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ABSTRACT

Objective: Modern healthcare data reflect massive multi-level and multi-scale information collected over many
years. The majority of the existing phenotyping algorithms use case—control definitions of disease. This paper
aims to study the time to disease onset and progression and identify the time-varying risk factors that drive
them.

Materials and Methods: We developed an algorithmic approach to phenotyping the incidence of diseases by
consolidating data sources from the UK Biobank (UKB), including primary care electronic health records (EHRs).
We focused on defining events, event dates, and their censoring time, including relevant terms and existing
phenotypes, excluding generic, rare, or semantically distant terms, forward-mapping terminology terms, and
expert review. We applied our approach to phenotyping diabetes complications, including a composite cardio-
vascular disease (CVD) outcome, diabetic kidney disease (DKD), and diabetic retinopathy (DR), in the UKB
study.

Results: We identified 49049 participants with diabetes. Among them, 1023 had type 1 diabetes (T1D), and
40193 had type 2 diabetes (T2D). A total of 23833 diabetes subjects had linked primary care records. There
were 3237, 3113, and 4922 patients with CVD, DKD, and DR events, respectively. The risk prediction perform-
ance for each outcome was assessed, and our results are consistent with the prediction area under the ROC
(receiver operating characteristic) curve (AUC) of standard risk prediction models using cohort studies.
Discussion and Conclusion: Our publicly available pipeline and platform enable streamlined curation of inci-
dence events, identification of time-varying risk factors underlying disease progression, and the definition of a
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relevant cohort for time-to-event analyses. These important steps need to be considered simultaneously to
study disease progression.

Key words: phenotyping, diabetes, diabetes complications, disease progression, electronic health records, time-to-event

LAY SUMMARY

A modern biobank-scale health care data linked with electronic health care records such as UK Biobank (UKB) provide
researchers with a tremendous opportunity to study disease progression and associated risk factors. To study disease pro-
gression, researchers often use time-to-event statistical analysis. However, time-to-event data are not readily available from
primary sources of healthcare data and require concerted efforts to create them. In this paper, we introduce modularized
procedures for systematically phenotyping time-to-event outcomes at large scale. We consistently and accurately curate bio-
marker trajectory data and define relevant disease outcomes and event times. Adapting our procedures to datasets from the
UKB study and using diabetes-related complications as examples, we curate trajectory data of diabetes risk factors and phe-
notype time to the onset of diabetes vascular complications (ie, cardiovascular complications, diabetic kidney disease, and
diabetic retinopathy). This allows us to assess the effects of several known risk factors for the onset of diabetes complica-
tions. A risk prediction analysis shows prediction accuracy consistent with the ones obtained from standard risk prediction

models using cohort studies.

INTRODUCTION

The paradigm of precision medicine has expanded the use of very
large, interoperable, and longitudinal cohorts. A key advantage of
many healthcare related datasets, whether primary care records,
claims data, or registry data," is their accumulation of patient infor-
mation over long periods of time.? They offer an excellent resource
to longitudinally monitor clinical biomarkers whose fluctuations
might influence the progression of diseases. Rich and time-stamped
information stored in electronic health records (EHRs) make more
accurate and standardized phenotyping possible.** Indeed, temporal
sequential data representations mined from EHRs have been demon-
strated to offer a more accurate phenotype classification than its
individual components.** However, these studies modeled diseases
as discrete events (eg, cases vs controls). Deep time-to-event pheno-
typing requires more sophisticated analytics beyond the case—control
classification, and the incorporation of domain knowledge remains
critical.>*®” Our objective is to incorporate time to phenotype dis-
ease progression, use diabetes mellitus (DM) and its vascular com-
plication as an example, and provide an associated cohort definition
for time-to-event analysis in the UK Biobank (UKB) study.®’

DM is a progressive disease associated with multiple risk factors,
such as hyperglycemia and elevated blood pressure. These risk fac-
tors help drive the incidence of complications, including cardiovas-
cular disease (CVD), diabetic kidney disease (DKD), diabetic
retinopathy (DR), and neuropathy.!®'? While a large number of
studies examined factors associated with the prevalence, or inci-
dence, of diabetes, fewer studies have used biobank-scale health care
datasets to examine the development of diabetes-related complica-
tions."® A notable reason stems from the lack of a uniform pheno-
typing definition of diabetes and diabetes-related complications in
EHRs. UKB is one of the largest biobanks globally, with over
500000 participants. The UKB continues to enhance links between
their information and the UK primary care EHR data.®” However,
researchers working with UKB-linked EHR data face significant
challenges, as these EHR systems are designed to collect patient
information for administration and management purposes, not for
analysis and research. For example, UKB EHR data are an amalga-
mation of different sources, recorded using different methods

(containing more than 500000 terms to record information). Our
current contribution is to provide tools for quantifying disease inci-
dence and progression, in addition to relevant longitudinal bio-
markers, thus enabling more sophisticated time-to-event analysis.

We established diabetes and diabetes complication diagnoses by
systematically consolidating disparate sources of clinical data from
patient questionnaires, hospital records, death records, and primary
care data released by UKB. We focus on cardiovascular complica-
tions reflecting ischemic events and microvascular complications,
including DKD and DR. Furthermore, we phenotyped longitudinal
risk factors for the aforementioned complications. We documented
our phenotyping framework using an R package, bookdown, and
have made it publicly available as a short book, including code lists,
procedures, and implementations (https://dohyunkim116.github.io/
ukbiobank-phenotyping-book/). To demonstrate the utility of our
phenotyping framework, we assess its ability to reproduce known
associations of risk factors with DM complications using a prospec-
tive design and Cox proportional hazards models. In addition, we
build several DM complication prediction engines. Although this
paper focuses on UKB data, some of the controlled clinical terminol-
ogies used in UK EHR are applicable to US data sources. Therefore,
our work can benefit other large-scale data resources such as Elec-
tronic Medical Records and Genomics (eMERGE),'* BioVU,'* Mil-
lion Veteran Program,'® and All Of Us.!”

MATERIALS AND MIETHODS

The UKB data resources

The UKB is a prospective cohort study with deep genetic and pheno-
typic data. Record linkage to Health Episode Statistics (England),
Patient Episode Database for Wales, and the Scottish Morbidity
Records (Scotland) was used to identify the date and cause of hospi-
tal admissions. Hospital admission records were available until Feb-
ruary 2018 for the full UKB cohort (noted as “UKB data”), whereas
linkage to primary care records was available for 45% of the UKB
cohort until the end of 2017 (noted as “UKB Primary Care data”).
Each record has an entry for a clinical term under the format of
either Read v2 or Read v3/CTV3. Although Read v2 or Read v3/
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CTV3 are the primary care healthcare concepts used in the UK,
Read v3/CTV3 is one of the core components of SNOMED-CT, an
international standard for recording information across healthcare
settings and a suite of designated standards for use in the United
States.

Outcome definitions

We ascertained DM and three primary DM macro- and microvascu-
lar complications: a composite CVD outcome (reflecting myocardial
infarction [MI], unstable angina [UA], ischemic stroke [IS], and per-
cutaneous coronary intervention [PCI|), DKD, and DR. For UKB
data, the outcome definitions were defined through sets of prede-
fined UKB fields mapping to different outcomes. The UKB fields
belonged to different classes of the fields, including UKB First
Occurrence fields, algorithmically defined fields, fields containing
ICD-10 codes, OPCS4 codes, self-reported illness codes, self-
reported operation codes and custom defined fields (Supplementary
Table S1). For UKB Primary Care data, the outcome definitions (for
DM, DKD, and DR only) were defined through code lists from
CALIBER and OpenCodelists mapping to different outcomes. We
further refined a list of terms defining the outcomes by manual
inspection and inputs from experts. Figure 1 details procedures iden-
tifying and refining candidate terms. A full list of codes and data
fields used to define a specific outcome is shown in Supplementary
Table S2 and Supplementary Text. We obtained the most up-to-date
information by using clinical terms directly from hospital admission,
death, and primary care records, even if the term was already cap-
tured by a First Occurrence field. DM was defined and categorized
into one of three types, Type 1, Type 2, and Uncertain. Detailed
descriptions of each condition can be found in the Supplementary
Text.

Phenotyping incidence events and cohort definition
Procedures

We used the following steps to phenotype DM and DM complica-
tions (Figure 2).

1. Generate a master event table. To capture events related to an
outcome from the “UKB data,” we first created a master event
table containing all available clinical event fields and associated
event dates,

Search Read v2 and
Read v3 term
descriptions for a list of
keywords relevant to DM

1049 eligible terms
Expert review of
eligible terms

A

1083 terms from
code lists (CALIBER,
OpenSafely, etc) for
phenotype
Entire Read v2
parent category
prefixes identified:
68A, C10, F420

241 terms from code
lists (CALIBER,

OpenSafely, etc) for
phenotype

Exclude

Search Read v2 and
Read v3 term
descriptions for a list of
keywords refated to DKD

363 eligible terms:
Expert review of
eligible terms

a. first-occurrence outcome fields,
b. algorithmically defined outcome fields,

code event fields: ICD-10, OPCS4, self-reported condition,

and self-reported operation codes, and
d. custom fields (used for phenotyping of DR events).
Generate UKB outcome event table. Using the fields identified in
Supplementary Table S2, we searched the master event table to
generate a UKB event table that includes all events related to
each outcome.
Generate master primary care code dictionary and outcome-
specific code dictionary. To identify events related to an outcome
from the “UKB Primary Care data,” we created a master pri-
mary care code dictionary that combines Read v2, Read v3/
CTV3, and TPP Local term dictionaries. Using defined codes
and descriptions for an outcome, we searched the master code
dictionary to generate outcome-specific code dictionaries.
Generate primary care outcome event tables. Using the
outcome-specific dictionaries, we searched the “UKB Primary
Care data” to generate primary care outcome event tables,
which include all events related to each outcome.
Generate biomarker trajectory data. We extracted biomarker
measurements of subjects using the “UKB primary care data”
and the “UKB data.” We created trajectory data for biomarkers,
including glucose, HbA1lc, urine albumin, urine creatinine, urine
albumin-to-creatinine ratio (uACR), serum creatinine, blood
pressure, total cholesterol (TC), high-density lipoproteins
(HDL), low-density lipoproteins (LDL), and triglycerides. The
terms and fields for these biomarkers can be found in Supple-
mentary Table S3. Using the curated trajectory data, we created
event tables capturing the occurrence of macroalbuminuria,
microalbuminuria, and prolonged low estimated glomerular fil-
tration rate (eGFR) events. These event tables were used to cap-
ture DKD events and refine the time-to-event table for DKD. We
further elaborate on the biomarker extraction step in the subsec-
tion Covariate and Biomarker Extraction.
Generate outcome event table. The event tables for DM, CVD,
DKD, and DR were created by merging the UKB outcome event
table generated in (2) and the primary care outcome event table
generated in (4). The first-occurrence event tables and risk set
exclusion event tables (Supplementary Table S2) associated with
certain outcomes were also created.

(o
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Figure 1. Flow chart to identify candidate terms for phenotyping (A) diabetes, (B) diabetic kidney disease (DKD), and (C) diabetic retinopathy (DR). CALIBER: cardi-
ovascular disease research using linked bespoke studies and electronic health records, https://www.ucl.ac.uk/health-informatics/research/caliber; Read v3
(CTV3): Clinical Terms Version 3; OpenSAFELY: a secure, transparent, open-source software platform for analysis of electronic health records.
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Figure 2. (A) Flowchart of outcome event table generation steps. UK Biobank (UKB) outcome event tables were generated by searching relevant outcome fields
from all UKB event tables. UKB event table combines all clinical event fields available from UKB assessment center data. Primary care outcome event tables
were generated by searching the outcome-specific codes from the primary care data. The outcome-specific code dictionary was generated by searching the full
dictionary for relevant codes and descriptions. The full dictionary is a combination of Read v2, Read v3, and TPP codes. We combined information from UKB out-
come event table, primary care outcome event table, and biomarker information to create a first-occurrence outcome event for each outcome. Numbers in labels
correspond to the steps in the Phenotyping procedure section. (B) Flowchart of time-to-event data generation steps. Time-to-event data for an outcome required
first occurrence outcome event table, diabetes first-occurrence event table and a dataset containing subjects’ study initiation dates (ie, index date) and censoring
dates. Time-to-event data were subject to filtering based on certain exclusion criteria for an outcome. ICD10: 10th revision of the International Statistical Classifi-
cation of Diseases; Read v3 (CTV3): Clinical Terms Version 3; OPCS4: Office of Population Censuses and Surveys (OPCS) Classification of Interventions and Proce-
dures version 4; TPP codes: TPP (https://tpp-uk.com/) is a data system supplier in UK and has their code lists. A list of TPP local codes that are present in the

current extract and their definitions can be found in Data Showcase Encoding 8708.

7. Generate an initial time-to-event table. Time-to-event tables for
CVD, DKD, and DR were created by merging the first occur-
rence DM event table, complication event tables and a demo-
graphics table which included censoring dates. An event status
was positive if a diabetes subject had an incidence of a certain
complication outcome before the censoring date; otherwise, a
subject was at risk. A subject’s censoring date was defined as the
earliest date among loss-to-follow-up date, showcase censoring
date (as indicated by reduced EHR data availability) and the
date of death (for a deceased participant). The fields used to
determine the censoring dates are described in Supplementary
Table S4.

8. Generate refined time-to-event table. Separately for each compli-
cation, we excluded participants from the time-to-event table if
a complication event occurred before the first documented evi-
dence of diabetes or after the censoring date. For each outcome,
we also used an associated exclusion event table generated in (5)
to exclude additional subjects in this risk set.

Additional exclusion considerations

Primary care data were only available for 45% of UKB participants.
For DKD and DR, we required subjects in the risk set to be repre-
sented in the primary care data, unless they had an outcome event
documented in hospital admissions or the death record. This is
because a large proportion of DKD and DR events were ascertained
using the primary care data and biomarker information, so we were
not confident that participants without linked primary care data did

not have complications. To preferentially capture diabetes-related
kidney disease as opposed to kidney diseases arising from a different
etiology, we required patients with events to have at least 5 years
between the first evidence of diabetes and the complication occur-
rence. We also required patients in the risk set to have at least §
years of follow-up time since the first evidence of diabetes. Other
exclusion of conditions from the risk set was documented in Supple-
mentary Table S2.

A prospective study design and cohort definition

Using the developed phenotyping algorithm (Figure 2), we used a
prospective study design to assemble the cohort and estimate the
risks of known “risk” factors for DM complications (Figure 3). We
define the index date (time 0) as the UKB study initiation date and
follow the participants for the onset of macrovascular and microvas-
cular conditions. One alternative index date could be the date of
DM onset. In this manuscript, we assume the date of the first evi-
dence of DM from EHR is the true date of DM onset. However, one
may consider this date of DM onset unknown, which leads to differ-
ent censoring mechanisms for complication events, for example,
interval censoring. We briefly discuss this point in Supplementary
Text. The time-to-event outcome for patients who had events was
defined as the time between their index date and the date of their
first recorded outcome event. The time-to-event outcome for
patients in the risk set was defined as the time between the index
date and the censoring date. Participants who had the event were
excluded if the index date was not between the first evidence of

€20z 11dy €0 uo 1sanb Aq 061 £€0./900PE00 | /9/3jo1e/uadoeIWEl/Woo"dno-oiwapese//:sdny Wwoly papeojumoq


https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data
https://tpp-uk.com/

JAMIA Open, 2023, Vol. 6, No. 1

Index Date (time = 0):
UK Biobank Study Initiation

First Occurrence of DM Dx

First O of DMDx ¥ .‘"‘. DKD
>5 years
First Occurrence of DM Dx 3% @v CVD/DR
First Occurrence of DM Dx 3¢ ICensored
— i
< 6 months >5 years
-

Landmark Period

Baseline Period

Follow-up Period

Figure 3. A prospective study design and landmark analysis. The index date is defined as the UKB study initiation date. The blue-shaded area is the landmark
period, that is, from the first date of participants’ primary care records to 6 months after the index date. We extract time-invariant and time-varying longitudinal
measures of biomarkers from this period. In our study design, the first occurrence of DM Dx is required to be in the landmark period. The yellow-shaded area rep-
resents the follow-up period from the index date. We require the incidence of DM complications (ie, DKD, CVD, and DR) to be in this period. The baseline period
up-to-6 months after the index date, during which participants’ information was collected through UKB’s assessment center. To preferentially capture diabetes-
related kidney disease as opposed to kidney diseases arising from a different etiology, we required patients with events to have at least 5 years between the first
evidence of diabetes and the complication occurrence. We also required patients in the risk set to have at least 5 years of follow-up time since the first evidence
of diabetes. CVD: cardiovascular disease; DKD: diabetic kidney disease; DR: diabetic retinopathy; DM: diabetes mellitus; Dx: diagnosis; X: event happened. | repre-

sents a censored event.

diabetes and the date of complication event, while participants who
did not have the event were excluded if the first evidence of diabetes
was not before or within 6 months after the index date.

Covariate and biomarker extraction

Patients’ race/ethnicity, year and month of birth, sex, body mass
index (BMI), smoking status, and use of insulin, blood pressure low-
ering medication, or lipid-lowering medication were extracted from
surveys collected at a UKB assessment center. Educational attain-
ment was defined as the individual’s highest qualification, translated
to the International Standard Classification of Education (ISCED)
using the mappings in Ge et al.'"® Physical activity was measured
using weekly Total Metabolic Equivalent Task (MET) minutes. The
Charlson Comorbidity Index (CCI) was generated using partici-
pants’ hospital admission records preceding their initiation into the
study.’®?° To demonstrate genetic data usage in conjunction with
our curated phenotypes, type 2 diabetes (T2D) polygenic risk scores
(PRS) were generated for all individuals of European ancestry using
the prepruned variants and weights from Mahajan et al,*' while
type 1 diabetes (T1D) PRS were generated for the same individuals
using the procedures from Sharp et al.*?

We used two sources of information to extract biomarkers: meas-
ures from samples collected at participants’ visits to a UKB assessment
center, and from the primary care database. To extract the latter, we
reviewed clinical terms in UKB Resource 592. We used a keyword-
based search to identify relevant terms, and verified the code lists with
the list prepared by Denaxas et al.>> The eGFR measurements were
estimated from serum creatinine using the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI creatinine) equation.

Statistical analysis

A landmark method was used to ascertain the known risk factors
prior to the index date, including glycemic measures, blood pres-
sures, and lipid measures. Specifically, we computed averages and
estimates of variability of these biomarker measurements. We
imputed the summary statistics of biomarker (eg, CV) measurements
to obtain a more complete dataset for the primary analysis. Other

imputed baseline covariates included sex, self-reported ethnicity, age
at initiation date, smoking status, BMI, self-reported medication sta-
tus for insulin, blood pressure drugs, and cholesterol drugs, CCI,
ISCED level (greater than level 2 or not), and MET. We used the
“UKB data” field number 21000 to broadly recategorize self-
reported ethnicity into four groups: Asian, Black, Other, and White
(Supplementary Table S5). Each variable was imputed using either
predictive mean matching or model prediction procedure based on
the variable’s distribution. A predictive mean matching procedure
was adopted if the variable was categorical, integer-valued or if its
distribution was skewed, as recommended by miceRanger R pack-
age.”* Otherwise, we used the model prediction procedure. Five
imputed datasets were generated.

For our primary analysis, we implemented a pooled step-wise
variable selection method?® for the Cox proportional hazards model
to simultaneously analyze imputed data and select important varia-
bles contributing to the incidence of diabetes complications. Our
base model includes sex and age, which were not subject to variable
selection. Additional covariates were then added, including smoking
status, BMI, self-reported medication status (insulin, blood pressure,
and cholesterol drug), CCI, ISCED level, MET, PRS (type 1 and
type 2 in European ancestry), and summary statistics of biomarker
trajectories. Sensitivity analysis was conducted among the T2D
cohort. We report hazard ratios with 95% confidence intervals. All
analyses were performed using R version 4.0.2.

Furthermore, we conducted a risk prediction analysis. Using
five imputed datasets, we split the data into training and valida-
tion sets in a 2 to 1 ratio, performed pooled step-wise variable
selection on the training set, and computed risk scores using the
validation set for each imputed dataset. Average risk scores (com-
puted across imputed datasets) were used to assess the prognostic
performances measured by the area under the receiver operating
characteristic curve (AUC). The Kaplan-Meier (KM) curves com-
paring high- and low-risk groups with respect to median risk
scores were also created for multivariable pooled step analysis.
Finally, we sought to use non-European participants as an external
validation cohort to evaluate prediction performance (PRS scores
were not included).

€20z 11dy €0 uo 1sanb Aq 061 £€0./900PE00 | /9/3jo1e/uadoeIWEl/Woo"dno-oiwapese//:sdny Wwoly papeojumoq


https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data

JAMIA Open, 2023, Vol. 6, No. 1

RESULTS

Phenotyping DM, DKD, and DR required the use of primary care
code lists. We initially identified 1083 terms related to diabetes
(Figure 1A) from CALIBER and OpenCodelists resources. Addi-
tional diabetes-related keywords were searched among Read v2 and
Read v3/CTV3 dictionaries, and additional potential terms were
gathered by including all “child codes™ of several Read v2 “parent
codes”. After excluding terms that did not occur at all in the “UKB
Primary Care data,” 1049 eligible terms remained. Of these, 596
terms were retained after 454 terms and keywords were excluded by
expert review because they lacked relevance to a diabetes diagnosis.
We obtained 8 additional terms that mapped directly to an included
term (either Read v2 to Read v3/CTV3, or vice versa), for a total of
604 terms. We split terms into two categories: (1) 312 codes suffi-
cient to classify patients as having DM, and (2) 292 codes which
were used only in the assignment of the first incidence date of the
diabetes phenotype, for those patients who had codes from the first
category. For DKD, 363 eligible terms were reviewed, of which 313
were retained (Figure 1B). Ninety-two of these terms were used to
define the incident event of DKD, while 221 were used to exclude
individuals from the risk set of DKD. For DR, 907 eligible terms
were reviewed, of which 650 were retained. Eighty-one of these
terms were used to define incident events of DR, while 569 were
used to exclude individuals from the risk set of DR (Figure 1C).

Cohort characteristics

Using the “UKB data” and the “primary care data,” we identified a
total of 49049 diabetes participants (Figure 4) who were catego-
rized into either T1D, T2D, or “uncertain” (Supplementary Text).
Among them, 1023 were T1D patients, and 40193 were T2D
patients. A total of 23 833 diabetes subjects had linked primary care
records. Among them, 428 were T1D patients and 20 181 were T2D
(Table 1).

The incidence rates for CVD, DKD, and DR in our cohort were
estimated to be 16.3, 46.2, and 71.8 in 1000-person-years, respec-
tively. There were 18 030 diabetes patients (74% T2D patients) in
the CVD cohort and 3237 of them were identified to have developed
CVD events after the diagnosis of diabetes. Among diabetes
patients, 7302 patients (76 % T2D patients) were in the DKD cohort
and 3113 of them had DKD events. There were 8898 diabetes
patients (80% T2D patients) in the DR cohort and 4922 of them
developed DR.

The median age at study initiation was 61 across all cohorts.
Diabetes patients who developed CVD were generally older than
those who did not (63 vs 60 years old), more likely to be an ever
smoker (58% vs 48%), fewer hours of exercise (21 vs 24 h/week),
higher baseline SBP, HbA ¢, glucose, triglycerides, and uACR meas-
ures. Note that many biomarkers (eg, cholesterol, HDL, and LDL)
were within normal or close to normal range, indicating the UKB

Excluded: 372

[ 502419 Participants with available genetic data

Mismatch of genetic vs.
reported sex

[ 502047 Participants of known sex I

49049 Diabetes patients

Excluded: 452998
No evidence of diabetes mellitus (DM, Type 1 and Type 2)

éardluvascular Disease (CVD) \ Kbiabetlc Kidney Disease (DKD) -\ Kbiabetlc Retinopathy (DR)

1. 4976 excluded with prior CVD at entry 1. 2368 excluded with prior DKD at entry 1. 673 excluded: Prior/uknown date of DR at entry

2. Not applicable 2. 4495 excluded for DKD < 5 years from DM onset 2. Not applicable

3. Not applicable 3. 22489 without DKD have no primary care data 3. 21892 without DR have no primary care data

4. 3676 without CVD excluded as study entry was before 4. 3101 with DKD excluded as study entry was before 4. 6473 with DR excluded as study entry was before
DM onset or after CVD onset DM onset or after CKD onset DM onset or after DR onset

5. 64 excluded for DM or CVD onset after supposed 5. 43 excluded for DM or DKD onset after supposed 5. 51 excluded for DM or DR onset after supposed
censor date censor date censor date

6. 10383 without CVD excluded for conditions 6. 14719 without DKD excluded for conditions 6. 10288 without DR excluded for conditions

7. 7096 without CVD excluded for < 5 years 7. 8230 without DKD excluded for < 5 years 7. 9071 without DR excluded for < 5 years
follow-up from DM onset follow-up from DM onset follow-up from DM onset

8. 16698 without CVD excluded for DM onset 8. 18374 without DKD excluded for DM onset > 6 8. 19220 without DR excluded for DM onset > 6

K > 6 months from study entry /

K months from study entry

j K months from study entry

18030 Diabetes patients

included in CVD analysis

3237 with event, 14793 without

1712 with MI, 1581 with PCI, 1100 with

7302 Diabetes patients
included in DKD analysis
3113 with DKD, 4189 without

8898 Diabetes patients
included in DR analysis
4922 with DR, 3976 without

Ischemic stroke, 606 with ble angina

Figure 4. Flowchart of cohort curation for diabetes and diabetes complications. CVD: cardiovascular disease; DKD: diabetic kidney disease; DR: diabetic retinop-

athy; DM: diabetes mellitus; PCI: percutaneous coronary intervention.
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Table 1. Cohort characteristics

CVD cohort® DKD cohort” DR cohort®
Overall No CVD CVD Overall No DKD DKD Overall No DR DR
n=18030 n=14793 n=23237 P n="7302 n=4189 n=3113 Pc n=_8898 n=3976 n=4922 P

Ethnicity (%) .003 <.001 .012

White 87 86 88 89 88 89 89 90 89

Asian 7 7 7 7 7 6 7 6 7

Black 4 4 3 3 2 3 2 2 3

Other 2 3 2 2 2 2 2 2 2
European (%) 61 61 60 130 63 63 62 494 63 64 62 .089
Primary care subjects (%) 48 49 46 .009 78 100 49 <.001 83 100 70 <.001
Sex (% males) 59 57 71 <.001 63 64 63 .350 61 60 62 167
Age (years) 61 (54, 65) 60 (54, 65) 63 (58,67) <.001 61 (55, 66) 59 (53, 64) 64 (60, 67) <.001 61 (55, 65) 60 (54, 65) 62 (56, 66) <.001
BMI males (kg/m?) 30 (27, 33) 30 (27, 33) 31 (28, 34) <.001 30 (27, 34) 30 (27, 33) 31 (28, 35) <.001 30 (27, 34) 30 (28, 34) 30 (27, 34) 741
BMI females (kg/m?) 31 (27, 36) 31 (27, 36) 32 (28,37) <.001 32 (28, 37) 31 (27, 36) 33 (29, 38) <.001 32(28,37) 32 (27, 36) 32(28,37) .027
Ever smoked (%) 50 48 58 <.001 54 51 59 <.001 54 53 55 .092
Smoking pack years 24 (14, 39) 23 (13, 36) 32 (18, 48) <.001 27 (15,42) 24 (14, 38) 31 (18, 48) <.001 27 (16,42) 26 (15, 40) 28 (16, 44) .030
CCI (%) <.001 <.001 <.001

0 63 66 47 53 65 37 57 62 53

1 24 23 28 24 21 29 24 21 27

2 8 7 14 12 9 16 10 9 11

3 3 3 6 6 4 9 N 4 5

4 1 1 3 2 1 5 2 2 2

>S5 1 1 3 2 1 4 2 2 2
MET (h/week) 23 (10, 51) 24 (10, 51) 21(8,49)  <.001  23(9,51) 25 (10, 54) 19(7,45)  <.001  23(9,51) 23 (9, 52) 22.(8, 50) 113
ISCED level >2 (%) 59 61 52 <.001 56 61 48 <.001 57 58 57 401
DM type (%) <.001 <.001 <.001

Type 1 4 4 2 3 4 1 2 2 3

Type 2 74 74 73 76 79 73 80 83 78

Uncertain 23 22 25 21 17 26 18 15 19
Insulin (%) 20 18 27 <.001 22 15 30 <.001 18 9.3 26 <.001
BP medication (%) 60 57 71 <.001 62 50 79 <.001 62 57 66 <.001
Cholesterol medication (%) 71 70 76 <.001 74 66 83 <.001 73 67 78 <.001
T1D PRS (tertile) 744 341 .348

1 30 30 31 31 31 32 31 31 32

2 32 32 31 32 33 31 33 34 32

3 38 38 38 37 36 37 36 35 36

(continued)
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Table 1. continued

CVD cohort® DKD cohort” DR cohort®
Overall No CVD CVD Overall No DKD DKD Overall No DR DR
n=18030 n=14793 n=3237 Pe n=7302 n=4189 n=3113 Pe n=28898 n=3976 n=4922 P
T2D PRS (tertile) 075 .007 .002
1 18 18 18 18 19 17 17 18 16
2 30 31 28 31 32 29 32 32 31
3 52 51 54 51 49 54 51 49 53
SBP (mmHg) 139 (130, 148) 138 (130, 148) 142 (132,152) <.001 138(129,147) 136 (128,145) 140 (131,150) <.001 138(130,147) 138 (130,146) 139 (130,147) <.001
DBP (mmHg) 82 (76, 87) 82 (77, 87) 81 (75, 87) <.001 81 (76, 86) 82 (77, 86) 80 (74, 86) <.001 82 (77, 86) 82 (77, 87) 81 (76, 86) <.001
Chol (mmol/l) 6(4.0,5.3) 6 (4.0, 5.3) 6(4.0,5.2) 014  4.6(4.1,5.2) 8(4.2,5.4) 4(3.8,5.0) <.001 4 7 (4.1,5.3) 8 (4.3, 5.5) 4 6(4.0,5.2) <.001
Trig (mmol/l) 8 (1.3,2.5) 8(1.2,2.5) 9(1.3,2.7)  <.001 1.8(1.3,2.6) 7(1.3,2.5) 2.0(1.4,2.8) <.001 1.9(1.3,2.6) 9(1.3,2.6) 9(1.3,2.6) .774
HDLc¢ (mmol/l) 2 (1.0, 1.4) 2 (1.0, 1.4) 1(1.0,1.3) <.001 1.2 (1.0, 1.4) 2 (1.0, 1.4) 1(1.0,1.3) <.001 2 (1.0, 1.4) 2 (1.0, 1.4) 2 (1.0, 1.4) .001
LDLc (mmol/l) 7(2.2,3.2) 7(2.2,3.2) 6(2.2,3.1) .009 (2 2,3.2) 7 (2.3,3.3) 5(2.1,3.0) <.001 2 7(2.2,3.2) 8(2.3,3.3) 6(2.1,3.1) <.001
HbA1c (mmol/mol) 51 (44, 61) 51 (44, 60) 54 (46,65)  <.001 52 (45, 62) 1(43, 60) 54(47,64)  <.001 52 (44, 61) 49 (42, 57) 55 (47,64)  <.001
Glucose (mmol/l) 7.0 (5.6,9.4) 6.9(5.5,9.2) 7.4 (5.7,10.1) <.001 (5 7,9.5) 9(5.6,9.1) 7.5(5.8,10.1) <.001 7.2(5.8,9.5) 6.7 (5.5, 8.6) 7.7 (6.1,10.2) <.001
¢GFR (ml/min/1.73 m?) 87.8(75.5,96.9) 88.4(76.5,97.4) 84.3(70.7,94.4) <.001 83.4 (74.1,93.1) 87.4 (79.8,95.7) 75.3 (66.0, 86.8) <.001 83.0(72.3,93.5) 82.9(73.0,93.3) 83.1(71.5,93.8) .730
loguACR (log[g/mmol]) 0.2(-0.4,0.9) 0.1(—0.4,0.8) 0.5(-0.2,1.5) <.001 0.0(=0.5,0.7) —0.3(=0.7,0.1) 0.7(=0.1,2.0) <.001 0.2(—0.4,0.9) 0.1(~0.5,0.7) 0.2(—0.4,1.0) <.001
Incidence rate? 16.31 (15.76-16.88) 46.22 (44.61-47.88) 71.79 (69.8-73.83)

CVD: cardiovascular disease; DKD: diabetic kidney disease; DR: diabetic retinopathy; eGFR: estimated glomerular filtration rate; ISCED: International Standard Classification of Education, dichotomous variable, 1 if ISCED level
was greater than 2 and 0 otherwise; Ever smoked, dichotomous variable, 1 if a subject has ever smoked and 0 otherwise; MET: metabolic equivalents to resting state (h/week); BMI: body mass index (kg/mz); CCI: Charlson Comor-
bidity Index; Chol: total cholesterol (mmol/l); Trig: triglycerides (mmol/l); HDLc: high-density lipoprotein cholesterol (mmol/l); LDLc: low-density lipoprotein cholesterol (mmol/dl); SBP: systolic blood pressure (mm Hg); DBP, dia-
stolic blood pressure (mm Hg); eGFR: estimated glomerular filtration rate (ml/min/1.73 m?); uACR: urine albumin to creatinine ratio (g/mmol).

*Median (IQR) or percent or incidence rate (95% confidence interval); bPer 1000 persons per year;  “Pearson’s Chi-squared test or Wilcoxon rank sum test.
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Table 2. Risk factors associated with the onset of cardiovascular disease, diabetic kidney disease, and diabetic retinopathy for those with
European ancestry within the diabetes cohort

CVD (1937/9064)" DKD (1945/2650)* DR (3063/2544)*

Risk factor HR (95% CI) P HR (95% CI) P HR (95% CI) P
Age 1.05 (1.04-1.06) <.001 1.05 (1.04-1.06) <.001 1.01 (1.01-1.02) <.001
Sex 2.02 (1.80-2.25) <.001 0.96 (0.86-1.06) 418 1.05 (0.98-1.13) 183
ISCED 0.81 (0.74-0.89) <.001

Ever smoked 1.26 (1.15-1.39) <.001 1.21 (1.09-1.34) <.001

MET 0.94 (0.89-1.00) .038 0.96 (0.92-1.00) .03
PRS 1.04 (1.01-1.08) .025
BMI 1.03 (1.02-1.04) <.001 1.03 (1.02-1.04) <.001

CCI 1.26 (1.22-1.30) <.001 1.14 (1.10-1.18) <.001 1.04 (1.01-1.07) .006
CV SBP 1.08 (1.04-1.13) <.001

CV DBP 0.92 (0.88-0.97) .004 0.96 (0.92-0.99) 015
CV glucose 1.08 (1.03-1.14) .004
CV HDLc 1.10 (1.05-1.16) <.001 1.04 (1.00-1.09) .048
CV eGFR 1.08 (1.02-1.14) .009

CV UACR 1.05 (1.00-1.11) .032 1.21 (1.14-1.29) <.001

Mean SBP 1.01 (1.01-1.02) <.001 1.01 (1.00-1.01) <.001 1.01 (1.00-1.01) <.001
Mean DBP 0.97 (0.97-0.98) <.001 0.99 (0.98-0.99) <.001
Mean glucose 1.03 (1.01-1.04) <.001 1.03 (1.01-1.05) <.001 1.04 (1.03-1.06) <.001
Mean Chol. 1.10 (1.04-1.15) <.001 0.83 (0.78-0.88) <.001

Mean Trig. 1.08 (1.03-1.14) .004

Mean HDLc 0.70 (0.60-0.83) <.001

Mean LDLc 0.84 (0.80-0.89) <.001
Mean eGFR 0.98 (0.97-0.98) <.001

Mean UACR 1.05 (1.01-1.08) .007 1.27 (1.16-1.40) <.001

Note: We employed the Cox proportional hazards model and a pooled step-wise variable selection procedure to simultaneously analyze imputed data and select
important variables that are associated with major diabetes complications outcomes. Our base model included sex, and age, which were not subject to variable
selection. Additionally, we included smoking status, BMI, self-reported medication status (insulin, blood pressure, and cholesterol drug), CCI, ISCED level, MET,
polygenic risk scores (type 1 and type 2), and summary statistics of biomarker trajectories including average and CV of SBP, DBP, LDLc, HDLc, total cholesterol,
glucose, eGFR and urine ACR levels. The variables that were not selected do not appear in this table. The values of MET, average of urine ACR levels, CV of all
biomarker levels, and type 1 and type 2 polygenic risk scores were standardized.

CVD: cardiovascular disease; DKD: diabetic kidney disease; DR: diabetic retinopathy; eGFR: estimated glomerular filtration rate; ISCED: International Stand-
ard Classification of Education, dichotomous variable, 1 if ISCED level was greater than 2 and 0 otherwise; Smoked, dichotomous variable, 1 if a subject has ever
smoked and 0 otherwise; MET: metabolic equivalents to resting state (h/week); BMI: body mass index (kg/m?); CCI: Charlson Comorbidity Index; CV, coefficient
of variation; Chol: total cholesterol (mmol/l); Trig: triglycerides (mmol/l); HDLc: high-density lipoprotein cholesterol (mmol/l); LDLc: low-density lipoprotein
cholesterol (mmol/dl); SBP: systolic blood pressure (mm Hg); DBP: diastolic blood pressure (mm Hg); eGFR: estimated glomerular filtration rate (ml/min/
1.73 m?); uACR: urine albumin to creatinine ratio (g/mmol); PRS: type 2 diabetes polygenic risk score.

“Number of cases and controls that were included in the model.

cohort represents a relatively healthy population.?® Interestingly,
T2D PRS tertiles are significantly associated with DKD and DR but
not CVD. In the CVD cohort, 27% versus 18% of the patients who
did versus did not develop CVD events reported insulin usage; while
in DKD and DR cohorts, the proportions were 30% versus 15%
and 26% versus 9.3%, respectively. In general, participants with
DM complications tend to have higher proportions of medication
usage. Among three conditions, DKD patients have the highest insu-
lin, blood pressure, and cholesterol medication usage. Results are
consistent with the literature that DKD patients have more comor-
bidities.!*2” Hyperglycemia is the leading risk factor for DR'? as
indicated by significantly higher baseline mean HbA1c and glucose
measures (Table 1).

Risk of incidence of diabetes complications in the UKB
study

Table 2 shows selected risk factors and their association with the
onset of CVD, DKD, and DR in the diabetes (T1D and T2D) cohort.
Pooled step-wise variable selection identified different sets of risk

factors associated with each complication. Age, male sex, CCI, aver-
age SBP, and average glucose were adversely associated with all
three DM complications. Cigarette smoking, plasma cholesterol,
and uACR are known risk factors for CVD,*® and they were
adversely associated with the development of CVD in our analysis.
Evidence from prior research supports that risk factor variability
predicts the development of diabetes complications*”*® in addition
to their mean levels. For CVD, consistent with prior research, SBP,
HDLc, and uACR variability were associated with an increased risk
of CVD.*! Higher HDLc was reported protective of CVD onset (HR
0.70, CI: 0.60-0.83).3> Both mean and variability of uACR were
associated with the development of DKD. Interestingly, for DR,
both mean and glucose variability were selected as associated risk
factors.?*33-3% T2D PRS was selected for DR and was estimated to
increase the risk of developing DR (HR=1.04, CI: 1.01-1.08).
When we restricted the analysis to T2D subjects, most of the same
variables were selected with similar hazard ratios and P values (Sup-
plementary Table S6). We note that the estimated effects’ directions
of TC and LDL are protective. The possible explanation is partici-
pants with DKD and DR tend to have lower TC and LDL levels
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than those who do not have the condition, potentially due to a
higher proportion using cholesterol-lowering medication.

The risk prediction performance of each outcome was assessed
using validation data. Prediction performance was measured by
AUC (Figure 5). Among the major complication outcomes, DKD
showed the highest AUC (0.86, 95% CI: 0.84-0.88), followed by
CVD (0.73, 95% CI: 0.71-0.75) and DR (0.64, 95% CI: 0.62—
0.67). These results are consistent with the prediction AUC of stand-
ard risk prediction models using cohort studies, suggesting some
equivalence in EHR.?* Supplementary Table S7 shows the selected
variables using the pooled step variable selection procedure with a
training dataset for each outcome. The AUCs for these models
applied to non-European participants were similar (Supplementary
Figure S3). The KM curves comparing the probability of developing
major diabetes complications between low- and high-risk groups
(with respect to a median risk score) are shown in Figure 6. For each
outcome, the high-risk group showed a significantly higher probabil-
ity of progressing to develop DM complications than the low-risk
group. The KM curves of the other outcomes can be found in Sup-
plementary Figure S1.

DISCUSSION

In this paper, we provide a framework to showcase phenotyping for
the study of disease progression using UKB data. We focus on the
definition of events, curation of event dates, and their censoring

Figure 5. Comparison of prediction performance of risk scores as measured by area under the receiver operating characteristic (ROC) curve (AUC). “n.case/n.con-
trol” refers to the number of cases and controls included in the validation data. CVD: cardiovascular disease; DKD: diabetic kidney disease; DR: diabetic retinop-
athy; HS: hemorrhagic stroke; IS: ischemic stroke; MI: myocardial infarction; PCI: percutaneous coronary intervention; ST: stroke; UA: unstable angina.

Outcome | n.case/n.control | AUC (95% CI)
CVD | 577/2724 | 0.73 (0.71-0.75)

DKD | 595/784 | 0.86 (0.84-0.88)

DR | 933/750 | 0.64 (0.62-0.67)

HS | 58/4535 | 0.58 (0.51-0.66)

IS | 193/4464 | 0.64 (0.6-0.68)

MI | 309/2757 | 0.75 (0.72-0.78)

PCI | 280/4325 | 0.69 (0.66-0.72)

ST | 234/4350 | 0.65 (0.61-0.69)

UA | 107/4773 | 0.7 (0.65-0.75)

time. We provide a pipeline to phenotype cardiovascular and micro-
vascular complications after the diagnosis of diabetes. We use diabe-
tes complications as an example because their phenotyping is
heterogeneous, as diabetes disease progression is due to hyperglyce-
mia exposures and many other risk exposures.'? Beyond phenotyp-
ing diabetes complications, we also curated traditional risk factors
longitudinally. Our pipeline enables streamlined calculation of the
incidence event rate, time-varying risk factors underlying disease
progression, and time-to-event analyses. Using curated phenotypes,
we assessed the effects of known risk factors for DM complications.
Existing algorithmic definitions provide rules and procedures to phe-
notype a disease of interest. However, a consistent and organized
framework to produce all necessary data ingredients is lacking. This
step is the bottleneck in applying certain algorithmic definitions for
phenotyping. Our platform comprehensively produces data ingre-
dients in a consistent and modular way to allow the efficient appli-
cation of specific phenotyping algorithms. Using diabetes and its
complications as an example, we show how the platform can gener-
ate needed data ingredients from UKB-provided resources, including
predefined fields associated with diseases and linked primary care
data. In contrast, Eastwood et al applied sequential, multi-level rules
to self-report and nurse interview data to identify subjects with indi-
cations of diabetes.*®

Our analysis results are consistent with Pittsburgh Epidemiology
of Diabetes Complications (EDC) Study and EDIC study where a
similar definition of CVD phenotype was employed.>” They
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Figure 6. Kaplan-Meier (KM) curves comparing the probability of developing major diabetes complication outcomes between low- and high-risk groups among
European validation cohort of diabetes subjects. Individuals were assigned to high-risk group if their risk scores were greater than the median risk score and to
low-risk group if otherwise. CVD: cardiovascular disease; DKD: diabetic kidney disease; DR: diabetic retinopathy.

reported that accounting for other risk factors, higher DBP is protec-
tive against developing CVD, although with a modest hazard ratio
(ie, HR=0.97, CI: 0.97-0.98, P value <.001). Similar observations
were reported before.>! In our analysis, uACR strongly predicts
future DKD. Indeed, albuminuria is the most prominent symptom of
essentially all kidney diseases.*® Interestingly, we reported that
uACR is an independent risk factor for the onset of CVD. It indi-
cates that any degree of albuminuria is a risk factor for CVD events
in individuals with DM; the risk increases with the uACR, starting
well below the microalbuminuria cutoff. Screening for albuminuria
can identify people at high risk for CVD events.*”

We applied strict filtering criteria to filter patients in the risk set.
This means computed incidence rates should be interpreted in the con-
text of subjects with primary care data available (DR and DKD) and
without prior conditions. These exclusion criteria may be removed
according to studies’ needs. CVD outcomes were mostly curated from
hospital records; to keep a larger sample size, we did not require all
the participants to have primary care data. Thus, fewer repeated
measures of biomarkers were involved in capturing their variability.
Although we focused on macrovascular and microvascular events as
diabetes complications, the definitions can be used broadly. We pri-
marily considered right censoring. However, when definitive disease
ascertainment is unavailable, both time-to-event outcomes and covari-
ates are subject to complex censoring mechanisms. In the Supplemen-
tary Materials, we discussed other types of censoring mechanisms (left
censoring and interval censoring).

Our approach has a few limitations. We used an indirect method
to evaluate event definitions rather than an independent “gold”
standard, for example, chart review. The phenotypes created and
evaluated in this manuscript are predominantly diabetes and CVDs
related. Experienced clinicians in our team provided valuable input
for each phenotyping pipeline to maximize the information
extracted from EHRs and minimize the risk of mischaracterizing
patients’ disease onset and progression. Disease or syndrome’s phe-
notypes are often represented by hundreds of terms. As such, while
the method described in our manuscript yields robust results for the
phenotype use cases presented here, additional conditions or terms
may still be necessary to refine the phenotypes. Users should incor-
porate them when seeing fit. Further research is required to ascertain
other disease statuses. Finally, an important contributor to variabil-
ity in risk factors is the effect of changes in dosing or types of medi-
cations, which are often adapted to biomarker levels. As DM
management typically requires many medications, it is particularly
relevant to capture changes in medications over time accurately. We
defer appropriately capturing and incorporating medication use into
future research.

CONCLUSION

We provide a unique resource to showcase time-to-event outcome
phenotyping for the study of disease progression using UKB data.
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Our phenotyping framework, detailed terms curated, and analysis
code are all publicly available to facilitate reproducibility and
transparency.
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