reduced) speed. On the other hand, for congestion caused by

inbound flows (i.e., data retrieved from Targets to Initiators for

read requests), DCQNC attempts to throttle the data sending

rate from Targets. In this case, although SSDs continuously

process read requests and send data to the TXQ on Targets,

DCQNC limits the data sending rate of RDMA drives on

Targets to relieve the network congestion. Therefore, the TXQ

on Targets becomes the bottleneck of read throughput, which

wastes the high throughput of SSDs.

Fig. 2. Motivation examples of data transmission under (a) no congestion,
(b) DCQCN, and (c) the proposed SRC. The red bars indicate write requests
and the yellow bars show read requests.

Fig. 2-a shows a demo case of no congestion happening

in the data transmission of NVMe-oF. Assume that an SSD

can process 3 write requests and 6 read requests per time

unit, and RDMA can transfer data of 6 requests per time unit

when there is no congestion. Under such a situation, the overall

throughput (including both read and write requests) is 9 I/Os

per time unit. When outflow congestion happens, see Fig. 2-

b, DCQCN cuts the data sending rate, for example, by half.

Therefore, 3 of 6 read requests are stuck in RDMA TXQ due to

network congestion. Although SSDs can continue processing 6

read requests per time unit, RDMA will only send Initiator the

data of 3 requests according to DCQCN’s control notification.

The overall throughput is consequently reduced from 9 to 6.

C. Challenges and Related Work

Fig. 2-b shows that the existing congestion control mech-

anisms (e.g., DCQCN) rely on the RDMA at Targets to

control the sending rate, which ignores the actual processing

on the backend SSDs and sacrifices (or wastes) the high

throughput of SSDs. The overall performance is thus degraded.

An example of read throughput degradation in DCQCN is

presented in Sec. IV-D. To address this issue, we propose a

new Storage-side Rate Control (SRC) mechanism that moves

the control of sending rates from the RDMA to the SSDs by

enabling the processing (or throughput) control of read and

write requests on the SSD devices. Specifically, SCR attempts

to limit the throughput of read requests while increasing the

write throughput to avoid the overall throughput degradation of
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traditional congestion control mechanisms. We illustrate how

SRC works for congestion control in Fig. 2-c. Upon receiving

the congestion notification, SRC adjusts the processing rate of

read and write requests by prioritizing write requests with the

completion of 3 read requests but 6 write requests per time

unit. As a result, the sending rate of inbound flows (i.e., data

retrieved by read requests) is reduced to half while the overall

throughput maintains the same (i.e., 9 per time unit) as the

situation with no congestion.

To achieve our goal, we need to address the following

three challenges. First, we need a mechanism to separately

change the priority of read and write requests when congestion

happens. To our knowledge, no such mechanism exists in the

present NVMe-oF protocol which can control the individual

read and write throughput. We can deploy the priority mech-

anism on either storage nodes (i.e., active model) or compute

nodes (i.e., passive model). We choose the former because

existing storage and memory systems have mainly adopted

the active model [17].

Second, we need a dynamic priority adjustment mechanism

to perform throughput control at run-time. An intuitive method

is to monitor the current system status and reactively adjust

the request priority. However, such a method suffers from

slow response and control delay. We use a throughput pre-

diction model to help make decisions on reducing the data

sending rate. A few works have been proposed to predict

SSD performance. For example, SSDcheck [18] develops a

performance model for black-box SSDs, focusing on the

impact of write buffer and garbage collection (GC) on I/O

latency. However, this work lacks consideration of workload

characteristics and interference between read and write re-

quests. Huang [19] adopts a decision-tree machine-learning

model to predict latency and throughput for read and write

I/Os. [20] applies multiple machine learning algorithms to

predict I/O performance for container-based virtualization and

[21] develops a feature selection mechanism to speed up the

training of SSD performance models. In this paper, we derive

a new throughput prediction model and use machine learning

algorithms to learn the selected key features of workload

characteristics as input for predicting the individual throughput

of read and write requests of SSDs.

Finally, we need to integrate our priority adjustment and

throughput prediction systematically. Our throughput predic-

tion model needs to consider workload characteristics and

learn the impact of priority adjustment on SSD read/write

throughput. We need to design an algorithm to utilize the

learned knowledge from the throughput prediction model to

adjust read and write priorities effectively.

III. DESIGN OF SRC

In this paper, we develop a new Storage-side Rate Control

(SRC) solution to mitigate throughput degradation caused by

traditional congestion control.

Fig. 3 shows the integration of SRC design into NVMe-oF.

SRC is dedicated to assisting traditional network congestion

control mechanisms (e.g., DCQCN) to relieve congestion

Fig. 3. Architecture of Storage-side Rate Control (SRC).

while avoiding performance degradation on Targets. When a

congestion notification is received by RDMA Driver, instead

of solely relying on RDMA Driver to limit the data sending

rate, we transmit the notification to SRC with a required

data sending rate calculated by RDMA Driver. Then SRC

adjusts the priority of read and write requests and specifically

allocates more storage bandwidth to write requests. Therefore,

read throughput is reduced by SRC to meet the required data

sending rate, while write throughput increases to avoid wasting

I/O bandwidth and degrading overall throughput.

A. Separate Submission Queue

We first develop a separate submission queue (SSQ) mech-

anism on NVMe Driver to enable read and write requests to

be submitted to the separate queues based on their I/O types.

We then can control the respective throughput of read and

write requests by adopting a weighted round-robin algorithm

between the read and write submission queues. Fig. 4-a shows

the default NVMe queuing mechanism, where the NVMe

controller creates multiple submission queues (SQs) and com-

pletion queues (CQs) to submit I/O requests and receive

completion acknowledgment or retrieved data, respectively.

Theoretically, each CPU can spawn as many as 64K SQ and

CQ, and multiple SQs can share a single CQ or have their

corresponding CQs.

A typical NVMe queuing design is that each CPU has one

pair of SQ and CQ to take advantage of parallel processing

queues in NVMe SSDs, as shown in Fig. 4-a. When I/O

requests submitted from applications in the user space are

passed into the kernel space, without any I/O scheduling

policy, the NVMe driver converts I/O requests to NVMe com-

mands and enqueues them in a FIFO order. A parameter named

queue depth (QD) decides how many NVMe commands can

be fetched from a single SQ simultaneously to the storage

device. Once QD commands are ready, the NVMe driver sets

a register to ring the doorbell to let SSD fetch these commands.

After a set of commands is processed, the corresponding

completion entries will be enqueued into the CQ along with

pointers to either the physical data addresses (for read) or

competition acknowledgments (for write).

Fig. 4-b shows our proposed SSQ mechanism to isolate

read and write I/O requests and facilitate individual read and
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(a) Default (b) SSQ

Fig. 4. Submission Queues in NVMe Driver.

write throughput control. We construct two submission queues

(i.e., RSQ and WSQ) for read and write requests, respectively.

Meanwhile, we allow these two SQs to share the same CQ. We

then use a weighted round-robin (WRR) algorithm provided by

NVMe protocol [8] to fetch commands from RSQ and WSQ.

Unlike the traditional round-robin, WRR sets a particular

weight for each SQ so that the SQ with a larger weight can

feed more commands when the storage device starts to fetch

I/O commands. Specifically, we can assign different numbers

of tokens to RSQ and WSQ to control the read and write

weights. When a command is fetched from an SQ, one of this

SQ’s tokens is taken. If no token exists for an SQ, we reset

its token number to continue I/O fetching.

We continue using queue depth (QD) to control the total

number of commands that can be fetched simultaneously. In

our proposed SSQ mechanism, QD is partitioned into RSQ

and WSQ based on the weight ratio (i.e., the ratio of the

write weight to the read weight). Therefore, the number of

write and read commands that will be processed in parallel

on SSDs follows the weight ratio. As SSD firmware grants

an equal priority to read and write commands to utilize the

internal parallelism, we can dynamically use the weight ratio

to control the read and write throughput. We also notice that

when SSD starts to fetch, one of the SQs may be empty, i.e.,

no commands are waiting. In this case, the SSQ mechanism

turns to fetch the commands from the other non-empty SQ

without manipulating the tokens. This indicates that the I/O

workload (e.g., read-to-write request ratio) might also affect

the throughput control in our mechanism. We will evaluate the

impact of workload characteristics on our design in Sec. IV.

Data consistency is further considered in our proposed

SSQ mechanism. Separating I/O submission queues breaks

the sequentiality of I/O flows. For instance, a write-after-

read operation may retrieve outdated data if RSQ has higher

weights than WSQ. To solve this problem, we implement a

consistency-checking mechanism to guarantee that dependent

flows are executed in their demanded order. If a request Rt

attempts to read or write the same logical block address (LBA)

as the previous request Rt−τ , we then locate where Rt−τ is

(if waiting in SQ) and submit Rt to the same SQ. In this way,

no matter whether Rt and Rt−τ have the same or different

I/O types, our mechanism places them in the same queue to

ensure the sequentiality of I/O flows. Meanwhile, to preserve

the demanded weight ratio, our mechanism removes one token

from the corresponding SQ that holds the same I/O type as

Rt when this request command is fetched.

B. Throughput Prediction Model
To precisely control the data sending rate when network

congestion happens, we derive a mapping function between

the demanded data sending rate and the current system’s

status. Given a black-box SSD and a sequence of I/O requests,

we build a throughput prediction model (TPM) to learn the

relationship between SSD throughput and SSQ weight ratio.

Formula 1 shows our target function, where we denote the

characteristics of an I/O workload as Ch and the SSQ’s weight

ratio w. We consider both read throughput TPUTR and write

throughput TPUTW as the prediction outputs because read

and write requests usually interfere with each other while

sharing the internal storage resources. Since SRC aims to help

limit read throughput, we further impose an w ≥ 1 constraint

on Eq. 1.

TPUTR,W = F (Ch,w) (1)

In order to deepen the understanding of the impact of

Ch and w on throughput, we conduct experiments on an

NVMe SSD simulator (MQSim [22]) with various workload

characteristics (i.e., average inter-arrival time and average

request size) and weight ratios. Fig. 5 shows the read and write

throughout across weight ratios under different workloads. For

simplicity, we fix the read weight to 1 but increase the write

weight to increase w. Each row represents workloads with

the same average inter-arrival time, e.g., 10 ∼ 25μs. Each

column represents workloads with the same average request

size, e.g., 10 ∼ 40KB. Read and write requests have the same

characteristics.
The results in Fig. 5 reveal the following observations. First,

when w equals one, read and write requests have the same

throughput because read and write requests share the same

internal resources (i.e., fetch queues and backend channels)

inside NVMe SSD. Second, read throughput decreases and

write throughput increases as we increase w under moderate

or heavy workloads (i.e., large request size and short inter-

arrival time), see plots on the top-right side in Fig. 5. However,

we also observe that when the workload becomes light, such

as the one at the most left-bottom corner in Fig. 5, the

effectiveness of w fades out, i.e., no changes in read/write

throughput when w is increasing. This is because the request

flow is relatively idle when the average interval time increases.

Consequently, the number of commands waiting in RSQ or

WSQ becomes low, which limits the possibility of fetching

commands successfully under the WRR policy. Thus, WRR

becomes ineffective under light workloads and performs the

same as round-robin. Finally, we observe that both read

and write throughput keep increasing and flattening as the

workload’s intensity increases. Heavy workloads can fully

utilize storage resources and provide the maximum throughput.

However, workloads with high write contention can easily

saturate I/O bandwidth, which limits the effectiveness of

WRR.
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Fig. 5. I/O throughput across various weight ratios under different workloads.
X-axis shows the weight ratio while y-axis gives the read/write throughput.

We also investigate the impact of the workload characteris-

tics on throughput, including 1) the ratio of read requests to

write requests, 2) the squared coefficient of variation (SCV) of

request size and inter-arrival time for read and write requests,

and 3) the arrival flow speed, defined as the data size arrived

per time unit for read and write requests. We implement a

feature extractor to analyze the workload and get the corre-

sponding characteristics. All these extracted characteristics are

included in Ch in Eq. 1.

To build our prediction model, we need to collect data

samples under different workload characteristics and corre-

sponding performance metrics (i.e., read and write through-

put). We first run extensive experiments with various work-

loads and weight ratios to collect training data samples. We

use five statistical machine learning algorithms to learn the

mapping function in formula 1, including Linear Regression,

Polynomial Regression, K-Nearest Neighbor, Decision Tree

Regression, and Random Forest Regression. Given the features

extracted from the workloads and the weight ratio, these

algorithms attempt to calculate a predictive function that maps

the input to the demanded output with the least prediction

errors. We use the coefficient of determination to qualify the

prediction accuracy of five regression algorithms.

Table I shows the corresponding regression accuracy, where

Random Forest Regression achieves the highest prediction

accuracy, e.g., 0.94. Thus, we adopt the Random Forest

Regression algorithm in our throughput prediction model.

Random Forest Regression is an extension of Decision Tree

Regression. While the latter builds up a tree-like structure

where each node has splitting criteria over a feature, the

former constructs multiple tree-like structures to deliver a so-

called ensemble learning method that combines predictions

from multiple machine learning algorithms to make a more

accurate prediction than a single model. We apply the Breiman

feature importance equation [23] to calculate the weights of

each feature in Ch and find that the read and write arrival

flow speed plays the most crucial role in TPM with a weight

of 0.39 out of 1.

TABLE I
REGRESSION ACCURACY.

Model Accuracy

Linear Regression 0.77
Polynomial Regression 0.74
K-Nearest Neighbor 0.86
Decision Tree Regression 0.89
Random Forest Regression 0.94

C. Systematic Design of SRC

Fig. 6 shows how the above SSQ and TPM are integrated

into the proposed SRC to control read and write throughput.

First, we develop a new separate submission queue (SSQ)

mechanism on NVMe Driver, which adds read and write

requests to their corresponding SQ when the NVMe-oF Target

Driver delivers them. When NVMe SSD starts fetching I/O

commands, the SSQ mechanism uses a weighted round-robin

algorithm to fetch read and write commands from RSQ and

WSQ, respectively. As described in Sec. III-A, tokens are

given to each SQ based on the predefined read and write

weights. The solid red lines in Fig. 6 show the corresponding

request flows.

When a control notification is received from Network

Congestion Control, our throughput prediction model (TPM)

component learns the weights of RSQ and WSQ to obtain the

demanded data sending rate. The TPM component then uses

the learned mapping function to get the new weights and sends

them to the SSQ mechanism to adjust the actual SSQ weights.

Workload Monitor is also implemented to profile the workload

characteristics in a user-specific time window δ(e.g., 10 ms)

and extract selected features for learning. Specifically, we use

a prediction window to catch all request flows within the time

window. We learn the mapping function between throughput

and write weight ratio using workload characteristics collected

in the previous prediction window. Given the required data

sending rate by the network congestion control mechanism,

SRC chooses the write weight ratio with an absolute minimum

distance to adjust SSQ’s weights. The dashed black lines in

Fig. 6 show the corresponding control flows.

Algorithm 1 further shows the dynamic sending rate control

approach in SRC. The inputs of Alg. 1 include a set of

congestion events, the running workload, and the prediction

window. The congestion events can be either pause or re-

trieval events. The “DynamicAdjustment” procedure triggers

the “PredictWeightRatio” procedure to get the proper weight

ratio wi for each congestion event (i.e., ei). Specifically,

ei contains the information of a desired data sending rate

r and the current timestamp t. The “DynamicAdjustment”

procedure collects workload characteristics within the previous

time interval [t− δ, t] and passes the workload characteristics

with the desired data sending rate to the “PredictWeightRatio”

procedure. After a proper wi is returned, SRC adjusts SSQ’s

weights accordingly. It is worth noticing that the returnedwi

273

Authorized licensed use limited to: Northeastern University. Downloaded on May 15,2025 at 19:12:26 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Workflow of Storage-side Rate Control (SRC).

might be larger (resp. smaller) than the current weight ratio in

SSQ if pause (resp. retrieval) events happen.

The inputs of “PredictWeightRatio” include the demanded

data sending rate sent from the network congestion control

mechanism and the workload characteristics extracted by the

workload monitor. The output of Algorithm 1 is the weight

ratio that SSQ should adjust to. In the “PredictWeightRatio”

procedure, we first initialize a set of variables (lines 11 to

13). Particularly, the weight ratios w and w∗ are initialized as

1, i.e., read and write SQs have the same priority. We then

use TPM to predict the read throughput that SSD can provide

under a given workload Ch and weight ratio w = 1 (line

14). If the predicted read throughput is already lower than

the data sending rate, we directly return the new weight ratio

w∗ as 1 (lines 15 to 17). Otherwise, we start to search for

a proper weight ratio by increasing w so that the predicted

read throughput can be decreased. Since our goal is to find

the predicted read throughput closest to the demanded data

sending rate, we use min dis to track the minimum absolute

distance between them and update w∗ to the corresponding

w (lines 24 to 27). We continuously increase the weight ratio

until the predicted read throughput is converging, i.e., under

the relative distance between the throughputs (i.e., pre tput
and cur tput) under the previous and current weight ratios

is less than a threshold τ , e.g., 10% (line 28). After going

through all possible weight ratios, we return w∗ that has the

smallest absolute distance from the predicted read throughput

to the demanded data sending rate.

Finally, our TPM is a discrete prediction model, while

the demanded data sending rate can be continuous. Although

Algorithm 1 delivers the new weights with a minor prediction

error, SRC may still suffer from the variation (i.e., discrete

to continuous) in matching the demanded data sending rate.

However, we also notice that the variation has a limited impact

on network congestion control because traditional network

congestion control algorithms intuitively decide the demanded

data sending rate and use a feedback control flow to approach

the congestion control. For example, when a congestion signal

is received, DCQCN cuts the data sending rate by 75% and

Algorithm 1 SRC Dynamic Weight Adjustment

Input: Congestion events E. I/O workload WL. Prediction time
window δ.

Result: A series of weight ratios WR.
1 Procedure DynamicAdjustment(E, WL, δ)
2 for ei in E do
3 r ← demanded data sending rate in ei
4 t ← timestamp of ei
5 Ch’ ← Ch in time interval [t− δ, t]
6 wi ← PredictWeightRatio(r, Ch′)
7 put wi in WR and adjust SSQ’s weights
8 end
9 return WR

10 Procedure PredictWeightRatio(r, Ch)
11 w ← 1, w∗ ← 1
12 pre tput ← 0, cur tput ← 0
13 min dis ← INF_MAX
14 TPUTR,W ← TPM(Ch,w)
15 if TPUTR < r then
16 return w∗

17 endif
18 min dis ← |TPUTR − r|
19 do
20 w ← w + 1
21 pre tput ← TPUTR

22 TPUTR,W ← TPM(Ch,w)
23 dis ← |TPUTR − r|
24 if min dis > dis then
25 min dis ← dis
26 w∗ ← w
27 endif
28 cur tput ← TPUTR

29 while |pre tput−cur tput|
pre tput

≥ τ ;
30 return w∗

repeats the same procedure until the congestion is mitigated.

Therefore, in SRC, a slight offset of the demanded data send-

ing rate does not make non-negligible effects on congestion

control and thus can be ignored.

IV. EVALUATION

A. Testbed

We construct our experiments on a simulated disaggregated

storage system that systematically integrates a network simu-

lator (i.e., NS3-RDMA [24]) with a storage simulator (i.e.,

MQSim [22]). NS3 has been widely used to evaluate rate

control-based schemes, e.g., DCQCN, TIMELY, and PCN. We

build up a Clos network upon NS3, a multistage switching

architecture involving two layers of network switches and an

array of Initiators and Targets. Specifically, we have four pods,

and each pod consists of two leaf switches, four top-of-rack

(ToR) switches, and 64 nodes. We set the link capability as

40Gbps, and specify the link delay as 1 μs. We denote half

of the nodes (i.e., 128 nodes) as Initiators and the rest (i.e.,

128 nodes) as Targets. We choose DCQCN as the network

congestion mechanism in our evaluation. We further launch

multiple SSD instances on each Target using MQSim to

simulate a flash array. MQSim simulates end-to-end latency of

SSD, providing 2.9%−4.9% error rates for read and write [22],
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respectively. We also evaluate our design on different types of

SSDs as specified in Table II.

TABLE II
MQSIM PARAMETER CONFIGURATION

SSD-A SSD-B SSD-C

Queue Depth 128 512 512
Write Cache 256MB 256MB 512 MB

CMT 2MB 2MB 8 MB
Page Capacity 16KB 16KB 8 KB
Read Latency 75 μs 2 μs 30 μs
Write Latency 300 μs 100 μs 200 μs

We generate two types of workload traces in our evaluation.

The first type of workload is called micro traces, where the

inter-arrival time and request sizes are drawn from exponen-

tial distributions. The other type of workload is generated

based-on real storage repositories, e.g., SNIA IOTTA Repos-

itory [25], denoted as synthetic traces. Specifically, we first

extract the statistics, e.g., the average, SCV, skewness, and

auto-correlation of inter-arrival time and request size, of real

storage traces, such as Fujitsu VDI traces [26] and Tencent

CBS traces [27]. Then we use the Q Toolbox [28] to create

an MMPP (Markov-modulated Poisson Process), a two-phase

MAP process that can be used to generate inter-arrival time

and request size with bursts for the synthetic traces.

B. Evaluation Method

We define two metrics, i.e., pause number and aggregated

throughput, to evaluate the network congestion control and

system performance. The pause number is the number of

congestion signals received by Targets system-widely, and

a large pause number represents heavy network congestion.

Since our goal is to mitigate the performance degradation of

Targets, our evaluation focuses on congestion caused by read

requests. When congestion happens, we expect our SRC to

reduce read throughput to the demanded data sending rate

and meanwhile increase write throughput. Therefore, we use

aggregated throughput (i.e., the summation of read throughput

received at Initiators and write throughput obtained at Targets,

see Fig. 2) to represent the SSD performance. Our baseline

is executing a workload with DCQCN only. Another round

of experiments on the same workload but with SRC acti-

vated (denoted DCQCN-SRC) is performed to compare with

DCQCN-only. We omit the start (first 10%) and tail (last 10%)

of experimental results across the timeline to avoid inaccuracy

in the warmup and wrapup stages.

C. TPM Accuracy

We first evaluate the accuracy of our TPM across different

workload characteristics of the synthetic workloads. We as-

sume the specification is unknown to us for any given SSD

and thus train TPM with extensive training samples. To ensure

TPM can provide high enough accuracy for SRC to adjust

read throughput, we produce cross-validation with micro and

synthetic workloads on SSD-A in Table II. In cross-validation,

we shuffle the whole data set and use the partial data set for

training and the rest for validation to avoid using the same data

set for training and validation. The accuracy shown in Table I

is collected using micro traces only, i.e., 60% for training and

the rest for validation. We observe that the accuracy is as high

as 0.94 under Random Forest Regression.

Now, we extend our TPM evaluation to more realistic

workloads. We first classify the synthetic workloads into four

categories according to their spatial and temporal statistics.

Each data subset represents one combination with low or high

variation (e.g., SCV) in request size and inter-arrival time,

see Table III. Then we use the synthetic traces in a data

subset for validation and the remaining synthetic traces and

all micro traces for training. The accuracy under Random

Forest Regression is shown in Table III. We find that a reliable

prediction accuracy (i.e., 0.89 - 0.98) is achieved by our TPM

for different types of workloads. Similar accuracy is also

obtained for the other two types of SSDs in Table II.

TABLE III
CROSS-VALIDATION ACCURACY USING RANDOM FOREST REGRESSION.

Data Subset Accuracy

low size SCV + low inter-arrival SCV 0.89
low size SCV + high inter-arrival SCV 0.98
high size SCV + low inter-arrival SCV 0.96
high size SCV + high inter-arrival SCV 0.95

D. Throughput Control

The main goal of our SRC design is to control the read

throughput to the demanded data sending rate while maintain-

ing high aggregated I/O throughput. We first use a synthetic

workload generated based on the characteristics of the Fujitsu

VDI trace that has more intensive read requests than write

requests. The average request sizes for read and write are 44
KB and 23 KB, respectively. The average inter-arrival time

for read and write is similar, around 10μs. The read traffic

load 1 going through the network is around 35.2 Gbps. We

also consider one Initiator and two Targets, where each Target

processes 5, 000 read and 5, 000 write requests. We have three

types of SSDs, as shown in Table II. Here, we only present

the results of SSD-A as an example for the evaluation.

Fig. 7 shows the read, write, and aggregated throughput

of DCQCN with and without SRC. We also record the

pause number received per millisecond in Fig. 8. The read

throughput, see blue bars in Fig. 7, is reduced from around 5

Gpbs to about 1 Gbps at the beginning stage because heavy

network congestion happens. Correspondingly, we can find a

dramatic boost in pause number from Fig. 8. We also observe

that such a drop in read throughput is consistent under both

DCQCN-only and DCQCN-SRC, which indicates that our

SRC successfully controls the read throughput to the demand

data sending rate. At the same time, the aggregated throughput

(see the blue+orange bars in Fig. ??) under DCQCN-only

dramatically drops from 7.5 Gbps to 2.5 Gbps. As discussed

1The traffic load is calculated by dividing the average request size by the
average inter-arrival time.
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Fig. 7. Runtime throughput under DCQCN-only and DCQCN-SRC. The blue
bars and orange bars show the read and write throughput, respectively. The
entire bars give the aggregated throughput.

(a) DCQCN-only

(b) DCQCN-SRC

Fig. 8. Pause number under DCQCN-only and DCQCN-SRC.

in Sec. II-B, traditional DCQCN relies on TXQ on the RDMA

driver to control the read throughput, which ignores the SSD’s

processing throughput. In contrast, SRC controls the read

throughput at the storage side, which allows it to further

control (i.e., increase) the write throughput. As a result, the

aggregated throughput under DCQCN-SRC is just slightly

decreased. At around 80ms, the congestion is relieved, and

the read throughput goes up to about 2 Gbps. However, the

read throughput dominates the aggregated throughput since

the write intensity is much lighter (only half of) than the read

intensity in this workload.

E. Dynamic Control of SRC

In our SRC design, we dynamically adjust the weights

for RSQ and WSQ when a congestion event happens, as

shown in Alg. 1. A delay in controlling the data-sending

rate upon receiving the control notification is unavoidable. To

investigate how the dynamic control takes effect, we generate a

sequence of synthetic network congestion events with different

demanded data sending rates to evaluate SRC’s convergence

speed in the throughput adjustment on SSD-B. Fig. 9 shows

the runtime adjustment of read and write throughput when the

synthetic congestion events happen. Each vertical dashed line

represents receiving a congestion signal. We use SSD-B as our

storage device

In Fig. 9, the first event (pause) happens at around 60
ms, where the demanded data sending rate is set as 6 Gbps.

The “PredictWeightRatio” procedure is triggered and returns

the new weight ratio 3. SRC then adjusts the corresponding

weights for RSQ and WSQ, which makes the read throughput

drop between 5 Gbps and 7.5 Gbps after 7 ms. Later at 100 ms,

another pause signal is received with a 3 Gbps demanded data

sending rate, indicating that network congestion still exists.

SRC sets the weight ratio to 5, and the read throughput reaches

around 2.5 Gbps after 10 ms. After congestion is relieved,

SRC receives a retrieval signal, which requests to raise the

data sending rate to 6 Gbps. It takes SRC around 12 ms to

converge. Finally, another retrieval signal is received, and SRC

controls the read throughput back to 10 Gbps after around 8
ms. We also generate a long trace with hundreds of connection

events. The average control delay is around 7.3 ms. We state

that such a control delay has a limited impact on network

congestion because a typical latency of network flows with

tens of KB data is tens of milliseconds.

Fig. 9. Dynamic throughput adjustment under SRC.

F. Sensitivity Analysis

1) Workload Intensity: To investigate the effect of SRC

on different types of workloads, we generate three micro

workloads by adjusting the average arrival rate and request size

but keeping the same network topology. That is, there are one

Initiator and two Targets, and each Target has multiple SSD-

A devices. Specifically, we increase both the average request

size (44 KB) and average arrival rate (100 /ms) to mimic an

intensive workload that transfers large data flows frequently.

On the opposite, we generate a light workload by reducing the

average request size to 22 KB and the average arrival rate to

60 /ms. We also define a moderate workload with an average

request size of 32 KB and an average arrival rate of 80 /ms.

Fig. 10 shows the throughput (read, write, and aggregated)

across time of DCQCN-only and DCQCS-SRC under these
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three workloads. We find no visible difference in the through-

put between DCQCS-SRC and DCQCN-only when we have

the light workload, see Fig. 10-a. This is because there are a

limited number of requests in both network and SSD submis-

sion queues. On the other hand, compared with DCQCN-only,

DCQCS-SRC obtains a significant increase in write throughput

under moderate and heavy workloads, particularly when a

congestion event happens (about 14 ms in Fig. 10-b and

7 ms in Fig. 10-c). Meanwhile, SRC successfully controls

the read throughput to the demanded data sending rate that

DCQCN notifies. We can observe that the read throughput

under DCQCN-SRC aligns well with that under DCQCS-only.

(a) Light

(b) Moderate

(c) Heavy

Fig. 10. Workload intensity investigation under DCQCN-only and DCQCN-
SRC.

2) In-cast Ratio: In-cast ratio, defined as the ratio of

Targets to Initiators, is an essential factor in modern congestion

control algorithms. Thus, we further conduct experiments to

investigate the impact of the in-cast ratio on the control

performance. In this set of experiments, we keep the same

network traffic load (i.e., around 38 Gbps) but change the in-

cast ratios. Note that a larger in-cast ratio indicates relatively

more Targets. Table IV summarizes the aggregated throughput

under DCQCN with and without SRC and the corresponding

improvement of DCQCN-SRC over DCQCN-only.

We first observe that DCQCN-SRC improves the aggregated

throughput by 33% when the in-cast ratio is 2:1. This is

because when there are fewer Targets, each Target receives

more requests to queue in the SQs. Therefore, SSD can suc-

cessfully fetch commands in the weighted round-robin mode.

Whereas, such an improvement becomes less when the in-cast

ratio is increased from 2:1 to 4:1. We observe that a large in-

cast ratio (e.g., 4:1) makes the total traffic load be distributed

among more Targets so that each Target’s workload intensity

decreases. In this case, the weighted round-robin downgrades

to the round-robin, as discussed in Sec. III-B, and thus our

SRC cannot take effect. However, this case can be addressed

by designing a data distribution mechanism that attempts

to find a data distribution policy with the lowest network

traffic [29]. We further increase the number of Initiators to

change the in-cast ratio from 4:1 to 4:4. As shown in the

table, DCQCN-SRC performs similarly to DCQCN-Only. This

is because, given the same total traffic load, more Initiators

can relieve network congestion and then avoid I/O throughput

degradation under DCQCN-Only.

TABLE IV
IN-CAST RATIO ANALYSIS.

In-cast Ratio DCQCN-SRC DCQCN-Only Improvement

2:1 3.2 Gbps 2.4 Gbps 33%
3:1 5.4 Gbps 4.6 Gbps 17%
4:1 8.2 Gbps 7.8 Gbps 5%
4:4 9.5 Gbps 9.2 Gbps 3%

V. CONCLUSION

Performance degradation of storage nodes caused by tra-

ditional network congestion control mechanisms is evident

in disaggregated storage systems. In this work, we propose

a storage-side rate control mechanism to help mitigate per-

formance degradation when network congestion happens. We

develop a throughput control mechanism using a weighted

round-robin separate submission queue. We further develop

a throughput prediction model to learn the mapping between

workload characteristics to read and write throughput, consid-

ering our throughput control mechanism. Finally, we develop a

dynamic adjustment system to utilize the throughput prediction

model and separate submission queue to help limit the data

sending rate on storage nodes. In the future, we plan to

construct a small-scale disaggregated storage system, extend

our design as an I/O scheduler in the block layer on Targets,
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and explore the direction of integrating our design in SPDK,

an NVMe driver in user space.
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