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Abstract—Recent progress has witnessed the excellent success of neural networks in many emerging applications, such as image
recognition, text classification, and speech analysis. In order to achieve secure communication, the utilization of neural networks has
been realized yet has not raised sufficient research attention. Additionally, the existing neural network-based communication system
falls short due to its critical security flaws. In this paper, we investigate the security vulnerabilities of the existing neural communication
system. Based on our analysis, we design two kinds of attack models, including target man-in-the-middle attack and target fraud attack.
After that, to improve the security performance of neural communication systems, we develop a new defense mechanism to facilitate
two-way secure communication by separating secret key from plaintext and incorporating defensive loss into the training process.
Moreover, we show the effectiveness of our proposed neural communication system via theoretical proof. Finally, we implement
comprehensive real data experiments to evaluate the performance of our attack and defense methods from the aspects of classification
accuracy, communication efficiency and communication qualify, which confirms the advantages of our proposed neural communication
system compared with the state-of-the-art.
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1 INTRODUCTION

N EURAL networks are undergoing an accelerated ad-
vancement and have been successfully exploited to

accomplish a variety of complex tasks, such as image clas-
sification, natural language processing, speech analysis, and
realistic data generation [1]. Recently, along with the theory
improvement and technique breakthrough, neural networks
are endowed power to learn how to prevent confidential
data from being inferred, which can be employed for secure
communication [2], [3], [4]. Advancing this line of works,
in [5], it has been shown that neural networks can learn to
perform lossy communications and protect communication
security between two sides of communication at the pres-
ence of a powerful eavesdropping adversary.

Traditionally, in the study of secure communication,
adversaries are usually assumed to have limited capacities,
including computation power (e.g., limited to polynomial
time), possibility of successful attack (e.g., limited to a
negligible probability), etc. As a matter of fact, however,
the ability of adversaries could be more than these. For
instance, in generative adversarial networks (GANs) [1], the
adversaries are neural networks that attempt to determine
whether a sample is generated by a model or drawn from a
given data distribution. Moreover, different from traditional
secure communication mechanisms, practical approaches to
train GANs consider one or a small number of adversaries
that can be optimized to be the strongest.
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Leveraging the advantages of neural networks inspires
the emergence of a promising solution, neural network-
based communication, with eye-catching features to secure
communication. In neural network-based communication,
an end-to-end system can be learnt automatically without
using any specific encryption/decryption algorithms nor
indicating the way of applying these algorithms. Due to
the non-linearity and computational complexity of neural
networks, they have the intrinsic properties to be used in
the protection of confidential data. In addition, a merit that
the traditional secure communication methods do not have
is the selective protection, while a neural communication
system not only can learn how to protect secret information
but also can learn what to protect by itself. For example,
given a plaintext containing multiple attributes (e.g., multi-
ple objects in an image), if we want to prevent adversaries
from seeing one attribute (a special class of object) while
making the remaining attributes public, there may have
some limitations for the traditional methods unless com-
plex attribute-based encryption is designed. Furthermore, in
many real applications, protecting secure information while
preserving data usability is a challenging issue. To solve this
challenge in the traditional communications systems, the
system designers may need to separate the selected secret
attributes from others and then compute the secret attributes
to be hidden using different algorithms. In contrary to
that, neural communication systems can use the end-to-end
automatic methods to achieve protection easily, in which the
only effort is just to slightly change the objective functions
to train the neural networks. The application of neural
networks in the selective protection has been investigated
for image, text, and speech data in literature [6], [7], [8].

Facing the bright prospects of developing neural
network-based communication systems, there are still short-
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comings in the existing works. First of all, this research
direction has not received enough attention, and [5] is
the only existing work that studies neural network-based
communication to our best knowledge. In [5], an adversarial
neural cryptography (ANC) system has been proposed,
which displays us nice properties of using neural network-
based communication systems. Nevertheless, the ANC sys-
tem has several critical security flaws: (i) the method of
calculating data distance may be utilized by attackers to
infer secure information; (ii) the assumption of attackers is
not practical without considering attackers’ possible prior
knowledge; and (iii) the failure of ensuring data integrity
can be explored by attackers to breakdown the system.

In this paper, we first show that the above security flaws
can cause system breakdown, for which two types of novel
attack models (including target man-in-the-middle attack
and target fraud attack) are designed. The goal of attackers
is to cause incorrect classification of the receiver’s received
data by manipulating data at the sender’s side or during
the transmission. For this purpose, the target man-in-the-
middle (TMIM) attacker intends to manipulate the cipher-
text so that the receiver receives incorrect data, while the
target fraud (TF) attacker aims at tampering plaintext before
data is encoded and then sends it to deceive the receiver. In
addition, to defend these attacks, a new neural network-
based communication system is proposed, in which the
architecture of neural networks is improved, plaintext and
secret key are separated in the training process, and a defen-
sive loss is adopted in system design. Through theoretical
analysis and experiments, we show that our proposed neu-
ral communication system can mitigate attack performance
and achieve secure communication. Finally, we conduct
extensive real data experiments to evaluate the performance
of TMIM attack, TF attack, and our defense mechanism in
terms of classification accuracy, convergence, throughput,
and communication quality. The multi-fold contributions of
this paper are summarized as follows.

• Towards the existing neural network-based commu-
nication system, ANC, we analyze its security flaws
and design two methods for adversarial attack.

• To defend our proposed attacks, we develop a new
neural communication system that can achieve se-
cure communication by bounding the attack perfor-
mance.

• We theoretically prove the effectiveness of our pro-
posed neural communication system.

• By implementing experiments on different datasets,
we validate that our proposed attacks on ANC are
efficient and our proposed neural communication
system has superiority in attack defense, communi-
cation efficiency, and communication quality.

The rest of this paper is organized as follows. The related
works and preliminaries are introduced in Section 2 and Sec-
tion 3, respectively. In Section 4, the security vulnerabilities
of the existing neural communication system are analyzed.
Our attack methods are detailed in Section 5 and validated
in Section 6. Then, our defense mechanism is presented in
Section 7 and evaluated in Section 8. Finally, this paper is
concluded in Section 9.

2 RELATED WORKS

We first present related works on neural networks for secu-
rity and then summarize the existing methods of adversarial
example attack.

2.1 Neural Networks for Security

In this paper, neural networks are employed to encode
and decode data during communication, the idea of which
is similar to encryption and decryption in cryptography
algorithms. In the following, we mainly introduce the meth-
ods of combining neural networks and cryptography for
security.

In [9], the authors proposed to train two neural networks
on the output of each other, so that the weights of the
two neural networks can be synchronized. Due to non-
linearity of neural networks, these synchronized weights
are hard to be discovered by adversaries and can be used
as seeds of pseudo-random generation. The similar idea
appeared in [3], where the secret key is generated over a
public channel by two mutually trained neural networks.
But, this neural network-based key exchange/generation
scheme lacks mathematical proof and might be vulnerable
to attacks. Geometric attack, majority attack, and genetic
attack are designed to invade this scheme successfully by
Andreas Ruttor [2] a few years later.

Chaotic neural networks are another popular application
of neural networks in cryptography. Lian et al. proposed
a cipher algorithm based on chaotic neural networks to
encrypt JPEG2000 encoded images [10]. Their algorithm has
high security with low cost and can keep the original file
format and compression ratio unchanged. In [11], chaotic
hopfield neural networks were proposed to encrypt data
with time varying delay, where the chaotic neural networks
are utilized to generate binary sequences for permuting
plaintext. Based on the high-dimension Lorenz chaotic sys-
tems and perceptron model within a neural network, Wang
et al. designed a chaotic image encryption system with a
perceptron model [12], in which the Lorenz seed is used as
additional input of perceptron at each iteration. However, it
has been shown that learning process from these existing
works probably can not generate a secure cryptography
system [4], [13], [14].

To avoid uncertainty of security performance, the inte-
gration of neural networks and cryptography is also inves-
tigated in other ways. In [15], homomorphic encryption was
incorporated into neural networks, called “Crypto-Nets”.
By using Crypto-Nets, a private data holder can share his
encrypted data with a third party trainer and get accurate
prediction without security issues. Also, an improved ver-
sion of Crypto-Nets was presented for cloud service with
high throughput and accuracy [16].

In the above works, neural networks are mainly applied
to provide randomness for pseudo-random number and
key generation in cryptography and secure communication.
Differently, in our considered problem, neural networks are
directly hired to secure end-to-end communications apart
from the existing approaches.
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Fig. 1: The framework of Adversarial Neural Cryptography
(ANC) system.

2.2 Adversarial Example Attack

Adversarial examples have attracted lots of research inter-
ests to invade machine learning models since they were
found by Szegedy et al. [17]. According to the prior knowl-
edge held by attackers, adversarial example attack can be
categorized into two classes: white-box attack and black-
box attack. Under white-box attack, attackers have full
knowledge about the parameters of target models; while
in black-box attack, they do not have such information [18],
[19]. The methods of generating adversarial samples include
optimization-based methods and generation-based meth-
ods [20]. In the optimization-based methods, the problem
of finding perturbation is formulated as an optimization
problem and can be solved by different solvers [21], [22],
[23], [24], [25]. In the generation-based methods, the typ-
ical process is to train neural networks with specific loss
functions such that the outputs of neural networks are
adversarial samples [26], [27].

Although there are various existing attack methods, they
only work on classification models. What’s more, no adver-
sarial example attack is proposed towards our considered
adversarial neural network-based communication system
that can be treated as an auto-encoder.

3 PRELIMINARIES

In this section, the basic knowledge about Adversarial
Neural Cryptography (ANC) and Generative Adversarial
Networks (GANs) is introduced.

3.1 Adversarial Neural Cryptography

The framework of ANC system is shown in Fig. 1, where
Alice is an encoding module, Bob is a decoding module,
and Eve is an attack module, which are configured with
neural network parameters θA, θB , and θE , respectively. For
the purpose of secure communication, a sender can use the
encoding module Alice to encode a plaintext p with a pre-
shared key k and then transmit the corresponding ciphertext
c to a receiver who can use the decoding module Bob to
recover c with k and obtain the plaintext pBob. In the ANC
system, the pre-shared key k is assumed to be generated
and established by neural network synchronization [2], [28],
with which a pair of neural networks are trained by ex-
changing the output of each other. This pair of two multi-
layer networks start from randomly initial weights, learn
from the output of each other, and obtain common identical
weights for both networks at the end of training process.
Synchronization of neural networks can be considered as the
stage for key generation, and the common identical weights

of the two networks can be used as a key. When the pair
of neural networks are trained synchronized, the identical
network weight parameters will be the shared key between
the encoding and decoding modules. Meanwhile, the attack
module Eve is used by an attacker who intends to learn
pEve by eavesdropping c. In the presence of attack module
Eve, the mainly desired security property of the ANC
system is to achieve confidentiality for communications.

Technically, these encoding, decoding, and attack mod-
ules (i.e., Alice, Bob, and Eve) are trained to optimize
predefined loss functions through learning, e.g., gradient de-
scent. On the one hand, to secure communications between
the encoding and decoding modules, the objective is to
minimize the communication loss that is defined as LAB =
d(p,Bob(Alice(p, k), k)) to measure the reconstruction error
of decoding module. On the other hand, with the attack
module, the attacker’s objective is to recover the input of en-
coding module by minimizing LE = d(p,Eve(Alice(p, k))),
where LE indicates the reconstruction error of the attack
module. Thus, the complete loss function of ANC system
is LANC = LAB − αLE with α being a scale parameter
to balance LAB and LE , which is trained by updating θA,
θB , and θE alternatively. When the training process stops,
the encoding and decoding modules can be deployed to
communicate securely with little information loss, and the
attack module cannot extract any useful information from
c even holding the strongest attack power. Especially, the
encoding and decoding modules are readily used to take
any given input for encoding and decoding with their pre-
shared key, as long as the input data comes from the same
distribution as their training dataset.

3.2 Generative Adversarial Networks

As the most creative idea of deep learning in recent years,
Generative Adversarial Networks (GANs) have been widely
applied in the field of adversarial learning since it was pro-
posed in 2014 [1]. GANs consist of two “adversarial” mod-
els, including a generator G and a discriminator D. These
two adversarial models play with each other to complete in
a min-max game, where G intentionally generates samples
from a real data distribution to fool D while D judges
whether its input is the fake data generated by G or the real
data. The generator G is built as a deep neural network that
can be designed in various ways, and the discriminator D is
also a neural network learned by the traditional supervised
learning methods that classifies inputs into two sets (i.e.,
fake or real). Mathematically speaking, G can be expressed
in any form but a simple differentiable function, and G(z)
is an output sample drawn from pg , where z is a low-
dimensional vector sampled from a prior distribution pz .
The goal of D is to classify the data from G(z) as fake and
the data from training set pdata as real. Accordingly, GANs
can be formulated as a structured probabilistic model to
optimize the following loss function:

min
G

max
D

LGAN (G,D) =Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))],
(1)

where G aims to minimize LGAN (G,D), while D aims to
maximize it.
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Furthermore, GANs can be extended to a conditional
version with an additional input y that could be any kind
of auxiliary information (e.g., class labels or data from other
domains). The objective function of conditional GANs [29]
is expressed as:

min
G

max
D

LcGAN (G,D) =Ex∼pdata(x)[logD(x|y)]+

Ez∼pz(z)[log(1−D(G(z|y)))].
(2)

In our defense mechanism, GANs-based idea is exploited to
configure the networks of encoding, decoding, and attack
modules.

4 VULNERABILITIES OF ANC SYSTEM

Through comprehensive and deep analysis, we find out
essential security flaws of the ANC system.

First of all, during the training process of the ANC
system, the distance between the input of the encoding
module and the output of the decoding module, denoted by
d(p, pBob), should be minimized for information reconstruc-
tion, while the distance between the input of the encoding
module and the output of the attack module, denoted by
d(p, pEve), should be maximized for information security.
Usually, the distance, d(·, ·), is estimated by L1 norm or L2

norm distance, which may be utilized by attackers to infer
actual information. Take L1 distance for example. Suppose
the loss function of attack module Eve is calculated based
on a plaintext, i.e., d(p, pEve) =

∑N
i=1 |pi − pEvei |, where

pi is the i-th bit of plaintext p, pEvei is the i-th bit of the
attack module Eve’s reconstructed plaintext, and N is the
length of plaintext. When the ANC system achieves its best
performance at the end of training process, d(p, pEve) is
equal to the length of plaintext p, i.e., d(p, pEve) = N ,
which means every bit reconstructed by the attack module is
incorrect. Then in the follow-up prediction stage, the attack
module might be able to get correct plaintext with a higher
probability by flipping pEve to make the reconstruction loss
d(p, pEve) = 0.

Moreover, the ANC system fails to guarantee data in-
tegrity, which can be exploited by attackers to invade the
system. It is well-known that to verify data integrity, a
receiver should use the recovered message and the secret
key as the inputs of verification function, e.g., message
authentication code. In the ANC system, due to the nature
of neural networks, the recovered message could be very
similar to the original message but can not be exactly the
same. Therefore, the recovered message can not be used
for verifying data integrity. Currently, these is no scheme to
realize data integrity for the ANC system and other similar
neural network-based communication systems.

By exploiting these security vulnerabilities, we first de-
sign two types of attack to beat the ANC system and then
develop a new defense mechanisms to improve its security
performance.

5 ATTACK METHODOLOGY

Inspired by aforementioned analysis on the security flaws,
we develop two attack methods, named “target man-in-the-
middle attack” (TMIM attack) and “target fraud attack” (TF
attack) to break data integrity of the ANC system.

Fig. 2: An example of TMIM attack in crowdsensing sce-
nario.

5.1 Target Man-in-the-Middle Attack

Once the training process is completed in ANC, the encod-
ing module Alice is deployed on the sender side, and the
decoding module Bob is deployed on the receiver side for
communication. Because the pre-shared key is inside the
encoding and decoding modules, any legitimate sender can
directly use the encoding module Alice as a black-box to
encode a plaintext and transmit to the receiver who can
use the decoding module Bob as a black-box to decode
the ciphertext. Notice that the ANC system only considers
eavesdropping attack at the training stage. That is, the attack
module Eve can be only used for eavesdropping attack,
in which attackers only know the ciphertext c for recon-
structing pEve without any extra prior knowledge about the
communications.

Nevertheless, powerful attackers may exist and be able
to obtain extra prior knowledge from various channels in
real world. A practical scenario in crowdsensing is illus-
trated in Fig. 2, where the ANC system is adopted for data
transmission. The task workers use the encoding module
Alice to encode their sensory data and send the encoded
contents to the task server, while the task server can run
the decoding module Bob to get the decoded data. Assume
the task worker 1 is malicious and intends to attack on
task worker 2’s transmission. Under this situation, task
worker 1 can perform chosen plaintext attack (CPA) by
inputting multiple plaintexts p into the encoding module
and then eavesdrop their corresponding ciphertexts c [30].
With these paired plaintexts and ciphertexts (p, c) as prior
knowledge, task worker 1 can infer or extract important
information about the encoding module to break the entire
ANC system. By eavesdropping the communication channel
of task worker 2, task worker 1 can replace the original
encoded data c by an adversarial sample c′ and send it
to the task server to realize TMIM attack. The definition
and implementation of our TMIM attack is addressed in the
following part of this section.

Assume that in the communication system, a plaintext
p ∈ P is encoded by encoding module and decoded by de-
coding module, where P is the plaintext space agreed upon
by both parties. Due to the property of neural networks,
the input and network parameters are set to be continu-
ous floating-point number for differentiability. Accordingly,
every plaintext is a sequence of continuous floating-point
number. In real applications, the plaintext can be different
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kinds of data, such as image/video data, or text data. Con-
sidering such heterogeneous data domains, a pre-processing
is required on the value of each plaintext p, where the plain-
text is normalized in range [0, 1] for encoding. For example,
image/video data is rescaled in pixel level and text data is
processed by word embedding. Finally, the plaintext space is
P ∈ [0, 1]l, where l is the length of plaintext. Each plaintext
p has a corresponding class label y ∈ Y = {y1, y2, . . . , yk},
where k is the number of class in the plaintext space P .

In TMIM attack, the attacker can be any type of machine
learning algorithm. Here, we adopt a neural network as
the representative of attack module. Suppose the attacker
has the ability to implement chosen plaintext attack, in
which he can select a plaintext pEve, send it to encoding
module (i.e., step (1) in Fig. 3(a)), and get its corresponding
encoded ciphertext cEve (i.e., step (2) in Fig. 3(a)). With the
paired plaintext-ciphertext data (pEve, cEve), the attacker
can train a classifier using neural networks and gain a
class distribution Y ′ = {y′1, y′2, . . . , y′k} of cEve. Notice
that Y and Y ′ would be extremely similar if the attacker
can obtain enough data samples through chosen plaintext
attack. Next, the attack can choose either step (3) or step (4)
to launch TMIM attack, which is detailed in Section 5.1.1
and Section 5.1.2. The goal of TMIM attacker is to find an
adversarial example that misleads decoding module (Bob)
and breaks data integrity of the ANC system.

Ideally, in the ANC system, the class label of encoding
module’s input and the class label of decoding module’s
recovered result from the ciphertext c should be exactly
the same. Thus, as the man in the middle, if the attacker
can replace the original ciphertext c with another different
ciphertext c′ such that the class label of decoding module’s
recovered result from c′ still falls into the plaintext space P
but is different from the label of encoding module’s original
plaintext, a successful TMIM attack is achieved.

As aforementioned in Section 2, previous works on
adversarial example mainly target classification models.
Differently, the ANC system is more like an auto-encoder
based generative model, to which the existing attack meth-
ods may not be applied directly. For generative models,
adversarial example attack could be target attack or untarget
attack. Under target attack, an adversary intends to obtain
I(Bob(c′, k)) = yt ̸= I(p), where yt ∈ Y ′ is the adver-
sary’s target class. Under untarget attack, it only requires
I(Bob(c′, k)) ̸= I(p). In this paper, we focus on target
attack, because it has more severe consequences and can be
transformed to untarget attack easily. Our proposed target
man-in-the-middle attack is defined below.

Definition 1. Target Man-in-the-Middle Attack (TMIM At-
tack). Given an original plaintext p ∈ P , an encoding module
Alice(p, k) = c, and a decoding module Bob(c, k) = pBob, an
attacker replaces c by c′ with an aim of Bob(c′, k) ∈ P and
I(Bob(c′, k)) = yt ̸= I(p), where I is an identification oracle
that can distinguish different data, and yt is attacker’s target class.

In practice, the oracle I could be human eyes judgment
or a pre-trained classifier on plaintext domain P . Two novel
approaches of implementing TMIM attack are developed in
the following.

5.1.1 Simple TMIM Attack
Suppose the attacker can train a classification model f that
can classify cEve to a class yEve, where yEve is the ground
truth label of pEve. If the attacker repeats chosen plaintext
attack enough times with different pEve, f would be accu-
rate enough to tell what is the class of ciphertext c output
by encoding module. In addition, by using model f , the
attacker obtains each class’s distribution and corresponding
ciphertexts. For a target class yt, the attacker extracts the
ciphertexts that belong to yt and use the mean of those
extracted ciphertexts to create a new ciphertext c′. Then,
he can directly replace the original ciphertext c by c′ (i.e.,
step (3) in Fig. 3(a)) and sends it to the decoding module
of receiver. At receiver side, the reconstructed plaintext is
pBob = Bob(c′, k) that becomes an adversarial example with
a high probability.

In Section 6, we set up experiments to exam the per-
formance of our simple TMIM attack and show the attack
results in Fig. 5.

5.1.2 Generative TMIM Attack
In the simple TMIM attack, the adversarial ciphertext c′ is al-
ways identical for a target class yt as c′ is calculated based on
the mean of ciphertexts belonging to yt. As a result, the de-
coding module’s reconstructed plaintext pBob = Bob(c′, k)
is always the same for the class yt. In order to improve the
diversity of reconstructed plaintext by decoding module, we
adopt the cGANs as a generator to produce the adversarial
ciphertext c′ based on a given target label yt.

The workflow of generative TMIM attack is shown in
black square of Fig. 3(a), where a conditional generator G
and a conditional discriminator D are employed. The idea
of generative TMIM attack is the same as that of simple
TMIM attack – finding an adversarial ciphertext c′ to fool the
decoding module. Recall that the attacker has paired data
(cEve, yEve), which is the real data distribution of cGANs.
In our cGANs, the generator G takes a predefined random
noise z ∼ N (0, 1) and condition y to output the generated
ciphertext G(z|y); on the other hand, the discriminator D
takes real ciphertext c or generated G(z|y) with label y as
the inputs to differentiate whether its input data is real or
fake by assigning D(·|y) different values, where · can be
either c or G(z|y).

The loss function of generative TMIM attack is similar to
that in Eq. (2). Once the training process of cGANs is fin-
ished, the attacker is able to generate countless and diverse
adversarial ciphertext c′ by using c′ = G∗(z|yt), where the
G∗ is an optimized ciphertext generator. Then, the generated
adversarial ciphertext c′ is sent to decoding module (i.e.,
step (4) in the Fig. 3(a)) to decode. In the experiments, the
attack results of our generative TMIM attack is shown in
Fig. 6.

Essentially speaking, TMIM attack is an unrestricted
adversarial example attack because the crafted example c′

is not restricted to be close to the original plaintext c, i.e.,
the modification constraint ∥c − c′∥n < δ is not required
where n is the Ln norm distance, and δ > 0 is a system
parameter. Since ciphertext data is not visible or checkable
by any identifiers during communications, c′ still seems
imperceptible to the decoding module (Bob) as long as
pBob = Bob(c′, k) ∈ P , no matter how large ∥c− c′∥n is.
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(a) The framework of target man-in-the-middle attack (b) The framework of target fraud attack

Fig. 3: The frameworks of proposed target man-in-the-middle (TMIM) attack and target fraud (TF) attack towards ANC
system.

5.2 Target Fraud Attack

In this subsection, target fraud attack (TF attack) is proposed
to attack a different part of the ANC system: the input
plaintext p of encoding module.

As we illustrated, the ANC communication system can
be applied in real applications such as data transmission
or data collection, where the encoding module Alice is
deployed at the sender side, and the decoding module Bob
is deployed at the receiver side. Ideally, the data p sent from
the sender should be the same as the data pBob received by
the receiver through communication. Assume that there is
a stronger attacker who has the ability to use the encoding
module Alice to encode data and eavesdrop the encoded
ciphertexts. In addition, the attacker can modify the original
data to crafted-but-imperceptible adversarial data such that
the adversarial data sent from sender is totally different
from the recovered data at the receiver side. In this case,
the integrity of ANC system is broken. For example, as
shown in Fig. 4, in a crowdsensing system, the task worker
could be malicious to perform such an attack by modifying
his/her original data p to the adversarial data p′ through our
designed TF attack method. Then, the malicious task worker
can encode the modified data p′ through the encoding
module Alice, and finally the task server decodes data with
the decoding module Bob and obtain an adversarial data of
target class, instead of the original data’s ground truth class.

More examples of TF attack in image domain can be
found in our experiments. A formal definition of target
fraud attack is given by Definition 2.

Definition 2. Target Fraud Attack (TF Attack). Given an orig-
inal plaintext p ∈ P , an encoding module Alice(p, k) = c, and
a decoding module Bob(c, k) = pBob, the attacker provides an
adversarial example p′ to the encoding module with an aim of
Bob(Alice(p′, k), k) ∈ P and I(Bob(Alice(p′, k), k)) = yt ̸=
I(p′) under two requirements, including (i) distance requirement
∥p′−p∥n < δ and (ii) semantic requirement I(p′) = I(p), where
I is an identification oracle that can distinguish different data, and
yt is the attacker’s target class.

Assume the attacker still owns the classification model f
and has the capability of performing chosen plaintext attack
and eavesdropping communications. The attacker can select
a plaintext pt from the target class yt, sends pt through
encoding module, and eavesdrops the encoded ciphertext
ct (i.e., step (1) and (2) in Fig. 3(b)). According to the target

Fig. 4: An example of TF attack in crowdsensing scenario.

ciphertext ct, the attacker chooses a loss function as the
objective to generate adversarial examples through mini-
mizing the selected loss function. After that, the optimized
adversarial plaintext p′ is sent to encoding module (i.e., step
(4) in Fig. 3(b)) and then transmitted to decoding module
for target fraud attack.

According to Definition 2, the difference between the
original plaintext p and adversarial plaintext p′ should
be restricted, i.e., ∥p − p′∥n < δ, where n represents Ln

norm of two plaintexts. Accordingly, the modification loss
is calculated as:

L(p, p′) = ∥p− p′∥n. (3)

The objective of attacker is to classify the identification
result I(pBob) into a target class yt rather than the original
y. For this purpose, the ciphertext c is utilized as a bridge,
because both encoding module and decoding module are
black-boxes for the attacker, and the only way to interact
with pBob is to control ciphertext c. In this paper, a distance-
based loss is considered, for which the ciphertext loss func-
tion can be formulated in Eq. (4) based on p′ and ct.

Ld(ct, p
′) = ∥ct −Alice(p′, k)∥n, (4)

which implies that the encoding result of p′ is pushed to the
target ciphertext ct.

By combining the plaintext loss and ciphertext loss to-
gether, we can obtain the complete loss function for target
fraud attack in Eq. (5).

LFA = λ1L(p, p′) + λ2Ld(ct, p
′), (5)

The results of target main-in-the-middle attack and tar-
get fraud attack on the ANC system are analyzed in Sec-
tion 6.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 1: The architecture of encoding/decoding module

Layer Networks of encoding module

1 Fully Connected, [H×W×C+L] × [H×W×C], Leaky ReLU
2 Fully Connected, [H×W×C] × [H×W×C], Sigmoid

Networks of decoding module

1 Fully Connected, [H×W×C+L] × [H×W×C], Leaky ReLU
2 Fully Connected, [H×W×C] × [H×W×C], Sigmoid

6 VALIDATION OF ATTACK MODELS

In this section, we conduct intensive experiments on three
datasets, including MNIST, Fashion-MNIST and CIFAR100,
to investigate the performance of our proposed target man-
in-the-middle attack and target fraud attack. In the imple-
mentation, we adopt image data as plaintext for perfor-
mance evaluation, which is more complex than using binary
string data and can provide better visualization.

6.1 Experiment Settings

Image data is adopted in our experiments for better vi-
sualization of results, which means that the encoding and
decoding operations are performed on the corresponding
pixel level. For example, the pixel value of an image is in
the range of [0, 255] for gray scale and [0, 255]3 for three-
channel RGB image. Through normalization, it can be easily
mapped to a small range of [0, 1], on which our neural
network modules are conducted. The architecture of our
encoding module and decoding module are described in
TABLE 1, where H , W , C are the height, width, channel
of input images, respectively, and L is the length of key.
The value of L (default by 256 bits) can be customized by
different security requirements. As shown in the following
experiment result, a shorter key has a better throughput and
transmission quality. The device used for model training
is a Linux server with Intel(R) Xeon CPU E5-1607, 16 GB
memory, and the NVIDIA GeForce RTX 2080 GPU with
11 GB memory. For learning based models, the training
stage may cost much time and resource to converge. But
once the models are trained well, the only calculation is
multiplication that can be executed on a simple chip. For
example, when the key size is 256 on MNIST dataset, the
memory usage of our proposed system is around 20MB that
is 4MB smaller than the memory usage of ANC.

6.2 Evaluation of Target Man-in-the-Middle Attack

Corresponding to Section 5.1, we implement both simple
TMIM attack and generative TMIM attack and display the
results in Fig. 5 and Fig. 6.

In Fig. 5, the decoded results look very similar with
each other for different plaintexts. This is in line with our
analysis in Section 5: the result of simple TMIM attack
always remains the same because the modified ciphertext
c′ for a batch of attack samples is the same. More diverse
decoded results are generated by generative TMIM attack
as shown in Fig. 6. By comparing Fig. 5 and Fig. 6, the
original plaintext images in both simple TMIM attack and
generative TMIM attack are the same, but the decoded
images in Fig. 6(a) are more vivid and diverse. Similar

observation can be found in Fig. 5(b) and Fig. 6(b) on
Fashion-MNIST dataset. For the evaluation on CIFAR100
dataset, comparable observation can be found when simple
TMIM attack is launched as shown in Fig. 5(c), where the
decoded images are identical. While in Fig. 6(c), the results
of generative TMIM attack on CIFAR100 dataset are a little
bit worse than those of simple dataset MNIST and Fashion-
MNIST. The reason is that there are much more classes
in CIFAR100 dataset and each class has less training data,
which decreases the performance of GAN-based generative
TMIM attack.

For a comprehensive understanding of simple TMIM
attack and generative TMIM attack, we also present the
quantitative results in TABLE 2. Recall that in the definition
of TMIM attack, we hope that the original plaintext p and
the attacked plaintext pBob should have different class labels
by using the predefined identifier I , i.e. I(pBob) = yt ̸= I(p).
In TABLE 2, the average classification accuracy of identifier
I on decoded pBob to target class yt is used to measure
the effectiveness of our attack approaches. For both MNIST
and Fashion-MNIST datasets, 10 different target class labels
are adopted to measure the classification accuracy. More
specifically, the classification accuracy of adversarial plain-
text generated by simple TMIM attack reaches 99.50%, and
the classification accuracy of adversarial plaintext generated
by generative TMIM attack is a little bit lower. Considering
the diversity of adversarial samples and the classification
accuracy, generative TMIM attack would be a better choice
in practice with less classes.

6.3 Evaluation of Target Fraud Attack
Target fraud attack is aiming to change the original plaintext
p to the adversarial plaintext p′ such that p′ can be turned
to target class yt after encoding and decoding. In the exper-
iments, the distance based loss function, Eq. (4), is adopted
for target fraud attack.

Firstly, the attack results of 4 different Ln norms are
shown in Fig. 7 for comparison. Fig. 7(a), Fig. 7(b), Fig. 7(c),
and Fig. 7(d) present the attack results of L0, L1, L2, and
L∞ norms, respectively, where the three images from left
to the right of each norm group respectively correspond to
the plaintext p, the adversarial plaintext p′, and the decoded
ciphertext pBob, and the notation above each image is the
predicted label by identifier I(·). The results show that
for each norm, the decoded ciphertext pBob is predicted
as target class yt=“0”, which means target fraud attack is
successful. Particularly, the generated adversarial plaintext
and the decoded ciphertext with L2 and L∞ norms have
better image visual quality. Similarly, we can draw the same
conclusions on Fashion-MNIST with target class yt=“T-
shirt” and CIFAR100 datasets with target class yt=“Wolf”.

In addition, the statistics of performance of target fraud
attack are reported in TABLE 3. Different from TMIM attack,
the goals of target fraud attack is to classify the decoded
data into a target class while keeping the class labels of the
adversarial image and the original image the same. To this
end, we define a new metric to evaluate the performance of
target fraud attack as follows:

TFaccuracy =
Num(I(p′)=y∧I(pBob)=yt)

Nump
,
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(a) The results of simple TMIM attack on MNIST dataset with target
class “digit=0”

(b) The results of simple TMIM attack on Fashion-MNIST dataset with
target class “T-shirt”

(c) The results of simple TMIM attack on CIFAR100 dataset with target class “cattle”

Fig. 5: The results of simple TMIM attack. In each subfigure, the first row shows encoding module’s original plaintext p,
and the second row shows decoding module’s decoded result pBob.

(a) The results of generative TMIM attack on MNIST dataset with target
class “digit=0”

(b) The results of generative TMIM attack on Fashion-MNIST dataset
with target class “T-shirt”

(c) The results of simple TMIM attack on CIFAR100 dataset with target class “cattle”

Fig. 6: The results of generative TMIM attack. In each subfigure, the first row shows encoding module’s original plaintext
p, and the second row shows decoding module’s decoded result pBob.

TABLE 2: Quantitative performance statistics of simple TMIM attack and generative TMIM attack on MNIST and Fashion-
MNIST datasets

MNIST digit=0 digit=1 digit=2 digit=3 digit=4 digit=5 digit=6 digit=7 digit=8 digit=9
Simple TMIM attack 99.50% 99.50% 99.50% 99.50% 99.50% 99.50% 99.50% 99.50% 99.50% 99.50%
Generative TMIM attack 98.35% 98.29% 98.84% 98.66% 97.39% 98.62% 99.22% 99.41% 98.60% 98.98%

Fashion-MNIST T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Boot
Simple TMIM attack 91.63% 90.30% 92.51% 92.22% 93.41% 92.66% 92.94% 92.92% 91.78% 92.50%
Generative TMIM attack 87.96% 89.54% 88.36% 89.97% 87.88% 87.05% 89.09% 88.96% 89.34% 88.79%

TABLE 3: Quantitative performance statistics of target fraud attack with different Ln norms on MNIST dataset (target class:
“digit=0”) and Fashion-MNIST datasets (target class: “T-shirt”).

MNIST digit=0 digit=1 digit=2 digit=3 digit=4 digit=5 digit=6 digit=7 digit=8 digit=9
L0 norm - 77.83% 80.09% 77.08% 79.90% 76.08% 76.31% 76.78% 76.14% 78.35%
L1 norm - 80.76% 79.78% 79.06% 81.17% 78.62% 79.12% 82.52% 82.27% 82.29%
L2 norm - 94.66% 94.05% 94.74% 93.31% 93.82% 94.09% 94.19% 93.12% 95.73%
L∞ norm - 98.56% 98.53% 96.07% 96.31% 97.33% 96.95% 98.58% 97.94% 96.40%

Fashion-MNIST T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Boot
L0 norm - 69.62% 69.33% 70.79% 69.73% 70.53% 69.05% 70.58% 70.59% 68.36%
L1 norm - 75.14% 75.48% 76.12% 76.05% 74.55% 75.15% 76.09% 75.71% 75.29%
L2 norm - 81.01% 80.09% 80.94% 80.07% 80.43% 80.68% 80.33% 80.74% 80.65%
L∞ norm - 83.41% 85.47% 82.98% 82.84% 82.38% 82.47% 82.71% 83.41% 82.49%
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(a) TF attack with L0 norm (b) TF attack with L1 norm (c) TF attack with L2 norm (d) TF attack with L∞ norm

(e) TF attack with L0 norm (f) TF attack with L1 norm (g) TF attack with L2 norm (h) TF attack with L∞ norm

(i) TF attack with L0 norm (j) TF attack with L1 norm (k) TF attack with L2 norm (l) TF attack with L∞ norm

Fig. 7: The results of target fraud attack with different Ln norms on MNIST, Fashion-MNIST and CIFAR100 datasets. Each
subfigure contains three images for comparison.

where y is the original label of plaintext p, yt is the tar-
get label selected by the attacker, Num(I(p′)=y∧I(pBob)=yt)

denotes the number of adversarial plaintexts for successful
TF attack, and Nump is the number of total test plaintexts.
Essentially, the value of TFaccuracy indicates the success
rate of TF attack. As shown in TABLE 3, with a given
target class (e.g. digit=0 for MNIST dataset and T-shirt for
Fashion-MNIST dataset), the attacker produces adversarial
plaintexts from other 9 classes. Except the first column, each
column of TABLE 3 represents the value of TFaccuracy when
the adversarial plaintext is generated from a specific class,
e.g., in the second column of TABLE 3, TFaccuracy = 77.83%
means the attack accuracy when the adversarial plaintext is
generated from the class “digit=1” to perform TF attack on
MINIST dataset, and TFaccuracy = 69.72% means when the
adversarial plaintext is generated from the class “Trouser”
to perform TF attack on Fashion-MINIST dataset with L0

norm. From these results, we can conclude that TF attack
with L∞ norm achieves the best attack performance.

7 DEFENSE MECHANISM

In the previous section, we propose target man-in-the-
middle attack and target fraud attack toward the existing
ANC system, which demonstrates that the ANC system
is not secure enough to be used in practical applications.
Moreover, in the neural communication system, the origi-
nal plaintext p and the corresponding decoded ciphertext
pBob may not be exactly the same in every bit, and thus
traditional methods of digital signature and message au-
thentication codes cannot be properly used in the ANC
to defend target man-in-the-middle attack or target fraud
attack. As a matter of fact, the failure of the ANC system
comes from the inappropriate system design rather than the
neural networks. In this section, we develop a new neural
communication system based on neural networks that can
mitigate the above two kinds of attack.

The prerequisite of launching target man-in-the-middle
attack and target fraud attack is that the attacker can

perform chosen plaintext attack to obtain paired data
(pEve, cEve). Thus, the core idea of our defense strategy is to
prevent or mitigate the information gain of chosen plaintext
attack. As described in Section 5, the attacker is able to
input a plaintext to encoding module directly and then get
its corresponding ciphertext, because the ANC system inte-
grates the pre-shared key into the encoding and decoding
modules as shown in Fig. 1. What’s worse, the same key
in ANC is used multiple times, which increases the risk of
being broken by cryptanalysis. As a result, to avoid potential
security flaws, the secret key in our proposed system is
separated from the encoding and decoding modules with
less reuse possibility.

The framework of our proposed secure communication
system is given in Fig. 8, where an encoding module Alice,
a decoding module Bob, and an attack module Eve are
taken into account. Compared with the ANC system, our
proposed system has a similar structure but totally different
designs. In our system, the encoding module and decoding
module are not autoencoder-based symmetric networks any
more. Instead, they are set to be identical networks. At the
first layer of the encoding module, a plaintext p with length
l and a secret key k are concatenated as the input, and the
size of encoded result is also l. The network structure of the
decoding module is exactly same as that of the decoding
module. The advantages of such settings are two-fold: (i)
configuring the same network structure and parameters at
the two sides of communications can reduce the training
time by half in practice; and (ii) once our communication
system is trained, either module can perform encoding and
decoding functions, which is convenient and efficient for
practical implementation. For example, if p is the input
of encoding module, Alice(p, k) is the encoding module
to compute the ciphertext c; whereas, the module Alice
becomes a decoding module with Alice(c, k) = p if it is
deployed on the receiver side. In this way, one module
(either the encoding module or the decoding module) can
be used by the sender or receiver to satisfy the need of the
two-way communications.
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Fig. 8: The framework of our proposed new neural communication system to mitigate TMIM attack and TF attack.

Notably, at the sender side, both the plaintext p and
the key k are needed to run the encoding module in the
encoding processes. To query the encoding module and pro-
ceed chosen plaintext attack towards our proposed defense
system, the attacker should input pEve and his key k′ to
the encoding module Alice and get cEve = Alice(p, k′).
In our system, the secret key is separated from the encod-
ing/decoding module, and every user has his distinct key,
so the key k′ used by the attacker may not be equal to k.
Consequently, the attacker’s ciphertext cEve may not be the
same as the correct ciphertext c unless the attacker tries the
correct key k out. Under this situation, the attacker needs
to use advanced approaches to retrieve more information
from cEve. Thus, in our system, the attack module Eve is
upgraded to be a binary classifier; that is, our system aims
to defend a more powerful attacker. The input domain of
the attack module Eve contains C and CEve, where C is the
set of correct ciphertexts computed with the real key k, and
CEve is the set of ciphertexts computed with the attacker’s
key k′. For the attacker, the objective is to discriminate C
and CEve using the discriminator D so that he can gain
more information from ciphertexts via the attack module
Eve. If Eve can discriminate C and CEve, it is able to
distinguish between k and k′; otherwise, both k and k′

seem indistinguishable to the attacker. Based on the correct
discrimination results, the attacker can get correct paired
data (pEve, cEve) for future attacks. Accordingly, the loss
function of attack module Eve can be formulated in Eq. (6).

LEve = Ec∼C [logEve(c)] + Ec∼CEve
[log(1− Eve(c))]. (6)

To defend chosen plaintext attack from the attacker,
hiding CEve in C is necessary during the training process of
encoding module, which means the distributions of C and
CEve should be trained indistinguishable no matter what
key is used in encoding module. Apart from this, encoding
module and decoding module are expected to work together
to minimize the communication loss in the system, i.e.

minL(p, pBob) = ∥p−Bob(Alice(p, k), k)∥n, (7)

where n is the Ln norm. We define the loss function for
encoding module and decoding module together in Eq. (8)
to integrate the two above goals: hiding CEve in C , and
minimizing the communication loss.

L(Alice,Bob) = Ec∼CEve
[log(1− Eve(c))] + L(p, pBob). (8)

The formal expression for training our proposed neural
communication system is expressed as:

min
(Alice,Bob)

max
Eve

Lsystem =Ec∼C [logEve(c)]+

Ec∼CEve
[log(1− Eve(c))]+

∥p−Bob(Alice(p, k), k)∥n.

(9)

Theorem 1. When the training process of our system is con-
verged with the optimal encoding module (Alice), the probability
that the attacker can differentiate between any correct ciphertext c
and any ciphertext cEve is at most 50%.

Proof: By substituting Eq. (6), Eq. (7) and Eq. (8),
Eq. (9) can be rewritten as:

Lsystem =Ec∼C [logEve(c)] + Ec∼CEve
[log(1− Eve(c))]

+ L(p, pBob)

=Ep∼P [logEve(Alice(p, k))]

+ Ep∼PEve
[log(1− Eve(Alice(p, k′)))]

+ ∥p−Bob(Alice(p, k), k)∥n.

During the training process, the plaintext p is sampled
from the plaintext space P ∈ [0, 1]l to optimize the loss
function, where l is the length of p. In our system, p ∈ P is
a sequence of continuous float-point number, and P and
PEve are high-dimensional continuous space in [0, 1] for
each dimension. Thus, within P and PEve, the expectation
calculation of LSystem can be equivalently transformed to
integration over all possible p, i.e.,

Lsystem′ =

∫
p
P (p)[logEve(Alice(p, k))]

+

∫
p
PEve(p)[log(1− Eve(Alice(p, k′)))]

+ ∥p−Bob(Alice(p, k), k)∥n

=

∫
p
{P (p)[logEve(Alice(p, k))]

+ PEve(p)[log(1− Eve(Alice(p, k′)))]}
+ ∥p−Bob(Alice(p, k), k)∥n.

In our system, the attack module Eve is defined as
a discriminator with an output range [0, 1], and the ob-
jective of module Eve is to maximize his output value.
Since ∥p − Bob(Alice(p, k), k)∥n does not influence Eve’s
optimization, it can be treated as a constant value to attack
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module Eve. To get the maximum value for attack module
Eve, we should take the partial derivative of L with respect
to Eve inside the integration, where L is expressed as:

L =P (p)[logEve(Alice(p, k))]

+ PEve(p)[log(1− Eve(Alice(p, k′)))].

The first order and the second order partial derivatives
of L with respect to Eve are computed in the following.

∂L
∂Eve

=
P (p)

Eve(Alice(p, k))
− PEve(p)

1− Eve(Alice(p, k′))
.

∂2L
∂Eve2

= − P (p)

[Eve(Alice(p, k))]2
− PEve(p)

[1− Eve(Alice(p, k′))]2
.

It is obvious that ∂2L
∂Eve2 < 0 is always true. So, when

∂L
∂Eve = 0, the maximum output of attack module Eve can
be achieved. From ∂L

∂Eve = 0, we have

P (p)(1− Eve(Alice(p, k))) = PEve(p)Eve(Alice(p, k′)).

On the other hand, when the training process is termi-
nated after convergence, encoding module is supposed to
have enough power to mimic the distribution of Alice(p, k)
by using Alice(p, k′). Thus, we can replace Alice(p, k) and
Alice(p, k′) with the same notation c and rewrite the above
equation as:

P (p)(1− Eve(c)) = PEve(p)Eve(c).

Accordingly, the value of attack module Eve is

Eve(c) =
P (p)

P (p) + PEve(p)
.

Theoretically speaking, when the training process is
converged, attack module Eve owns the strongest power
to manipulate her plaintext pEve; that is, the distribution of
PEve(p) will be the same as the distribution of P (p) if con-
vergence is reached. By setting PEve(p) = P (p), the optimal
output value of attack module Eve is Eve∗(c) = 0.5, which
means the attack module Eve is not able to tell the source
of ciphertext c with a probability more than 50% even she
has the strongest capability.

Theorem 1 shows that when our system is trained to be
optimal, the success rate of attacker’s chosen plaintext attack
can be effectively bounded. Notice that in TMIM attack
and TF attack, a common prerequisite is that the attacker
is capable of performing chosen plaintext attack. Once the
success rate of chosen plaintext attack is low, it will become
harder for the attacker to implement TMIM attack and TF
attack. In other words, our system can effectively mitigate
the impacts of TMIM attack and TF attack

8 EVALUATION OF DEFENSE MECHANISM

In this section, we design experiments to evaluate the
performance of our defense mechanism, where the same
settings and datasets are adopted as previous experiments
in Section 6.

We have proved that our proposed system can bound
the performance of chosen plaintext attack and mitigate the
impacts of TMIM attack and TF attack.

TABLE 4: Quantitative comparison between ANC and our
system on the capability of attack defense

Dataset MNIST Fashion-MNIST CIFAR100
Model ANC [5] Ours ANC [5] Ours ANC [5] Ours

S. TMIM 99.50% 17.73% 92.28% 15.92% 52.20% 4.78%
G. TMIM 98.63% 17.14% 88.69% 14.28% 45.67% 4.49%
TF 97.40% 14.47% 83.13% 10.66% 39.17% 3.62%

To evaluate the practical defense capability of our sys-
tem, we implement TMIM attack and TF attack in the same
way to attack our proposed system and make a comparison
with the ANC system. The comparison results are shown in
TABLE 4, where the values are corresponding classification
accuracy at receiver side for TMIM attack and TFAccuracy

for TF attack. Since there are 100 classes in CIFAR100
dataset, it is not possible for us to present the TMIM attack
and TF attack results for all classes in this paper with
limited page length. Instead, the average performance of on
all classes is listed in TABLE 4. More specifically, a larger
value in TABLE 4 indicates a stronger attack power and
a worse defense capability. To get a clear observation, we
calculate the average index for all classes in each dataset
on the two systems; especially, for TF attack, we use L∞
norm because it achieves the best attack performance. From
the results, one can see that our system decreases the attack
performance drastically, which is only slightly higher than
random guess (i.e., 10% for MNIST and Fashion-MNIST and
1% for CIFAR100). This is because in our proposed system,
the encoding module outputs indistinguishable ciphertexts,
which may not be usable for the attacker to launch a
successful attack.

Besides, we compare the ANC system and our proposed
system in terms of convergence speed, throughput, and
MSE in TABLE 5 and Fig. 9.

In TABLE 5, the value of convergence represents how
many epochs are used to train the system to be converged,
i.e., the number of epochs for the loss of encoding module,
decoding module, and attack module to become stable,
which implies the training efficiency. Our system converges
faster than ANC as we analyze in Section 7, because our
system treats the encoding module and decoding module
identical to reduce the training cost of a neural network. The
throughput reflects how many images can be transmitted
through the communication system after the training pro-
cess is completed, indicating the communication efficiency.
As shown in TABLE 5, our system’s throughput can reach
104.489 images/s, but the ANC system only has 87.074
images/s. These results are resulted from the fact that the
networks in our system only use the 3 fully-connected
layers, which is simpler than the network setting of the ANC
system. The communication quality of system is measured
by mean square error (MSE), in which a smaller MSE be-
tween the input image at the sender and the decoded image
at the receiver represent a better communication quality.
From TABLE 5, one can find that our system has a little
bit larger MSE compared with ANC. But, this difference is
not quite obvious from the aspect of human eyes visual-
ization as shown in Fig. 9, after all our system provides
a stronger security protection to defend attacks. Moreover,
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(a) The communication results of ANC on MNIST dataset (b) The communication results of our system on MNIST dataset

(c) The communication results of ANC on Fashion-MNIST dataset (d) The communication results of our system on Fashion-MNIST
dataset

(e) The communication results of ANC on CIFAR100 dataset (f) The communication results of our system on CIFAR100 dataset

Fig. 9: Visualized comparison between ANC and our system. In each subfigure, the first row shows encoding module’s
original plaintext p, and the second row shows decoding module’s decoded result pBob.

TABLE 5: Performance comparison between ANC and our
system in terms of convergence, throughput, and MSE

Convergence Throughput MSE
ANC [5] 1.701× 104 87.074 0.491
Our System (key-256) 1.274× 104 104.489 0.627
Our System (key-128) 1.227× 104 109.568 0.586

security and data quality could be a customizable trade-
off by adjusting the key length. TABLE 5 demonstrates that
adopting a shorter key size gains higher convergence speed,
larger throughput, and smaller error.

In each subfigure of Fig. 9, the first low shows the orig-
inal input images, and the second row shows the decoded
images. In both ANC and our proposed defense system,
the decoded ciphertext is almost same as the original plain-
text though the images output by our system are slightly
blurred. Different system frameworks between ANC and
our system can account for this difference. The optimization
of the encoding and decoding modules in our system (see
Eq. (8)) considers not only the communication loss for but
also the defensive loss to defend chosen plaintext attack.
This extra defensive loss yielded by the attack module Eve
may bring uncertain influence on the training process of
the encoding and decoding modules, resulting in lower
quality. Whereas, in ANC, the loss function of communica-
tion quality only considers the difference between original
and decoded plaintext, which enforces the training focus on
communication quality. Nonetheless, such little quality loss
is trivial and can be ignored in our system.

From the above comprehensive evaluation, we can con-
clude that our proposed defense system provides secure,
efficient, and high-quality communication between sender
and receiver.

9 CONCLUSION

In this work, we investigate the weakness of existing neural
communication system through deep analysis and real data
experiment; especially, we design two adversarial attacks,

including target man-in-the-middle attack and target fraud
attack to invade the system. Experimental results illustrate
that our proposed attack methods successfully perform de-
sired attack purpose. Then, to improve the neural network-
based communication systems, we develop a new neural
communication system that can mitigate the impacts of
the proposed attacks and enhance communication efficiency
and communication quality. The experimental results can
well validate the superiority of our proposed neural com-
munication system over the state-of-the-art.
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