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Abstract—The treatment and study of cancer are in part
hindered by cells and tissue of the same cancer type exhibiting
differences from one another. This tumor heterogeneity is thus
an important characteristic worth better understanding and
analyzing. In the past, this analysis has been mostly carried
out manually by clinicians and researchers. However, with
advances in algorithms and computational resources, we can
analyze tumor samples using statistical methods and machine
learning techniques. Our work features an automated pipeline for
analyzing the spatial gene expression of tumor tissue samples. For
the task of segmenting tissue regions into tumor, non-tumor, and
hepatocyte regions, our models (logistic regression, support vector
machine, and random forest classifier) achieve over 90 percent
accuracy on all tests. We find these results to be encouraging for
future research in spatial analysis of tumor heterogeneity using
similar methods.

Index Terms—machine learning, computational biology, can-
cer, tumor heterogeneity, spatial gene expression

1. INTRODUCTION

N the study and development of treatments for cancer,

many obstacles present themselves. Different cancer types
and potential for metastasizing are some of the notable chal-
lenges. Another roadblock in the analysis and treatment devel-
opment of cancer is tumor heterogeneity. Tumor heterogeneity
describes the property of tumor cells of the same type to
exhibit differences between samples, tissues, patients, etc.
[8], [14]. Therefore, it becomes imperative to have analysis
methods for gaining insight into tumor heterogeneity and the
cellular microenvironment of a tumor sample. The method we
choose for analyzing heterogeneity is spatial transcriptomics.

The Central Dogma of biology gives us a structure for
understanding how the genetic information stored in DNA
is ultimately expressed through the creation of proteins [3].
Gene expression profiling is a method for better understanding
this information flow by revealing which genes are expressed
in a sample. This profiling is done by measuring the mRNA
levels associated with each gene. Several methods for gene
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expression profiling exist. For this work, we choose the method
of RNA sequencing which provides a profile of the entire
transcriptome as opposed to methods like DNA microarrays
which only provides a profile of predetermined genes [5].
DNA microarray analysis may provide valuable information
as a follow up to RNA sequencing, but it is currently out of
the scope of this paper.

While RNA sequencing can be done at the cellular level
(scRNA-seq), we propose analyzing spatial gene expression
profiles of cancer tumor tissue samples to gain greater insight
into the tumor’s cellular microenvironment. Spatial transcrip-
tomics methods will allow for mapping the gene activity of an
entire tissue sample, with the benefit being the preservation of
positional context of cells in the tissue [6], [15]. In particular,
we look to apply computational methods including machine
learning and deep learning methods to analyze spatial gene
expression profiles for gaining further insight into the tumor
heterogeneity of metastatic estrogen receptor positive breast
cancer samples.

II. RELATED WORK

In a review done by Nawaz et. al., researchers estab-
lish many important ecological relationships between cancer-
ous, noncancerous, and immune cells [10]. Interestingly, the
method for these findings involves applying spatial analysis
commonly performed at the macroenvironmental scale to a
tumor’s cellular microenvironment. The study notes that com-
puter vision and data analysis techniques are key to analyzing
predatory, mutualistic, commensal, and parasitic relationships.

One relevant example is a study the group performed
investigating “the spatial distribution of cancer and immune
cells in breast tumors” [10]. The group measured the co-
localization of cancer and immune cells by using the Morista-
Horn index, which is an index typically used to quantify the
level of co-localization of species in a macroenvironmental
context. The study ultimately found that “a high degree of
co-localization between cancer and immune cells measured
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by this index was found to be significantly associated with
increased probability of ten-year disease-specific survival in
human epidermal growth factor receptor” [10]. This result is
promising in that our work looks to similarly utilize spatially
rich features in order to derive insight into tumor therapy re-
sistance as well as other tumor characteristics. The review also
referenced studies that uncovered two mutualistic relationships
between different types of cancer cells, which were found to be
beneficial for tumor growth and created an immunosuppressive
microenvironment respectively. Similarly, in our research, we
hope to leverage gene expression data with spatial context for a
different purpose, to gain a better understanding of the tumor’s
microenvironment and potential resistance to therapy.

In another study, spatial transcriptomics methods were used
to create a library of gene expression profile data for inter-
preting intra-tumor heterogeneity in prostate cancer [1]. The
study manually identifies cancer foci regions using those gene
expression gradients, rather than the typical method of using
histological factors. We look to delve deeper and analyze
similar data for estrogen receptor positive breast cancer using
machine learning methods rather than manual methodologies.
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Fig. 1. This image comes from the prostate cancer study, and it provides
a visualization of the gene expression maps that were utilized to delineate
cancer foci. Image Citation: [1]

III. METHOD

(1) We use the process laid out in Zuo et. al. to prepare
the fresh frozen tissue samples [15]. Our focus will be on
the computational preparation of the raw gene expression data
that results after sample preparation. The pipeline laid out
in the following steps was applied specifically to one tissue
sample, labeled F8_37. However, this automated pipeline can
now easily be applied to new samples or batches of samples.

(2) Following its preparation, the sample is passed through
the Visium 10X Genomics Spaceranger pipeline for spatial
RNA sequencing of its gene expression profile. The spac-
eranger pipeline establishes a coordinate reference system
(CRS) of circular Cartesian coordinates in order to perform its
spatial analysis. A row-column as well as pixel representation
of this CRS can be found in the tissue_positions_list.csv
and scalefactors_json.json files in the spatial folder of the
spaceranger outs (output folder). Each coordinate can also be
identified by a unique barcode.

(3) The next step of the data preparation pipeline is to create
the gene expression matrix upon which further analysis will
be conducted. This was done by transforming the data in the
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filtered_feature_bc_matrix folder, which ultimately resulted in
a (36601 x 3525) table consisting of coordinates (identified by
their unique barcodes) as rows and gene expression for each
coordinate measured by unique molecular identifier (UMI)
count as columns (each column is represented by a gene). UMI
count is a measure that represents the absolute gene transcript
count, a metric which is calculated based on the absolute count
of either RNA or DNA molecules that correspond to a gene

(2], [5].

(4) Expression across the entire genome is often very sparse
as most genes are either very minimally or not expressed
in a small sample. To alleviate the issue of very sparse,
high-dimensional data, we remove unexpressed genes from
the dataset (i.e. genes that have zero UMI counts for all
coordinates). For instance, 14060 of the 36601 reference genes
were filtered out of the F8_37 sample. Then, to get a better
sense of the remaining data, we calculate summary statistics
(count, mean, standard deviation, min. val., 25% 50%, 75%,
and max. val.) for each gene, revealing that much sparsity still
existed.

(5) We address the dimensionality issue using PCA. We find
that just 4 principal components can explain over 90 percent of
the variation. Thus, we project the data onto these 4 principal
components. Now, we have processed our data such that it is
fit to be inputted into our machine learning models.

(6) We utilize the gene expression data to perform a
segmentation/classification task. More specifically, each spatial
coordinate acts as a data point, with the genes (in this case pro-
jected into four dimensions from PCA) acting as the features.
At a high-level, we would like to learn useful representations
of the genes that inform which coordinates are tumor, non-
tumor, and hepatocyte. In order to create labeled training
data, we annotate a tissue sample image, specifying regions
as “tumor”, “non-tumor”, and “hepatocyte”. Then, using 10X
Genomics’s Loupe Browser, this annotation can be converted
into a label for every coordinate (i.e., data point). Thus, we
now have target labels for training. We also prepare another
set of labels for binary classification with just two classes
“tumor” and “non-tumor” where the hepatocyte labels are
subsumed into the non-tumor labels. (7) Equipped both with
data and target labels, we perform the following analyses: t-
SNE, logistic regression, support vector machines, and random
forest classifiers. We perform t-SNE in two dimensions with
no augmentation to the data. For the remaining supervised
machine learning methods, we perform an 80%-20% train-
test split respectively. We follow common convention and
standardize the data with zero mean and unit variance for
logistic regression and support vector machines, while leaving
the data unstandardized for random forest classifiers.

After training the models on both labeled tasks (binary
and ternary classification), we collect accuracy scores for
predictions on the test set. In addition, we generate confusion
matrices for all experiments to get a more granular sense of
performance on the tasks.
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Fig. 2. An overview of the method of our work, from data preparation to machine learning analysis

IV. RESULTS

We now discuss the results of our machine learning analysis
on the spatial gene expression data.

A. t-SNE:
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Fig. 3. 2-dimensional t-SNE plot of F8_37 gene expression data colored by
target label

At a high level, t-SNE is a dimensionality reduction
technique that tries to preserve high-dimensional distances
between data points in the low-dimensional representation.
Although this means the clustering is not semantic, t-SNE
gives us a good idea of the separation between different labels.
In this case (Fig. 3), we note there is good intra-class clustering
as well as inter-class separation, indicating that the other

machine learning methods will likely learn effective decision
rules for classifying/segmenting these points/regions.

B. Accuracy of Classifiers:

Although the core task of the machine learning models
is to classify coordinates as “tumor” vs ‘“non-tumor” in the
binary case and “tumor” vs “non-tumor” vs “hepatocyte” in
the ternary case, this classification can also be considered a
segmentation of the tissue sample into these regions as these
coordinates retain spatial context of the tissue sample.

Tumor vs.
(UIROE P2, Non-Tumor vs.
Non-Tumor Acc. Hepatocyte Ace.
(F8_37) (F8_37)
isti ; 86.8% 91.3%
Logistic Regression
07 0,
Support Vector Machines 93.5% 93.2%
94.0% 93.3%

Random Forest Classifiers

Fig. 4. Accuracy scores for all machine learning classifier methods (F8_37
tissue sample)

Overall, we see very high accuracy scores on all tasks,
with accuracy exceeding 90% in most cases. Comparing the
accuracy between different types of models, we see that SVMs
and random forest classifiers (RFCs) achieved similar accuracy
scores, both outperforming the logistic regression model. This
matches with our expectations given that logistic regression is
a simpler model than SVMs or RFCs. High accuracy scores are
encouraging for future work as well as clinical and research
applications. However, it is also important to evaluate these
models utilizing other metrics.
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Fig. 5. Confusion matrices for all classification methods (F8_37 tissue sample)

C. Confusion Matrices:

The confusion matrices (Fig. 5) provide more granular
insight that better contextualize the accuracy scores. There are
a few important observations to make. In the binary case, we
find that while logistic regression is effective in identifying
tumor coordinates, it is less effective than the other methods
at correctly classifying non-tumor coordinates. This holds true
for the ternary case as well.

While RFCs obtained higher accuracy scores than SVMs,
there are several nuances that are recovered from the confusion
matrices. First, we note that the SVM method had a higher true
positive rate for classifying tumors in the binary and ternary
cases. Additionally, SVMs have a lower false-negative rate
(i.e., classifying tumor coordinates incorrectly as either non-
tumor or hepatocyte). Even though the difference is small,
such a characteristic can be an potential reason for choosing
SVMs over RFCs in clinical settings.

D. Interpretability:

One last, yet important, evaluation method is interpretabil-
ity. In biological and medical-focused research, model inter-
pretability is highly desirable. This is true largely because a
diagnosis or treatment based on an ML model can be better
trusted if the decision is interpretable. In this regard, RFCs
are preferrable over logistic regression and SVMs because an
RFC’s optimized decision rule can be easily viewed as a tree
structure of classification decisions. More about interpretabil-
ity will be covered in the future work section.

V. CONCLUSION

In this research, we demonstrate that spatial gene expression
data of tumor tissue samples can be used to analyze tumor
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heterogeneity. The following summarizes our findings and
novel outcomes:

(i) We preprocess spatial gene expression data by filtering
out unexpressed genes and performing PCA to compress the
data.

(i1) We develop an automated pipeline for classifying spatial
coordinates (which also translates to segmenting the tissue
sample) as tumor, non-tumor, or hepatocyte using gene ex-
pression data. We achieve high performance on these tasks
achieving over 90 percent accuracy for most cases. This
type of classification can segment regions of a tissue sample,
allowing for easier analysis of therapy resistance and other
tumor characteristics.

(iii) We discuss and present benefits and drawbacks of each
model, considering raw accuracy scores, confusion matrices,
and interpretability.

These results provide an encouraging foundation for future
research in analysis of tumor heterogeneity using machine
learning methods.

VI. FUTURE WORK

We see three promising directions in which our future work
on analyzing tumor heterogeneity can proceed. All of which
will build off of the work done in this study.

A. Further Interpretability Analysis:

As we mention in our results section, the interpretability of
RFCs is a desirable quality for a model to have in biologi-
cal/medical research. In future work, we plan to leverage this
property for greater insight by analyzing the resulting decision
tree produced by our RFC model. Using this decision tree, we
can gain further understanding of tumor properties like therapy
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resistance. One consideration for this work is the fact that we
utilized PCA-compressed data as the input. Thus, the RFC
decision rule will be in terms of our PCA vectors, so inverse
PCA would need to be applied.

As a small demonstration of the value of interpretability
analysis, we identified the highest contributing gene of the first
principal component to be RPL41. There exists literature that
suggests RPL41 acts as a tumor suppressor [13]. We expect
interpretability analysis such as this will aid future research
and clinical applications.

B. Spatial Feature Engineering:

In this work, we based our analysis solely on spatial gene
expression. However, in future work we hope to leverage other
spatial features which we will engineer based on biological
principles. We provide a simple example:

Distance from hepatocytes (pixels)

Fig. 6. Sample spatial feature of F8_38 sample

This proximity map of the F8_38 sample measures the
distance of all points from hepatocyte regions and is created
using QGIS geospatial tools. Thus, we can develop these
spatial features and incorporate them into our input data. We
expect that these features will improve the performance of ML
models as well as providing greater insight into a sample’s
tumor heterogeneity and cellular microenvironment.

C. Deep Learning Methods:

Finally, we expect deep learning models to be a promising
avenue for future work. Deep learning methods requires less
manual feature engineering and fewer assumptions about the
feature space in order to learn informative representations. For
this reason, we expect deep learning models to provide unique
insights about tumor heterogeneity compared to those from our
ML methods.

Some architectures we plan to utilize include the UNET,
DINO, and transformer-based architectures for segmenting the
tissue sample [7], [9].

Another part of the pipeline that can be improved using deep
learning is data compression. Using autoencoder methods, we
can compress very high-dimensional data into semantically
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meaningful low dimensional encodings. In the example vi-
sualization below, the input and reconstructed output would
be our gene expression in addition to any other engineered
spatial features. We would like to take advantage of the dense
semantic representation in the middle, using it as input for our

models.
‘ — —
Beconstructed

Original
input

Encoder Decoder

i

Compressed
representation

input

Fig. 7. A sample visualization of an autencoder compressing gene expression
data. Image adapted from following source: [12]

In practice, we would apply this transformation on tabular
data, but there is potential for applying a convolutional ver-
sion of this method to preserve relational information of the
pixels/coordinates.
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