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Abstract

Ice-penetrating radar sounding is a powerful geophysical tool for studying terrestrial and planet-
ary ice with a rich glaciological heritage reaching back over half a century. Recent years have also
seen rapid growth in both the radioglaciological community itself and in the scope and sophis-
tication of its analysis of ice-penetrating radar data. This has been spurred by a combination of
growing datasets and improvements in computational resources as well as advances in radar
sounding instrumentation and platforms. Together, these developments are transforming the
field and highlight exciting paths forward for future innovation and investigation.

1. Recent progress in data analysis

The collection and exploitation of radiometric and geometric information in ice-penetrating
radar data has transformed our knowledge of the subsurface conditions and processes of ice
in the polar regions and across the solar system. In 2019, the International Glaciological
Society hosted a symposium and published an associated issue of the Annals of Glaciology
focused on Five Decades of Radioglaciology (Schroeder and others, 2020). The work presented
in these venues included scientific investigations of ice-sheet and glacier bed conditions, radio-
wave attenuation, englacial structure, interpretation and the growing of the field of planetary
radioglaciology. Those advances and work undertaken since have transformed the analysis of
radar sounding data from an activity primarily focused on measuring ice thickness, bed top-
ography and radiostratigraphy to a rich source of geophysical information about a diverse
range of glaciological conditions and processes. This transformation was made possible by
exploiting the scattering, reflection, attenuation and reflectivity signatures in radar sounding
data (Fig. 1). This paper presents selected recent progress in radar sounding data analysis
since 2019 with a particular focus on work in the areas of near-surface processes, crystal orien-
tation fabric, subglacial hydrology, basal thermal state and bed morphology and material.

For much of its history, the analysis of radar sounding data has focused on relatively deep
subsurface interfaces (e.g. internal layers or the ice/bed interface), however there has been a
growing body of work looking at the surface and near surface (e.g. surface roughness, accumu-
lation, firn properties, ice slabs, firn aquifers) (e.g. Case and Kingslake, 2022). For example,
recent work has used radar sounding data to assess the impact of extreme melt seasons in
Greenland on the production and growth of reduced-permeability ice layers which can affect
the infiltration runoff of surface melt in subsequent seasons (Culberg and others, 2021).
Additionally, the analysis of the radar signature of near-surface fractures also highlights
their potential to enable investigations into the physical processes that underpin their forma-
tion and impact on ice-sheet evolution (Altenburg and others, 2022; McLeod and others,
2022).

An area of intense recent activity is the observation and investigation of ice-sheet crystal
orientation fabric (COF). The COF of ice, which can affect and encode information about
the viscosity of ice flow, can be measured using polarimetric radar sounding data (Jordan
and others, 2022). As a result, recent work has focused on the rapid observation of that sig-
nature using ground-based, stationary phase-sensitive radar sounding systems (Young and
others, 2021; Ershadi and others, 2022) as well as the development of approaches to constrain
the birefringent COF signature in more abundant single-polarization radar sounding (Young
and others, 2021). In addition to the effect of COF on contemporary ice rheology, this method
has also been used to investigate flow around ice divides and ice domes as well as the history
and stability of ice streams (Lilien and others, 2021; Young and others, 2021; Ershadi and
others, 2022). Across these studies, creative and challenging approaches to analyzing data
are shedding light on hard-to-observe conditions occurring at scales far below the intrinsic
resolution of radar systems (at the scale of ice crystals) but which can affect and encode macro-
scopic ice-sheet behavior.

Subglacial water bodies (e.g. subglacial lakes and rivers) were some of the earliest, most
common and most distinctive observables investigated in radar sounding data, but have also
been the subject of significant recent work (e.g. Napoleoni and others, 2020; Rutishauser
and others, 2022). For example, cross-system calibration of overlapping radar surveys collected
by different radar systems enabled the analysis of subglacial water flow beneath and between
the Thwaites and Pine Island Glaciers (Chu and others, 2021). In a similar vein, geostatistical
modeling of basal topography revealed by ice-penetrating data showed that subglacial drainage
pathways are sensitive to topographic information below the typical interpolated resolution of
bed topography datasets (MacKie and others, 2021). In other work, ice-sheet models have been
used to reproduce the along-flow transition from a distributed to channelized basal water
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system beneath Thwaites Glacier, which had been previously
detected using radar bed echo specularity (Hager and others,
2021). Finally, analysis of ultra wide band (UWB) radar sounding
data collected using a CReSIS (Center for the Remote Sensing of
Ice Sheets) radar operated on an AWI (Alfred Wegner Institute)
aircraft over Hiawatha Glacier, Greenland were used to analyze
echoes from a groundwater system beneath the bed of the glacier
and to determine that the bed above the groundwater table was
either frozen or drained (Bessette and others, 2021). Taken
together, the studies highlighted here show how radioglaciology
continues to improve understanding of subglacial water move-
ment and how it impacts ice-sheet processes.

A related, but distinct, subsurface condition is the basal ther-
mal state of the ice sheet. The strong temperature dependence
of the englacial attenuation rate and strong reflectivity contrast
between frozen, thawed and wet basal interfaces encode informa-
tion about the thermal state of the ice sheet into the radiometric
signal of radar sounding data. This has been exploited to identify
an area of frozen bed in the upper catchment of the eastern tribu-
tary of Thwaites Glacier which may play a key role in the routing
of ice flow from the Byrd Subglacial Basin into Pine Island Glacier
(Chu and others, 2021). If frozen patches like this (or others clo-
ser to the coast) thaw, they have the potential to reshape catchment
boundaries and mass loss projections (Dawson and others, 2022).
Radar observations of the ice-sheet thermal state can also constrain
the stability of subglacial lake systems as well as poorly constrained
ice-sheet boundary conditions like accumulation rate, melt, advec-
tion and geothermal flux (Wolovick and others, 2021; Zeising and
Humbert, 2021; Hills and others 2022a, 2022b).

Recent work has also improved the characterization of the
material and morphology of ice-sheet beds. Detailed analysis of
wide-band and swath-imaging radar systems have revealed fine
scale morphology of features on the bed which impacts basal slid-
ing and ice flow (Franke and others, 2021, 2022; Hoffman and
others, 2022). As have dense ground-based surveys (Schlegel
and others, 2022). This finer-scale, sliding-governing, geologically
diagnostic morphology falls (far) below the resolution of typical
bed topography data products. Advances in the geostatistical
characterization of bed topography have also enabled the

representation of that kind of information at the catchment to ice-
sheet scale (MacKie and others, 2020). Recent work has also high-
lighted the potential for geologic properties of the bed to be
encoded in the reflectivity signature of the bed echoes (Tulaczyk
and Foley, 2020). This kind of higher-fidelity analysis of the geo-
logic and geophysical sources of radar sounding echo strength sig-
natures highlights the need for corresponding advances in both
radioglaciological laboratory studies and electromagnetic
modeling.

2. Future directions in technology

The 2019 IGS Symposium and Annals of Glaciology issue also
addressed the data, systems and processing upon which such
studies are based (Schroeder and others, 2020). Crewed,
fixed-wing aircraft (e.g. MacGregor and others, 2021) have been
the backbone of radar sounding surveys for the field’s entire his-
tory, however recent advances in instrumentation, platforms and
experiments are reshaping how radar sounding data are collected.
This transformation is enabling a shift from collecting profiles in
order to explore new areas with a single system to ecosystems of
distinct and complementary sensors, platforms and observations
(Fig. 2). These ecosystems can include, variously, satellite and
UAV platforms, multi-static, multi-frequency, polarimetricand
radiometric systems instruments, and repeat-pass, interferometric
and in situ sensor network experiments.

Given the transformative impact of surface-observing satellite
remote-sensing data (e.g. velocity, imagery, altimetry) and the
centrality of ice-penetrating radar as a geophysical tool in the
field of glaciology, the idea of collecting radar sounding data
from orbit is understandably appealing. As a result, a range of
Earth-orbiting mission concepts building on the heritage of
planetary radar sounders been put forward (Bruzzone and others,
2021; Gogineni and others, 2021; Haynes and others, 2021;
Heggy, 2021). Such missions stand to produce more uniform
coverage of both bed topography and internal layers, which are
currently observed by a patchwork of surveys and systems, and
increase the potential for repeat observations (especially during
winter). However, the terrestrial clutter environment can pose a

Fig. 1. Advances in the analysis of ice-penetrating

radar data have demonstrated the capacity to interpret

signatures of radar scattering, reflection, attenuation

and reflectivity to observe a growing range of near-

surface, englacial and subglacial processes.
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significant obstacle, leading many mission concepts to include
multi-element and multi-satellite arrays (Culberg and Schroeder,
2020; Bruzzone and others, 2021; Gogineni and others, 2021;
Haynes and others, 2021; Altenburg and others, 2022).
Additionally, Earth-orbiting radar sounders face challenges from
Earth’s ionosphere, a more regulated radio emission environment,
and dramatically higher temperature-dependent attenuation rates
than planetary settings. In this scenario, ice shelves have among
the most favorable link budgets for orbital radar sounder detec-
tion (Schroeder and others, 2021).

Other promising, novel platforms for collecting radar sound-
ing data are uncrewed aerial vehicles (UAVs) (e.g. Arnold and
others, 2020). UAVs offer some of the same potential benefits
as satellites (e.g. increased opportunity for repeat, regular and
winter observations), but operate in a lower cost, range and alti-
tude envelope. Their lower altitude and greater flexibility in man-
aging energy budgets generally allows UAV-borne sounders to
achieve more favorable link budgets and azimuth resolutions.
Similarly, their operation below the ionosphere and from remote
field sites offers greater flexibility in frequency and transmit power
choices. Perhaps most uniquely, UAVs have the capacity to adap-
tively modify their flight plans to optimize specific scientific goals
(Teisberg and others, 2022). This stands to be particularly impact-
ful for time-series observations and topographic bed mapping
with interpolation (e.g. kriging, mass-conservation, geostatistics
or ML-based methods) which can exploit information in radar
echo character or survey geometry to improve bed representation
(e.g. Leong and Horgan, 2020; Rahnemoonfar and others, 2021;
Teisberg and others, 2021; Liu-Schiaffini and others, 2022). For
example, UAV flight-plans can be dynamically optimized to min-
imize the method-specific post-interpolation uncertainty in bed
topography or modeled sea level contribution. As the availability,
performanceand price of these platforms continue to evolve,
UAVs stand to become increasingly attractive and impactful as
sounding platforms.

As advances in platforms increase the abundance of radar
sounding data, survey designs are increasingly able to expand
from mapping the bed to observing the temporal evolution of
the entire ice-sheet subsurface. In the relatively few areas where
repeat radar sounding observations have been collected, they
have produced new insights into subsurface conditions and pro-
cesses across timescales from hours to decades. For example,
repeat profiling has revealed seasonally evolving englacial water
systems in mountain glaciers and multi-year refreezing water
sills in Greenland (Church and others, 2020; Culberg and others,
2022). At shorter timescales, repeat-pass sounding can measure
vertical displacements which can add a vertical component to

the horizontal ice-surface velocities measurements routinely col-
lected by satellites (Miller and others, 2020; Castelletti and others,
2021; Summers and others, 2021). Repeat-pass radar sounding
also has the potential to dramatically improve bed topography
with swath imaging (e.g. Hoffman and others, 2022). This survey-
dependent data richness is particularly well suited to the adaptive
and target-specific surveying capacity of UAVs and for feeding
data-rich empirical approaches (e.g. physics-informed neural net-
works; Teisberg and others, 2021).

In addition to the advances in the platforms, acquisition and
analysis described above, technical advances are occurring in
the radar sounding instruments in and of themselves. This
includes UWB systems and systems operating at higher center fre-
quencies (Rodriguez-Morales and others, 2020, Yan and others
2020a; 2020b). Beyond the improved geometric resolution that
these systems offer, their frequency diversity is deferentially sen-
sitive to subsurface glaciological observables. For example, recent
work has shown that multi-frequency, narrow-band sounding
spanning three order of magnitude has the potential to disam-
biguate the potentially confounding contributions of basal rough-
ness and material properties to the bed reflectivity signal (Broome
and Schroeder, 2022). Additionally, polarimetric systems have
been developed which can constrain and correct the effect of
birefringence on observed bed echo power (Dall, 2020). Recent
work has also shown that polarimetric systems are sensitive to
subglacial water geometry and orientation (Scanlan and others,
2022). Finally, both active radar sounders and passive microwave
radiometers are sensitive to ice-sheet temperatures (Broome and
others, 2021; Johnson and others, 2021). Recent work has
shown that wide-bandwidth UHF radar sounding data can been
used in combination with radiometer data to correct near-surface
effects in model-based radiometer temperature retrievals (Xu and
others, 2020). Further, other work has shown that radiometer data
can be combined with VHF sounder data to exploit their comple-
mentary sensitivity to temperature to improve both temperature
profile retrievals and to correct for attenuation in bed echo reflect-
ivity (Broome and others, 2021). Taken as a whole, these advances
in the information richness of data collected by new radar sound-
ing instruments stand to enhance the range and quality of studies
analyzing it.

Recent and ongoing developments in radar sounding systems
are also enabling new acquisition and experimental designs
including repeat surveys (e.g. Miller and others, 2020) and
ground-based deployments (e.g. Li and others, 2022). For
example, recent work on developing a ground-based bi-static
radar sounding system with direct-path synchronization has
enabled the acquisition of data with large and variable offsets

Fig. 2. Developments in instruments and platforms are

enabling radioglaciology to transition from a relatively

data poor field typified by sparse profiles and point

measurement to field richer spatial, temporal, geometric

and signal coverage.
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(up to several ice thicknesses and beyond) which is not achievable
with commercial GPR systems (Bienert and others, 2022). These
large offsets allow tomographic analyses that can yield improved
constraints on englacial attenuation/temperature signals and the
complex permittivity of the bed. The application of this type of
system to study, for example, the configuration and evolution of
englacial water systems stand to further enable the adaptation of
variable-offset and array-based analysis approaches from explor-
ation seismology to problems in glacier hydrology. Similarly, the
successful and growing deployment of stationary, phase-sensitive
radar systems are enabling the collection of time-series observa-
tions (with unprecedented temporal sampling) which go beyond
measurements of vertical advection, basal melting and englacial
water storage to include horizontal ice-flow and crevasse-
formation processes (Summers and others, 2021; McLeod and
others, 2022). This shows the power of in situ, time-series and
extended-deployment radar sounding experiments and paves
the way for in situ radio sensor networks that can integrate the
advantages of both the temporal sampling of the stationary phase-
sensitive systems and the geometric sampling of multi-static sys-
tems. The realization and success of these kind of sensor networks
will be greatly aided by the experience and innovation involved in
creating robust in situ probes currently being deployed beneath
and within ice sheets (Prior-Jones and others, 2021). Similarly,
the recent development and demonstration of passive radio-
sounding systems for ranging and imaging (which exploit existing
signals of opportunity rather than transmitting their own signal)
have the potential to drive down the resource envelope required
for both planetary and terrestrial radar sounding sensor networks
(Peters and others, 2021). Whether active or passive, muti- or
mono-static, in situ radar sounding sensor networks stand to be
an increasingly important tool for radioglaciolgy.
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