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Abstract

Advanced battery management is to lithium-ion battery systems as the brain is to the human body. Its performance
rests on the use of battery models that are both fast and accurate. However, mainstream equivalent circuit models
and electrochemical models have yet to meet this need well, due to struggle with either predictive accuracy or com-
putational complexity. This problem has acquired urgency as some emerging battery applications running across
broad current ranges, e.g., electric vertical take-off and landing aircraft, can hardly find usable models from the liter-
ature. Motivated to address the problem, we develop an innovative model in this study. Called BartX, the model is
an equivalent circuit model but draws comparisons to a single particle model with electrolyte and thermal dynamics,
thus combining their respective merits to be computationally efficient, accurate, and physically interpretable. The
model design pivots on leveraging multiple circuits to approximate major electrochemical and physical processes in
charging/discharging. Given the model, we develop a multipronged approach to design experiments and identify its
parameters in groups from experimental data. Experimental validation proves that the BattX model is capable of

accurate voltage prediction for charging/discharging across low to high C-rates.

1. Introduction

Lithium-ion batteries (LiBs) are a key power source for consumer electronics, electrified transportation, smart
grids, and renewable energy. Compared with alternative battery electrochemistries, they provide a set of outstanding
features, including high energy/power density, high nominal voltage, no memory effect, low self-discharge rates,
and long cycle life [1-3]. Recent technological advances have further improved their power performance and cost
efficiency for a wider application spectrum. High-quality dynamic models are foundational to monitoring and control
of LiBs for guaranteed operational safety and performance. While the growing research has led to a variety of useful
models, the literature still lacks fast and accurate models for applications involving charging/discharging from low to
high current rates. To fill this gap, we propose a first-of-its-kind equivalent circuit model named BattX and demonstrate

its predictive fidelity over broad C-rate ranges.

*Corresponding author. E-mail address: fang@ku.edu.



Literature Review. Research on LiB dynamic modeling has flourished in the past decades to produce a vast
literature. The mainstream models generally fall into two categories: electrochemical models, and equivalent circuit
models (ECMs). Electrochemical models explicitly describe electrochemical reactions, transport of lithium ions, and
distribution of charge and potential inside a LiB cell. Depending on the need for accuracy, they exist in diverse
scales, from atomic/molecular to species level, and in different dimensions, from 1D to 3D and beyond, and often
coupled with different physical processes, e.g., thermodynamics and stress/strain [4]. Generally, electrochemical
models present high mechanistic fidelity as well as high computational complexity. Battery management researchers
hence must selectively focus on those that offer desirable accuracy-computation trade-off, due to practical demands
for fast computation. A favorable choice is the pseudo-2D Doyle-Fuller-Newman (DFN) model, which describes the
diffusion of lithium ions and charge transfer across the electrodes, electrolyte, and separator of a sandwich cell [5]. The
search for more efficient models has led to the single particle model (SPM), which represents each electrode by a single
spherical particle and neglects the electrolyte dynamics [6]. The simplification enhances computational efficiency to
a great extent but also limits the SPM model to low to moderate C-rates (around or less than 1 C). Subsequent studies
have emerged to expand the SPM model by adding characterization of a cell’s thermal behavior [7, 8], electrolyte
dynamics [9-13], stress buildup [13], or degradation [14], to elevate its prediction capability. The literature has also
presented a few computational methods to speed up simulation of the SPM model or its improved versions [15, 16].

ECMs represent another important pathway to modeling LiBs. They are circuit analogs composed of electrical
components to simulate a cell’s dynamic behavior, capture phenomena in charging/discharging, and track state-of-
charge (SoC) and power capability. With simple structures, they are accessible to interpretation, easy to calibrate,
and scalable to large LiB systems composed of many cells. Also, they are governed by low-order ordinary differ-
ential equations, thus allowing for very fast computation. These benefits combine to make them popular candidates
for real-world battery management systems with limited computing resources [17]. A basic ECM, called the Rint
model, cascades an open-circuit voltage (OCV) source with an internal resistor, in which the voltage source is SoC-
dependent [18]. One can add to the Rint model a set of serially connected RC pairs to describe the transient behavior
in a cell’s voltage response, leading to the so-called Thevenin’s model [19, 20]. Depending on the number of RC pairs
used, one can set the model to capture transients at multiple time scales [21]. The literature has presented a few ap-
proaches to modify the Thevenin’s model for better accuracy. For example, the study in [3, 20] incorporates hysteresis
in charging/discharging; in [22-25], different circuit parameters (e.g., the internal resistance) are made dependent on
the SoC, temperature, or current loads, and the OCV is parameterized using different function forms for higher fitting
accuracy. Even though phenomenological ECMs and electrochemical models were largely two disparate threads of
research, a growing number of studies have explored to develop ECMs drawing upon electrochemical modeling. The
work in [26, 27] proposes the nonlinear double capacitor model to approximate the ion diffusion in the electrodes of
a cell and characterizes the nonlinear voltage behavior simultaneously. This model is interpretable as a reduced-order
version of the SPM, and it is further supplemented in [28] with a data-based voltage hysteresis model to attain better
accuracy. The study in [29] derives an ECM using circuit elements to characterize charge transfer and diffusion po-
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tentials; the derivation also helps explain some conventional ECMs from an electrochemical perspective. In [30], an
ECM is coupled with diffusion dynamics to attain higher prediction accuracy.

Structural simplicity underlies the wide use of ECMs in battery management, but also restricts their accuracy. Most
of today’s ECMs are accurate enough for only low C-rates, and recent progress has led to ECMs that are provably
suitable for about 1 C [26, 27]. However, the literature still faces an absence of ECMs capable of predicting a cell’s
voltage behavior from low to high C-rate ranges. This gap will pose potential barriers for emerging battery-powered
applications that must operate across wide current ranges. One example is electric vertical take-off and landing
(eVTOL), which requires discharging of up to 5 C in the take-off and landing phases and necessitates precise models
to fulfill high-stakes safety requirements [31].

Statement of Contributions. To address the above challenge, we develop a new ECM that promises to predict
over broad current ranges. Our work takes inspirations from electrochemical modeling to design and conjoin circuits
to simulate a LiB cell’s electrode, electrolyte, and thermal dynamics as well as their effects on the terminal voltage.
Here, we select the SPM with electrolyte and thermal dynamics (SPMeT) as the reference benchmark. The obtained
ECM, called BattX, hence is physically comparable and represents a reduced-order analog to the SPMeT model. By
design, the BattX model comprehensively accounts for the aforementioned different types of dynamics that have a
phenomenologically appreciable impact at high C-rates. This endows it with not only excellent prediction capabil-
ity, but also considerable physical fidelity and interpretability. Desirably, the model still retains relatively compact
structures to present high computational efficiency, carrying a potential to facilitate embedded battery management

systems. To sum up, this paper delivers the following specific contributions.

e We propose the principled design of the BattX model and further elucidate the underlying rationale by showing

its connections with the SPMeT model in detail.

e We develop a multipronged parameter identification approach to extract the parameters of the BattX model from

measurement data made on LiBs. The approach will make the model readily available in practice.

e We provide experimental evaluation results to validate the effectiveness and accuracy of the BattX model. The
experiments involve charging/discharging at high C-rates and consider operation profiles of eVOTL as a case

study.

Organization. The rest of the paper is organized as follows. Section 2 presents the BattX model design as a whole.
Section 3 proceeds to elucidate on the model’s correspondence to the SPMeT model. Section 4 develops the parameter
identification pipeline of the model. Section 5 evaluates the model using experimental data. Finally, Section 6 offers

concluding remarks.



Figure 1: The BattX model comprising: sub-circuit A to simulate the lithium-ion diffusion in the electrode phase; sub-circuit B to simulate the lithium-ion diffusion in
the electrolyte phase; sub-circuit C to simulate heat conduction and convection; and sub-circuit D to simulate the terminal voltage.

2. The BattX Model

This section presents the structure and governing equations of the BattX model. We will provide the detailed
rationale for the model design subsequently in Section 3.

At the core, the BattX model attempts to characterize the multiple major dynamic processes innate to a LiB cell in
order to capture the cell’s behavior from low to high current rates. This is akin to electrochemical modeling to a certain
extent, but a main difference is that the BattX model leverages circuit analogs to simulate the processes. Fig. 1 shows
the overarching structure of the model. As is seen, it consists of four coupled sub-circuits, which are labeled as A
to D. These sub-circuits are designed to approximate the cell’s electrode-phase diffusion, electrolyte-phase diffusion,
thermal evolution, and voltage response, respectively.

To begin with, sub-circuit A uses a chain of resistors and capacitors to approximate the lithium-ion diffusion in

the electrode phase. Its governing equations are

Vsa(®) = Vi1 (9) L0

V(o) = , 1
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. Veict(®) = V() V() = V() .
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where / is the applied current, with / > 0 for charging and / < 0O for discharging, V, ; for j = 1,..., N are the voltages
across the individual capacitors C; ;, R, ; are the resistors that the current must flow through, and the subscript s refers

to the solid phase. We set 0 < V, ; < 1 for the purpose of normalization and then define the SoC as the percentage



ratio of the currently available charge over the total charge capacity, which is

Ziv Cs,j Vs,j

SoC = =0 x 100%.
Jj=

18,
That is, SoC = 100% when V; ; = 1 forall j, and SoC = 0 when V; ; = 0 for all j. A brief interpretation of sub-circuit
A is as follows, with more details to be shown in Section 3. Overall, the charge transfer between the capacitors in the
circuit mimics the diffusion of lithium ion in the solid phase or electrode. Then, V; ;for j = 1,..., N correspond to the
lithium-ion concentrations at N different locations, from the surface to the center, that spread along the radius of an
electrode sphere; Cy ; for j = 1,..., N are analogous to the volumes of the subdomains if one subdivides the electrode
sphere at these discrete locations; Ry ; for j = 1,..., N — 1 resist the charge transfer or equivalently, the solid-phase
diffusion in the SPMeT model, and are hence inversely proportional to the diffusivity.

Along similar lines to sub-circuit A, sub-circuit B uses a resistor-capacitor chain to approximate the lithium-ion

diffusion in the electrolyte. Its dynamics is governed by

Ve,Z(t) - Ve,l(t) I(t)

Vealty = ~20= et 0. 2a)
Ve,2(t) _ Ve,l(t) - de;(t) + Ve,3(t) , (Zb)
. Ve = Ve 1

Voot = 220 Yeal 0 (20)

wehre the notations in above have similar meanings as in (1), and the subscript e refers to the electrolyte. We let
0<V,;<lforj=1,2,3asin the case of Vy, and further assume that V. ; = 0.5 for j = 1,2,3 when the cell is
at equilibrium. One can interpret sub-circuit B as analogous to the one-dimensional electrolyte-phase diffusion that
is discretized along the spatial coordinate. In particular, V, ; for j = 1,2,3 can be associated with the lithium-ion
concentrations at the locations of the anode, separator, and cathode, and R, embodies resistance to the diffusion. The
spatial discretization is assumed to be uniform, thus leading to the same values of R, and C, for each region as shown
in (2).

Sub-circuit C is a lumped circuit model for the thermal dynamics, with the design inspired by [32]. Here, we
consider the cell to be a cylindrical one without loss of generality and concentrate its spatial dimensions into two
singular points that represent the surface and core, respectively. This simplification allows to describe the evolution

of the temperatures at these two points, Tyt and Teore, by

Q(t) Tsurf(t) - Tcore(t)

Teore(t) = ; (3a)
o Ceore ReoreCeore
i T’m (Z) - Tsu (l) Tsu (l) =T I (Z)
Tsurf(t) == bR C u - ﬁR C <= (3b)
surf & surf core & surf

where Tymb is the ambient temperature, Cyyrf/core and Rgurf/core Tepresent the thermal capacitance and resistance at
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the surface and core, respectively, and Q is the internal heat generation rate accompanying electrochemical reactions
inside the cell during charging/discharging. From a heat transfer perspective, (3a) approximately describes the heat
conduction between the cell’s surface and core, and (3b) grasps the convection between the surface and the ambient

environment. Further, Q is characterized as
Q =-I [UY (SOC) - Us(Vs,l) - Rn,TI] 5 (4)

where U,(-) is the nonlinear OCV function, Vj  is defined in sub-circuit A, and R, 7 is the internal resistance.
Finally, sub-circuit D summarizes the effects of the solid-phase and electrolyte-phase dynamics on the terminal
voltage. It contains two voltage sources, U, and U, in series with an internal resistance R, 7. The terminal U is given

by
U=U(Vs1(D) + Ue(Ve1(0), Ve, (1) + Ro 7 I(1). %)

Here, U, simulates the solid-phase OCV. As the SPMeT model mandates that the open-circuit potential of solid
material relies on the lithium-ion concentration at the surface of the electrode, U should come as a function of Vi,
and its exact form will depend on the cell. For the cell used in our experiments in Sections 4-5, we find the following

parameterization of U, suitable:
Us(Vs,l) = hl (Vs,l) ) H(09 - Vs,l) + h2 (Vs,l) : H(Vs,l - 09) 5

where H(:) is the Heaviside step function, /,(Vy ) captures the behavior when V,; < 0.9 as

1 1 !
+a +a *
L+ exp(@x(Va () —az) " T+ explas(Vor —ag) 1+ exp(as(Var - av))
1
(04 11 D ——
1+ exp(an1 Vsi(2)

h(Vy1) = ag + a;

+ a2 Vi1 (9),
and hy (V) is for when 0.9 < V| < 1 with
ha (V1) = aizexp(ai4Vy,1) + aisexp(aieVy,1).

Here, ; fori = 0,..., 15 are constant coeflicients. Next, we need to determine the form of U,. In the SPMeT model,
the electrolyte potential depends on the electrolyte concentration at the anode and cathode. We hence make U, as a
function of V,; and V, y, and express it as

6
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where S; for i = 1,2 are constant coefficients. As the last element of the model, R, r is not a constant and instead

depends on SoC and T¢ore. It is given by

core Tamb

Ro.T = RU(SOC) + eXp (Kl (Tl - ! )) 5 (7)

where k; is a constant coefficient. In above, the first term R,(SoC) captures the dependence of R, 7 on V;; and takes

the form
R,(S0C) =y; + v, - exp(—y3S00C), (8)

where y; fori = 1,2, 3 are coefficients, and the second term shows the temperature dependence due to the Arrhenius
law. Similarly, an Arrhenius relationship can be used to capture the relationship between the electrode-phase diffusion

constant and temperature:

1 1
Rs117 = Ry1 - exp (Kz( - )) , 9

Tcore Tamb

Putting together all the above equations, we will obtain a complete description of the BattX model. This model
is the first ECM that can predict over broad current ranges, due to the integration of the circuits approximating the
electrode, electrolyte, and thermal dynamics into a whole. The model design also leads to profound comparability
with electrochemical modeling, especially the SPMeT, which will be revealed further in the next section. We will

address the identification of the model parameters in Section 4.

3. Rationale for the BattX Model Design

In this section, we will use the SPMeT model as a benchmark to explain the rationale for the design of the
BattX model. We will show that the SPMeT model, if appropriately discretized, will reduce to a structure that is
approximately equivalent to the proposed circuit analogs of the BattX model. Our main references about the SPMeT
model include [33, 34]. We will focus on expounding sub-circuits A, B, and D, with the sub-circuit C-based lumped

thermal model well addressed in [32].

3.1. Connection between Sub-circuit A and SPMeT

The SPMeT model characteristically couples the SPM model with the electrolyte and thermal dynamics. What
it inherits from the SPM model is the representation of the electrodes as two spherical particles. The diffusion of

lithium-ions in each particle follows Fick’s second law in spherical coordinates [7, 8]:

desj(nt) _Dyj (rz des,j(r, t>), (10)
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Figure 2: Spherical discretization of an electrode particle.

where ¢ ; is the solid-phase (electrode) lithium-ion concentration, Dy is the constant diffusion coefficient, and r is
the radial coordinate. The subscript j € {n, p}, where n and p refer to the anode (negative) and cathode (positive),

respectively. The boundary conditions for (10) are

dey j dey,;

T dr

r=R;
where R is the radius of a particle. The molar flux J at the electrode/electrolyte interface is given by

1,(t) = % () = - 1’7(;)
P n

where i is the applied current density, with i > 0 for charging and i < 0 for discharging, S is the surface area of a
particle, and F is Faraday’s constant.

Next, let us reduce the PDE in (10) into a system of ODE equations using a finite volume method [35, 36]. The
subscript j € n, p will be dropped in sequel without causing confusion. First, we subdivide the particle into a set of
continuous finite volumes at discrete locations ri = R > r, > ... > ry > ryy; = 0 that spreads inward from the

surface to the center, as show in Fig. 2. The lithium-ion amount within the ith finite volume is given by

Qi(t) = fri cy(r,ndV = fri cy(r, 1) - dnrtdr,

Tivl Tisl

fori=1,...,N. Then, using (10), we have

0i(t) = f és(r,0) - Anrtdr = f d(4ﬂDsr2¥) = 4nDyr? desn )| _ dnDyrt | fes(n) (11)
Titl Tivl

or |, or
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To proceed, we replace c,(r, f) by the average lithium-ion concentration within the ith finite volume, ¢(r;, 1):

_ i(1)
et = 550, (12)
where AV; = 47r(r? - ri3+1)/3. From (11)-(12), it follows that
B 47erri2 6cs(r, t) 47TD51’i2+1 66’5(1', l’)
C(r,t) = -
AV; or |, AV; or .,
Then, we approximate the concentration gradient along the radial coordinate as
dey(r,n| _ &rii, 1) = & 1)
ar |, Ar; ’
where Ar; = (ri-1 — ri+1)/2. Given the boundary conditions, we further have
. 47rDsr§ @ _ ) 47rr% ) 13
K ’t == s ,t — Ly ,t + t 5
cs(ri, 1) AV Ar, © (r1, 1) = C5(ra, 1) AV,ES i1 (13a)
. 7TDSrl.2 B _ 47TDSrl.2Jr1 _ _ N N1 13b
s i9t = s i—’t_ K i9t T s A s(ris 1) — C5(riv1, 1)), =Ly, -1,
cs(riy 1) AVAr (@s(riz1, 1) = 5(ris 1)) AV Ari (@s(ris 1) = Ts(riv1, 1) 5 (13b)
. 47rDA.r12V _ _ 3
s ’t = = A K — at — Cs st .
cs(ry, 1) AVyATY (Cs(ry-1,1) = Cs(ry, 1)) (13¢0)

The above ODEs show the spatially discretized solid-phase diffusion. Note that they share the same structure
with (1). A closer inspection of (1) and (13) suggests: 1) V, is a mirror of ¢4(r,t), and its distribution reflects
the distribution of lithium-ion concentrations inside an electrode particle; 2) C; is a mirror of AV, associating the
capacitance with the volume of a finite volume element within the particle; 3) R, roughly corresponds to Ar/(Dy-4rr?)
to grasp the effect of Dy, Ar and r on the diffusion resistance at different locations. This unveiled connection with the

SPMeT model justifies the design of sub-circuit A.

3.2. Connection between Sub-circuit B and SPMeT

The SPMeT model includes one-dimensional electrolyte diffusion, which also follows Fick’s second law. The
electrolyte diffusion is considered in the electrode and separator domains that are all immersed in the electrolyte.

Based on the coordinates in each domain as shown in Fig. 3, the governing equations are

Acep(x,1) b Fcep(x,1) L -1

=D, i(f), 14

ot ox? €&pFL, 1 (142)
OCe sep(X, 1) Cesep(x, 1)
- =D, - 14b
ot Coax (14b)
ace n(x’ t) azce n(x7 t) 1- t? .

: =D,—% - , 14

o1 o2 b, (14<)
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Figure 3: Three regions immersed in the electrolyte.

where ¢, for j € {n, p,sep} is the lithium-ion concentration in the electrolyte surrounding the anode, cathode and
separator, € ; is the electrolyte volume fraction, D, ; is the electrolyte diffusion coefficient, and t? is the constant

transference number. We assume that €, ; and D, ; are the same for any j € {n, p, sep}. The boundary conditions are

given by
0ce p(0,,1) a 0Cen(Ly, 1) ~0
0x B 0x T
6Ce,p(Lps )] _ aCe,sep(osep’ )]
Ox - dx ’
ace,sep(Lseps 1) _ aCe,n(on’ 1)
0x B ox

ce(Ly, 1) = Ce(osep, 0,

Ce(Lsep’ 1) = ce(Ly, 1).

To convert (14) into ODEs, we concentrate the electrodes and separator into singular points and further suppose
L, = L, and L, is negligible. The singular point that represents the electrodes are located at the midpoint of each

domain, and the average lithium-ion concentration is denoted as ¢, ;. Then, we apply the finite difference to (14) and

obtain
. 4D, ,_ _ 1-2,
Lep(t) = 5" (Cosep(®) = Bep(®) + —Fi0), (152)
. 4D, i )
Cesep® = 15 (Fep(D) = esep(t) +ZenD). (15b)
- 4D, (_ — 1 - t? .
Een(®) = 37 (Cesen(t) = Cea()) = 0. (15¢)

As is seen, (14) is structurally similar to (2), and the similarity lends to interpretation of (2) through the lens
of electrochemical modeling. Specifically, we can associate V. 1, V. > and V, 3 with ¢, ,, Csep » and ¢, respectively.

Further, C, can be linked with the spatial lengths of the electrode domains, which decide the volume of the electrolyte,
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and R, comes as the inverse of D, to measure the resistance against electrolyte diffusion.

3.3. Connection between Sub-circuit D and SPMeT

In the SPMeT model, the terminal voltage V consists of four terms that represent the solid-phase OCV, electrolyte-
phase voltage, overpotential, and voltage over the film resistance, respectively. Then, coming back to sub-circuit D of
the BattX model, U, mirrors the solid-phase OCV, U, corresponds to the electrolyte-phase voltage, and R, 7 plays a
role to mainly capture the film resistance as well as the overpotential effect. Less trivially, we elaborate on the form

of U, in (6). The electrolyte-phase voltage is given by

L, +2Ls,+ L

$e(0p, 1) = Pe(Ln, 1) = o7 2i(t) + keone (In€e(0p, 1) = Inco(Ly, 1)) , (16)

where ¢, is the electrolyte electric potential, and k and kone are two coefficients that are related with electrolyte con-
ductivity and molar activity. The first term in above is accounted by for R, . Following the discussion in Section 3.2,

we can approximate the second term as
kconc (ln E'e,p(t) - hl Z’e,n(l‘)) .

This form is found to bear equivalence to (6), when making linear projections of ¢, ,(¢) and ¢ ,(f) to V,; and V.3,

respectively.

4. Parameter Identification for the BattX Model

In this section, we investigate how to determine the parameters of the BattX model. To this end, we separate the
model’s parameters into different groups based on the dynamic processes that they belong to or prominently influence.
We then design experiments accordingly and use different current profiles to excite different dynamic processes and
obtain voltage or temperature data suitable for the identification of the corresponding parameter groups. Finally, we
extract the parameters from the data, group by group, through data fitting and some empirical tuning.

To begin with, we set up the following parameter groups for the BattX model:

e Oy, ={a;,i=0,1,...,16}, which includes the parameters in U, in sub-circuit D;

e Og, = {y;,i =1,2,3}, which includes the parameters in R, in sub-circuit D;

e O = {C”,i =1,....,NRy,j=1,....,N—- 1}, which includes the parameters of sub-circuit A;

o Or = {Csurfs Rurf> Ceores Reore}, Which includes the parameters in the lumped thermal model in sub-circuit C;

e O, ={C,,R,.,B1,B2}, which includes the parameters in sub-circuit B and the parameters in U, in sub-circuit D;

e Oa; = {k1, K2}, which includes the Arrhenius-law-related parameters;.
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By grouping the parameters as above, we can design different current input profiles to stimulate different parts of the
cell’s dynamics so as to identify the parameters group by group. This multi-pronged approach includes the following
steps.

Step 1: Identification of @y,. Since U, represents the OCV source, we can capture it by applying a trickle constant
current with a magnitude of 1/30 C to fully charge or discharge the cell. As the current is extremely small, sub-circuit
A, which is an analog to the solid (electrode)-phase diffusion, is almost always at equilibrium, with V;, = SoC for
i =1,...,N (SoC can be obtained via Coulomb counting); meanwhile, sub-circuits B and C, U,, and the voltage
across R, r, are all negligible in this case. Hence, U ~ Uy, and we can construct the following data fitting problem to

identify @y :

Oy, = arg Igile [U() = Us (SoC(1); ©u, ), (17)
k
where £ is the discrete time index in the experiment.

Step 2: Identification of O . R, is an integral part of the internal resistance R, r, and R, = R, 7 when T' = Ty. To
identify O, , we apply a 0.5 C pulse current profile, which includes long enough rest periods between two consecutive
pulses to allow for sufficient voltage recovery, to discharge the cell from 100% to 0% of SoC when the ambient
temperature is Tpr. With discharging at 0.5 C, the cell will see only a negligible increase in its temperature, and
U, = 0. For the terminal voltage U, we will see a sharp drop or jump at the beginning or end of every pulse, and this

is almost solely due to the voltage change across R,. Therefore, using the voltage jump, one can approximate R, as

U(t*+l) - U([*)

Ry(1.) = 7 . (18)

where ¢, is the instant when a pulse stops. Further, the instantaneous SoC can be readily determined via Coulomb

counting. Collecting R,, for all ¢,, we can formulate the following data fitting problem to estimate O, :

N ) . 5
O, = arg I(‘IE)I;UH Z [Ru(t*) = Ry(Og,; t*)] . (19)
Step 3: Identification of ®;. The number of parameters in ®; depends on N, and when N is large, ®; will be

poorly identifiable to defy accurate estimation. To formulate a tractable identification problem, we assume that
Csi=niCs1, Ry j =0 Ry, (20)

where 7; and o fori = 1,...Nand j = 1,...N — 1 are pre-specified coefficients with ; = o = 1, and Zﬁl niCy,; 1s
the total capacity of the cell. This allows us to consider only two parameters, i.e., ©; = {C; 1, Ry,1}, greatly facilitating
the parameter estimation. The simplification is also reasonable—the difference among C;; and R, ; can be viewed as
a result of the selection of the discretization points as shown in (13), and one can specify 7; and o; assuming that
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they result from a certain selection. The practical selection of 7; and o-; can be through analysis of the discretization
shown in Section 3.1 and tuning. Going forward, we apply a 0.5 C constant-current profile to discharge the cell from
full to zero SoC. In this setting, sub-circuit A is excited, but the dynamics of sub-circuits B and C have no appreciable
effects. That is, the cell’s temperature remains almost the same, and U, ~ 0. We can conduct data fitting as below to

find out O:

6, = argmin Z (U0 = Ro (6,3 1) 1) = U (Vo ©4:8:00, )] @1
where (:)U_‘_ and ®R0 have been obtained in Steps 1 and 2, and the form of V; (0, t) is derived in Appendix.A.

Step 4: Identification of Ory,. Based on [32], a straightforward idea to determine ®ry, is to fit it to the measurement
data of T, and/or T¢ore given the lumped thermal model in (3). However, the idea is hard to be applied here, because
Q in our model is dependent on R, 7, as shown in (4), and unavailable before R, 7 is identified. To overcome this
issue, we choose to use prior knowledge to guide the estimation of @ry,. Here, we can approximate R based on the
conductivity of the cell’s electrode materials and jellyroll structure. Furthermore, we can infer Ry, and Cgys from
the form factors and specifications, casing material (usually aluminum), and the cooling system. Finally, Ccore can
be deduced given the cell’s total heat capacity. A 2C constant current full discharge profile is used to acquire the
data encompassing significant temperature changes. With the measurement data, we can begin from the approximate
values of the parameters and continually tune them until achieving sufficient fitting accuracy to finalize Orp.

Step 5: Identification of ®, and ®4. Sub-circuit B will have substantial effects on U only at high C-rates.
Therefore, we use a 3 C constant current profile to fully discharge the cell such that large enough U, will result and
present itself into the voltage response. This then allows to identify ®,. In the meantime, 3 C discharging will subject
the cell to important temperature increases, which, in turn, will drive down ®-dependent R 7 and R, r and influence
the voltage response. As such, we need to consider the estimation of ®, and ®4,, together. The following data fitting

problem can be formulated:

Oc, Opr = arg rcllilzn Z [U(lk) —-Ror (®R,,, Oar, T4 fk) I(t) — Uy (Vs,l (C:)m Oar, T4 lk) ; C:)U\) -U. (0, l‘k)]2 . (22)
Here, U, depends on V, | and V, 3 as shown in (6), and the explicit form of V,; and V, 3 is shown in Appendix.B.
Note that no closed-form expression of U, exists in this step, as the changing R, 7 makes sub-circuit A become a
time-varying system. It is thus impossible to solve the problem in (22) using nonlinear optimization. To alleviate
the difficulty, we suggest to apply some empirical tuning. Specifically, we can pick a sample of @4, using prior
knowledge, then estimate ®, by solving the above data fitting problem, and iterate this procedure until getting the
lowest possible fitting errors. Despite the time and effort needed, this iterative method is often found effective with a
sufficient number of tries.

The above steps together constitute our parameter identification approach for the BattX model. The following
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remarks summarize our further insights.

Remark 1. We point out that the data fitting problems outlined in Steps 1-5 are non-trivial to solve, as they entail
nonlinear nonconvex optimization. The nonconvexity can easily get the parameter search stuck in local minima to
produce physically meaningless parameter estimates. To mitigate the issue, it is sensible to constrain the search
within a believably correct parameter space [21]. Specifically, one can set up approximate lower and upper bounds
for every possible parameter and then limit the numerical optimization within the resultant parameter space. The
prior knowledge used to establish such bounds can be derived from both experience and observation or analysis of
the measurement data. Other helpful ways to overcome the local minima issue include adding regularization terms
that encode prior knowledge of some parameters and applying different initial guesses to repeatedly run the numerical

optimization [21].

Remark 2. We consider Samsung INR18650-25R cells (see Section 5 for the specifications) as a baseline when select-
ing the discharging C-rates in each step of the above approach, because they are used in the experimental validation
of the BattX model (see Section 5). However, a user or practitioner may need to adjust the specific C-rates, depending
on the cells to apply the model to. The overall guiding rule is the same—using current profiles of different C-rates to
excite different dynamic processes to obtain data informative for the identification of the parameters associated with

each process.

5. Experimental Validation of the BattX Model

This section offers the experimental validation of the proposed BattX model. All the experiments were conducted
on a Samsung INR18650-25R cell with NCA cathode and graphite anode using a PEC® SBT4050 battery tester. The
cell’s nominal capacity is 2.5 Ah, nominal voltage is 3.6 V, maximum cut-off voltage is 4.2 V, minimum cut-off voltage
is 2.5 V, and maximum continuous discharge current is 20 A. The tester is able to run charging or discharging tests of
up to 40 V and 50 A under arbitrary current or power load profiles. The experiments comprised two parts. The first
part collected datasets following the parameter identification approach in Section 4 to identify the model parameters.

In the second part, new datasets were generated to evaluate the predictive capability of the identified model.

5.1. Model Identification

The experiments and model identification procedure are as follows.

e Based on Section 4, we first charged the cell using the popular constant-current/constant-voltage method, let
it rest for one hour, and then fully discharged it using a 1/30 C constant-current load. We calculated the total
capacity 2.55 Ah using the Coulomb counting method and used the voltage data to find out (:)Ux based on (17),

which is given by

Oy, = {-9.048,-2.360, —12.986,0.010, 13.036, —32.840, —0.087, 2.359,
14
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—-14.863,0.055,-0.788,-7.136,0.966,31.132, -3.414,0.513, 1.816}.

The SoC/OCYV fitting result under the obtained @)Us is shown in Fig. 4.

o Next, the cell was charged to full again idled for one hour, and then discharged under a 0.5 C pulse load profile.
Specifically, a load was applied for five minutes, followed by a two-hour rest, and this cycle continued until
the cut-off voltage was met. Fig. 5 shows the profile, which includes a total of 12 pulses. With the data, we
calculated R, at different SoC via (18) and then used (19) to compute (:)RU as shown in Table 1. The reconstructed

R, is compared with the measurements in Fig. 5.

e Going further, we fully charged the cell again as in the previous steps, and then fully discharged it using a 0.5
C constant-current load, with the objective of identifying ®,. As explained in Section 4, we could impose a

pre-determined relation like (20) to reduce the number of parameters to estimate. Here, we let the spherical
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particle be discretized into five finite volumes, and the resulting ; and o; are

n; = 1{1,0.6066,0.3115,0.1148,0.0164},

o;=1{1,1.77,4.00, 15.98}.

Then, (21) was executed to determine ®,. Fig. 6 illustrates a comparison between the predicted terminal voltage
(with the dynamics of sub-circuits B and C neglected) based on @, and the measurements. Table 1 shows the

estimation for ®;.

e Then, we ran a 2 C constant-current discharging test to collect the temperature data. The cell’s surface tem-
perature increased by about 10 K throughout the test. We leveraged prior knowledge and empirical tuning to
determine Oy, as suggested in Section 4. While the procedure is coarse-grained, we obtained Oy, that leads to
accurate fitting with the surface temperature data and physically reasonable estimation of the core temperature,

as shown in Fig. 7. Table 1 summarizes the numerical estimates of Oy, .

e Finally, the cell was fully discharged at a constant current of 3 C to excite the cell’s electrolyte dynamic and
thermal behavior more discernible, for the purpose of identifying ®, and ®,.. Following Section 4, we iter-
atively tuned Oarr and then ran (22) to find ©, until the achievement of both physically sound estimates and
accurate voltage data fitting. Fig. 8 shows that the BattX model based on all the identified parameters fits well

the measured voltage, and Table 2 shows the estimation results.

From above, we have come up with an explicit setup of the BattX model for the cell. Next, we will fit the model

to new datasets to assess how well it predicts.
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Name Y1 V2 V3 Cs,l R s,1 Csurf R surf Ccore Rcore
Initial Guess 1 1 1 4391 | 0.090 7 6 20 1
Lower Bound - - - 3600 | 0.054 3 3 5 0.5
Upper Bound - - - 5500 | 0.167 | 12 20 50 7
Final estimate | 0.026 | 0.061 | -14.36 | 4521 | 0.114 | 10 7 40 4

Table 1: Identification summary for ®,, ©,, and Opy: initial guesses, bound limits, and final estimates.
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Figure 8: Terminal voltage fitting under 3 C constant-current discharging based on ©,.

Name

C, R, Bi Jiz) K1 K>

Initial Guess | 1032 | 0.028 | 0.53 0.31 15 22
Lower Bound | 500 | 0.002 | 0.42 | 0.19 10 10
Upper Bound | 5000 | 0.080 | 1.00 | 0.423 | 100 | 100
Final estimate | 3691 | 0.007 | 0.789 | 0.317 | 30 | 70

Table 2: Identification summary for ®,, and ©,: initial guesses, bound limits, and final estimates.

5.2. Model Testing and Validation

To further evaluate the obtained BattX model, we generated new datasets by applying a variety of current load

profiles that span a broad range of currents. The first tests involved full discharging of the cell at a constant current

17



[ : :
4|—\ - Measured| -
S~ — =Predicted
Y -
— |\ T
> 35+ A\ e— 1C
— \\ ~
GD)D \\\ = N
S \ \ N\
o 3 ‘ N
> \ 4C \
sc | \ )
1
2.5¢ { ‘

0 500 1000 1500 2000 2500 3000
Time [s]

Figure 9: Voltage prediction by the BattX model versus the measurements at constant-current discharging at 1, 4 and 5 C.

of 1 C, 4 C, and 5 C separately. Fig. 9 compares the model’s prediction of the terminal voltage prediction with
the measurement, where a close match is observed in all the three cases. Note that, even though the model was
identified based on tests of only up to 3 C, it can well predict 4 C and 5 C. This suggests the model’s high fidelity and
interoperability.

Further, we adopted the Urban Dynamometer Driving Schedule (UDDS) as a variable load profile and scaled it to
be between —8 C and 5 C. The validation of the BattX model over this dataset is shown in Fig. 10. The top figure in
Fig. 10 illustrates the load profile, which includes both charging and discharging as well as a rest period. The voltage
prediction of the model, as shown in Fig. 10, closely follows the true voltage overall. A slight discrepancy appears
at the end of the test when the cell is about to be depleted. This is likely because the radical changes of the internal
resistance at low SoC and high temperature are hard to be thoroughly captured.

Fig. 11 then demonstrates the comparison of the predicted surface temperature with the measurement, showing an
acceptable accuracy. The estimation of the core temperature is also given in Fig. 11, which is reasonable by empirical
knowledge and observation.

Recently, LiB-powered eVTOL has attracted increasing interest as a promising solution to urban air mobility and
decarbonization of aviation. A safety-critical application, eVTOL must maintain fast and accurate monitoring of its
onboard battery system throughout a mission. Conventional equivalent circuit models are impossible to meet this
need, as eVTOL often requires high-rate discharging—it must discharge as fast as 5 C in the takeoff and landing
phases. However, the proposed BattX model holds a significant advantage to eVTOL battery performance modeling.
We consider a notional eVTOL flight, which includes three phases, takeoff, cruising, and landing. The three phases
involve discharging at 5 C, 1.48 C, and 5 C, respectively [31]. We generated a current load profile sequentially
comprising a flight, full discharge, and another flight. Fig. 12 displays the profile over time. Fig. 12 shows that
the BattX model achieves accurate prediction compared with the measurement. Especially, the accuracy is found

satisfactory at the times of high discharge rates. The surface temperature prediction in Fig. 13 also well agrees with
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Figure 10: Terminal voltage prediction by the BattX model versus the measurements in the UDDS-based test. Top: the UDDS-based current profile; middle: the voltage
prediction in comparison with the measurements; bottom: magnified views within two time windows.
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Figure 11: Temperature prediction by the BattX model versus the measurements in the UDDS-based test.

the actual temperature, and the core temperature estimation shows a realistic trend that one can trust to be close enough

with the truth.
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6. Conclusions

LiBs have found their way into many sectors as a key technology to drive forward electrification and decarboniza-
tion. For LiB applications, computationally fast and accurate models are a bedrock for real-time monitoring and
simulation to ensure their performance and safety. Although the literature has presented different dynamic models,
few of them are effective when current loads range from low to high. To overcome the problem, we proposed the
BattX model in this study. This model is an ECM in its form, but unlike other ECMs, it lends to interpretation as a

quasi-electrochemical model. This is because it is designed to use separate yet coupled circuits to approximate the
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lithium-ion diffusion in the electrode and electrolyte phases, heat transfer, and nonlinear voltage behavior in charg-
ing/discharging of a cell. With the novel design, the model offers high predictive accuracy over broad current ranges
and still retains relatively simple structures for low computational costs. We also developed a parameter identification
approach for the model. The approach groups the parameters based on the dynamic processes or components that
they belong to, and then identifies the parameters of each group using experimental data. Finally, the experimental

validation showed that the BattX model has high accuracy and fidelity across low to high C-rates.
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Appendix

A. Derivation of Vi, under Constant Current I

In Section 4, the identification of ®; in (21) requires the expression of V; when the applied current / is constant.
The derivation is as follows.

Consider the governing equations of sub-circuit A in (1) under the assumption in (20), and rewrite them compactly

into the following form:

V(1) = AsVi(0) + B, (1), (A.1)
where
T
Vi=|Ve1 Vo -+ Vinl »
A = M.YQXa
1
Hs Cs,le,l ’
[ =1 e 0 0
moi noy
1 11 1 0 0
Qr — moi moy 1m0 12072 )
0 0 1 —1
- INON-1  TINON-
. 1 T
By = 7a 0 0
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The solution to (A.1) is given by

V(1) = eM'V,(0) + f eMDIBI(T)d

0

When [ is constant, it becomes
'8
V(1) = eM'V,(0) + f Mt B (A2)
0

To find the explicit form of V(¢), we must derive the expression of e To this end, we look at Q; first and note that it
is rank-deficient with one zero eigenvalue. Further, assume the other non-zero eigenvalues to be distinct, and denote

the eigenvalues of Qg as A; fori = 1,2, ..., N with 4; = 0. Then, by the Cayley-Hamilton theorem, we have

M =0 i, 0] @ Qs (A3)
where

1A -t
1 X P

D = 2,
1 Ay VIV
[ T

(s, ) = |1 ettt ... e#s/lzvt] .

The operator ® is defined as

n
a® A= Z a,'AH,
i=1

fora € R™! and A € R™". Inserting (A.3) into (A.6), we obtain

V() = [ 07 gl D] @ Q- V,(0) + f t [0~ ¢yt - )| @ Qe - B
0

= [q)*l(ﬁ(,ux, t)] ® Q- Vy(0) +

f
@71f0 ¢(/~1svt_7')d7':| ® Q- B,

=07 ¢y D] ® Q- Vi(0) + [ @7 (Butss 1) = B(u1,, 0))| © Qs - Bl (Ad)
where
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Given (A.4), V;, can be expressed as

Vii(1) = e[ Vy(0),

T

Whereelz[l 0o --- 0] .
Nx1

B. Derivation of V) and V, 3 under Constant Current I
The explicit expressions of V, | and V, 3 under a constant current / are needed to represent U, for the identification
of ®, in (22). We can follow similar lines in Appendix.A to find them out. Let us rewrite the governing equations of

sub-circuit B in (2) compactly as

Ve([) = A V(1) + B.I(1), (A.5)

where

T

VE: Ve,l VS,Z Ve,3 s

Ae:ﬂeQe7
1
He= CR.
1 1 0
Q=1 -2 1/
0 1 -1
.
B=[t 0 -4

The solution to (A.5) under a constant current / is
!
V(1) = 'V, (0) + f At - B,I. (A.6)
0

The eigenvalues of Q, are 0, —1, -3, respectively. By the Cayley—Hamilton theorem, it follows that

M = [ e 1)) © Qe (A7)
where
I 0 0
Y=11 -1 1},
I -3 9



V=1 em e—wer]T .

Based on (A.7), we can derive that

Vo) = [¥70 (e, ] ® Q- Ve(0) + [ (F(pter 1) = (1o, 0)| € Q. - Bel, (A8)

where

I(pten1) = [; e _efsw]T

He 3ue

With (A.8), one can extract V,; and V, 3 from V,.
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