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Abstract—As the number of IoT devices increases, sustain-
ability is becoming a bottleneck of the production process in
industrial systems. As a matter of fact, inefficient management
and scarce resources significantly impeded the development of
sustainability. In recent years, it has been observed that the
digital twin technology plays a promising role in facilitating the
interaction between the Internet of Things (IoT) assets and digital
services. However, high-fidelity models of digital twins raise the
requirement of efficient data flows, which is limited by realistic
constraints such as data collection strategy and energy supply. We
propose a sustainable data collection and management approach
to construct digital twins for physical assets. With this approach,
data packets are uploaded to the data brokers, namely agents,
by a large number of IoT devices. The challenge lies in the
balance between enduring data collection and the information
loss associated with the stale data. In this article, we aim to
optimize the metrics of data fidelity and reveal delay while
guaranteeing both sustainable energy and sustainable informa-
tion. Additionally, a shareable and sustainable blockchain-based
digital twin management architecture is proposed, which does
not rely on data exchanges with a single centralized server. Our
analytical and simulation results demonstrate the applicability of
our proposed architecture.

Index Terms—digital twin, sustainable system, internet of
things, blockchain, network optimization

I. INTRODUCTION

IN the past decade, people have witnessed the expeditious
development of the Internet of Things (IoT), which is

cohesively integrated with Artificial Intelligence (AI), the new
generation wireless network technology (5G), and advanced
system architectures to serve human beings. With the prolifera-
tion of IoT devices, numerous digital service applications have
been devised to meet the demands of industrial production and
social activities, such as smart grid [1], smart city [2], smart
transportation [3] and smart healthcare [4]. Our everyday lives
are immersed with a large number of IoT devices, which build
up the foundation of a variety of services. The purpose is
to collect data in the physical world, upload data to remote
servers for further processing, and make decisions according
to feedback.

In the traditional approaches, data are stored in backlogs
of IoT devices for later diagnosis, and improvements are
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then incorporated into devices. Such pipelines not only lack
timely feedback, but also risk on-device testing and unver-
ified updates, which may result in severe malfunctions. As
creating a digital avatar for a real-world object is highly
in demand in most IoT services, the Digital Twin (DT)
technology becomes a promising paradigm for IoT services.
Often referred to as a virtual representation of a physical
asset, DT empowers complicated modeling and immense data
transmission, thus creating high-fidelity replicas of physical
objects for further prediction, monitoring, controlling, and
decision making. These digital proxies are often expected
to provide virtualization and optimization functionalities by
integrating domain knowledge from subject-matter experts as
well as real-time data collected from IoT devices [5]. DT
also makes remote testing on virtual environment possible,
which is a cost-efficient and secure alternative comparing
with on-device testing. Due to the aforementioned high-fidelity
and flexibility advantages, DT has been widely adopted in
many applications, i.e., human DT [6], DT city [7], and DT
automation [8].

However, unfortunately, most previous DT-related works
have been restricted to the control of a limited number of IoT
devices [9], [10]. In the works for large-scale DT platform
deployment [11]–[13], it is not realistic to simultaneously
upload data all the time for all IoT devices. Since these IoT
devices are deeply integrated with various services, stringent
requirements in terms of fresh data and energy supply are
essential to robustness of an IoT system. To overcome the
above limitations, we should take sustainability of IoT systems
into consideration. Sustainability considered in this article is
twofold, which can be categorized by sustainable information
and sustainable energy.

On the one hand, data generated by an IoT device may
play different roles in different DT services. As a result, at
a certain time, the status of an IoT device might be crucial
to DT but not relevant to another device. Prioritizing different
data sources carefully is essential for DT services to receive the
most crucial data from all physical devices. One should devise
a feasible strategy of data collection to maintain information
sustainability and achieve better synchronization [14] in a
global perspective.

On the other hand, energy supply is another key issue for the
services aided by physical assets. To provide adequate energy
for devices in a region, an electricity storage system may
be deployed where electricity is sustainably replenished and
transported to IoT devices. The uninterrupted computation and
data transmission of devices are enabled by such sustainable
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Fig. 1: Hierarchical and distributed data-sharing modes.

energy supply. However, frequent data updates at IoT devices
may deplete energy quickly, thus hampering energy sustain-
ability. Undoubtedly, a reasonable energy allocation strategy
to provide energy sustainability is desired.

A common way to realize DT services is to establish
constant connections and data exchanges between IoT devices
and service provider, and to upload data to a centralized server
similar to traditional IoT services. This hierarchical sensing
mode/protocol [15]–[17] has been broadly studied and applied
to many practical scenarios of dedicated services, which is
illustrated in Fig.1a. However, this way of data collection is
deemed to be unsustainable, since each service collects the
needed data by itself with limited resources, and the barriers
among untrustworthy services would cause unnecessary data
collection and incomplete information. Data trading mecha-
nisms [18], [19] are studied to expand the coverage of services
while preserving the privacy requirements. Motivated by the
deficiency of traditional services, we raise the question of
whether the collected data can be shared among all the DT
systems as shown in Fig.1b and the queries toward massive
IoT data can be processed in a distributed manner [20]. In
order to ensure service sustainability, we consider maintain-
ing a trustable and shareable ledger, colloquially known as
blockchain, for all the DT systems. The blockchain gathers
distributed, secured and verifiable records of information col-
lected from different entities, and links them in a single chain
with multiple blocks [21]–[23]. The information is maintained
by all the participants, and can be resistant to the failure of a
single point, which leads to a secure and convergent industrial
IoT environment [24]. As the core of blockchain, we should
devise some consensus to make sure that data can be utilized
by different DT systems securely and fairly.

In this article, we design a blockchain-based sustainable DT
management system to ensure information sustainability in DT
systems and energy sustainability in physical assets. The main
contributions are summarized as follows:

• A DT framework, consisting of devices, agents, and
requestors, is formalized in the scenario of IoT device-
assisted services. In this framework, agents collect fresh
data from physical devices, and feed them to requestors
so as to create DT services for further uses.

• Information sustainability and energy sustainability are
both considered to improve system performance. In de-
tails, we optimize delay of devices to ensure sustainable

information and control the probability of energy deple-
tion to guarantee data fidelity.

• To further enhance practicability and system perfor-
mance, we introduce the blockchain technology to enable
data sharing among agents, and improve the efficiency of
data collection while not relying on data exchanges with
a specific server.

• Our extensive analytical and experimental results show
that our proposed blockchain-based DT management
system can achieve both information sustainability and
energy sustainability.

The remainder of this paper is organized as follows. Section
II reviews some related works. In Section III, we introduce
the components of our DT-based IoT service system. In
Section IV, we show the optimization goal and collection
method of DT system with the aid of a specific server. In
Section V, we further propose a blockchain-based system
that incorporates distributed and shareable attributes into our
design. The experiment results are illustrated in Section VI.
Finally, Section VII concludes the paper.

II. RELATED WORKS

A. Digital Twin Platform

The DT concept was first introduced in 2002 and has
recently been implemented to solve different problems in
the areas of aviation, supply chain, wireless networks, and
many more. In [25], the authors introduced the DT concept,
categorized the types of DT systems, and provided a frame-
work for data exchanges between the physical twin and its
DT. They also presented a vast of applications where system
performance can be enhanced through the DT technology.
In [26], the authors solved the mobile offloading problem in
6G networks with the assistance of DT, where DTs of edge
servers and a mobile edge computing system are deployed
to estimate servers’ states and provide training data for of-
floading decisions. In [27], a DT bending bean test system
is established by setting up DT components, a physical twin
of two actuators, and a communication interface that connects
the two. These works only considered the construction of DT
with one or several physical twins and services, which cannot
depict the status of many assets. Driven by this limitation,
some researchers studied DT platforms for large-scale systems
[28]–[31]. However, system sustainability has not been well
investigated in the state-of-the-art.

B. Information Cost and Energy Cost

To model information sustainability, Age of Information
(AoI) is an ideal performance metric that measures the loss
of information at the destination [32]. Often defined as the
elapsed time since the generation of the most recently received
data, AoI characterizes the freshness of data for a service and
suggests the potential utility that can be extracted from the
data. However, AoI, determined by the information collecting
strategy, cannot reflect the fundamental updating frequency of
information source.
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For energy cost, many works have studied energy optimiza-
tion in extensive network paradigms. However, neither infor-
mation sustainability nor energy sustainability has been well
addressed for IoT services with the aid of DT. A stochastic
optimization problem of an IoT monitoring system is studied
to minimize the average AoI while satisfying the average
energy cost constraint at the devices in [33]. To enhance the
sustainability of a multi-node wireless powered communica-
tion network, both energy and price-incentive schemes are
studied aiming at optimizing the per-packet AoI performance
[34]. The work in [35] investigates the data updating policy
for energy-harvesting monitoring nodes so as to minimize the
average AoI. Inspired by these prior studies, we aim to opti-
mize system performance in terms of sustainable information
and sustainable energy for DT-aided IoT devices.

C. Blockchain-based Digital Twin

Both DT and blockchain technologies were originally pro-
posed in the first decade of this century, but they have
not received much attentions until recently. The work in
[36] presents a literature-review study for the implementation
and design of blockchain-based DT. Leveraging the strength
of trustworthy blockchain, the data-driven product lifecycle
events of physical assets can be efficiently utilized by multiple
DT-based services. The study in [37] proposes a decentralized
ownership-centric sharing model for protecting access control
integrity and confidentiality based on DT components and
lifecycle requirements. Besides, this work [38] proposes a
DT model for additive manufacturing in the aircraft industry
with the aid of blockchain. To collect the data from the
physical devices, crowdsourcing has been widely adopted
in blockchain-based IoT platform [39], [40], where agents
are deployed to collect the data and contribute to the IoT
services. However, none of them consider sustainability of the
blockchain-based DT platforms.

III. SYSTEM MODEL

We consider a system that supports the construction of
DT services by collecting data from physical assets. Our
proposed system consists of multiple participants in a given
region, including requestors, agents, and devices, all of which
play important roles in the process of data exchange and
decision making. The detailed definitions of these participants
are summarized as follows.

1) Devices: As physical assets, IoT devices are responsible
for generating data for DT services. Each time an IoT
device generates data, it consumes energy supplied by
a central electricity storage system. In general, devices
act as the foundations and actuators of services.

2) Agents: Due to the limited capacities of computation,
communication and data storage, devices cannot be
always online/connected for a single server. In a re-
gion, agents1 are deployed to initiate communications
to selected devices and collect data from them so as to

1The terminology of service-oriented agents may have different names in
some other scenarios such as mobile workers or data sellers.
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Fig. 2: DT-assisted paradigm for IoT devices.

support DT services. This means agents could strategi-
cally interact with physical devices to maintain service
quality. In general, agents perform as data brokers which
bridge DTs and physical assets and realize the expected
DT services.

3) Requestors: As customer-oriented service providers, re-
questors subscribe to agents and incorporate their data in
the DTs of physical assets. Data may be collected from a
broad range of IoT devices with different functionalities
(e.g., speed of cars, quantity of fuel and air humidity).
The DT services established by requestors can be used
to serve target customers.

A. Sustainable DT-based Paradigm

To maintain a sustainable system that provides high-quality
and durable DT services, we deploy a set of IoT devices
denoted by {1, 2, · · · , N}, and a set of agents denoted by
{1, 2, · · · ,M}. We simplify the requestors subscribing to
agent m by a popularity vector αm = {αm

1 , · · · , αm
N}.

This representation reflects the data demand priorities for
agent m. The popularity vectors of different agents may be
significantly different as different agents may concentrate on
different types of services, as a result, leading to distinctive
data collection strategies of individual agents. We propose a
DT-based framework that benefits the DT services, which is
able to retrieve the last known status of the devices. The details
about similar functionalities are available in [5]. We assume
that the system can be divided into three components:

1) Physical devices which are deployed in a physical space
in a distributed manner to ensure the basic system
functionalities such as data sensing.

2) Agents which exert measurements on one of the devices
at a time independently. DTs are created in a virtual
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space (constructed by agents) to synchronize the status
of physical devices.

3) Requestors who subscribe to the models of DTs main-
tained by agents, and run DT-based services to serve
customers. Each subscription is made through one of
the agents.

It is critical to synchronize the real-time status of physical
twins. As illustrated in Fig.2, the mapping process between
the physical space and virtual space is enabled through
agents. In our system, we assume that each IoT device
n ∈ {1, 2, · · · , N} performs the sensing task and generates
a data log of the current state independently under a Bernoulli
distribution with rate pn in each time slot. Thus, the total
number of data logs generated from the sensing tasks of device
n in T time slots, i.e., Jn, follows the following distribution,

P (Jn = j, T, pn) =

(
T
j

)
pn

j (1− pn)
T−j

. (1)

With the statistic of sensing tasks, agents perform data
collection according to their own popularity profiles of all
the IoT devices. The popularity profiles are determined by
the subscriptions made by requestors in the given range of
time. Due to the trend of sustainability, we mainly focus on
the optimization in terms of timeliness of data and endurable
energy supply for DT systems.

B. Sustainable Energy Supply of Devices

We first formalize the sustainability of energy supply. We
consider that all IoT devices are supported by a central
electricity storage system. To describe our proposed system,
the time horizon with stable energy supply is divided into
multiple stages {1, 2, · · · ,K} with T time slots. Note that T
is a relatively large number. We define that the total amount
of energy supply is Sc unit in each stage k ∈ {1, 2, · · · ,K},
and the energy replenishment at the beginning of any stage
constantly supports the basic functionalities of all physical
devices, thus ensuring the status mapping in the DTs of agents.

Traditional DT formulation typically concentrates on the
status mapping between a single DT and its corresponding
physical asset, thus neglecting the impact of energy supply
for a large group of devices. We extend traditional DT cases
to industrial DT platforms with a large-scale deployment of
IoT devices (i.e., a large N ) and study the data sensing policy
of devices in the system.

For any device (∀n ∈ {1, 2, · · · , N}), it consumes a unit
energy each time to perform a sensing task and collect the
status changes of the physical world. In any stage k, the energy
consumed by device n is denoted by an(k) = Jn(k), where
Jn(k) is the total times of sensing of device n in stage k.
The distribution of Jn, denoted as P(Jn, T, pn), tends to be
the Poisson distribution with expectation λn → pnT when
T → ∞ and pn → 0 [41]. In fact, λn can be treated as the
expected energy consumed by device n in any stage with T
time slots. Thus, the energy consumption process of all devices
can be depicted by

W (k) = A(k)− kSc, (2)

where A(k) is the accumulated energy consumed by all
devices by the end of stage k, written as

A(k) = a(1)(k) + a(2)(k) + · · ·+ a(N)(k), (3)

and ∀n ∈ {1, 2, · · · , N},

a(n)(k) = an(1) + an(2) · · ·+ an(k). (4)

To characterize system properties with respect to the numbers
of devices N , we denote Sc = NC, where C > 0 reflects the
relationship between the energy supply rate and the number of
devices. Thus, the maximum energy debt with respect to the
energy consumption process of devices can be depicted by

Q = sup
k≥0

W (k). (5)

We consider that the central electricity storage system stores
a maximum energy backup with B(0) units2 in stage k = 0
to overcome the potential energy shortage in the future. It can
be easily found that if Q is greater than B, the system will
encounter energy depletion, which may cause severe operation
problems, and devices would not be able to work correctly and
provide the expected sensing data for DT services.

Large deviation theory [42] is a useful tool for analyzing
rare or tail events with larger fluctuation, especially for energy
depletion in a large-scale system with a large number of de-
vices. We aim to design a robust system that yields sustainable
energy supply for all devices.

Denote the probability of energy depletion as P(Q > B).
As the number of sensing tasks in any stage could be approxi-
mated by a Poisson distribution, the expression of the cumulant
generating function (CGF) of average energy consumption
a(k) = A(k)/N is given by

Λk(θ) = logE
[
eθa(k)

]
, (6)

and
Λ(θ) = lim

k→∞

1

k
Λk(θ)

=
1

N
logE

[
eθ

∑n
n=1 Jn

]
=

1

N

N∑
n=1

λn(e
θ − 1).

(7)

To achieve sustainable energy, we focus on the behavior of
P(Q > B). Since we study the system with a large N , for
any B = Nq > 0, Q follows

lim
N→∞

1

N
logP (Q/N > q) ≈ −I(q) (8)

according to the Cramér’s theorem [43], where I is the rate
function of q that describes the probability decays of energy
depletion with respect to the energy backup, and

I(q) = inf
k∈N

Λ∗
k (q + Ck) , (9)

where Λ∗
k is the convex conjugate of Λk(θ) defined by

Λ∗
k(x) = sup

θ∈R+

{θx− Λk (θ)} . (10)

2We omit the time stage index 0 of Bn(0) for simplicity.
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As shown in [44], rate function I(q) can be written as

I(q) = inf
k∈N

sup
θ∈R+

θ(q + Ck)− kΛ(θ)

= q sup {θ > 0 : Λ(θ) ≤ θC} ,
(11)

and we could define δ as a function of the process of a(k),
which is

δ (a) = sup {θ : Λ(θ) ≤ θC}. (12)

Hence, the probability of energy depletion of the central
electricity storage system is approximated by [45]

P (Q > B) ≈ e−δNq (13)

according to the large deviation theory. This approximation is
of great importance to guide the sensing process so that the
usage of energy in our system is controllable and sustainable.

C. Sustainable Information of Agents

To capture the time-varied information of the system and
inject the data of physical assets into their DTs, agents exert
data collection from the IoT devices.

In any stage with T time slots, each IoT device n ∈
{1, 2, · · · , N} performs the sensing task and generates logs
of data sensing independently at time slots {sn1 , sn2 , · · · }. To
pursue a high-fidelity digital model of the physical assets, we
expect to collect the logs as soon as possible. We assume that
the time slots of data collection at device n performed by all
agents, i.e., {cn1 , cn2 , · · · }, are randomly distributed among the
time slots of sensing tasks. To capture the utility of collected
data, we give the definition of data fidelity.

Definition 1 (Data Fidelity). The data fidelity of a given log
in a DT is characterized by the expected time spanning from
the most recent time of data generation to the delivery of data.

For any time of data collection at device n, denoted as cni , it
splits the interval of any successive sensing tasks i′ and i′+1
into two intervals (sni′ , c

n
i ] and

(
cni , s

n
i′+1

]
. If data collections

are randomly distributed between the two successive sensing
tasks, data fidelity Fn of device n can be obtained [46], which
is

Fn = −E [cni − sni′ ] = −E
[
sni′+1 − cni

]
= − T

2λn
. (14)

To ensure high quality of DT models, devices should
perform adequate sensing tasks to fully capture the status
changes, thus improving data fidelity. However, this goal is
limited by the total energy supply.

To obtain sustainable information from the data records of
agents, a system devotes to the optimization of the overall data
fidelity of all devices and guarantees sufficient data collection
for each device, which is closely related to the status of the
current data records and the sensing statistics of devices. We
will detail the optimization process in Section IV.

IV. COLLECTION METHODS FOR DT SERVICES

In this section, we present a theoretical analysis for the
multiple-agent data collection scheme with the coordination
of a centralized server. Initially, the central electricity storage
system keeps the maximum energy backup of B = Nq units,
and at the start of any stage k, each agent m ∈ {1, 2, · · · ,M}
directly uploads its individual popularity vector {αm

n (k)}Nn=1

of all devices to the centralized server. The centralized server
can set the sensing policy of all devices at the beginning of
stage k. With the sensing policy of all devices, agents perform
data collection to optimize the quality of collected data ac-
cording to the popularity profiles. To ensure the sustainability
of both energy supply and information, we will introduce the
methods respectively.

A. Optimal Sensing Policy of Devices

Considering sensing policy λ = {λn}Nn=1, (12) can be
written as a function λ, i.e., δ(λ). If the parameters of energy
supply rate C and energy backup q of the central electricity
storage system are given, our goal is to explore the feasibility
of sensing policies of all devices. We explain the definition of
feasible sensing policy as following.

Definition 2 (Feasible Sensing Policy). For given parame-
ters of energy supply rate C and energy backup q of the
central electricity storage system, a feasible sensing policy
of all devices is bounded by the maximum average energy
consumption rate of sensing tasks, which ensures that the
depletion probability of the central electricity storage system
is no greater than the depletion tolerance degree ϵ ∈ (0, 1].

For simplicity, we denote κ as 1
N

∑N
n=1 λn. According to

this definition, the maximum average energy consumption rate
of all feasible sensing policies, denoted as κ̂, is given by

κ̂(ϵ) = max {κ : P(Q/N ≥ q) ≤ ϵ}, (15)

and κ̂(ϵ) can be derived from the following theorem.

Theorem 1. Given κ < C for stability, q > 0 and ϵ ∈ (0, 1],
the maximum energy consumption rate of all feasible sensing
policies, denoted as κ̂(ϵ), follows

κ̂ (ϵ) =
θ∗C

eθ∗ − 1
, (16)

where θ∗ = − ln ϵ
Nq .

Proof. With (12), (13), and (15), we have

κ̂(ϵ) = max {κ : e−δ(κ)Nq ≤ ϵ}. (17)

According to (12), θ should satisfy the condition of

κ ≤ θC

eθ − 1
, (18)

where θC
eθ−1

is always decreasing with the increment of θ when
θ > 0. From (17), we could easily find that

δ (κ) ≥ − ln ϵ

Nq
. (19)

This means that θ ≥ − ln ϵ
Nq , and the maximum κ is obtained

for θ∗ = − ln ϵ
Nq , and κ̂(ϵ) = θ∗C

eθ∗−1
.
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With Theorem 1, we know that the energy supply of the
system significantly impacts the data fidelity of DT models.
We aim to derive an energy policy that can maximize the
weighted expected data fidelity while guaranteeing the stability
of the system for q > 0.

To reduce the overall information loss, the goal of the sys-
tem is to adapt the rate of sensing tasks to maximize the data
fidelity of all devices when considering both energy supply and
popularity of devices, which yields the optimization problem
P1 given as follows:

P1 : min
λ

−
M∑

m=1

N∑
n=1

αm
n Fn (λn) (20a)

s.t. κ(λ) ≤ κ̂(ϵ) (20b)

In P1, the optimization goal (20a) is to minimize the
negative weighted-sum data fidelity of all devices for the given
popularity profiles of all agents, and the constraint (20b) infers
that the average energy consumed during the sensing tasks
cannot exceed the maximum average energy consumption
derived from Theorem 1, which ensures that the probability
of energy depletion would not exceed ϵ. The unique optimal
solution for P1 could be derived according to Theorem 2.

Theorem 2. The optimal sensing strategy of all devices λ∗

from Algorithm 1 is the unique solution to P1.

Proof. Let βn =
∑M

m=1 α
m
n , ∀n. The optimal sensing strategy

of P1 could be solved by constructing the Lagrangian function
by introducing the multiplier γ ≥ 0 associated with the energy
constraint, that is

LP1 (λ, γ) =

N∑
n=1

βnT

2λn
+ γ

(
N∑

n=1

λn − κ̂ (ϵ)

)
. (21)

The optimal solution λ to P1 should satisfy the following
KKT conditions:

1) ∂LP1/∂λ ∈ 0 (stationarity);
2) γ

(∑N
n=1 λn − κ̂ (ϵ)

)
= 0 (complementary slackness);

3)
∑N

n=1 λn − κ̂ (ϵ) ≤ 0 (primal feasibility);
4) γ ≥ 0 (dual feasibility).

From the KKT conditions, the derivative of stationarity con-
dition yields that

∂LP1

∂λn
= −βnT

2λ2
n

+ γ = 0, ∀n, (22)

and the optimal non-negative γ∗ and λ∗ should satisfy the
following conditions{

γ∗ = 0, if
∑N

n=1 λ
∗
n − κ̂ (ϵ) < 0,∑N

n=1 λ
∗
n − κ̂ (ϵ) = 0, if γ∗ > 0,

(23)

along with the complementary slackness and feasibility con-
ditions.

When γ = 0, (22) cannot be satisfied since λn ≪ T .
Consequently, we have the unique solution

λn(γ
∗) =

√
βnT

2γ∗ , γ∗ > 0, (24)

and
N∑

n=1

λn(γ
∗) = κ̂ (ϵ) . (25)

Since
∑N

n=1

√
βnT
2γ is monotonically increasing with the

decrements of γ, we can first set γ as a relatively large value
and check whether Equation (25) holds. If not, the optimal
unique solution of λ∗ can be derived from (24) by gradually
updating γ > 0 using the sub-gradient method until (25)
approximately holds. We summarize the process of finding the
optimal unique solution (λ∗, γ∗) of P1 in Algorithm 1.

Algorithm 1 Finding unique optimal sensing policy (λ∗, γ∗)
of P1 with KKT conditions.

1: Set η as a real number close to 0
2: Set γ(0) as a relatively large positive number
3: λ

(0)
n ←

√
βnT
2γ(0) , ∀n

4: repeat
5: γ(l+1) ← γ(l) + η

(∑N
n=1 λ

(l)
n − κ̂ (ϵ)

)
6: λ

(l+1)
n ←

√
βnT

2γ(l+1)

7: until γ(l+1) converges
8: return

(
λ(l+1), γ(l+1)

)
The solution of λ shows the statistics of sensing policy of all

devices, which is calculated using the public information such
as the parameters of energy supply rate C, maximum energy
backup q, depletion tolerance degree ϵ, and the popularity vec-
tors {αm(k)}Mm=1. The deterministic property of λ provides
an view of data collection for agents, which is introduced in
Section IV-B.

B. Optimal Collection Strategy of Agents

In a centralized system, the agents only concentrate on their
own benefits from the data collection. In stage k, the optimal
sensing policies {λ∗

n(k)}Nn=1 of all devices are deterministic
when popularity vectors {αm(k)}Mm=1 of all agents and other
system settings are given. Each agent should perform data
collection according to their own data records. Besides the
sensing policies of devices, data collection strategies of agents
also affect the quality of a DT model. To reveal the logs of
sensing tasks timely, we give the definition of reveal delay.

Definition 3 (Reveal Delay). The reveal delay of a time slot is
characterized by the time spanning from the generation time
of the most recent collected log to this time slot at any agent.

For any time of data collection cni at device n, it splits
the interval of any successive sensing tasks i′ and i′ + 1 into
two intervals (sni′ , c

n
i ] and

(
cni , s

n
i′+1

]
. If the data collection

is randomly distributed between any successive sensing tasks,
the expected reveal delay Dn in time slot cni can be obtained,
which is

E[Dn(c
n
i )] = E [cni − sni′ ] = E

[
sni′+1 − cni

]
=

T

2λn
. (26)

We could easily find that (26) is similar to (14), and the length
of each time interval (cni , c

n
i+1) with a mean of T

un
will have
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an impact on the overall reveal delay of the DT system, where
un is the expected times of data collection3 at device n.

The best method for reducing the expected reveal delay of
each time slot is to increase the number of data collections
at a device. To capture the reveal delay in each time slot
more precisely, we denote dn(t) ∈ {0, 1} as the transmission
indicator that shows whether a data collection is performed in
time slot t (dn(t) = 1, ∀t ∈ {cn1 , cn2 , · · · }). The evolution of
reveal delay regarding device n in any time slot is

Dn (t+ 1) =

{
t−max{sni |sni ≤ t}+ 1, if dn(t) = 1,

Dn (t) + 1, o.w..
(27)

This expression shows that if the log of device n is collected
by an agent in time slot t, the reveal delay of this device
decreases if the log of a new sensing task is generated since
the last data log has been captured; otherwise, it increases
by one. To minimize the reveal delay of a DT system, the
optimization problem of any agent can be characterized by

P2 : min
u

1

T

T∑
t=1

N∑
n=1

αnDn (un, t) , (28a)

s.t. un ≥ λ∗
n, ∀n. (28b)

In P2, the optimization goal (28a) aims to minimize the
weighted-sum reveal delay of all devices in a stage, and (28b)
shows the collection throughput constraints for all devices,
where the expected collection times should be greater than
the expected number of sensing tasks in any stage. In other
words, to fully capture the log of sensing tasks, the expected
collection interval T

un
should be set no greater than the

expected information change interval T
λn

.
P2 imposes the requirement on the data log throughput.

The optimization of AoI with the constraint of throughput has
been studied in [32], and a Max-Weight-AoI (MWA) policy
was used to adapt the data collection selection of devices to
minimize the weighted-sum AoI of all nodes while guaran-
teeing the throughput.4 However, with a fixed arrival delay,
the AoI of a data packet in their formulation is completely
determined by the information collecting strategy of the agent,
which cannot reflect the fundamental updating frequency of
information source, i.e., the data generation process of sensing
tasks.

To minimize the reveal delay, we next propose several
properties of the reveal delay:

Lemma 1. For any device n, the lower bound of the expected
reveal delay is T

2λn
, which is obtained when the data collection

at this device is performed in every time slot.

Proof. Since data collection is performed in every time slot,
the reveal delay of each slot between any successive sensing
tasks, i.e., [sni , s

n
i+1−1], is {1, 2, · · · , sni+1−sni }, which yields

3We omit the subscript of the agent index m for simplicity.
4The AoI in [32] is different from the reveal delay in this article, where

AoI is the time interval since the last data collection while reveal delay is
the time interval since the latest sensing task that has been collected by the
agent.

an average value of (sni+1−sni +1)/2. Consequently, we have
the expected reveal delay of device n, which is

E [Dn] = E
[
sni+1 − sni + 1

2

]
=

T

2λn
. (29)

Lemma 2. For any device n, when the expected collection
time interval T

un
is no more than the expected information

change interval T
λn

, the expected reveal delay is no more than
3T
2λn

.

Proof. For any device n, when the expected collection time
interval is set below the expected information change interval,
the expected collection times within any successive sensing
tasks should be no less than one. We assume that the only
collection at device n between sensing tasks of sni−1 and sni ,
i.e., [sni−1 +1, sni ], is performed in time slot sni − 1. Thus, the
reveal delay in time interval [sni , s

n
i+1 − 1] is {sni − sni−1 +

1, sni − sni−1 + 2, · · · , sni+1 − sni−1} if the next collection is
performed in time slot sni+1 − 1. Consequently, we have the
expected reveal delay of device n

E [Dn] = E
[
sni − sni−1 +

sni+1 − sni + 1

2

]
=

3T

2λn
(30)

This can be treated as an extreme case of data collection, and
with more times of data collections, the expected reveal delay
can be reduced. Hence, the expected reveal delay is at most
3T
2λn

when the expected collection time interval T
un

is no more
than the expected information change interval T

λn
.

To minimize the expected reveal delay with the requirement
on the times of data collections (

∑T
t=1 dn(t) ≥ λ∗

n), we
leverage the Max-Weight-Delay (MWD) Policy to solve P2,
and the performance should satisfy Lemma 1 and Lemma 2.
Specifically, any agent constructs the Lyapunov Function of
the data record status St according to the view of any agent,
which is

ϕ(St) =
N∑

n=1

[
x+
n (t)

]2
, (31)

where

x+
n (t) = max

{
pnt−

T∑
t=1

dn(t), 0

}
(32)

is the throughput debt associated with device n. The
agent tends to reduce the Lyapunov Drift ∆(St) =
E [ϕ(St+1)− ϕ(St)] between any successive time slots, which
can be written by

∆(St) =
N∑

n=1

E
{[

x+
n (t+ 1)

]2 − [x+
n (t)

]2}
. (33)

According to [32], the upper bound associated with the
throughput debt is

E
{ [

x+
n (t+ 1)

]2 − [x+
n (t)

]2 } ≤
− 2x+

n (t)
(
E {dn(t)|St} − pn

)
+ 1,

(34)

and the throughput requirements of all devices can be satisfied,
which is E

{
1
T

∑T
t=1 dn(t)

}
≥ λn/T = pn, ∀n. According
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to Lemma 2, we have the upper bound of E {Dn(t)|St}, which
is

E {Dn(t)|St} ≤
3T

2λn
. (35)

By substituting (34) into (33), we have an upper bound for
the value change of the Lyapunov function, which is

∆(St) ≤ −
N∑

n=1

E {dn(t)|St}Ωn(t) + Φ(t), (36)

where Ωn(t) and Φ(t) are given as follows

Ωn(t) = 2x+
n (t), (37)

and Φ(t) =
N∑

n=1

[
2pnx

+
n (t) + 1

]
. (38)

Since Φ(t) is not impacted by the choice of data collection
as shown in (36), we can derive that the selection strategy to
minimize the overall weighted-sum reveal delay is collecting
the data log from the device yielding the maximum Ωn(k) so
as to minimize the upper bound of ∆(St) in (36), i.e.,

n∗ = argmax
n

Ωn(t). (39)

However, data collection is performed by each individ-
ual agent, and each agent only concentrates on minimizing
their own reveal delay. Next, we will state our motivation
for incorporating the optimization introduced in this section
into a blockchain-based platform and elaborate the detailed
architecture.

V. SUSTAINABLE BLOCKCHAIN-BASED TWIN
MANAGEMENT

The method introduced in Section IV provides a direction
to realize a DT-based system that guides devices and agents
to perform the sensing task and data collection optimizing
both weighted-sum data fidelity and reveal delay. A naive
architecture of such a DT-based system can be that each
agent owns a single server that records data logs of devices,
and performs data collection independently. However, this
approach is not appropriate for the multi-agent and large-scale-
device deployment case. The reasons are explained as follows:

• Firstly, DT on a single server is acceptable for the
IoT ecosystem with a limited number of devices and
requestors. However, the communication of all devices
and requestors heavily relies on a single server, which
incurs significant risks to the security of the DT-based
system. The high-fidelity property of services may not
be satisfied once the server has undermined faulty.

• Secondly, in the aforementioned architecture, all data logs
of devices at a server are collected by a single agent.
In fact, in industrial environment, agents are not always
available to collect data from all devices, e.g., an agent is
out of the communication range of a specific device. With
the contributions of more agents, the status of devices can
be likely renewed more frequently, thus leading to less
information loss.

• Finally, the resources of wireless channels are limited to
be allocated for the communication between agents and

devices. The simultaneous data collection at a device by
multiple agents may trigger severe problems of interfer-
ence.

Considering the previously mentioned disadvantages, we
are motivated to incorporate more agents to participate in a
shareable architecture for DT services. We will introduce the
blockchain technology, widely acknowledged for trustworthy
and shareable properties, as the backbone of our proposed
architecture.

A. Architecture Overview

In our blockchain design, we use the consensus of Practical
Byzantine Fault Tolerance (PBFT) [47] to process the requests
of subscriptions and a modified consensus of PBFT, namely
Max-Weight-Delay (MWD) consensus, to derive the sensing
policy of devices and motivate the data collection of agents.
A commonly used assumption in a distributed system is
that any message can be received with a bounded delay,
which guarantees weak synchrony. With the weak synchrony
assumption and incorporating the functionalities of the original
PBFT system, we characterize the agents as the following
different roles for data collection:

• Task Leader: An agent whose local ledger serves as the
primary view of the system is the task leader. Once a
change needs to be applied to the system, it should be
initiated by the task leader, and the records of the other
agents serve as the backups of the primary view. All
other agents vote for the assignments of data collection
and acceptances of the data record changes, and then
synchronize the ledger with all others.

• Task Executor: A task executor is an agent who per-
forms the assigned data collection task. A data collection
executor should be chosen from the participants who
prefer to collect data of the selected device (an agent
may not be able to perform data collection considering
the availability). The agent who contributes more data
logs to the open ledger (blockchain) should be awarded
with more credits, which encourages participations and
contributions of all the agents.

The ledger that records the subscription of requestors and
the parameters of the system (e.g., depletion tolerance, energy
supply rate) is the request chain, and the ledger that records the
shared data of agents is the data chain. The implementation
of the request chain simply follows the consensus of PBFT.
For PBFT-based systems, a fundamental assumption is that the
system should contains at least M = 3f +1 agents to tolerate
f faulty agents. Thus, the blocks in both the request chain and
data chain can be only accepted if receiving at least 2f + 1
confirmations from agents, where f = ⌊(M − 1)/3⌋.

All the system changes in a stage will only take effect in
the next stage. That means the popularity profiles of all agents
and some other policies in any stage are fixed and open for all
agents, and they will not change until the end the current stage.
For example, the requests of any popularity change records in
stage k − 1 only updates at the beginning of stage k, i.e.,
t = 0, ∀k ∈ {1, 2, · · · ,K}.
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Fig. 3: Phases of a request chain [47] and a data chain.

In time slot t = 0, according to the popularity profiles and
the energy policy of the system from the request chain, the
sensing policies of devices are set to improve the weighted
data fidelity while guaranteeing the sustainable energy supply.
The maintenance of the request blocks has multi-phases of
consensus including pre-prepare, prepare, commit and reply
as shown in Fig.3a.

Based on the sensing policies of devices from the request
chain and historical data collection records, in each time slot of
a stage, an agent is chosen to execute the data collection task
via the MWD consensus and updates the data records in the
data chain. The selection of device is to optimize the weighted
reveal delay and improve the information sustainability of DT-
based models. We will next introduce the data updates of data
chain under the MWD consensus.

B. Data Updates of Data Chain

Considering the subscription information is continuously
updated in the request chain, as we declared in the system for-
mulation, the popularity profiles are fixed until the stage ends.
Since the goal of the MWD consensus is to optimize the sum-
valuation of all devices, we use β(k) = {β1(k), · · · , βN (k)}
as the new weights of devices in stage k. In a stage, the
consensus of data chain is based on the consensus obtained
from the request chain. The execution steps for maintaining
blocks in the data chain are characterized as follows:

1) According to agents’ historical data collection perfor-
mance shown in the current committed ledger, the
agent with the highest reputation R is selected as the
task leader. Without loss of generality, we can let the
task leader be any agent with good reputation at the
beginning.

2) In any time slot t, based on the state of the current
open ledger St, the task of data collection should be
deterministic and associated with the decision in (39).
Since the views of agents are consistent under the
consensus, each agent could calculate the same best
device selection n∗, and decide whether to bid the data
collection for device n∗ considering the availability. If
an agent m decides to bid for collection task of n∗, it
broadcasts the biding price Cmb to all the other agents.

3) By receiving the biding prices of all the biding agents
within a bounded delay, the task leader packs the biding
information into a bidding block that indicates the agent
m∗ to perform the task with the consideration of both
biding price and reputation, i.e.,

m∗ = argmin
m
N (Cmb ,Rm), (40)

where N can be any normalization function such as
Min-Max technology [48]. The task leader then broad-
casts the biding block to all other agents.

4) The biding block in previous step that has been commit-
ted by the system shows the next task executor. This
task executor starts to perform the data collection task,
and broadcasts the transaction including the collected
data log to all the other agents after the confirmation of
the biding block is acknowledged.

5) Upon receiving the collected data from the
task executor, the task leader creates a data block,
packs the transaction into the block, and further
broadcasts this block to be confirmed by all the other
agents. If the task leader does not receive the data
from the task executor within a tolerant delay, she
will issue a transaction that indicates a failure for this
time of data collection instead of the transaction of the
collected data.

6) Any agent who receives a biding/data block from the
task leader should broadcast the prepare message of
this block to all the other agents if the validation has
passed; any agent who receives more than 2f prepare
messages of the block with the same result from other
agents, should broadcast the commit message to all the
other agents. An agent, who is in the prepare state and
receives more than 2f commit messages of the block,
should formally commit this block and add this block
to its local ledger.

7) Once both the biding block and data block are for-
mally committed, the task leader receives fixed credits
Ccr/(M − 1) from each of the other agents for creating
the committed block, where Ccr is the total credit reward
for creating a biding block or a data block. If the data
log of device n∗ collected by task executor m∗ has
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been successfully written into the open ledger, agent
m∗ receives credits (1 + τ)Cm∗

b αm
n /βn from agent m,

where τ is the ratio of extra credit reward for the data
collection; otherwise, agent m∗ transfers Cm∗

b αm
n /βn

credits to agent m as a penalty. An agent whose credit is
lower than a threshold will be excluded from the system
in the next stage.

8) With the confirmation of a new data block with validated
data, the reputationR of the task executor m∗ increases
according to its contribution of data collection. The
reputation decays with time according to a widely-
used exponential moving average (EMA) technique that
highlights their most recent effort of task execution [48],
e.g.,

Rm(t+ 1) =

{
ωRm(t), m ̸= m∗

ωRm(t) + (1− ω)Cm∗
b , m = m∗

(41)
where ω ∈ [0, 1] is a decay parameter and Rm(0) = 0.
The sustainable blockchain-based digital twin manage-
ment system will turn to Step 1 for a new task leader
election process.

The different consensus phases of the data chain are ex-
plained in Fig.3b. As shown in Fig.3b, in any time slot t, all
the available agents bid for the collection task according to
the committed ledger at the end of time slot t − 1. As the
primary view of all agents, the task leader performs the block
creation tasks twice to assure all the other agents can receive
a same referenced view of the biding and collecting results,
respectively. The agent with the lowest data collection cost is
selected to perform the data collection task. By receiving the
referenced view of biding price and the collected data, all the
agents broadcast two rounds of prepare and commit messages
in the phases of prepare & commit, respectively. After the
confirmation, the same process is repeated in time slot t+ 1.

C. Complexity Analysis

For the request chain, according to the change request made
by a requestor, a task leader should broadcast M−1 messages
to other agents to indicate the primary view. After that, it
requires two round-trip decisions of prepare and commit with
O(M2) communication complexity to achieve consensus.

For the data chain, in phases of prepare and commit, the
communication complexities are the same as those in the
request chain. In the phase of biding, all biding agents should
broadcast their own prices to other agents, thus needing at
most M ∗ (M − 1) messages. In the phase of collection, the
task executor should send the collected data to all the other
agents, which requires at most M−1 messages. Therefore, the
overall communication complexity of both the request chain
and data chain are O(M2).

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the extensive experiment
results to verify our proposed architecture.

A. Energy Sustainability

We first verify the sustainability of energy supply of our
system. Considering a DT-based IoT platform with N devices,
we explore the sensing strategies of devices with different
pre-defined parameters depletion tolerance degree ϵ, energy
backup q and energy supply rate C.

Firstly, we explore the maximum energy consumption rate
κ̂ of all feasible sensing policies in terms of both ϵ and q for
a given N and C. Fig.4 and Fig.5 plot the impacts of ϵ and
q on the feasible sensing policy that yields the maximum κ
when N = 100, C = 10 and N = 50, C = 20. It can be found
that the increase of both ϵ and q triggers a more aggressive
sensing rate. As can be seen in Fig.4 and 5, when q is large
enough, we can employ a more stringent depletion tolerance
setting, which still yields a relatively larger maximum energy
consumption rate. However, when q is small, the maximum
average energy consumption rate is sensitive to the change of
ϵ as shown in Fig.4a and Fig.5a. As a result, for a DT system,
it is important to precisely regulate the sensing policies of
devices based on the conditions of energy backup and energy
supply so as to meet the requirement of depletion tolerance
degree.

To verify our analytical results in terms of depletion proba-
bility, we perform the experiments under a variety of depletion
tolerance degrees. With q = 1 and K = 300, we run the energy
consumption experiments 2000 times under different ϵ’s with
N = 50, C = 20, N = 100, and C = 10. As shown in Fig.6,
the depletion rate is lower than the corresponding ϵ shown by
the black dash line. We can find that the changes of depletion
rate basically consist with the changes of ϵ. In practice, we can
slightly relax the maximum average energy consumption rate
constraint to achieve better system performance for a given ϵ.

In addition, we explore the relationship between the number
of devices N and the overall maximum energy consumption
Nκ̂. From Fig.7, we observe that for a fixed amount of energy
supply, e.g., NC = 1000, in any stage, the maximum overall
energy consumption for any feasible sensing policy increases
with the increase of N . As shown in both Fig.7a and Fig.7b, it
is clear that Nκ̂ is the largest one in the case when N = 200
and C = 5. Since the total incoming energy is fixed, the energy
to be allocated to each device decreases with an increasing
N . As a result, the fluctuation of energy consumption of each
device is restrained, and the average fluctuation of the overall
energy consumption is reduced. That means the system can
exert more aggressive sensing policy on each device without
depleting the energy storage when N is large. Moreover, as
shown in Fig.7a, the differences of Nκ̂ in the three cases
gradually diminish with the increment of ϵ when q equals to
1. Similarly, when ϵ is 0.01, Nκ̂ is limited when q is small
as shown in Fig.7b. As q grows, Nκ̂ in all the cases finally
converges to NC, which means nearly all the incoming energy
can be allocated to all the devices for performing sensing tasks.

B. Weighted Data Fidelity

To verify the optimality of data fidelity of the system, we
first establish a system with N IoT devices and M = 1 agent.
Without loss of generality, we normalize the popularity values
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Fig. 4: Maximum energy consumption rate of all the feasible
collection policies for different q’s and ϵ’s when C = 10
and N = 100.

Fig. 5: Maximum energy consumption rate of all the feasible
collection policies for different q’s and ϵ’s when C = 20
and N = 50.
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Fig. 6: The comparison of average depletion rate with the
setting of κ̂(ϵ), where ϵ ∈ [0.001, 0.1] with step size 0.001
and q = 1; N and C are chosen differently.
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Fig. 7: The impact of N on the overall energy consumption
Nκ̂: (a) q = 1; (b) ϵ = 0.01.

of devices between 0 to 1. Considering any stage with T slots,
the parameters of the system are set as follows: ϵ = 0.0001 and
q = 1. According to the status of the DT system, the sensing
policies of IoT devices λ are calculated by Algorithm 1. The
analytical and experiment results of the optimal weighted data
fidelity are explored with different settings of N and T .

First, we elaborate the relationship between the weighted
data fidelity and the number of devices N . We set T = 10000
and NC = 5000. Fig.8a plots both the analytical and the
experiment results of the averaged weighted data fidelity of
all devices when we vary N = {40, 80, 120, 160, 200}. We
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Fig. 8: The impacts of N and T on the weighted data fidelity:
(a) T = 10000; (b) N = 100.

assume that all devices have the same popularity, which is
randomly sampled. As the energy supply is fixed in all the
cases, the energy to be allocated to each device decreases with
the increment of N . Thus, the sensing intervals also increase
for energy saving, as a result, leading to the decrease of data
fidelity of all devices.

Next, we discuss the relationship between the weighted data
fidelity and the number of time slots T . We set N = 100
and C = 50. As shown in Fig.8b, the average weighted data
fidelity of all devices also decreases with the increase of T ,
where T is chosen from {3000, 6000, 9000, 12000, 15000}. In
this case, since the optimality of P1 does not change with
T , the optimal sensing policy of each device, i.e., λ∗

n, ∀n,
remains unchanged. That means the total number of sensing
tasks performed by a device is fixed in any T . However, the
increasing T would lead to an increasing expected intervals
between any two successive sensing tasks, i.e., T/λn, which
leads to the decrements of weighted data fidelity of all
devices. From both Fig.8a and Fig.8b, we can observe that the
analytical results are consistent with the experiment results.

C. Weighted Reveal Delay

To test the weighted reveal delay performance of our
proposed MWD policy, a simulation system consisting of
M agents and N devices is constructed. The settings are
the same as those in Section VI-B. The following data
collection schemes are adopted to compare with the MWD
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Fig. 9: The impacts of N and T on the weighted reveal delay:
(a) T = 10000; (b) N = 100.

policy: 1) MWA policy [32], a max-weight policy aiming at
minimizing the weighted AoI of all devices while considering
the throughput; 2) Random Selection, a randomized data
collection strategy to choose devices.

Fig.9a plots the results of the average weighted reveal
delay of all devices when we vary the number of de-
vices N = {40, 80, 120, 160, 200} under the three collection
schemes. As the energy supply is fixed in all the cases, the
energy to be allocated to each device decreases with the
increase of N , thus increasing the reveal delay. As shown
in Fig.9b, the average weighted reveal delay of all devices
also increases with an increasing T , where T is chosen from
{3000, 6000, 9000, 12000, 15000}, since the average interval
of any two successive sensing tasks increases when T is large.
Notably, the performance of MWD and MWA are compatible,
which reflects that the AoI metric does not have an impact
on reveal delay once the throughput constraint is satisfied.
The reason is that the AoI neglecting the execution of sensing
tasks does not reflect the intrinsic property of the information
source, and it does not have a direct relationship with the
sustainability of the information.

D. MWD consensus

We evaluate MWD consensus with N = 100, M = 20,
C = 50, ϵ = 0.0001, q = 1 and T = 10000. The popularity
of each agent is generated randomly from [0, 1]. We consider
two system architectures, MWD Consensus and Centralized
MWD. For MWD Consensus, the system is built based on the
PBFT-blockchain, where all the agents observe the collection
history, bid for the assignment, and share the collected data
with all the other agents. For Centralized MWD, the agents’
collection behaviors are coordinated by a centralized server,
and they are randomly authorized to collect data with the
MWD policy according to their own collection history. To
ensure fairness, the centralized server can simply adopt Round-
robin scheduling where each agent performs data collection
in a circular manner. Supposing that each time of collection
costs the executing agent with normalized credits sampled
from a uniform distribution [0, 1]. Fig.10 plots the performance
comparison between MWD Consensus and Centralized MWD
in terms of average reveal delay and spent credits.

As can be seen in Fig.10a, the average reveal delay for all
the agents in MWD Consensus is significantly reduced due

to data sharing compared with those in Centralized MWD.
With distributed data sharing, the time span for receiving two
successive data logs is shortened, which leads to a smaller av-
erage reveal delay. In addition, the spent credits by the agents
in MWD consensus are much fewer than those in Fig.10b
compared with Centralized MWD due to the biding process.
For a sharing mode, except for the collected information, the
lower prices of collection are also shared by all participants,
thus reducing the cost in a global view.

We also introduce the reward mechanism of data collection
and creating blocks which aims to motivate the data sharing
behaviors of agents. We randomly set the availability prob-
ability of all the agents from [0, 1], which is the probability
that an agent could provide a biding price (cost) for collecting
data. The ratio of extra credit reward for the data collection
τ is set as 0.1, and the reputation decay factor ω is set as
0.95. As shown in Section V-B, the income source of each
agent is the reward of data collection and block creation. In
Fig.11, both the earned credits and the number of generated
blocks of all the agents with respect to their availability
probabilities are plotted. It is clear that the credits for data
collection and creating blocks of an agent increase with its
increasing availability probability. In fact, an agent can earn
more and improve reputation by actively collecting data. To do
this, agents must continuously improve their connections with
devices to reduce the cost of data collection. With a higher
reputation, an agent can also gain more chances for serving
as the primary view of all the agents and earn more credits
from creating blocks in a blockchain-based DT system. The
incentive effectiveness is therefore validated.

VII. CONCLUSION

In this article, we consider a sustainable blockchain-based
digital twin management architecture for IoT devices. This is
to address the sustainability issue for large-scale DT service
management. The blockchain technology, as a shareable and
distributed paradigm, is promising to improve and reform
future DT systems. We expect to explore more practical
applications of blockchain-based DT design. For example, DT
visualization for real-time monitoring is critical to guiding
industrial processes and improving production efficiency. We
will explore the visualization of DTs in different entities using
shared data from a blockchain. The method presented in this
article will be beneficial to the construction of DT visualization
for multiple entities with customized needs.
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