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Abstract

Advanced battery management is to lithium-ion battery systems as the brain is to the human body. Its performance

rests on the use of battery models that are both fast and accurate. However, mainstream equivalent circuit models

and electrochemical models have yet to meet this need well, due to struggle with either predictive accuracy or com-

putational complexity. This problem has acquired urgency as some emerging battery applications running across

broad current ranges, e.g., electric vertical take-off and landing aircraft, can hardly find usable models from the liter-

ature. Motivated to address the problem, we develop an innovative model in this study. Called BattX, the model is

an equivalent circuit model but draws comparisons to a single particle model with electrolyte and thermal dynamics,

thus combining their respective merits to be computationally efficient, accurate, and physically interpretable. The

model design pivots on leveraging multiple circuits to approximate major electrochemical and physical processes in

charging/discharging. Given the model, we develop a multipronged approach to design experiments and identify its

parameters in groups from experimental data. Experimental validation proves that the BattX model is capable of

accurate voltage prediction for charging/discharging across low to high C-rates.

1. Introduction

Lithium-ion batteries (LiBs) are a key power source for consumer electronics, electrified transportation, smart

grids, and renewable energy. Compared with alternative battery electrochemistries, they provide a set of outstanding

features, including high energy/power density, high nominal voltage, no memory effect, low self-discharge rates,

and long cycle life [1–3]. Recent technological advances have further improved their power performance and cost

efficiency for a wider application spectrum. High-quality dynamic models are foundational to monitoring and control

of LiBs for guaranteed operational safety and performance. While the growing research has led to a variety of useful

models, the literature still lacks fast and accurate models for applications involving charging/discharging from low to

high current rates. To fill this gap, we propose a first-of-its-kind equivalent circuit model named BattX and demonstrate

its predictive fidelity over broad C-rate ranges.
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Literature Review. Research on LiB dynamic modeling has flourished in the past decades to produce a vast

literature. The mainstream models generally fall into two categories: electrochemical models, and equivalent circuit

models (ECMs). Electrochemical models explicitly describe electrochemical reactions, transport of lithium ions, and

distribution of charge and potential inside a LiB cell. Depending on the need for accuracy, they exist in diverse

scales, from atomic/molecular to species level, and in different dimensions, from 1D to 3D and beyond, and often

coupled with different physical processes, e.g., thermodynamics and stress/strain [4]. Generally, electrochemical

models present high mechanistic fidelity as well as high computational complexity. Battery management researchers

hence must selectively focus on those that offer desirable accuracy-computation trade-off, due to practical demands

for fast computation. A favorable choice is the pseudo-2D Doyle-Fuller-Newman (DFN) model, which describes the

diffusion of lithium ions and charge transfer across the electrodes, electrolyte, and separator of a sandwich cell [5]. The

search for more efficient models has led to the single particle model (SPM), which represents each electrode by a single

spherical particle and neglects the electrolyte dynamics [6]. The simplification enhances computational efficiency to

a great extent but also limits the SPM model to low to moderate C-rates (around or less than 1 C). Subsequent studies

have emerged to expand the SPM model by adding characterization of a cell’s thermal behavior [7, 8], electrolyte

dynamics [9–13], stress buildup [13], or degradation [14], to elevate its prediction capability. The literature has also

presented a few computational methods to speed up simulation of the SPM model or its improved versions [15, 16].

ECMs represent another important pathway to modeling LiBs. They are circuit analogs composed of electrical

components to simulate a cell’s dynamic behavior, capture phenomena in charging/discharging, and track state-of-

charge (SoC) and power capability. With simple structures, they are accessible to interpretation, easy to calibrate,

and scalable to large LiB systems composed of many cells. Also, they are governed by low-order ordinary differ-

ential equations, thus allowing for very fast computation. These benefits combine to make them popular candidates

for real-world battery management systems with limited computing resources [17]. A basic ECM, called the Rint

model, cascades an open-circuit voltage (OCV) source with an internal resistor, in which the voltage source is SoC-

dependent [18]. One can add to the Rint model a set of serially connected RC pairs to describe the transient behavior

in a cell’s voltage response, leading to the so-called Thevenin’s model [19, 20]. Depending on the number of RC pairs

used, one can set the model to capture transients at multiple time scales [21]. The literature has presented a few ap-

proaches to modify the Thevenin’s model for better accuracy. For example, the study in [3, 20] incorporates hysteresis

in charging/discharging; in [22–25], different circuit parameters (e.g., the internal resistance) are made dependent on

the SoC, temperature, or current loads, and the OCV is parameterized using different function forms for higher fitting

accuracy. Even though phenomenological ECMs and electrochemical models were largely two disparate threads of

research, a growing number of studies have explored to develop ECMs drawing upon electrochemical modeling. The

work in [26, 27] proposes the nonlinear double capacitor model to approximate the ion diffusion in the electrodes of

a cell and characterizes the nonlinear voltage behavior simultaneously. This model is interpretable as a reduced-order

version of the SPM, and it is further supplemented in [28] with a data-based voltage hysteresis model to attain better

accuracy. The study in [29] derives an ECM using circuit elements to characterize charge transfer and diffusion po-
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tentials; the derivation also helps explain some conventional ECMs from an electrochemical perspective. In [30], an

ECM is coupled with diffusion dynamics to attain higher prediction accuracy.

Structural simplicity underlies the wide use of ECMs in battery management, but also restricts their accuracy. Most

of today’s ECMs are accurate enough for only low C-rates, and recent progress has led to ECMs that are provably

suitable for about 1 C [26, 27]. However, the literature still faces an absence of ECMs capable of predicting a cell’s

voltage behavior from low to high C-rate ranges. This gap will pose potential barriers for emerging battery-powered

applications that must operate across wide current ranges. One example is electric vertical take-off and landing

(eVTOL), which requires discharging of up to 5 C in the take-off and landing phases and necessitates precise models

to fulfill high-stakes safety requirements [31].

Statement of Contributions. To address the above challenge, we develop a new ECM that promises to predict

over broad current ranges. Our work takes inspirations from electrochemical modeling to design and conjoin circuits

to simulate a LiB cell’s electrode, electrolyte, and thermal dynamics as well as their effects on the terminal voltage.

Here, we select the SPM with electrolyte and thermal dynamics (SPMeT) as the reference benchmark. The obtained

ECM, called BattX, hence is physically comparable and represents a reduced-order analog to the SPMeT model. By

design, the BattX model comprehensively accounts for the aforementioned different types of dynamics that have a

phenomenologically appreciable impact at high C-rates. This endows it with not only excellent prediction capabil-

ity, but also considerable physical fidelity and interpretability. Desirably, the model still retains relatively compact

structures to present high computational efficiency, carrying a potential to facilitate embedded battery management

systems. To sum up, this paper delivers the following specific contributions.

• We propose the principled design of the BattX model and further elucidate the underlying rationale by showing

its connections with the SPMeT model in detail.

• We develop a multipronged parameter identification approach to extract the parameters of the BattX model from

measurement data made on LiBs. The approach will make the model readily available in practice.

• We provide experimental evaluation results to validate the effectiveness and accuracy of the BattX model. The

experiments involve charging/discharging at high C-rates and consider operation profiles of eVOTL as a case

study.

Organization. The rest of the paper is organized as follows. Section 2 presents the BattX model design as a whole.

Section 3 proceeds to elucidate on the model’s correspondence to the SPMeT model. Section 4 develops the parameter

identification pipeline of the model. Section 5 evaluates the model using experimental data. Finally, Section 6 offers

concluding remarks.
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Figure 1: The BattX model comprising: sub-circuit A to simulate the lithium-ion diffusion in the electrode phase; sub-circuit B to simulate the lithium-ion diffusion in

the electrolyte phase; sub-circuit C to simulate heat conduction and convection; and sub-circuit D to simulate the terminal voltage.

2. The BattX Model

This section presents the structure and governing equations of the BattX model. We will provide the detailed

rationale for the model design subsequently in Section 3.

At the core, the BattX model attempts to characterize the multiple major dynamic processes innate to a LiB cell in

order to capture the cell’s behavior from low to high current rates. This is akin to electrochemical modeling to a certain

extent, but a main difference is that the BattX model leverages circuit analogs to simulate the processes. Fig. 1 shows

the overarching structure of the model. As is seen, it consists of four coupled sub-circuits, which are labeled as A

to D. These sub-circuits are designed to approximate the cell’s electrode-phase diffusion, electrolyte-phase diffusion,

thermal evolution, and voltage response, respectively.

To begin with, sub-circuit A uses a chain of resistors and capacitors to approximate the lithium-ion diffusion in

the electrode phase. Its governing equations are

V̇s,1(t) =
Vs,2(t) − Vs,1(t)

Cs,1Rs,1

+
I(t)

Cs,1

, (1a)

V̇s,i(t) =
Vs,i−1(t) − Vs,i(t)

Cs,iRs,i−1

+
Vs,i+1(t) − Vs,i(t)

Cs,iRs,i

, i = 2, . . . ,N − 1 (1b)

V̇s,N(t) =
Vs,N−1(t) − Vs,N(t)

Cs,NRs,N−1

, (1c)

where I is the applied current, with I > 0 for charging and I < 0 for discharging, Vs, j for j = 1, . . . ,N are the voltages

across the individual capacitors Cs, j, Rs, j are the resistors that the current must flow through, and the subscript s refers

to the solid phase. We set 0 ≤ Vs, j ≤ 1 for the purpose of normalization and then define the SoC as the percentage
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ratio of the currently available charge over the total charge capacity, which is

SoC =

∑N
j=1 Cs, jVs, j∑N

j=1 Cs, j

× 100%.

That is, SoC = 100% when Vs, j = 1 for all j, and SoC = 0 when Vs, j = 0 for all j. A brief interpretation of sub-circuit

A is as follows, with more details to be shown in Section 3. Overall, the charge transfer between the capacitors in the

circuit mimics the diffusion of lithium ion in the solid phase or electrode. Then, Vs, j for j = 1, . . . ,N correspond to the

lithium-ion concentrations at N different locations, from the surface to the center, that spread along the radius of an

electrode sphere; Cs, j for j = 1, . . . ,N are analogous to the volumes of the subdomains if one subdivides the electrode

sphere at these discrete locations; Rs, j for j = 1, . . . ,N − 1 resist the charge transfer or equivalently, the solid-phase

diffusion in the SPMeT model, and are hence inversely proportional to the diffusivity.

Along similar lines to sub-circuit A, sub-circuit B uses a resistor-capacitor chain to approximate the lithium-ion

diffusion in the electrolyte. Its dynamics is governed by

V̇e,1(t) =
Ve,2(t) − Ve,1(t)

CeRe

+
I(t)

Ce

, (2a)

V̇e,2(t) =
Ve,1(t) − 2Ve,2(t) + Ve,3(t)

CeRe

, (2b)

V̇e,3(t) =
Ve,2(t) − Ve,3(t)

CeRe

−
I(t)

Ce

, (2c)

wehre the notations in above have similar meanings as in (1), and the subscript e refers to the electrolyte. We let

0 ≤ Ve, j ≤ 1 for j = 1, 2, 3 as in the case of Vs, j, and further assume that Ve, j = 0.5 for j = 1, 2, 3 when the cell is

at equilibrium. One can interpret sub-circuit B as analogous to the one-dimensional electrolyte-phase diffusion that

is discretized along the spatial coordinate. In particular, Ve, j for j = 1, 2, 3 can be associated with the lithium-ion

concentrations at the locations of the anode, separator, and cathode, and Re embodies resistance to the diffusion. The

spatial discretization is assumed to be uniform, thus leading to the same values of Re and Ce for each region as shown

in (2).

Sub-circuit C is a lumped circuit model for the thermal dynamics, with the design inspired by [32]. Here, we

consider the cell to be a cylindrical one without loss of generality and concentrate its spatial dimensions into two

singular points that represent the surface and core, respectively. This simplification allows to describe the evolution

of the temperatures at these two points, Tsurf and Tcore, by

Ṫcore(t) =
Q(t)

Ccore

+
Tsurf(t) − Tcore(t)

RcoreCcore

, (3a)

Ṫsurf(t) =
Tamb(t) − Tsurf(t)

RsurfCsurf

−
Tsurf(t) − Tcore(t)

RcoreCsurf

, (3b)

where Tamb is the ambient temperature, Csurf/core and Rsurf/core represent the thermal capacitance and resistance at
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the surface and core, respectively, and Q is the internal heat generation rate accompanying electrochemical reactions

inside the cell during charging/discharging. From a heat transfer perspective, (3a) approximately describes the heat

conduction between the cell’s surface and core, and (3b) grasps the convection between the surface and the ambient

environment. Further, Q is characterized as

Q = −I
[
Us (SOC) − Us(Vs,1) − Ro,T I

]
, (4)

where Us(·) is the nonlinear OCV function, Vs,1 is defined in sub-circuit A, and Ro,T is the internal resistance.

Finally, sub-circuit D summarizes the effects of the solid-phase and electrolyte-phase dynamics on the terminal

voltage. It contains two voltage sources, Us and Ue, in series with an internal resistance Ro,T . The terminal U is given

by

U = Us(Vs,1(t)) + Ue(Ve,1(t),Ve,Ne
(t)) + Ro,T I(t). (5)

Here, Us simulates the solid-phase OCV. As the SPMeT model mandates that the open-circuit potential of solid

material relies on the lithium-ion concentration at the surface of the electrode, Us should come as a function of Vs,1,

and its exact form will depend on the cell. For the cell used in our experiments in Sections 4-5, we find the following

parameterization of Us suitable:

Us(Vs,1) = h1

(
Vs,1

)
· H

(
0.9 − Vs,1

)
+ h2

(
Vs,1

)
· H

(
Vs,1 − 0.9

)
,

where H(·) is the Heaviside step function, h1(Vs,1) captures the behavior when Vs,1 ≤ 0.9 as

h1(Vs,1) = α0 + α1

1

1 + exp(α2(Vs,1(t) − α3))
+ α4

1

1 + exp(α5(Vs,1 − α6))
+ α7

1

1 + exp(α8(Vs,1 − α9))
+

α10

1

1 + exp(α11Vs,1(t))
+ α12Vs,1(t),

and h2(Vs,1) is for when 0.9 < Vs,1 ≤ 1 with

h2(Vs,1) = α13exp(α14Vs,1) + α15exp(α16Vs,1).

Here, αi for i = 0, . . . , 15 are constant coefficients. Next, we need to determine the form of Ue. In the SPMeT model,

the electrolyte potential depends on the electrolyte concentration at the anode and cathode. We hence make Ue as a

function of Ve,1 and Ve,Ne
and express it as

Ue(t) = β1

(
ln

(
Ve,1(t) + β2

Ve,3(t) + β2

))
, (6)
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where βi for i = 1, 2 are constant coefficients. As the last element of the model, Ro,T is not a constant and instead

depends on SoC and Tcore. It is given by

Ro.T = Ro(SoC) · exp

(
κ1

(
1

Tcore

−
1

Tamb

))
, (7)

where κ1 is a constant coefficient. In above, the first term Ro(SoC) captures the dependence of Ro,T on Vs,1 and takes

the form

Ro(SoC) = γ1 + γ2 · exp (−γ3SoC) , (8)

where γi for i = 1, 2, 3 are coefficients, and the second term shows the temperature dependence due to the Arrhenius

law. Similarly, an Arrhenius relationship can be used to capture the relationship between the electrode-phase diffusion

constant and temperature:

Rs,1,T = Rs,1 · exp

(
κ2

(
1

Tcore

−
1

Tamb

))
, (9)

Putting together all the above equations, we will obtain a complete description of the BattX model. This model

is the first ECM that can predict over broad current ranges, due to the integration of the circuits approximating the

electrode, electrolyte, and thermal dynamics into a whole. The model design also leads to profound comparability

with electrochemical modeling, especially the SPMeT, which will be revealed further in the next section. We will

address the identification of the model parameters in Section 4.

3. Rationale for the BattX Model Design

In this section, we will use the SPMeT model as a benchmark to explain the rationale for the design of the

BattX model. We will show that the SPMeT model, if appropriately discretized, will reduce to a structure that is

approximately equivalent to the proposed circuit analogs of the BattX model. Our main references about the SPMeT

model include [33, 34]. We will focus on expounding sub-circuits A, B, and D, with the sub-circuit C-based lumped

thermal model well addressed in [32].

3.1. Connection between Sub-circuit A and SPMeT

The SPMeT model characteristically couples the SPM model with the electrolyte and thermal dynamics. What

it inherits from the SPM model is the representation of the electrodes as two spherical particles. The diffusion of

lithium-ions in each particle follows Fick’s second law in spherical coordinates [7, 8]:

∂cs, j(r, t)

∂t
=

Ds, j

r2

∂

∂r

(
r2
∂cs, j(r, t)

∂r

)
, (10)
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Figure 2: Spherical discretization of an electrode particle.

where cs, j is the solid-phase (electrode) lithium-ion concentration, Ds is the constant diffusion coefficient, and r is

the radial coordinate. The subscript j ∈ {n, p}, where n and p refer to the anode (negative) and cathode (positive),

respectively. The boundary conditions for (10) are

dcs, j

dr

∣∣∣∣∣∣
r=0

= 0,
dcs, j

dr

∣∣∣∣∣∣
r=R j

= −
J j

Ds, j

,

where R is the radius of a particle. The molar flux J at the electrode/electrolyte interface is given by

Jp(t) =
i(t)

FS p

, Jn(t) = −
i(t)

FS n

where i is the applied current density, with i > 0 for charging and i < 0 for discharging, S is the surface area of a

particle, and F is Faraday’s constant.

Next, let us reduce the PDE in (10) into a system of ODE equations using a finite volume method [35, 36]. The

subscript j ∈ n, p will be dropped in sequel without causing confusion. First, we subdivide the particle into a set of

continuous finite volumes at discrete locations r1 = R > r2 > . . . > rN > rN+1 = 0 that spreads inward from the

surface to the center, as show in Fig. 2. The lithium-ion amount within the ith finite volume is given by

Qi(t) =

∫ ri

ri+1

cs(r, t)dV =

∫ ri

ri+1

cs(r, t) · 4πr2dr,

for i = 1, . . . ,N. Then, using (10), we have

Q̇i(t) =

∫ ri

ri+1

ċs(r, t) · 4πr2dr =

∫ ri

ri+1

d

(
4πDsr

2 ∂cs(r, t)

∂r

)
= 4πDsr

2
i

∂cs(r, t)

∂r

∣∣∣∣∣
ri

− 4πDsr
2
i+1

∂cs(r, t)

∂r

∣∣∣∣∣
ri+1

. (11)
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To proceed, we replace cs(r, t) by the average lithium-ion concentration within the ith finite volume, c̄s(ri, t):

c̄s(ri, t) =
Qi(t)

ΔVi

, (12)

where ΔVi = 4π(r3
i
− r3

i+1
)/3. From (11)-(12), it follows that

˙̄cs(r, t) =
4πDsr

2
i

ΔVi

∂cs(r, t)

∂r

∣∣∣∣∣
ri

−
4πDsr

2
i+1

ΔVi

∂cs(r, t)

∂r

∣∣∣∣∣
ri+1

.

Then, we approximate the concentration gradient along the radial coordinate as

∂cs(r, t)

∂r

∣∣∣∣∣
ri

=
c̄(ri−1, t) − c̄(ri, t)

Δri

,

where Δri = (ri−1 − ri+1)/2. Given the boundary conditions, we further have

˙̄cs(r1, t) = −
4πDsr

2
2

ΔV1Δr2

(c̄s(r1, t) − c̄s(r2, t)) +
4πr2

1

ΔV1FS
i(t), (13a)

˙̄cs(ri, t) =
4πDsr

2
i

ΔViΔri

(c̄s(ri−1, t) − c̄s(ri, t)) −
4πDsr

2
i+1

ΔViΔri+1

(c̄s(ri, t) − c̄s(ri+1, t)) , i = 2, . . . ,N − 1, (13b)

˙̄cs(rN , t) =
4πDsr

2
N

ΔVNΔrN

(c̄s(rN−1, t) − c̄s(rN , t)) . (13c)

The above ODEs show the spatially discretized solid-phase diffusion. Note that they share the same structure

with (1). A closer inspection of (1) and (13) suggests: 1) Vs is a mirror of c̄s(r, t), and its distribution reflects

the distribution of lithium-ion concentrations inside an electrode particle; 2) Cs is a mirror of ΔV , associating the

capacitance with the volume of a finite volume element within the particle; 3) Rs roughly corresponds to Δr/(Ds ·4πr2)

to grasp the effect of Ds, Δr and r on the diffusion resistance at different locations. This unveiled connection with the

SPMeT model justifies the design of sub-circuit A.

3.2. Connection between Sub-circuit B and SPMeT

The SPMeT model includes one-dimensional electrolyte diffusion, which also follows Fick’s second law. The

electrolyte diffusion is considered in the electrode and separator domains that are all immersed in the electrolyte.

Based on the coordinates in each domain as shown in Fig. 3, the governing equations are

∂ce,p(x, t)

∂t
= De

∂2ce,p(x, t)

∂x2
+

1 − t0
c

εe,pFLp

i(t), (14a)

∂ce,sep(x, t)

∂t
= De

∂2ce,sep(x, t)

∂x2
, (14b)

∂ce,n(x, t)

∂t
= De

∂2ce,n(x, t)

∂x2
−

1 − t0
c

εe,nFLn

i(t), (14c)
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Figure 3: Three regions immersed in the electrolyte.

where ce, j for j ∈ {n, p, sep} is the lithium-ion concentration in the electrolyte surrounding the anode, cathode and

separator, εe, j is the electrolyte volume fraction, De, j is the electrolyte diffusion coefficient, and t0
c is the constant

transference number. We assume that εe, j and De, j are the same for any j ∈ {n, p, sep}. The boundary conditions are

given by

∂ce,p(0p, t)

∂x
=
∂ce,n(Ln, t)

∂x
= 0,

∂ce,p(Lp, t)

∂x
=
∂ce,sep(0sep, t)

∂x
,

∂ce,sep(Lsep, t)

∂x
=
∂ce,n(0n, t)

∂x
,

ce(Lp, t) = ce(0sep, t),

ce(Lsep, t) = ce(Ln, t).

To convert (14) into ODEs, we concentrate the electrodes and separator into singular points and further suppose

Lp = Ln and Lsep is negligible. The singular point that represents the electrodes are located at the midpoint of each

domain, and the average lithium-ion concentration is denoted as c̄e, j. Then, we apply the finite difference to (14) and

obtain

˙̄ce,p(t) =
4De

L2

(
c̄e,sep(t) − c̄e,p(t)

)
+

1 − t0
c

εeFL
i(t), (15a)

˙̄ce,sep(t) =
4De

L2

(
c̄e,p(t) − 2c̄e,sep(t) + c̄e,n(t)

)
, (15b)

˙̄ce,n(t) =
4De

L2

(
c̄e,sep(t) − c̄e,n(t)

)
−

1 − t0
c

εeFL
i(t). (15c)

As is seen, (14) is structurally similar to (2), and the similarity lends to interpretation of (2) through the lens

of electrochemical modeling. Specifically, we can associate Ve,1, Ve,2 and Ve,3 with c̄e,p, c̄e,sep , and c̄e,n, respectively.

Further, Ce can be linked with the spatial lengths of the electrode domains, which decide the volume of the electrolyte,
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and Re comes as the inverse of De to measure the resistance against electrolyte diffusion.

3.3. Connection between Sub-circuit D and SPMeT

In the SPMeT model, the terminal voltage V consists of four terms that represent the solid-phase OCV, electrolyte-

phase voltage, overpotential, and voltage over the film resistance, respectively. Then, coming back to sub-circuit D of

the BattX model, Us mirrors the solid-phase OCV, Ue corresponds to the electrolyte-phase voltage, and Ro,T plays a

role to mainly capture the film resistance as well as the overpotential effect. Less trivially, we elaborate on the form

of Ue in (6). The electrolyte-phase voltage is given by

φe(0p, t) − φe(Ln, t) =
Lp + 2Lsep + Ln

2k̄
i(t) + kconc

(
lnce(0p, t) − lnce(Ln, t)

)
, (16)

where φe is the electrolyte electric potential, and k̄ and kconc are two coefficients that are related with electrolyte con-

ductivity and molar activity. The first term in above is accounted by for Ro,T . Following the discussion in Section 3.2,

we can approximate the second term as

kconc

(
ln c̄e,p(t) − ln c̄e,n(t)

)
.

This form is found to bear equivalence to (6), when making linear projections of c̄e,p(t) and c̄e,n(t) to Ve,1 and Ve,3,

respectively.

4. Parameter Identification for the BattX Model

In this section, we investigate how to determine the parameters of the BattX model. To this end, we separate the

model’s parameters into different groups based on the dynamic processes that they belong to or prominently influence.

We then design experiments accordingly and use different current profiles to excite different dynamic processes and

obtain voltage or temperature data suitable for the identification of the corresponding parameter groups. Finally, we

extract the parameters from the data, group by group, through data fitting and some empirical tuning.

To begin with, we set up the following parameter groups for the BattX model:

• ΘUs
= {αi, i = 0, 1, . . . , 16}, which includes the parameters in Us in sub-circuit D;

• ΘRo
= {γi, i = 1, 2, 3}, which includes the parameters in Ro in sub-circuit D;

• Θs =
{
Cs,i, i = 1, . . . ,N,Rs, j, j = 1, . . . ,N − 1

}
, which includes the parameters of sub-circuit A;

• ΘTh = {Csurf ,Rsurf ,Ccore,Rcore}, which includes the parameters in the lumped thermal model in sub-circuit C;

• Θe = {Ce,Re, β1, β2}, which includes the parameters in sub-circuit B and the parameters in Ue in sub-circuit D;

• ΘArr = {κ1, κ2}, which includes the Arrhenius-law-related parameters;.
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By grouping the parameters as above, we can design different current input profiles to stimulate different parts of the

cell’s dynamics so as to identify the parameters group by group. This multi-pronged approach includes the following

steps.

Step 1: Identification ofΘUs
. Since Us represents the OCV source, we can capture it by applying a trickle constant

current with a magnitude of 1/30 C to fully charge or discharge the cell. As the current is extremely small, sub-circuit

A, which is an analog to the solid (electrode)-phase diffusion, is almost always at equilibrium, with Vsi
= SoC for

i = 1, . . . ,N (SoC can be obtained via Coulomb counting); meanwhile, sub-circuits B and C, Ue, and the voltage

across Ro,T , are all negligible in this case. Hence, U ≈ Us, and we can construct the following data fitting problem to

identify ΘUs
:

Θ̂Us
= arg min

ΘUs

∑
tk

[
U(tk) − Us

(
SoC(tk);ΘUs

)]2
, (17)

where k is the discrete time index in the experiment.

Step 2: Identification ofΘRo
. Ro is an integral part of the internal resistance Ro,T , and Ro = Ro,T when T = Tref . To

identifyΘRo
, we apply a 0.5 C pulse current profile, which includes long enough rest periods between two consecutive

pulses to allow for sufficient voltage recovery, to discharge the cell from 100% to 0% of SoC when the ambient

temperature is Tref . With discharging at 0.5 C, the cell will see only a negligible increase in its temperature, and

Ue ≈ 0. For the terminal voltage U, we will see a sharp drop or jump at the beginning or end of every pulse, and this

is almost solely due to the voltage change across Ro. Therefore, using the voltage jump, one can approximate Ro as

R̃o(t∗) =

∣∣∣∣∣U(t∗+1) − U(t∗)

I

∣∣∣∣∣ , (18)

where t∗ is the instant when a pulse stops. Further, the instantaneous SoC can be readily determined via Coulomb

counting. Collecting Ro for all t∗, we can formulate the following data fitting problem to estimate ΘRo
:

Θ̂Ro
= arg min

ΘRo

∑
t∗

[
R̃o(t∗) − Ro(ΘRo

; t∗)
]2
. (19)

Step 3: Identification of Θs. The number of parameters in Θs depends on N, and when N is large, Θs will be

poorly identifiable to defy accurate estimation. To formulate a tractable identification problem, we assume that

Cs,i = ηiCs,1, Rs, j = σ jRs,1, (20)

where ηi and σi for i = 1, . . .N and j = 1, . . .N − 1 are pre-specified coefficients with η1 = σ1 = 1, and
∑N

i=1 ηiCs,i is

the total capacity of the cell. This allows us to consider only two parameters, i.e., Θs =
{
Cs,1,Rs,1

}
, greatly facilitating

the parameter estimation. The simplification is also reasonable—the difference among Cs,i and Rs, j can be viewed as

a result of the selection of the discretization points as shown in (13), and one can specify ηi and σ j assuming that
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they result from a certain selection. The practical selection of ηi and σ j can be through analysis of the discretization

shown in Section 3.1 and tuning. Going forward, we apply a 0.5 C constant-current profile to discharge the cell from

full to zero SoC. In this setting, sub-circuit A is excited, but the dynamics of sub-circuits B and C have no appreciable

effects. That is, the cell’s temperature remains almost the same, and Ue ≈ 0. We can conduct data fitting as below to

find out Θs:

Θ̂s = arg min
Θs

∑
tk

[
U(tk) − Ro

(
Θ̂Ro

; tk
)

I(tk) − Us

(
Vs,1 (Θs; tk) ; Θ̂Us

)]2
, (21)

where Θ̂Us
and Θ̂Ro

have been obtained in Steps 1 and 2, and the form of Vs,1(Θs, t) is derived in Appendix.A.

Step 4: Identification ofΘTh. Based on [32], a straightforward idea to determineΘTh is to fit it to the measurement

data of Tsurf and/or Tcore given the lumped thermal model in (3). However, the idea is hard to be applied here, because

Q in our model is dependent on Ro,T , as shown in (4), and unavailable before Ro,T is identified. To overcome this

issue, we choose to use prior knowledge to guide the estimation of ΘTh. Here, we can approximate Rcore based on the

conductivity of the cell’s electrode materials and jellyroll structure. Furthermore, we can infer Rsurf and Csurf from

the form factors and specifications, casing material (usually aluminum), and the cooling system. Finally, Ccore can

be deduced given the cell’s total heat capacity. A 2C constant current full discharge profile is used to acquire the

data encompassing significant temperature changes. With the measurement data, we can begin from the approximate

values of the parameters and continually tune them until achieving sufficient fitting accuracy to finalize Θ̂Th.

Step 5: Identification of Θe and ΘArr. Sub-circuit B will have substantial effects on U only at high C-rates.

Therefore, we use a 3 C constant current profile to fully discharge the cell such that large enough Ue will result and

present itself into the voltage response. This then allows to identify Θe. In the meantime, 3 C discharging will subject

the cell to important temperature increases, which, in turn, will drive downΘArr-dependent Rs,T and Ro,T and influence

the voltage response. As such, we need to consider the estimation of Θe and ΘArr together. The following data fitting

problem can be formulated:

Θ̂e, Θ̂Arr = arg min
Θe,ΘArr

∑
tk

[
U(tk) − Ro,T

(
Θ̂Ro

,ΘArr, Ttk ; tk
)

I(tk) − Us

(
Vs,1

(
Θ̂s,ΘArr, Ttk ; tk

)
; Θ̂Us

)
− Ue (Θe; tk)

]2
. (22)

Here, Ue depends on Ve,1 and Ve,3 as shown in (6), and the explicit form of Ve,1 and Ve,3 is shown in Appendix.B.

Note that no closed-form expression of Us exists in this step, as the changing Rs,T makes sub-circuit A become a

time-varying system. It is thus impossible to solve the problem in (22) using nonlinear optimization. To alleviate

the difficulty, we suggest to apply some empirical tuning. Specifically, we can pick a sample of ΘArr using prior

knowledge, then estimate Θe by solving the above data fitting problem, and iterate this procedure until getting the

lowest possible fitting errors. Despite the time and effort needed, this iterative method is often found effective with a

sufficient number of tries.

The above steps together constitute our parameter identification approach for the BattX model. The following
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remarks summarize our further insights.

Remark 1. We point out that the data fitting problems outlined in Steps 1-5 are non-trivial to solve, as they entail

nonlinear nonconvex optimization. The nonconvexity can easily get the parameter search stuck in local minima to

produce physically meaningless parameter estimates. To mitigate the issue, it is sensible to constrain the search

within a believably correct parameter space [21]. Specifically, one can set up approximate lower and upper bounds

for every possible parameter and then limit the numerical optimization within the resultant parameter space. The

prior knowledge used to establish such bounds can be derived from both experience and observation or analysis of

the measurement data. Other helpful ways to overcome the local minima issue include adding regularization terms

that encode prior knowledge of some parameters and applying different initial guesses to repeatedly run the numerical

optimization [21].

Remark 2. We consider Samsung INR18650-25R cells (see Section 5 for the specifications) as a baseline when select-

ing the discharging C-rates in each step of the above approach, because they are used in the experimental validation

of the BattX model (see Section 5). However, a user or practitioner may need to adjust the specific C-rates, depending

on the cells to apply the model to. The overall guiding rule is the same—using current profiles of different C-rates to

excite different dynamic processes to obtain data informative for the identification of the parameters associated with

each process.

5. Experimental Validation of the BattX Model

This section offers the experimental validation of the proposed BattX model. All the experiments were conducted

on a Samsung INR18650-25R cell with NCA cathode and graphite anode using a PEC® SBT4050 battery tester. The

cell’s nominal capacity is 2.5 Ah, nominal voltage is 3.6 V, maximum cut-off voltage is 4.2 V, minimum cut-off voltage

is 2.5 V, and maximum continuous discharge current is 20 A. The tester is able to run charging or discharging tests of

up to 40 V and 50 A under arbitrary current or power load profiles. The experiments comprised two parts. The first

part collected datasets following the parameter identification approach in Section 4 to identify the model parameters.

In the second part, new datasets were generated to evaluate the predictive capability of the identified model.

5.1. Model Identification

The experiments and model identification procedure are as follows.

• Based on Section 4, we first charged the cell using the popular constant-current/constant-voltage method, let

it rest for one hour, and then fully discharged it using a 1/30 C constant-current load. We calculated the total

capacity 2.55 Ah using the Coulomb counting method and used the voltage data to find out Θ̂Us
based on (17),

which is given by

Θ̂Us
= {−9.048,−2.360,−12.986, 0.010, 13.036,−32.840,−0.087, 2.359,
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Figure 4: SoC/OCV curve fitting based on Θ̂Us .
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Figure 5: Identification of ΘRo : (a) terminal voltage profile under intermittent discharging at 0.5 C to identify ΘRo ; (b) fitting of Ro(SoC) with R̃o based on Θ̂Ro .

−14.863, 0.055,−0.788,−7.136, 0.966, 31.132,−3.414, 0.513, 1.816} .

The SoC/OCV fitting result under the obtained Θ̂Us
is shown in Fig. 4.

• Next, the cell was charged to full again idled for one hour, and then discharged under a 0.5 C pulse load profile.

Specifically, a load was applied for five minutes, followed by a two-hour rest, and this cycle continued until

the cut-off voltage was met. Fig. 5 shows the profile, which includes a total of 12 pulses. With the data, we

calculated Ro at different SoC via (18) and then used (19) to compute Θ̂Ro
as shown in Table 1. The reconstructed

Ro is compared with the measurements in Fig. 5.

• Going further, we fully charged the cell again as in the previous steps, and then fully discharged it using a 0.5

C constant-current load, with the objective of identifying Θs. As explained in Section 4, we could impose a

pre-determined relation like (20) to reduce the number of parameters to estimate. Here, we let the spherical
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Figure 6: Terminal voltage fitting under 0.5 C constant-current discharging based on Θ̂s.

particle be discretized into five finite volumes, and the resulting ηi and σ j are

ηi = {1, 0.6066, 0.3115, 0.1148, 0.0164} ,

σ j = {1, 1.77, 4.00, 15.98} .

Then, (21) was executed to determine Θ̂s. Fig. 6 illustrates a comparison between the predicted terminal voltage

(with the dynamics of sub-circuits B and C neglected) based on Θ̂s and the measurements. Table 1 shows the

estimation for Θ̂s.

• Then, we ran a 2 C constant-current discharging test to collect the temperature data. The cell’s surface tem-

perature increased by about 10 K throughout the test. We leveraged prior knowledge and empirical tuning to

determine ΘTh, as suggested in Section 4. While the procedure is coarse-grained, we obtained Θ̂Th that leads to

accurate fitting with the surface temperature data and physically reasonable estimation of the core temperature,

as shown in Fig. 7. Table 1 summarizes the numerical estimates of Θ̂Th .

• Finally, the cell was fully discharged at a constant current of 3 C to excite the cell’s electrolyte dynamic and

thermal behavior more discernible, for the purpose of identifying Θe and ΘArr. Following Section 4, we iter-

atively tuned Θ̂Arr and then ran (22) to find Θ̂e until the achievement of both physically sound estimates and

accurate voltage data fitting. Fig. 8 shows that the BattX model based on all the identified parameters fits well

the measured voltage, and Table 2 shows the estimation results.

From above, we have come up with an explicit setup of the BattX model for the cell. Next, we will fit the model

to new datasets to assess how well it predicts.
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Figure 7: Temperature fitting and prediction based on Θ̂Th.

Name γ1 γ2 γ3 Cs,1 Rs,1 Csurf Rsurf Ccore Rcore

Initial Guess 1 1 1 4391 0.090 7 6 20 1

Lower Bound - - - 3600 0.054 3 3 5 0.5

Upper Bound - - - 5500 0.167 12 20 50 7

Final estimate 0.026 0.061 -14.36 4521 0.114 10 7 40 4

Table 1: Identification summary for ΘRo , Θs, and ΘTh: initial guesses, bound limits, and final estimates.
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Figure 8: Terminal voltage fitting under 3 C constant-current discharging based on Θ̂e .

Name Ce Re β1 β2 κ1 κ2

Initial Guess 1032 0.028 0.53 0.31 15 22

Lower Bound 500 0.002 0.42 0.19 10 10

Upper Bound 5000 0.080 1.00 0.423 100 100

Final estimate 3691 0.007 0.789 0.317 30 70

Table 2: Identification summary for ΘArr and Θe: initial guesses, bound limits, and final estimates.

5.2. Model Testing and Validation

To further evaluate the obtained BattX model, we generated new datasets by applying a variety of current load

profiles that span a broad range of currents. The first tests involved full discharging of the cell at a constant current
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Figure 9: Voltage prediction by the BattX model versus the measurements at constant-current discharging at 1, 4 and 5 C.

of 1 C, 4 C, and 5 C separately. Fig. 9 compares the model’s prediction of the terminal voltage prediction with

the measurement, where a close match is observed in all the three cases. Note that, even though the model was

identified based on tests of only up to 3 C, it can well predict 4 C and 5 C. This suggests the model’s high fidelity and

interoperability.

Further, we adopted the Urban Dynamometer Driving Schedule (UDDS) as a variable load profile and scaled it to

be between −8 C and 5 C. The validation of the BattX model over this dataset is shown in Fig. 10. The top figure in

Fig. 10 illustrates the load profile, which includes both charging and discharging as well as a rest period. The voltage

prediction of the model, as shown in Fig. 10, closely follows the true voltage overall. A slight discrepancy appears

at the end of the test when the cell is about to be depleted. This is likely because the radical changes of the internal

resistance at low SoC and high temperature are hard to be thoroughly captured.

Fig. 11 then demonstrates the comparison of the predicted surface temperature with the measurement, showing an

acceptable accuracy. The estimation of the core temperature is also given in Fig. 11, which is reasonable by empirical

knowledge and observation.

Recently, LiB-powered eVTOL has attracted increasing interest as a promising solution to urban air mobility and

decarbonization of aviation. A safety-critical application, eVTOL must maintain fast and accurate monitoring of its

onboard battery system throughout a mission. Conventional equivalent circuit models are impossible to meet this

need, as eVTOL often requires high-rate discharging—it must discharge as fast as 5 C in the takeoff and landing

phases. However, the proposed BattX model holds a significant advantage to eVTOL battery performance modeling.

We consider a notional eVTOL flight, which includes three phases, takeoff, cruising, and landing. The three phases

involve discharging at 5 C, 1.48 C, and 5 C, respectively [31]. We generated a current load profile sequentially

comprising a flight, full discharge, and another flight. Fig. 12 displays the profile over time. Fig. 12 shows that

the BattX model achieves accurate prediction compared with the measurement. Especially, the accuracy is found

satisfactory at the times of high discharge rates. The surface temperature prediction in Fig. 13 also well agrees with
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Figure 10: Terminal voltage prediction by the BattX model versus the measurements in the UDDS-based test. Top: the UDDS-based current profile; middle: the voltage

prediction in comparison with the measurements; bottom: magnified views within two time windows.
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Figure 11: Temperature prediction by the BattX model versus the measurements in the UDDS-based test.

the actual temperature, and the core temperature estimation shows a realistic trend that one can trust to be close enough

with the truth.
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Figure 12: Terminal voltage prediction by the BattX model versus the measurements in the test simulating an eVTOL operation cycle. Top: the current profile; bottom:

comparison between the prediction and measurements.
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Figure 13: Temperature prediction by the BattX model versus the measurements in the test simulating an eVTOL operation cycle.

6. Conclusions

LiBs have found their way into many sectors as a key technology to drive forward electrification and decarboniza-

tion. For LiB applications, computationally fast and accurate models are a bedrock for real-time monitoring and

simulation to ensure their performance and safety. Although the literature has presented different dynamic models,

few of them are effective when current loads range from low to high. To overcome the problem, we proposed the

BattX model in this study. This model is an ECM in its form, but unlike other ECMs, it lends to interpretation as a

quasi-electrochemical model. This is because it is designed to use separate yet coupled circuits to approximate the
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lithium-ion diffusion in the electrode and electrolyte phases, heat transfer, and nonlinear voltage behavior in charg-

ing/discharging of a cell. With the novel design, the model offers high predictive accuracy over broad current ranges

and still retains relatively simple structures for low computational costs. We also developed a parameter identification

approach for the model. The approach groups the parameters based on the dynamic processes or components that

they belong to, and then identifies the parameters of each group using experimental data. Finally, the experimental

validation showed that the BattX model has high accuracy and fidelity across low to high C-rates.
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Appendix

A. Derivation of Vs,1 under Constant Current I

In Section 4, the identification of Θs in (21) requires the expression of Vs,1 when the applied current I is constant.

The derivation is as follows.

Consider the governing equations of sub-circuit A in (1) under the assumption in (20), and rewrite them compactly

into the following form:

V̇s(t) = AsVs(t) + BsI(t), (A.1)

where

Vs =

[
Vs,1 Vs,2 · · · Vs,N

]�
,

As = μsΩs,

μs =
1

Cs,1Rs,1

,

Ωs =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
η1σ1

1
η1σ1

0 · · · · · · 0

1
η2σ1

− 1
η2σ1
− 1

η2σ2

1
η2σ2

0 · · · 0

...
...

...
. . .

. . .
...

0 · · · · · · 0 1
ηNσN−1

−1
ηNσN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bs =

[
1

Cs,1
0 · · · 0

]�
.
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The solution to (A.1) is given by

Vs(t) = eAstVs(0) +

∫ t

0

eAs(t−τ)BsI(τ)dτ.

When I is constant, it becomes

Vs(t) = eAstVs(0) +

∫ t

0

eAs(t−τ)dτ · BsI. (A.2)

To find the explicit form of Vs(t), we must derive the expression of eAst. To this end, we look at Ωs first and note that it

is rank-deficient with one zero eigenvalue. Further, assume the other non-zero eigenvalues to be distinct, and denote

the eigenvalues of Ωs as λi for i = 1, 2, . . . ,N with λ1 = 0. Then, by the Cayley-Hamilton theorem, we have

eAst =
[
Φ−1φ(μs, t)

]
⊗Ωs, (A.3)

where

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 λ1 · · · λN−1
1

1 λ2 · · · λN−1
2

...
...

. . .
...

1 λN · · · λN−1
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

φ(μs, t) =

[
1 eμsλ2t · · · eμsλN t

]�
.

The operator ⊗ is defined as

a ⊗ A =

n∑
i=1

aiA
i−1,

for a ∈ Rn×1 and A ∈ Rn×n. Inserting (A.3) into (A.6), we obtain

Vs(t) =
[
Φ−1φ(μs, t)

]
⊗Ωs · Vs(0) +

∫ t

0

[
Φ−1φ(μs, t − τ)

]
⊗Ωsdτ · BsI

=
[
Φ−1φ(μs, t)

]
⊗Ωs · Vs(0) +

[
Φ−1

∫ t

0

φ(μs, t − τ)dτ

]
⊗Ωs · BsI

=
[
Φ−1φ(μs, t)

]
⊗Ωs · Vs(0) +

[
Φ−1 (

φ̄(μs, t) − φ̄(μs, 0)
)]
⊗Ωs · BsI, (A.4)

where

φ̄(μs, t) =

[
t eμsλ2 t

μsλ2
· · · eμsλN t

μsλN

]�
.
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Given (A.4), Vs,1 can be expressed as

Vs,1(t) = e�1 Vs(t),

where e1 =

[
1 0 · · · 0

]�
N×1

.

B. Derivation of Ve,1 and Ve,3 under Constant Current I

The explicit expressions of Ve,1 and Ve,3 under a constant current I are needed to represent Ue for the identification

of Θe in (22). We can follow similar lines in Appendix.A to find them out. Let us rewrite the governing equations of

sub-circuit B in (2) compactly as

V̇e(t) = AeVe(t) + BeI(t), (A.5)

where

Ve =

[
Ve,1 Vs,2 Ve,3

]�
,

Ae = μeΩe,

μe =
1

CeRe

,

Ωe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0

1 −2 1

0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Be =

[
1

Ce
0 − 1

Ce

]�
.

The solution to (A.5) under a constant current I is

Ve(t) = eAetVe(0) +

∫ t

0

eAe(t−τ)dτ · BeI. (A.6)

The eigenvalues of Ωe are 0,−1,−3, respectively. By the Cayley–Hamilton theorem, it follows that

eAet =
[
Ψ−1ψ(μe, t)

]
⊗ Ωe, (A.7)

where

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

1 −1 1

1 −3 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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ψ(μe, t) =

[
1 e−μet e−3μet

]�
.

Based on (A.7), we can derive that

Ve(t) =
[
Ψ−1ψ(μe, t)

]
⊗ Ωe · Ve(0) +

[
Ψ−1 (

ψ̄(μe, t) − ψ̄(μe, 0)
)]
⊗Ωe · BeI, (A.8)

where

ψ̄(μe, t) =

[
t − e−μe t

μe
− e−3μet

3μe

]�
.

With (A.8), one can extract Ve,1 and Ve,3 from Ve.
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