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Abstract—The treatment and study of cancer are in part
hindered by cells and tissue of the same cancer type exhibiting
differences from one another. This tumor heterogeneity is thus
an important characteristic worth better understanding and
analyzing. In the past, this analysis has been mostly carried
out manually by clinicians and researchers. However, with
advances in algorithms and computational resources, we can
analyze tumor samples using statistical methods and machine
learning techniques. Our work features an automated pipeline for
analyzing the spatial gene expression of tumor tissue samples. For
the task of segmenting tissue regions into tumor, non-tumor, and
hepatocyte regions, our models (logistic regression, support vector
machine, and random forest classifier) achieve over 90 percent
accuracy on all tests. We find these results to be encouraging for
future research in spatial analysis of tumor heterogeneity using
similar methods.

Index Terms—machine learning, computational biology, can-
cer, tumor heterogeneity, spatial gene expression

I. INTRODUCTION

IN the study and development of treatments for cancer,

many obstacles present themselves. Different cancer types

and potential for metastasizing are some of the notable chal-

lenges. Another roadblock in the analysis and treatment devel-

opment of cancer is tumor heterogeneity. Tumor heterogeneity

describes the property of tumor cells of the same type to

exhibit differences between samples, tissues, patients, etc.

[8], [14]. Therefore, it becomes imperative to have analysis

methods for gaining insight into tumor heterogeneity and the

cellular microenvironment of a tumor sample. The method we

choose for analyzing heterogeneity is spatial transcriptomics.

The Central Dogma of biology gives us a structure for

understanding how the genetic information stored in DNA

is ultimately expressed through the creation of proteins [3].

Gene expression profiling is a method for better understanding

this information flow by revealing which genes are expressed

in a sample. This profiling is done by measuring the mRNA

levels associated with each gene. Several methods for gene

NSF funded, award number 2050195

expression profiling exist. For this work, we choose the method

of RNA sequencing which provides a profile of the entire

transcriptome as opposed to methods like DNA microarrays

which only provides a profile of predetermined genes [5].

DNA microarray analysis may provide valuable information

as a follow up to RNA sequencing, but it is currently out of

the scope of this paper.

While RNA sequencing can be done at the cellular level

(scRNA-seq), we propose analyzing spatial gene expression

profiles of cancer tumor tissue samples to gain greater insight

into the tumor’s cellular microenvironment. Spatial transcrip-

tomics methods will allow for mapping the gene activity of an

entire tissue sample, with the benefit being the preservation of

positional context of cells in the tissue [6], [15]. In particular,

we look to apply computational methods including machine

learning and deep learning methods to analyze spatial gene

expression profiles for gaining further insight into the tumor

heterogeneity of metastatic estrogen receptor positive breast
cancer samples.

II. RELATED WORK

In a review done by Nawaz et. al., researchers estab-

lish many important ecological relationships between cancer-

ous, noncancerous, and immune cells [10]. Interestingly, the

method for these findings involves applying spatial analysis

commonly performed at the macroenvironmental scale to a

tumor’s cellular microenvironment. The study notes that com-

puter vision and data analysis techniques are key to analyzing

predatory, mutualistic, commensal, and parasitic relationships.

One relevant example is a study the group performed

investigating “the spatial distribution of cancer and immune

cells in breast tumors” [10]. The group measured the co-

localization of cancer and immune cells by using the Morista-

Horn index, which is an index typically used to quantify the

level of co-localization of species in a macroenvironmental

context. The study ultimately found that “a high degree of

co-localization between cancer and immune cells measured
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by this index was found to be significantly associated with

increased probability of ten-year disease-specific survival in

human epidermal growth factor receptor” [10]. This result is

promising in that our work looks to similarly utilize spatially

rich features in order to derive insight into tumor therapy re-

sistance as well as other tumor characteristics. The review also

referenced studies that uncovered two mutualistic relationships

between different types of cancer cells, which were found to be

beneficial for tumor growth and created an immunosuppressive

microenvironment respectively. Similarly, in our research, we

hope to leverage gene expression data with spatial context for a

different purpose, to gain a better understanding of the tumor’s

microenvironment and potential resistance to therapy.

In another study, spatial transcriptomics methods were used

to create a library of gene expression profile data for inter-

preting intra-tumor heterogeneity in prostate cancer [1]. The

study manually identifies cancer foci regions using those gene

expression gradients, rather than the typical method of using

histological factors. We look to delve deeper and analyze

similar data for estrogen receptor positive breast cancer using

machine learning methods rather than manual methodologies.

Fig. 1. This image comes from the prostate cancer study, and it provides
a visualization of the gene expression maps that were utilized to delineate
cancer foci. Image Citation: [1]

III. METHOD

(1) We use the process laid out in Zuo et. al. to prepare

the fresh frozen tissue samples [15]. Our focus will be on

the computational preparation of the raw gene expression data

that results after sample preparation. The pipeline laid out

in the following steps was applied specifically to one tissue

sample, labeled F8 37. However, this automated pipeline can

now easily be applied to new samples or batches of samples.

(2) Following its preparation, the sample is passed through

the Visium 10X Genomics Spaceranger pipeline for spatial

RNA sequencing of its gene expression profile. The spac-

eranger pipeline establishes a coordinate reference system

(CRS) of circular Cartesian coordinates in order to perform its

spatial analysis. A row-column as well as pixel representation

of this CRS can be found in the tissue positions list.csv

and scalefactors json.json files in the spatial folder of the

spaceranger outs (output folder). Each coordinate can also be

identified by a unique barcode.

(3) The next step of the data preparation pipeline is to create

the gene expression matrix upon which further analysis will

be conducted. This was done by transforming the data in the

filtered feature bc matrix folder, which ultimately resulted in

a (36601 x 3525) table consisting of coordinates (identified by

their unique barcodes) as rows and gene expression for each

coordinate measured by unique molecular identifier (UMI)

count as columns (each column is represented by a gene). UMI

count is a measure that represents the absolute gene transcript

count, a metric which is calculated based on the absolute count

of either RNA or DNA molecules that correspond to a gene

[2], [5].

(4) Expression across the entire genome is often very sparse

as most genes are either very minimally or not expressed

in a small sample. To alleviate the issue of very sparse,

high-dimensional data, we remove unexpressed genes from

the dataset (i.e. genes that have zero UMI counts for all

coordinates). For instance, 14060 of the 36601 reference genes

were filtered out of the F8 37 sample. Then, to get a better

sense of the remaining data, we calculate summary statistics

(count, mean, standard deviation, min. val., 25% 50%, 75%,

and max. val.) for each gene, revealing that much sparsity still

existed.

(5) We address the dimensionality issue using PCA. We find

that just 4 principal components can explain over 90 percent of

the variation. Thus, we project the data onto these 4 principal

components. Now, we have processed our data such that it is

fit to be inputted into our machine learning models.

(6) We utilize the gene expression data to perform a

segmentation/classification task. More specifically, each spatial

coordinate acts as a data point, with the genes (in this case pro-

jected into four dimensions from PCA) acting as the features.

At a high-level, we would like to learn useful representations

of the genes that inform which coordinates are tumor, non-

tumor, and hepatocyte. In order to create labeled training

data, we annotate a tissue sample image, specifying regions

as “tumor”, “non-tumor”, and “hepatocyte”. Then, using 10X

Genomics’s Loupe Browser, this annotation can be converted

into a label for every coordinate (i.e., data point). Thus, we

now have target labels for training. We also prepare another

set of labels for binary classification with just two classes

“tumor” and “non-tumor” where the hepatocyte labels are

subsumed into the non-tumor labels. (7) Equipped both with

data and target labels, we perform the following analyses: t-

SNE, logistic regression, support vector machines, and random

forest classifiers. We perform t-SNE in two dimensions with

no augmentation to the data. For the remaining supervised

machine learning methods, we perform an 80%-20% train-

test split respectively. We follow common convention and

standardize the data with zero mean and unit variance for

logistic regression and support vector machines, while leaving

the data unstandardized for random forest classifiers.

After training the models on both labeled tasks (binary

and ternary classification), we collect accuracy scores for

predictions on the test set. In addition, we generate confusion

matrices for all experiments to get a more granular sense of

performance on the tasks.
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Fig. 2. An overview of the method of our work, from data preparation to machine learning analysis

IV. RESULTS

We now discuss the results of our machine learning analysis

on the spatial gene expression data.

A. t-SNE:

Fig. 3. 2-dimensional t-SNE plot of F8 37 gene expression data colored by
target label

At a high level, t-SNE is a dimensionality reduction

technique that tries to preserve high-dimensional distances

between data points in the low-dimensional representation.

Although this means the clustering is not semantic, t-SNE

gives us a good idea of the separation between different labels.

In this case (Fig. 3), we note there is good intra-class clustering

as well as inter-class separation, indicating that the other

machine learning methods will likely learn effective decision

rules for classifying/segmenting these points/regions.

B. Accuracy of Classifiers:

Although the core task of the machine learning models

is to classify coordinates as “tumor” vs “non-tumor” in the

binary case and “tumor” vs “non-tumor” vs “hepatocyte” in

the ternary case, this classification can also be considered a

segmentation of the tissue sample into these regions as these

coordinates retain spatial context of the tissue sample.

Fig. 4. Accuracy scores for all machine learning classifier methods (F8 37
tissue sample)

Overall, we see very high accuracy scores on all tasks,

with accuracy exceeding 90% in most cases. Comparing the

accuracy between different types of models, we see that SVMs

and random forest classifiers (RFCs) achieved similar accuracy

scores, both outperforming the logistic regression model. This

matches with our expectations given that logistic regression is

a simpler model than SVMs or RFCs. High accuracy scores are

encouraging for future work as well as clinical and research

applications. However, it is also important to evaluate these

models utilizing other metrics.
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Fig. 5. Confusion matrices for all classification methods (F8 37 tissue sample)

C. Confusion Matrices:

The confusion matrices (Fig. 5) provide more granular

insight that better contextualize the accuracy scores. There are

a few important observations to make. In the binary case, we

find that while logistic regression is effective in identifying

tumor coordinates, it is less effective than the other methods

at correctly classifying non-tumor coordinates. This holds true

for the ternary case as well.

While RFCs obtained higher accuracy scores than SVMs,

there are several nuances that are recovered from the confusion

matrices. First, we note that the SVM method had a higher true

positive rate for classifying tumors in the binary and ternary

cases. Additionally, SVMs have a lower false-negative rate

(i.e., classifying tumor coordinates incorrectly as either non-

tumor or hepatocyte). Even though the difference is small,

such a characteristic can be an potential reason for choosing

SVMs over RFCs in clinical settings.

D. Interpretability:

One last, yet important, evaluation method is interpretabil-

ity. In biological and medical-focused research, model inter-

pretability is highly desirable. This is true largely because a

diagnosis or treatment based on an ML model can be better

trusted if the decision is interpretable. In this regard, RFCs

are preferrable over logistic regression and SVMs because an

RFC’s optimized decision rule can be easily viewed as a tree

structure of classification decisions. More about interpretabil-

ity will be covered in the future work section.

V. CONCLUSION

In this research, we demonstrate that spatial gene expression

data of tumor tissue samples can be used to analyze tumor

heterogeneity. The following summarizes our findings and

novel outcomes:

(i) We preprocess spatial gene expression data by filtering

out unexpressed genes and performing PCA to compress the

data.

(ii) We develop an automated pipeline for classifying spatial

coordinates (which also translates to segmenting the tissue

sample) as tumor, non-tumor, or hepatocyte using gene ex-

pression data. We achieve high performance on these tasks

achieving over 90 percent accuracy for most cases. This

type of classification can segment regions of a tissue sample,

allowing for easier analysis of therapy resistance and other

tumor characteristics.

(iii) We discuss and present benefits and drawbacks of each

model, considering raw accuracy scores, confusion matrices,

and interpretability.

These results provide an encouraging foundation for future

research in analysis of tumor heterogeneity using machine

learning methods.

VI. FUTURE WORK

We see three promising directions in which our future work

on analyzing tumor heterogeneity can proceed. All of which

will build off of the work done in this study.

A. Further Interpretability Analysis:

As we mention in our results section, the interpretability of

RFCs is a desirable quality for a model to have in biologi-

cal/medical research. In future work, we plan to leverage this

property for greater insight by analyzing the resulting decision

tree produced by our RFC model. Using this decision tree, we

can gain further understanding of tumor properties like therapy
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resistance. One consideration for this work is the fact that we

utilized PCA-compressed data as the input. Thus, the RFC

decision rule will be in terms of our PCA vectors, so inverse

PCA would need to be applied.

As a small demonstration of the value of interpretability

analysis, we identified the highest contributing gene of the first

principal component to be RPL41. There exists literature that

suggests RPL41 acts as a tumor suppressor [13]. We expect

interpretability analysis such as this will aid future research

and clinical applications.

B. Spatial Feature Engineering:

In this work, we based our analysis solely on spatial gene

expression. However, in future work we hope to leverage other

spatial features which we will engineer based on biological

principles. We provide a simple example:

Fig. 6. Sample spatial feature of F8 38 sample

This proximity map of the F8 38 sample measures the

distance of all points from hepatocyte regions and is created

using QGIS geospatial tools. Thus, we can develop these

spatial features and incorporate them into our input data. We

expect that these features will improve the performance of ML

models as well as providing greater insight into a sample’s

tumor heterogeneity and cellular microenvironment.

C. Deep Learning Methods:

Finally, we expect deep learning models to be a promising

avenue for future work. Deep learning methods requires less

manual feature engineering and fewer assumptions about the

feature space in order to learn informative representations. For

this reason, we expect deep learning models to provide unique

insights about tumor heterogeneity compared to those from our

ML methods.

Some architectures we plan to utilize include the UNET,

DINO, and transformer-based architectures for segmenting the

tissue sample [7], [9].

Another part of the pipeline that can be improved using deep

learning is data compression. Using autoencoder methods, we

can compress very high-dimensional data into semantically

meaningful low dimensional encodings. In the example vi-

sualization below, the input and reconstructed output would

be our gene expression in addition to any other engineered

spatial features. We would like to take advantage of the dense

semantic representation in the middle, using it as input for our

models.

Fig. 7. A sample visualization of an autencoder compressing gene expression
data. Image adapted from following source: [12]

In practice, we would apply this transformation on tabular

data, but there is potential for applying a convolutional ver-

sion of this method to preserve relational information of the

pixels/coordinates.
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