2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS) | 979-8-3503-3766-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/IPDPS54959.2023.00035

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

SRC: Mitigate I/O Throughput Degradation in Network Congestion
Control of Disaggregated Storage Systems

Danlin Jia%, Yiming Xie*, Li Wang*, Xiaoqian Zhang', Allen Yangf, Xuebin Yao?,
Mahsa Bayati!, Pradeep Subedit, Bo Sheng’ and Ningfang Mi*
*Department of Electrical and Computer Engineering, Northeastern University, Boston, USA
TDepartment of Computer Science, University of Massachusetts Boston, Boston, USA
J:Samsung Semiconductor Inc., San Jose, CA, USA

Abstract—The industry has adopted disaggregated storage
systems to provide high-quality services for hyper-scale archi-
tectures. This infrastructure enables organizations to access
storage resources that can be independently managed, configured,
and scaled. It is supported by the recent advances of all-flash
arrays and NVMe-over-Fabric protocol, enabling remote access
to NVMe devices over different network fabrics. A surge of
research has been proposed to mitigate network congestion
in traditional remote direct memory access protocol (RDMA).
However, NVMe-oF raises new challenges in congestion control
for disaggregated storage systems.

In this work, we investigate the performance degradation of
the read throughput on storage nodes caused by traditional
network congestion control mechanisms. We design a storage-side
rate control (SRC) to relieve network congestion while avoiding
performance degradation on storage nodes. First, we design an
I/0 throughput control mechanism in the NVMe driver layer to
enable throughput control on storage nodes. Second, we construct
a throughput prediction model to learn a mapping function
between workload characteristics and I/O throughput. Third,
we deploy SRC on storage nodes to cooperate with traditional
network congestion control on an NVMe-over-RDMA architec-
ture. Finally, we evaluate SRC with varying workloads, SSD
configurations, and network topologies. The experimental results
show that SRC achieves significant performance improvement.

Index Terms—Disaggregated Storage System, Network Con-
gestion Control, Storage Throughput Prediction and Control,
NVMe-oF

I. INTRODUCTION

In recent years, resource disaggregation has been commonly
adopted in hyper-scale cloud systems and data centers to
enable easy configuration, isolation, and scale-up of resources.
Storage disaggregation has drawn significant attention since
the emergence of high I/O speed storage media and serial
buses, such as NVMe (Non-Volatile Memory express) SSDs
with PCle Gen 4 [1]. The advanced storage solution can
provide up to 8 GB/s throughput but requires high CPU
utilization to take advantage of it. Disaggregated storage sys-
tems decouple the compute and storage nodes, which provides
flexibility in system management.

While possessing the desired features of enterprise stor-
age systems, storage disaggregation relies on the support
of networking frameworks, NVMe-over-Fabric (NVMe-oF)
protocol has been developed to enable the submission of
NVMe commands to a remote NVMe SSD through different
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network fabrics. It serves as a fundamental building block for
disaggregated storage systems. There are multiple options for
the underlying network fabric for NVMe-oF, such as Ethernet,
Fibre Channel, and InfiniBand [2], and this paper considers
the RoCE protocol [3], the Remote Direct Memory Access
(RDMA) over Converged Ethernet protocol, that guarantees
lossless data delivery. More details will be reviewed in Sec. II.
When the I/O requests and the corresponding data blocks are
transferred between computing nodes and storage hosts, the
network performance becomes a critical component in storage
operations. A large-scale disaggregated storage system would
demand extremely low network latency, especially when pro-
cessing a heavy I/O workload. On the other hand, network
congestion, one of the top challenges in the networking field,
would degrade the storage system’s performance.

In the literature, there have been solutions for network
congestion control in data center networks that yield high
throughput and microsecond-level latency [4]-[6]. However,
traditional network congestion control mechanisms of RoCE
only consider network performance optimization but omit the
performance degradation on storage nodes. When network
congestion happens, the control mechanism sends a signal to
the data sender to limit the data sending rate by buffering
the data in the network socket. However, storage devices are
unaware of the data throttling happening at network protocols
and keep the same request processing rate to retrieve data, e.g.,
in read requests. Consequently, the high performance of the
storage devices suffers from the bottleneck of network conges-
tion control and results in overall performance degradation.

In this work, we propose a storage-side rate control (SRC)
mechanism to mitigate the performance degradation of storage
devices caused by network congestion. SRC cooperates with
the network congestion control mechanism to reduce the data
sending rate of storage nodes by precisely controlling read and
write throughput. We first design a throughput control mecha-
nism that prioritizes read and write requests when a congestion
signal is received. The goal of the throughput control is to
mitigate the degradation of aggregated throughput on storage
nodes. We further develop a throughput prediction model to
learn the mapping between workload characteristics to read
and write throughput while using our control mechanism.
Finally, SRC utilizes the learned knowledge of the throughput
prediction model to help limit the data-sending rate on storage
nodes and mitigate performance degradation. As we know,
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SRC is the first work that systematically investigates and op-
timizes storage performance affected by network congestion of
disaggregated storage systems. In summary, the contributions
of this work are as follows.

Investigate the architecture of disaggregated storage
systems. We explore the current network congestion control
mechanisms in NVMe-oF with RoCE. We study the current
stack of NVMe-oF to understand the bottleneck incurred in
the network congestion control mechanism.

Design a separate submission queue. We develop a
throughput control mechanism on storage nodes that submits
I/O requests to different queues (read or write). A weighted
round-robin is used to prioritize read and write requests.
Develop a throughput prediction model. We construct a
Random Forest Regression model to predict the read and
write throughput of a black-box SSD, given an I/O work-
load. We further involve the parameters of the throughput
control mechanism in the prediction model.

Build and evaluate the storage-side control architecture.
We propose a dynamic adjustment algorithm that combines
throughput control and prediction to adjust the data sending
rate. We finally construct a simulated system by adopting
widely adopted network and storage simulators to evaluate
our design.

In the remainder of this paper, we introduce the background
and our motivation in Sec. II. We present the detailed approach
and the algorithms of SRC in Sec. IIl. Sec. IV evaluates
SRC across different workloads and system specifications. The
conclusion and future work are presented in Sec. V.

II. BACKGROUND AND MOTIVATION
A. Disaggregated Storage Systems

Disaggregated storage is one type of resource disaggre-
gation infrastructure to enable organizations to access stor-
age resources that can be managed, configured, and scaled
independently. In a disaggregated storage system, storage
resources can be isolated from compute resources physically
and transmit data over the network fabrics. Such a composable
infrastructure provides elasticity, scalability, and efficiency in
modern data center management. Specifically, administrators
can scale out storage resources with the slightest consideration
of the characteristics of computing nodes because storage re-
sources are no longer tightly attached to computing resources.
Therefore, disaggregated storage systems provide a promising
solution for skewed data and over-provisioning [7]. Conse-
quently, the network plays a more critical role in deploying
disaggregated storage systems because resource pools rely on
network fabrics to transfer massive amounts of data.

1) NVMe-over-Fabric: NVMe-over-Fabric (NVMe-oF) [8]
is an extension of the NVMe standard, which enables access to
remote NVMe devices over different types of network fabrics.
NVMe-oF is commonly adopted in disaggregated storage sys-
tems since it provides < 10us latency by eliminating protocol
translations in the traditional remote data access protocols,
such as from SCSI to NVMe [9]. NVMe-oF exposes the
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parallel submission queues of NVMe drives to remote nodes
transparently via network fabrics so that remote users can
submit NVMe commands as sent to their local drives.

There are four significant fabrics in NVMe-oF, i.e., TCP/IP,
RDMA-based (RoCE and iWARP), Fiber Channel, and Infini-
Band [8]. NVMe-oF using TCP/IP is supported after Linux
Kernel 5.0 and is also present in the Storage Performance
Development Kit (SPDK). Compared to the traditional TCP/IP
protocol, Remote Direct Memory Access (RDMA) supports
data transfer without CPU involvement, which can signif-
icantly reduce remote data access latency. RoCE requires
specific hardware support on network switches. iWARP is an
RDMA protocol on TCP/IP that can be deployed on existing
software transport frameworks to fit RDMA at the cost of
implementation of a complex mix of layers. Consequently,
iWARRP fails to deliver high throughput, low latency, and low
CPU utilization as RoCE [10]. Fiber Channel is a facto stan-
dard for enterprise Storage Area Networking (SAN) solutions
that support traditional SCSI and NVMe protocols [11]. In-
finiBand is primarily proposed to construct I/O Area Network
(IAN) and is now mainly used to build a preferred network
interconnection technology for GPU servers [2].

2) NVMe-over-RDMA: Our study focuses on congestion
control of NVMe-over-RDMA protocols. RDMA is designed
natively for direct memory access to remote memory. NVMe-
oF extends RDMA to the storage domain by transferring
NVMe commands directly over fabrics. Fig. 1 shows the data
flow in NVMe over RDMA. We denote storage nodes as
Targets and the nodes sending I/O requests as Initiators. In
Fig. 1, we simplify the architecture with N Initiators and M
Targets to a 1:1 system to clearly illustrate the structures of
Target and Initiator. The outbound flows represent I/O requests
and data sent from Initiators to Targets, while the inbound
flows represent data sent from Targets back to Initiators.

Specifically, user applications submit NVMe commands to
the transaction queue (TXQ) of RDMA Driver via NVMe-
oF Initiator Driver. When RDMA Driver on Targets receives
commands, NVMe-oF Target Driver delivers commands to
the submission queue (SQ) of the NVMe Driver. The queue
depth (QD) parameter controls how many commands can be
fetched to SSD flash at once. Given upon data-processing is
finished, SSD sends data (for read requests) and completion
acknowledgment (for write requests) to the completion queue
(CQ) of the NVMe Driver. The entries in CQ are sequentially
transferred into TXQ of RDMA Driver on Targets. Ultimately,
Initiators forward the received completion entries to user
applications. It is worth noting that most inbound flows are
data retrieved by read requests, while outbound flows are data
sent by write requests majorly.

B. Traditional Network Congestion Control

Network congestion control in RDMA has drawn research
concentrations since it was proposed. The existing congestion
control mechanisms can be categorized as rate control-based
and packet scheduling-based. The rate control-based mech-
anisms can be further divided into end-to-end and hop-by-
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hop [5]. The end-to-end control is a transport layer solution,
and the TCP congestion control [12] is one of the most
traditional end-to-end control algorithms. On the other hand,
the hop-by-hop control or flow control is a link-layer solution.
In the case of congestion, where the queue length is more than
a threshold, the switch informs its upstream device to stop
sending (called Priority Flow Control or PFC [13]) or to slow
down (called Quantized Congestion Notification or QCN [14])
to resolve the congestion.

------- » inbound flow
SSD
——> outbound flow
NVMe Driver
¢ K
: A v
NVMEoF NVMEoF
Initiator Driver Target Driver
: ™>Q > RxQ
e e
RDMA Driver RDMA Driver
Initiator Target

Fig. 1. Architecture of NVMe over RDMA.

Additionally, a packet marking mechanism, named
ECN [15], can be used with PFC and QCN. ECN marks
a packet by flipping the 1-bit in that packet’s header if the
queue length at the congestion point exceeds a threshold.
Many current congestion control solutions combine PFC,
QCN, and ECN to control network traffic on end-to-end
and hop-by-hop levels. For example, DCTCP [16] is built
based on TCP and ECN. DCQCN [4] is another significant
congestion control scheme built upon QCN and can be used
with PFC to ensure a lossless network [4]. PCN [5] is a more
recent scheme built upon DCQCN and PFC. In this work, we
use DCQCN as our network congestion control mechanism.

The extension of RDMA to NVMe-oF raises new challenges
in network congestion control. Traditional network congestion
control policies regard all nodes in the network topology
homogeneously. When a Target/Initiator node receives a quan-
tized congestion notification (QCN), DCQCN stacks data in
the data transaction queue (TXQ) to limit the data sending rate.
However, an NVMe-oF architecture differentiates Initiators
and Targets, which imposes different effects on the read and
write throughput.

For example, for congestions caused by outbound flows (i.e.,
data from Initiators to Targets for write requests), DCQCN
buffers the data in the TXQ on Initiators while SSDs on
Targets can still serve to write requests at their regular (not
reduced) speed. On the other hand, for congestion caused by
inbound flows (i.e., data retrieved from Targets to Initiators for
read requests), DCQNC attempts to throttle the data sending
rate from Targets. In this case, although SSDs continuously

270

process read requests and send data to the TXQ on Targets,
DCQNC limits the data sending rate of RDMA drives on
Targets to relieve the network congestion. Therefore, the TXQ
on Targets becomes the bottleneck of read throughput, which
wastes the high throughput of SSDs.

Initiator Target
SSD
RDMA RXQ L ‘ RDMA TXQ NVMe CQ
| |
RDMA TXQ | [ RDMA RXQ NVMe SQ J
[ 000000H—{__00000@}-{_ oooooor dad
i (a) No Congestion
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SSD
RDMA RXQ 8 (_> RDMA TXQ NVMe CQ
L& |
| | [
RDMA TXQ RDMA RXQ NVMe SQ
[ 000000H—{__DO000@f-+{__ooooont doo
(b) Traditional Network Congestion Control (DCQCN)
Congestion
SSD
RDMA RXQ L C) ‘ RDMA TXQ NVMe CQ
| [ ddud
ROMATXQ__ —BOMARXQ NVMe SQ _ aad
[ 000000H—r{ 000000 000k 0o

(c) Our Method (SRC)

Fig. 2. Motivation examples of data transmission under (a) no congestion,
(b) DCQCN, and (c) the proposed SRC. The red bars indicate write requests
and the yellow bars show read requests.

Fig. 2-a shows a demo case of no congestion happening
in the data transmission of NVMe-oF. Assume that an SSD
can process 3 write requests and 6 read requests per time
unit, and RDMA can transfer data of 6 requests per time unit
when there is no congestion. Under such a situation, the overall
throughput (including both read and write requests) is 9 I/Os
per time unit. When outflow congestion happens, see Fig. 2-
b, DCQCN cuts the data sending rate, for example, by half.
Therefore, 3 of 6 read requests are stuck in RDMA TXQ due to
network congestion. Although SSDs can continue processing 6
read requests per time unit, RDMA will only send Initiator the
data of 3 requests according to DCQCN’s control notification.
The overall throughput is consequently reduced from 9 to 6.

C. Challenges and Related Work

Fig. 2-b shows that the existing congestion control mech-
anisms (e.g., DCQCN) rely on the RDMA at Targets to
control the sending rate, which ignores the actual processing
on the backend SSDs and sacrifices (or wastes) the high
throughput of SSDs. The overall performance is thus degraded.
An example of read throughput degradation in DCQCN is
presented in Sec. IV-D. To address this issue, we propose a
new Storage-side Rate Control (SRC) mechanism that moves
the control of sending rates from the RDMA to the SSDs by
enabling the processing (or throughput) control of read and
write requests on the SSD devices. Specifically, SCR attempts
to limit the throughput of read requests while increasing the
write throughput to avoid the overall throughput degradation of
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traditional congestion control mechanisms. We illustrate how
SRC works for congestion control in Fig. 2-c. Upon receiving
the congestion notification, SRC adjusts the processing rate of
read and write requests by prioritizing write requests with the
completion of 3 read requests but 6 write requests per time
unit. As a result, the sending rate of inbound flows (i.e., data
retrieved by read requests) is reduced to half while the overall
throughput maintains the same (i.e., 9 per time unit) as the
situation with no congestion.

To achieve our goal, we need to address the following
three challenges. First, we need a mechanism to separately
change the priority of read and write requests when congestion
happens. To our knowledge, no such mechanism exists in the
present NVMe-oF protocol which can control the individual
read and write throughput. We can deploy the priority mech-
anism on either storage nodes (i.e., active model) or compute
nodes (i.e., passive model). We choose the former because
existing storage and memory systems have mainly adopted
the active model [17].

Second, we need a dynamic priority adjustment mechanism
to perform throughput control at run-time. An intuitive method
is to monitor the current system status and reactively adjust
the request priority. However, such a method suffers from
slow response and control delay. We use a throughput pre-
diction model to help make decisions on reducing the data
sending rate. A few works have been proposed to predict
SSD performance. For example, SSDcheck [18] develops a
performance model for black-box SSDs, focusing on the
impact of write buffer and garbage collection (GC) on I/O
latency. However, this work lacks consideration of workload
characteristics and interference between read and write re-
quests. Huang [19] adopts a decision-tree machine-learning
model to predict latency and throughput for read and write
I/0Os. [20] applies multiple machine learning algorithms to
predict I/O performance for container-based virtualization and
[21] develops a feature selection mechanism to speed up the
training of SSD performance models. In this paper, we derive
a new throughput prediction model and use machine learning
algorithms to learn the selected key features of workload
characteristics as input for predicting the individual throughput
of read and write requests of SSDs.

Finally, we need to integrate our priority adjustment and
throughput prediction systematically. Our throughput predic-
tion model needs to consider workload characteristics and
learn the impact of priority adjustment on SSD read/write
throughput. We need to design an algorithm to utilize the
learned knowledge from the throughput prediction model to
adjust read and write priorities effectively.

III. DESIGN OF SRC

In this paper, we develop a new Storage-side Rate Control
(SRC) solution to mitigate throughput degradation caused by
traditional congestion control.

Fig. 3 shows the integration of SRC design into NVMe-oF.
SRC is dedicated to assisting traditional network congestion
control mechanisms (e.g., DCQCN) to relieve congestion

271

SSD

NVMe Driver

Storage-side Rate Control

Required ]
Sending
Rate

Adjusted
Throughput
A4

Congestion
Signal

—=—p

NVMe-oF Target Driver

RDMA Driver

Target

Fig. 3. Architecture of Storage-side Rate Control (SRC).

while avoiding performance degradation on Targets. When a
congestion notification is received by RDMA Diriver, instead
of solely relying on RDMA Driver to limit the data sending
rate, we transmit the notification to SRC with a required
data sending rate calculated by RDMA Driver. Then SRC
adjusts the priority of read and write requests and specifically
allocates more storage bandwidth to write requests. Therefore,
read throughput is reduced by SRC to meet the required data
sending rate, while write throughput increases to avoid wasting
I/O bandwidth and degrading overall throughput.

A. Separate Submission Queue

We first develop a separate submission queue (SSQ) mech-
anism on NVMe Driver to enable read and write requests to
be submitted to the separate queues based on their I/O types.
We then can control the respective throughput of read and
write requests by adopting a weighted round-robin algorithm
between the read and write submission queues. Fig. 4-a shows
the default NVMe queuing mechanism, where the NVMe
controller creates multiple submission queues (SQs) and com-
pletion queues (CQs) to submit I/O requests and receive
completion acknowledgment or retrieved data, respectively.
Theoretically, each CPU can spawn as many as 64K SQ and
CQ, and multiple SQs can share a single CQ or have their
corresponding CQs.

A typical NVMe queuing design is that each CPU has one
pair of SQ and CQ to take advantage of parallel processing
queues in NVMe SSDs, as shown in Fig. 4-a. When /O
requests submitted from applications in the user space are
passed into the kernel space, without any I/O scheduling
policy, the NVMe driver converts I/O requests to NVMe com-
mands and enqueues them in a FIFO order. A parameter named
queue depth (QD) decides how many NVMe commands can
be fetched from a single SQ simultaneously to the storage
device. Once QD commands are ready, the NVMe driver sets
a register to ring the doorbell to let SSD fetch these commands.
After a set of commands is processed, the corresponding
completion entries will be enqueued into the CQ along with
pointers to either the physical data addresses (for read) or
competition acknowledgments (for write).

Fig. 4-b shows our proposed SSQ mechanism to isolate
read and write I/O requests and facilitate individual read and
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Fig. 4. Submission Queues in NVMe Driver.

write throughput control. We construct two submission queues
(i.e., RSQ and WSQ) for read and write requests, respectively.
Meanwhile, we allow these two SQs to share the same CQ. We
then use a weighted round-robin (WRR) algorithm provided by
NVMe protocol [8] to fetch commands from RSQ and WSQ.
Unlike the traditional round-robin, WRR sets a particular
weight for each SQ so that the SQ with a larger weight can
feed more commands when the storage device starts to fetch
I/O commands. Specifically, we can assign different numbers
of tokens to RSQ and WSQ to control the read and write
weights. When a command is fetched from an SQ, one of this
SQ’s tokens is taken. If no token exists for an SQ, we reset
its token number to continue I/O fetching.

We continue using queue depth (QD) to control the total
number of commands that can be fetched simultaneously. In
our proposed SSQ mechanism, QD is partitioned into RSQ
and WSQ based on the weight ratio (i.e., the ratio of the
write weight to the read weight). Therefore, the number of
write and read commands that will be processed in parallel
on SSDs follows the weight ratio. As SSD firmware grants
an equal priority to read and write commands to utilize the
internal parallelism, we can dynamically use the weight ratio
to control the read and write throughput. We also notice that
when SSD starts to fetch, one of the SQs may be empty, i.e.,
no commands are waiting. In this case, the SSQ mechanism
turns to fetch the commands from the other non-empty SQ
without manipulating the tokens. This indicates that the I/O
workload (e.g., read-to-write request ratio) might also affect
the throughput control in our mechanism. We will evaluate the
impact of workload characteristics on our design in Sec. IV.

Data consistency is further considered in our proposed
SSQ mechanism. Separating I/O submission queues breaks
the sequentiality of I/O flows. For instance, a write-after-
read operation may retrieve outdated data if RSQ has higher
weights than WSQ. To solve this problem, we implement a
consistency-checking mechanism to guarantee that dependent
flows are executed in their demanded order. If a request R;
attempts to read or write the same logical block address (LBA)
as the previous request R;_,, we then locate where R;_, is
(if waiting in SQ) and submit R; to the same SQ. In this way,
no matter whether R; and R;_, have the same or different
1/O types, our mechanism places them in the same queue to
ensure the sequentiality of I/O flows. Meanwhile, to preserve
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the demanded weight ratio, our mechanism removes one token
from the corresponding SQ that holds the same I/O type as
R, when this request command is fetched.

B. Throughput Prediction Model

To precisely control the data sending rate when network
congestion happens, we derive a mapping function between
the demanded data sending rate and the current system’s
status. Given a black-box SSD and a sequence of I/O requests,
we build a throughput prediction model (TPM) to learn the
relationship between SSD throughput and SSQ weight ratio.
Formula 1 shows our target function, where we denote the
characteristics of an I/O workload as C'h and the SSQ’s weight
ratio w. We consider both read throughput T"PUTER and write
throughput T'"PUTy, as the prediction outputs because read
and write requests usually interfere with each other while
sharing the internal storage resources. Since SRC aims to help
limit read throughput, we further impose an w > 1 constraint
on Eq. 1.

TPUTRw = F(Ch,w) (€))

In order to deepen the understanding of the impact of
Ch and w on throughput, we conduct experiments on an
NVMe SSD simulator (MQSim [22]) with various workload
characteristics (i.e., average inter-arrival time and average
request size) and weight ratios. Fig. 5 shows the read and write
throughout across weight ratios under different workloads. For
simplicity, we fix the read weight to 1 but increase the write
weight to increase w. Each row represents workloads with
the same average inter-arrival time, e.g., 10 ~ 25us. Each
column represents workloads with the same average request
size, e.g., 10 ~ 40KB. Read and write requests have the same
characteristics.

The results in Fig. 5 reveal the following observations. First,
when w equals one, read and write requests have the same
throughput because read and write requests share the same
internal resources (i.e., fetch queues and backend channels)
inside NVMe SSD. Second, read throughput decreases and
write throughput increases as we increase w under moderate
or heavy workloads (i.e., large request size and short inter-
arrival time), see plots on the top-right side in Fig. 5. However,
we also observe that when the workload becomes light, such
as the one at the most left-bottom corner in Fig. 5, the
effectiveness of w fades out, i.e., no changes in read/write
throughput when w is increasing. This is because the request
flow is relatively idle when the average interval time increases.
Consequently, the number of commands waiting in RSQ or
WSQ becomes low, which limits the possibility of fetching
commands successfully under the WRR policy. Thus, WRR
becomes ineffective under light workloads and performs the
same as round-robin. Finally, we observe that both read
and write throughput keep increasing and flattening as the
workload’s intensity increases. Heavy workloads can fully
utilize storage resources and provide the maximum throughput.
However, workloads with high write contention can easily
saturate 1/0O bandwidth, which limits the effectiveness of
WRR.
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Fig. 5. /O throughput across various weight ratios under different workloads.
X-axis shows the weight ratio while y-axis gives the read/write throughput.

We also investigate the impact of the workload characteris-
tics on throughput, including 1) the ratio of read requests to
write requests, 2) the squared coefficient of variation (SCV) of
request size and inter-arrival time for read and write requests,
and 3) the arrival flow speed, defined as the data size arrived
per time unit for read and write requests. We implement a
feature extractor to analyze the workload and get the corre-
sponding characteristics. All these extracted characteristics are
included in C'h in Eq. 1.

To build our prediction model, we need to collect data
samples under different workload characteristics and corre-
sponding performance metrics (i.e., read and write through-
put). We first run extensive experiments with various work-
loads and weight ratios to collect training data samples. We
use five statistical machine learning algorithms to learn the
mapping function in formula 1, including Linear Regression,
Polynomial Regression, K-Nearest Neighbor, Decision Tree
Regression, and Random Forest Regression. Given the features
extracted from the workloads and the weight ratio, these
algorithms attempt to calculate a predictive function that maps
the input to the demanded output with the least prediction
errors. We use the coefficient of determination to qualify the
prediction accuracy of five regression algorithms.

Table I shows the corresponding regression accuracy, where
Random Forest Regression achieves the highest prediction
accuracy, e.g., 0.94. Thus, we adopt the Random Forest
Regression algorithm in our throughput prediction model.
Random Forest Regression is an extension of Decision Tree
Regression. While the latter builds up a tree-like structure
where each node has splitting criteria over a feature, the
former constructs multiple tree-like structures to deliver a so-
called ensemble learning method that combines predictions
from multiple machine learning algorithms to make a more
accurate prediction than a single model. We apply the Breiman
feature importance equation [23] to calculate the weights of
each feature in Ch and find that the read and write arrival
flow speed plays the most crucial role in TPM with a weight
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of 0.39 out of 1.

TABLE 1
REGRESSION ACCURACY.
Model | Accuracy
Linear Regression 0.77
Polynomial Regression 0.74
K-Nearest Neighbor 0.86
Decision Tree Regression 0.89
Random Forest Regression | 0.94

C. Systematic Design of SRC

Fig. 6 shows how the above SSQ and TPM are integrated
into the proposed SRC to control read and write throughput.
First, we develop a new separate submission queue (SSQ)
mechanism on NVMe Driver, which adds read and write
requests to their corresponding SQ when the NVMe-oF Target
Driver delivers them. When NVMe SSD starts fetching I/O
commands, the SSQ mechanism uses a weighted round-robin
algorithm to fetch read and write commands from RSQ and
WSQ, respectively. As described in Sec. III-A, tokens are
given to each SQ based on the predefined read and write
weights. The solid red lines in Fig. 6 show the corresponding
request flows.

When a control notification is received from Network
Congestion Control, our throughput prediction model (TPM)
component learns the weights of RSQ and WSQ to obtain the
demanded data sending rate. The TPM component then uses
the learned mapping function to get the new weights and sends
them to the SSQ mechanism to adjust the actual SSQ weights.
Workload Monitor is also implemented to profile the workload
characteristics in a user-specific time window de.g., 10 ms)
and extract selected features for learning. Specifically, we use
a prediction window to catch all request flows within the time
window. We learn the mapping function between throughput
and write weight ratio using workload characteristics collected
in the previous prediction window. Given the required data
sending rate by the network congestion control mechanism,
SRC chooses the write weight ratio with an absolute minimum
distance to adjust SSQ’s weights. The dashed black lines in
Fig. 6 show the corresponding control flows.

Algorithm 1 further shows the dynamic sending rate control
approach in SRC. The inputs of Alg. 1 include a set of
congestion events, the running workload, and the prediction
window. The congestion events can be either pause or re-
trieval events. The “DynamicAdjustment” procedure triggers
the “PredictWeightRatio” procedure to get the proper weight
ratio w; for each congestion event (i.e., e;). Specifically,
e; contains the information of a desired data sending rate
r and the current timestamp ¢. The “DynamicAdjustment”
procedure collects workload characteristics within the previous
time interval [t — §, ¢] and passes the workload characteristics
with the desired data sending rate to the “PredictWeightRatio”
procedure. After a proper w; is returned, SRC adjusts SSQ’s
weights accordingly. It is worth noticing that the returnedu;
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might be larger (resp. smaller) than the current weight ratio in
SSQ if pause (resp. retrieval) events happen.

The inputs of “PredictWeightRatio” include the demanded
data sending rate sent from the network congestion control
mechanism and the workload characteristics extracted by the
workload monitor. The output of Algorithm 1 is the weight
ratio that SSQ should adjust to. In the “PredictWeightRatio”
procedure, we first initialize a set of variables (lines 11 to
13). Particularly, the weight ratios w and w* are initialized as
1, i.e., read and write SQs have the same priority. We then
use TPM to predict the read throughput that SSD can provide
under a given workload C'h and weight ratio w 1 (line
14). If the predicted read throughput is already lower than
the data sending rate, we directly return the new weight ratio
w* as 1 (lines 15 to 17). Otherwise, we start to search for
a proper weight ratio by increasing w so that the predicted
read throughput can be decreased. Since our goal is to find
the predicted read throughput closest to the demanded data
sending rate, we use min_dis to track the minimum absolute
distance between them and update w* to the corresponding
w (lines 24 to 27). We continuously increase the weight ratio
until the predicted read throughput is converging, i.e., under
the relative distance between the throughputs (i.e., pre_tput
and cur_tput) under the previous and current weight ratios
is less than a threshold 7, e.g., 10% (line 28). After going
through all possible weight ratios, we return w* that has the
smallest absolute distance from the predicted read throughput
to the demanded data sending rate.

Finally, our TPM is a discrete prediction model, while
the demanded data sending rate can be continuous. Although
Algorithm 1 delivers the new weights with a minor prediction
error, SRC may still suffer from the variation (i.e., discrete
to continuous) in matching the demanded data sending rate.
However, we also notice that the variation has a limited impact
on network congestion control because traditional network
congestion control algorithms intuitively decide the demanded
data sending rate and use a feedback control flow to approach
the congestion control. For example, when a congestion signal
is received, DCQCN cuts the data sending rate by 75% and
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Algorithm 1 SRC Dynamic Weight Adjustment

Input: Congestion events E. I/O workload WL. Prediction time
window 4.
Result: A series of weight ratios WR.
1 Procedure DynamicAdjustment (E, WL, §)

2 for e; in E do

3 r <— demanded data sending rate in e;
4 t <— timestamp of e;

5 Ch’ < Ch in time interval [t — 0, 1]

6 w; + PredictW eight Ratio(r, Ch')

7 put w; in WR and adjust SSQ’s weights
8 end

9 return WR

Procedure PredictWeightRatio (1, Ch)
w<— Lw" 1
pre_tput < 0, cur_tput < 0
min_dis < INF_MAX
TPUTgrw < TPM(Ch,w)
if TPUTR < r then
| return w*
endif
min_dis + |TPUTRr — 7|
do
w—w—+1
pre_tput < TPUTR
TPUTRrw < TPM(Ch,w)
dis + [TPUTR — 7|
if min_dis > dis then
min_dis < dis
w* — w
endif
cur_tput < TPUTR

while |pre_tput—cur_tput| 2 T

¢ . pre_tput
return w

repeats the same procedure until the congestion is mitigated.
Therefore, in SRC, a slight offset of the demanded data send-
ing rate does not make non-negligible effects on congestion
control and thus can be ignored.

IV. EVALUATION

A. Testbed

We construct our experiments on a simulated disaggregated
storage system that systematically integrates a network simu-
lator (i.e., NS3-RDMA [24]) with a storage simulator (i.e.,
MQSim [22]). NS3 has been widely used to evaluate rate
control-based schemes, e.g., DCQCN, TIMELY, and PCN. We
build up a Clos network upon NS3, a multistage switching
architecture involving two layers of network switches and an
array of Initiators and Targets. Specifically, we have four pods,
and each pod consists of two leaf switches, four top-of-rack
(ToR) switches, and 64 nodes. We set the link capability as
40Gbps, and specify the link delay as 1 us. We denote half
of the nodes (i.e., 128 nodes) as Initiators and the rest (i.e.,
128 nodes) as Targets. We choose DCQCN as the network
congestion mechanism in our evaluation. We further launch
multiple SSD instances on each Target using MQSim to
simulate a flash array. MQSim simulates end-to-end latency of
SSD, providing 2.9%—4.9% error rates for read and write [22],
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respectively. We also evaluate our design on different types of
SSDs as specified in Table II.

TABLE II
MQSIM PARAMETER CONFIGURATION

| SSD-A_ SSD-B SSD-C
Queue Depth 128 512 512
Write Cache | 256MB  256MB 512 MB
CMT 2MB 2MB 8 MB
Page Capacity 16KB 16KB 8 KB
Read Latency 75 ps 2 s 30 ps
Write Latency | 300 us 100 ps 200 ps

We generate two types of workload traces in our evaluation.
The first type of workload is called micro traces, where the
inter-arrival time and request sizes are drawn from exponen-
tial distributions. The other type of workload is generated
based-on real storage repositories, e.g., SNIA IOTTA Repos-
itory [25], denoted as synthetic traces. Specifically, we first
extract the statistics, e.g., the average, SCV, skewness, and
auto-correlation of inter-arrival time and request size, of real
storage traces, such as Fujitsu VDI traces [26] and Tencent
CBS traces [27]. Then we use the Q Toolbox [28] to create
an MMPP (Markov-modulated Poisson Process), a two-phase
MAP process that can be used to generate inter-arrival time
and request size with bursts for the synthetic traces.

B. Evaluation Method

We define two metrics, i.e., pause number and aggregated
throughput, to evaluate the network congestion control and
system performance. The pause number is the number of
congestion signals received by Targets system-widely, and
a large pause number represents heavy network congestion.
Since our goal is to mitigate the performance degradation of
Targets, our evaluation focuses on congestion caused by read
requests. When congestion happens, we expect our SRC to
reduce read throughput to the demanded data sending rate
and meanwhile increase write throughput. Therefore, we use
aggregated throughput (i.e., the summation of read throughput
received at Initiators and write throughput obtained at Targets,
see Fig. 2) to represent the SSD performance. Our baseline
is executing a workload with DCQCN only. Another round
of experiments on the same workload but with SRC acti-
vated (denoted DCQCN-SRC) is performed to compare with
DCQCN-only. We omit the start (first 10%) and tail (last 10%)
of experimental results across the timeline to avoid inaccuracy
in the warmup and wrapup stages.

C. TPM Accuracy

We first evaluate the accuracy of our TPM across different
workload characteristics of the synthetic workloads. We as-
sume the specification is unknown to us for any given SSD
and thus train TPM with extensive training samples. To ensure
TPM can provide high enough accuracy for SRC to adjust
read throughput, we produce cross-validation with micro and
synthetic workloads on SSD-A in Table II. In cross-validation,
we shuffle the whole data set and use the partial data set for

275

training and the rest for validation to avoid using the same data
set for training and validation. The accuracy shown in Table I
is collected using micro traces only, i.e., 60% for training and
the rest for validation. We observe that the accuracy is as high
as 0.94 under Random Forest Regression.

Now, we extend our TPM evaluation to more realistic
workloads. We first classify the synthetic workloads into four
categories according to their spatial and temporal statistics.
Each data subset represents one combination with low or high
variation (e.g., SCV) in request size and inter-arrival time,
see Table III. Then we use the synthetic traces in a data
subset for validation and the remaining synthetic traces and
all micro traces for training. The accuracy under Random
Forest Regression is shown in Table III. We find that a reliable
prediction accuracy (i.e., 0.89 - 0.98) is achieved by our TPM
for different types of workloads. Similar accuracy is also
obtained for the other two types of SSDs in Table II.

TABLE III
CROSS-VALIDATION ACCURACY USING RANDOM FOREST REGRESSION.
Data Subset [ Accuracy
low size SCV + low inter-arrival SCV 0.89
low size SCV + high inter-arrival SCV 0.98
high size SCV + low inter-arrival SCV 0.96
high size SCV + high inter-arrival SCV 0.95

D. Throughput Control

The main goal of our SRC design is to control the read
throughput to the demanded data sending rate while maintain-
ing high aggregated I/O throughput. We first use a synthetic
workload generated based on the characteristics of the Fujitsu
VDI trace that has more intensive read requests than write
requests. The average request sizes for read and write are 44
KB and 23 KB, respectively. The average inter-arrival time
for read and write is similar, around 10us. The read traffic
load ! going through the network is around 35.2 Gbps. We
also consider one Initiator and two Targets, where each Target
processes 5, 000 read and 5, 000 write requests. We have three
types of SSDs, as shown in Table II. Here, we only present
the results of SSD-A as an example for the evaluation.

Fig. 7 shows the read, write, and aggregated throughput
of DCQCN with and without SRC. We also record the
pause number received per millisecond in Fig. 8. The read
throughput, see blue bars in Fig. 7, is reduced from around 5
Gpbs to about 1 Gbps at the beginning stage because heavy
network congestion happens. Correspondingly, we can find a
dramatic boost in pause number from Fig. 8. We also observe
that such a drop in read throughput is consistent under both
DCQCN-only and DCQCN-SRC, which indicates that our
SRC successfully controls the read throughput to the demand
data sending rate. At the same time, the aggregated throughput
(see the blue+orange bars in Fig. ??) under DCQCN-only
dramatically drops from 7.5 Gbps to 2.5 Gbps. As discussed

I'The traffic load is calculated by dividing the average request size by the
average inter-arrival time.
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Fig. 8. Pause number under DCQCN-only and DCQCN-SRC.

in Sec. II-B, traditional DCQCN relies on TXQ on the RDMA
driver to control the read throughput, which ignores the SSD’s
processing throughput. In contrast, SRC controls the read
throughput at the storage side, which allows it to further
control (i.e., increase) the write throughput. As a result, the
aggregated throughput under DCQCN-SRC is just slightly
decreased. At around 80ms, the congestion is relieved, and
the read throughput goes up to about 2 Gbps. However, the
read throughput dominates the aggregated throughput since
the write intensity is much lighter (only half of) than the read
intensity in this workload.

E. Dynamic Control of SRC

In our SRC design, we dynamically adjust the weights
for RSQ and WSQ when a congestion event happens, as
shown in Alg. 1. A delay in controlling the data-sending
rate upon receiving the control notification is unavoidable. To
investigate how the dynamic control takes effect, we generate a
sequence of synthetic network congestion events with different
demanded data sending rates to evaluate SRC’s convergence
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speed in the throughput adjustment on SSD-B. Fig. 9 shows
the runtime adjustment of read and write throughput when the
synthetic congestion events happen. Each vertical dashed line
represents receiving a congestion signal. We use SSD-B as our
storage device

In Fig. 9, the first event (pause) happens at around 60
ms, where the demanded data sending rate is set as 6 Gbps.
The “PredictWeightRatio” procedure is triggered and returns
the new weight ratio 3. SRC then adjusts the corresponding
weights for RSQ and WSQ, which makes the read throughput
drop between 5 Gbps and 7.5 Gbps after 7 ms. Later at 100 ms,
another pause signal is received with a 3 Gbps demanded data
sending rate, indicating that network congestion still exists.
SRC sets the weight ratio to 5, and the read throughput reaches
around 2.5 Gbps after 10 ms. After congestion is relieved,
SRC receives a retrieval signal, which requests to raise the
data sending rate to 6 Gbps. It takes SRC around 12 ms to
converge. Finally, another retrieval signal is received, and SRC
controls the read throughput back to 10 Gbps after around 8
ms. We also generate a long trace with hundreds of connection
events. The average control delay is around 7.3 ms. We state
that such a control delay has a limited impact on network
congestion because a typical latency of network flows with
tens of KB data is tens of milliseconds.
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Fig. 9. Dynamic throughput adjustment under SRC.

F. Sensitivity Analysis

1) Workload Intensity: To investigate the effect of SRC
on different types of workloads, we generate three micro
workloads by adjusting the average arrival rate and request size
but keeping the same network topology. That is, there are one
Initiator and two Targets, and each Target has multiple SSD-
A devices. Specifically, we increase both the average request
size (44 KB) and average arrival rate (100 /ms) to mimic an
intensive workload that transfers large data flows frequently.
On the opposite, we generate a light workload by reducing the
average request size to 22 KB and the average arrival rate to
60 /ms. We also define a moderate workload with an average
request size of 32 KB and an average arrival rate of 80 /ms.

Fig. 10 shows the throughput (read, write, and aggregated)
across time of DCQCN-only and DCQCS-SRC under these
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three workloads. We find no visible difference in the through-
put between DCQCS-SRC and DCQCN-only when we have
the light workload, see Fig. 10-a. This is because there are a
limited number of requests in both network and SSD submis-
sion queues. On the other hand, compared with DCQCN-only,
DCQCS-SRC obtains a significant increase in write throughput
under moderate and heavy workloads, particularly when a
congestion event happens (about 14 ms in Fig. 10-b and
7 ms in Fig. 10-c). Meanwhile, SRC successfully controls
the read throughput to the demanded data sending rate that
DCQCN notifies. We can observe that the read throughput
under DCQCN-SRC aligns well with that under DCQCS-only.
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Fig. 10. Workload intensity investigation under DCQCN-only and DCQCN-
SRC.
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2) In-cast Ratio: In-cast ratio, defined as the ratio of
Targets to Initiators, is an essential factor in modern congestion
control algorithms. Thus, we further conduct experiments to
investigate the impact of the in-cast ratio on the control
performance. In this set of experiments, we keep the same
network traffic load (i.e., around 38 Gbps) but change the in-
cast ratios. Note that a larger in-cast ratio indicates relatively
more Targets. Table IV summarizes the aggregated throughput
under DCQCN with and without SRC and the corresponding
improvement of DCQCN-SRC over DCQCN-only.

We first observe that DCQCN-SRC improves the aggregated
throughput by 33% when the in-cast ratio is 2:1. This is
because when there are fewer Targets, each Target receives
more requests to queue in the SQs. Therefore, SSD can suc-
cessfully fetch commands in the weighted round-robin mode.
Whereas, such an improvement becomes less when the in-cast
ratio is increased from 2:1 to 4:1. We observe that a large in-
cast ratio (e.g., 4:1) makes the total traffic load be distributed
among more Targets so that each Target’s workload intensity
decreases. In this case, the weighted round-robin downgrades
to the round-robin, as discussed in Sec. III-B, and thus our
SRC cannot take effect. However, this case can be addressed
by designing a data distribution mechanism that attempts
to find a data distribution policy with the lowest network
traffic [29]. We further increase the number of Initiators to
change the in-cast ratio from 4:1 to 4:4. As shown in the
table, DCQCN-SRC performs similarly to DCQCN-Only. This
is because, given the same total traffic load, more Initiators
can relieve network congestion and then avoid I/O throughput
degradation under DCQCN-Only.

TABLE IV
IN-CAST RATIO ANALYSIS.
In-cast Ratio \ DCQCN-SRC  DCQCN-Only  Improvement
2:1 3.2 Gbps 2.4 Gbps 33%
3:1 5.4 Gbps 4.6 Gbps 17%
4:1 8.2 Gbps 7.8 Gbps 5%
4:4 9.5 Gbps 9.2 Gbps 3%

V. CONCLUSION

Performance degradation of storage nodes caused by tra-
ditional network congestion control mechanisms is evident
in disaggregated storage systems. In this work, we propose
a storage-side rate control mechanism to help mitigate per-
formance degradation when network congestion happens. We
develop a throughput control mechanism using a weighted
round-robin separate submission queue. We further develop
a throughput prediction model to learn the mapping between
workload characteristics to read and write throughput, consid-
ering our throughput control mechanism. Finally, we develop a
dynamic adjustment system to utilize the throughput prediction
model and separate submission queue to help limit the data
sending rate on storage nodes. In the future, we plan to
construct a small-scale disaggregated storage system, extend
our design as an I/O scheduler in the block layer on Targets,
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and explore the direction of integrating our design in SPDK,

an NVMe driver in user space.
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