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ARTICLE

Unsupervised discovery of ancestry-informative
markers and genetic admixture proportions
in biobank-scale datasets

Seyoon Ko,'2 Benjamin B. Chu,!3 Daniel Peterson,* Chidera Okenwa,> Jeanette C. Papp,°
David H. Alexander,” Eric M. Sobel,.¢.* Hua Zhou,2 and Kenneth L. Lange!.®8

Summary

Admixture estimation plays a crucial role in ancestry inference and genome-wide association studies (GWASs). Computer programs such
as ADMIXTURE and STRUCTURE are commonly employed to estimate the admixture proportions of sample individuals. However, these
programs can be overwhelmed by the computational burdens imposed by the 10° to 10® samples and millions of markers commonly
found in modern biobanks. An attractive strategy is to run these programs on a set of ancestry-informative SNP markers (AIMs) that
exhibit substantially different frequencies across populations. Unfortunately, existing methods for identifying AIMs require knowing
ancestry labels for a subset of the sample. This supervised learning approach creates a chicken and the egg scenario. In this paper,
we present an unsupervised, scalable framework that seamlessly carries out AIM selection and likelihood-based estimation of admixture
proportions. Our simulated and real data examples show that this approach is scalable to modern biobank datasets. OpenADMIXTURE,

our Julia implementation of the method, is open source and available for free.

Introduction

Discovery of ancestral groups or population structure by
genetic means is of inherent interest for both private
genealogies and public population histories." In addition,
genetic ancestry adjustment is a necessary prelude for
genome-wide association studies (GWASs)* seeking DNA
sites that influence medical or anthropomorphic traits.
Without this safeguard, population stratification can lead
to a false association between a trait and a SNP predictor.®
Ancestry adjustment can be handled by adding a few prin-
cipal components (PCs) of the SNP genotype matrix as trait
predictors. Alternatively, one can substitute admixture pro-
portions (coefficients) in place of PCs. Because admixture
coefficients are the proportions of an individual’s ancestry
from each of several founding populations, they are usu-
ally more interpretable than PCs. In some cases, PCs
have been shown to be inefficient for correcting biases.®
Estimation of ancestry coefficients is carried out simulta-
neously with maximum likelihood estimation of allele fre-
quencies when the underlying populations are latent
rather than explicit. ADMIXTURE’ is a widely used likeli-
hood-based software. ADMIXTURE directly maximizes
the likelihood of the genotype matrix via alternating
sequential quadratic programming with quasi-Newton
acceleration.® Another popular package, STRUCTURE,” im-
plements Bayesian inference; recent extensions of the
Bayesian approach include fastStructure'® and TeraStruc-
ture.'' The EIGENSTRAT software” is the primary vehicle

for PC extraction from the genotype matrix. One can
also achieve dimensionality reduction by approximating
a low-rank linear subspace of the row space of the admix-
ture proportion matrix and then performing matrix
decomposition via alternating least squares, as is imple-
mented in the ALStructure software.'” Matrix decomposi-
tion is further accelerated in the SCOPE software'® by
invoking randomized linear algebra and routines specif-
ically designed for accessing compressed versions of the
genotype matrix.

As the size of genomic data grows, these methods suffer.
In particular, most of the methods fail on the UK Biobank
data,'* which contain {0, 1,2} genotypes on about half a
million British individuals across millions of SNPs. The ge-
notype matrix in PLINK format alone requires around 70
GB of storage. One of the few software programs that is
capable of handling these data is SCOPE,'? which avoids
holding large intermediate matrices in memory. However,
SCOPE's preprocessing of the genotype matrix to speed up
matrix multiplication still requires at least 250 GB of RAM
(random access memory).

One can make ancestry estimation more efficient
by limiting analysis to ancestry-informative markers
(ATMs).">'® Early AIM sets included tens to hundreds of
AIMs.'7?° Even at this crude scale, it is possible to recover
admixture coefficients that correlate well (74%-92%) with
those delivered by the full set of SNPs.”! AIM-based methods
exploit F statistics, absolute allele frequency differences,
principal component loadings, and informativeness in
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ancestry assignment.”>** To their disadvantage, most AIM
selection methods are supervised and based on self-reported
labels. In biobank-scale data, such labels should be viewed
with suspicion.

In the current paper, we advocate first selecting AIMs in an
unsupervised way through a sparse K-means clustering algo-
rithm.** We will refer to this algorithm by the acronym SKFR
(sparse K-means with feature ranking). SKFR performs hard
clustering and feature selection jointly and is scalable to bio-
bank data. Given the selected AIMs, we run a version of
ADMIXTURE’ that leverages the computational advances
of the Julia programming language.>® We call this package
OpenADMIXTURE, in part because of its open-source
status. OpenADMIXTURE incorporates both SKFR and
admixture estimation, supports multithreading, and acts
directly on the input genotype matrix. The maximum
memory demand is less than 120% the size of the input
genotype file. For example, our analysis of the UK
Biobank data with 500,000 individuals and 600,000 SNPs re-
quires only 73 GB of RAM versus the 250 GB required
by SCOPE. OpenADMIXTURE also supports graphics pro-
cessing unit (GPU) acceleration. Runtimes and results of
OpenADMIXTURE are comparable to those of SCOPE
but within the RAM limitations of more typical computers.
Furthermore, OpenADMIXTURE retains the advantages
of a likelihood-based analysis. SKFR is generally useful
in feature selection across a wide variety of clustering
applications beyond genetics. An independent Julia-based
package to efficiently perform SKFR on general datasets is
available.

Material and methods

Sparse K-means with feature ranking (SKFR)

SKEFR selects and ranks a predetermined number of features that
drive K-means clustering.”* Feature selection and clustering are in-
tertwined. In our case, features are standardized SNP genotypes dis-
played in an Ix] matrix X = (x;;). Rows correspond to samples and
columns to features. Standardization of columns to have mean
0 and variance 1 puts all features on the same footing. Given a fixed
number of clusters K, the goal is to assign each individual i and its
corresponding row x! of X to the cluster Cy minimizing the loss

K n
f(B.6) =3 % — 05 = > min x; — 643
i=1" " "

k=1ieC
=|x - BoJ;.

(Equation 1)
Here, the matrix Be {M e {0,1}"** . M1x = 1;} conveys cluster
membership, the matrix @< R conveys cluster centers, and
|-llz denotes the Frobenius norm. The k-th row 6] € R of @ is
the center of cluster Cy. In SKFR with sparsity level S, at most S col-
umns of O are allowed to be nonzero. The SKFR procedure (see Al-
gorithm 1A in appendix A) cycles through the following three
steps until convergence: (1) update the cluster centers, (2) rank
and select features according to their contribution to the loss,
and (3) re-assign samples to clusters according to the selected fea-
tures. In Algorithm 1A, the information criterion h; measures the

drop in the loss when feature j is designated informative. The clus-
ters are initialized by the K-means+-+ scheme.”® Initial cluster cen-
ters emerge after steps 2 and 3 are performed on the standardized
matrix X. The section “missing genotypes” sketches a modifica-
tion of the algorithm to handle missing data.

On convergence, the SKFR algorithm yields (1) a ranked list L of
selected AIMs, (2) hard clustering assignments B of each sample to
one and only one cluster, and (3) cluster centers ©. A new set of
PLINK files containing only the selected AIMs is generated via
the SnpArrays Julia package.

Missing genotypes

Genotype data often include missing values. In practice, genotype
imputation precedes GWAS. However, imputing genotypes at bio-
bank scale is extremely resource and computation intensive, tradi-
tionally taking days to months on a cluster. Modern software””-*®
has reduced this bottleneck. Following Chi et al.,>” we extend
SKFR to incorporate missing data in a mathematically principled
way. Let QC{1,...,I}x{1,...,]} denote the subset of indices
corresponding to the observed entries of X. In this notation, the
modified loss is

fo(B.6) = |Po(X — BO)|I5,

where Po(M) zeros all entries of a matrix M not in Q.

The quickest route to minimization of the loss passes
through the majorization-minimization (MM) principle.**?
At iteration n of a search, we construct the surrogate func-

(Equation 2)

tion g(B,6|B,,0,) = |Y, —BO|? majorizing the loss, where
Y, = Po(X) + Py (B,®,) and Q* denotes the set of missing
values. In other words, we leave observed values untouched
and impute missing values by their predicted values on the basis
of the centers of their current cluster assignments. The MM
principle guarantees that minimizing the surrogate reduces the
loss. This monotonic algorithm is summarized in Algorithm
1B in appendix A. The current code differs from the code pre-
sented in Zhang et al.”* by standardizing the genotype matrix
beforehand with the observed values rather than repeatedly
standardizing on the fly with both the observed and imputed
values. The current implementation is more efficient and still
mathematically sound.

Estimation of admixture proportions

In contrast to hard clustering, soft clustering estimates the
probability of a sample belonging to each of the K clusters. Soft
clustering algorithms like ADMIXTURE’ better account for ambi-
guities than hard clustering and in GWASs more realistically adjust
for population structure. In this section, we describe a Julia imple-
mentation of ADMIXTURE that capitalizes on parallel processing
and GPU support. Recall that ADMIXTURE simultaneously esti-
mates a population-specific allele frequency matrix Pe R and
an individual-specific admixture matrix Qe R**! by maximizing
the log likelihood

E(P, Q) = Z |:X,‘f lOg <Zpk,‘qki) =+ (2 — xi,»)log(l — Zpquki>:| .

ij

(Equation 3)
Here, each raw genotype x; follows a Binomial(2,} pyqxi)
3

distribution, where the parameters satisfy the

straints ijlqki = 1 and g, pyj € [0, 1]. Maximization is carried
out by block ascent, alternating updates of P and Q by sequential
quadratic programming with quasi-Newton acceleration.®

con-
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Given an objective function f(x), sequential quadratic program-
ming finds the next iterate x,,,1 = x, + A by minimizing the sec-
ond-order approximation

f(x,+A) = f(x,) +df (x,)A + %Aszf(x,,)A

with respect to A subject to relevant constraints. Here, df (x) is the
first differential (transposed gradient) and d?f (x) is the second dif-
ferential (Hessian) of f(x). With linear constraints and upper and
lower bounds, one can exploit a standard pivoting strategy to
solve this quadratic program.** ADMIXTURE accomplishes pre-
cisely this with the objective equal to the negative log likelihood.
In the block ascent updates, the SNP-specific allele frequencies and
individual-specific admixture proportions are parameters that can
be separated. This results in an overall computational complexity
of O[(I+])K?] for the quadratic programs, which is negligible
compared to the bottleneck of O(IJK?) in computing Hessians, as
K « I,]. Admixture proportions are initialized by five iterations
of FRAPPE’s EM (expectation maximization) algorithm.**
OpenADMIXTURE leverages Julia to achieve higher perfor-
mance. The core computations of sequential quadratic program-
ming now exploit tiling to maximize locality and avoid cache
misses. Users can choose to offload most computations to graphics
processing units (GPUs) for further speedup. OpenADMIXTURE'’s
default setting declares convergence when the relative change in lo-
glikelihoods is less than 10~7. Supervised inference is possible by
fixing P and updating only Q or fixing Q and updating only P.
The former is pertinent when admixture proportions are sought
and predefined allele frequencies from reference populations are
used. The latter is pertinent when allele frequencies are sought for
the reference populations whose admixture coefficients are fixed.

Software input and output

Our OpenADMIXTURE package internally runs a pipeline of SKFR
and then admixture estimation. As mentioned above, SKFR is
also available as a stand-alone package for use on general datasets
(see “data and code availability”). It is also possible to run
OpenADMIXTURE with all available SNPs and bypass AIM discov-
ery through SKFR. Given these considerations the input and
output conventions adopted by OpenADMIXTURE are the
following.

For SKFR

Input: a single set (bed, fam, bim) or collection of PLINK binary
files, the number of clusters, and the number of AIMs.

Output: a single set of PLINK binary files containing only the
selected AIMs and a file containing hard clustering results, where
each row indicates the cluster to which a sample is assigned. A
filtered PLINK file containing only the AIMs is optional.

For admixture estimation

Input: a single set (bed, fam, bim) or collection of PLINK binary
files, possibly filtered to contain only the selected AIMs under
SKFR, and the number of clusters.

Output: a P file where each row indicates the cluster-specific
allele frequencies of an AIM and a 0 file where each row indicates
the estimated admixture proportions of an individual.

Selection of the number of clusters K

To choose the number of clusters K, the gap statistic of Tibshirani
et al.*® is handy. As a permutation test, the gap statistic requires
running SKFR with different values of K, and samples revised by
randomly shuffling genotypes across each SNP.

Warm start for a path with different sparsity level S

It is often desirable to explore a variety of AIM sparsity levels S on
the same dataset. This can be done efficiently by starting with the
highest level Sy desired and gradually decreasing S. The results
from a given S are then invoked to warm start computations at
the next lower level of S. OpenADMIXTURE’s ranking of AIMs
facilitates this tactic.

Further computational tactics

We directly exploit the structure of the PLINK bed format®®
to reduce memory usage through OpenMendel’s’’ package
SnpArrays. Further tactics that improve computational efficiency,
such as initialization, recursive tiling for cache efficiency,*® multi-
threading, and GPU acceleration®” are discussed in the supple-
mental methods, A.

Performance evaluation

Permutation matching of clusters

Clustering results derived from two separate algorithms can be
compared by various statistics. Any pertinent statistic should be
invariant under permutation of cluster labels and match similar
clusters. We carry out matching following the approach of Behr
et al.*” The similarity between cluster m of Q' and cluster n of
@ is quantified by

Zf: 1 (quni - qrzn')z

12\ 1 _
j(qqun) =1 2|N*| ’

where N* = {i:ql.+q% > 0}. Cluster matching can be formu-
lated as an assignment problem maximizing the criterion
S xXmnJ(q),,q%) subject to the constraints Xm,e {0,1} and
m.n

fokm = fonk = 1. In practice, the domain of x,,, is relaxed
to the unit interval, and the problem is solved by linear program-
ming via JuMP,*' Julia’s mathematical optimization package.
Visualization

We visualize estimates for admixture proportions as stacked bar plots.
The clusters in each run are matched for easy comparison. To deter-
mine the order of samples, we rely on hierarchical clustering with
complete linkage based on the OpenADMIXTURE Q estimates.
The samples are ordered within each population, and the popula-
tions are ordered on the basis of hierarchical clustering of cluster cen-
ters. The same is done for superpopulations whenever applicable.

Real datasets

Our evaluation of OpenADMIXTURE relies on four independent
datasets: 1000 Genomes Project (TGP),**** Human Genome Diver-
sity Project (HGDP),****> Human Origins (HO),*® and UK Biobank
(UKB, retrieved under Project ID: 48152) in compliance with the
data use agreements. The TGP dataset consists of the 2012-01-31
Omni Platform genotypes confined to unrelated individuals with
at least a 95% genotyping success rate and SNPs with at least a 1%
minor allele frequency (MAF). The filtered dataset contains 1,718
individuals and 1,854,622 SNPs. The original VCF-formatted data
are converted to PLINK bed format. Samples are labeled as
belonging to one of 26 populations, which are grouped into five
superpopulations designated African, admixed American, East
Asian, European, and South Asian. The HGDP dataset contains
the individuals in the Stanford H952 dataset with greater than a
95% genotyping success rate and SNPs with at least a 1% MAFE.
The HGDP data contain 642,951 SNPs and 940 individuals across
32 populations, which are grouped into seven continental
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Table 1.

Accuracy of estimated admixture proportion on the simulated datasets

N o o Percentage of SNPs selected as AIMs by SKFR (baseline)

of samples ;)f SNPs populati:::\s 2.5% 5% 7.5% 10% 125% 15% 17.5% 20% 100% SCOPE
1,000 10,000 5 0.0457 0.0365 0.0320 0.0292 0.0276  0.0263 0.0252 0.0244 0.0196* 0.0309
1,000 100,000 5 0.0154 0.0122 0.0110 0.0101 0.0098  0.0093 0.0092 0.0091 0.0089* 0.0104
1,000 1,000,000 5 0.0065 0.0063 0.0064 0.0064 0.0066  0.0065 0.0067 0.0067 0.0076 0.0056*
10,000 10,000 5 0.0482 0.0371 0.0332 0.0310 0.0296  0.0285 0.0277 0.0270  0.0231* 0.0333
10,000 100,000 5 0.0166 0.0135 0.0120 0.0111 0.0106  0.0103 0.0100 0.0098  0.0088* 0.0126
1,000 10,000 10 0.0539 0.0428 0.0369 0.0337 0.0315  0.0298 0.0287 0.0277  0.0226* 0.0307
1,000 100,000 10 0.0183 0.0148 0.0136 0.0131 0.0128* 0.0129 0.0130 0.0131 0.0176 0.0128*
1.000 1,000,000 10 0.0114 0.0113 0.0114 0.0117 0.0118  0.0120 0.0122 0.0124 0.0169 0.0098*
10,000 10,000 10 0.0529 0.0421 0.0373 0.0344 0.0324  0.0309 0.0298 0.0291  0.0234* 0.0320
10,000 100,000 10 0.0186 0.0148 0.0131 0.0121 0.0113  0.0108 0.0104 0.0101 0.0082* 0.0122

Accuracy is measured in terms of root-mean-square error. The best value in each row is denoted with an asterisk.

superpopulations: Europe, Middle East, Central South Asia, East
Asia, Africa, America, and Oceania. The HO dataset is filtered to
include only samples with at least a 99% genotype success rate
and SNPs with at least a 5% MAF. The HO data contain 385,089
SNPs for 1,931 people across 163 populations. Continental popula-
tion labels are not provided. For the UKB dataset,'* we filtered bulk
genotypes to include individuals with at least a 95% genotyping
success rate and SNPs with at least a 1% MAF. The resulting data
include 488,154 individuals and 610,741 SNPs.

Simulations

We simulated data following the Pritchard-Stephens-Donnelly
(PSD) model’ based on the software provided in the SCOPE pack-
age."? In the PSD model,

i~ Bet 1 -
pk/ ¢ a< FST A FST ( pA))
q.i ~  Dirichlet(aI).

The allele frequencies py; are sampled following the Balding-
Nichols*” model, a beta distribution characterized by the fixation
index Fsr and the initial allele frequency p,. We sample Fsr and p,
from their distributions in the TGP dataset, as illustrated in
Figure S1. For admixture proportions g, we sample a Dirichlet dis-
tribution with @« = 0.2, and for each genotype we sample from the
binomial distribution

K
Xij ~ Binomial (2 Zpkiqki> .
k=1

Initial allele frequencies ps outside the interval [0.005,0.995] are
clipped to the closest endpoint. To simulate weak genetic struc-
ture, we also sampled Fsr uniformly from the range (0, 0.01) rather
than from the Fsr distribution found in the TGP data.

Results

Simulation studies

To determine a reasonable number of AIMs to choose using
SKFR, we simulated independent datasets with various
numbers of samples, numbers of SNPs, and numbers of

populations. Table 1 records root-mean-square errors.
Without filtering SNPs, OpenADMIXTURE shows better
accuracy compared to SCOPE when the number of samples
dominates the number of SNPs. SCOPE performs better in
the reverse situation. In either case, selecting 15%-20% of
the SNPs as AIMs via SKFR gives a good intermediate root-
mean-square error between that of OpenADMIXTURE and
SCOPE, where both use all the SNPs. When there are a
million SNPs and 1,000 samples, similar to the TGP and
HGDP datasets, using SKFR to select just 25,000 SNPs
(2.5% of the SNPs) is enough for reasonable results. There
is no evidence that selection by SKEFR is biased in terms of
either allele frequency or fixation index Fsr. Indeed,
Figures S1 and S2 display no visible difference in either
measure’s distribution before and after SKFR selection.
We also examined a version of SKFR selecting a prede-
fined number of AIMs per cluster, proposed as “SKFR2” in
Zhang et al.”* The results are displayed in Table S1, which
is largely similar to Table 1. As the AIMs selected by each
cluster may overlap, it is difficult to control the total num-
ber of AIMs selected under this strategy. To directly control
the total number of AIMs, we use the version discussed in
section “sparse K-means with feature ranking (SKFR)”, se-
lecting predefined number of AIMs across all the clusters
(“SKFR1”) for our analysis of real data. Our software sup-
ports both versions of SKFR.
Selection of K
Table 2 shows the value of K chosen under different settings.
The gap method consistently chooses K close to the true
value during data generation, even with a relatively small
number of selected AIMs. However, when the number of
AIMs is less than 0.5% of the total number of SNPs, the
limited information available causes the gap statistic to un-
derestimate K. Choosing at least 10,000 to 100,000 AIMs
works well in general. Table 2 suggests that SKFR’s deletion
of uninformative SNPs tends to improve clustering. Table S2
presents the values of K selected under our weak structure
simulations with reduced F¢r. Cluster number estimation
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Table 2. Number of clusters inferred by the gap statistics in SKFR

N o N Percentage of SNPs selected as AIMs by SKFR (baseline)
samples of of SNPs populatizlf\s 0.1% 0.2% 0.5% 1% 2% 5% 10% 20% 50% 100%
1,000 10,000 5 2 3 3 4 4 4 4 4 4 4
1,000 100,000 5 3 4 4 4 4 4 4 4 4 4
1,000 1,000,000 5 4 4 4 4 4 4 4 4 4 4
10,000 10,000 5 4 3 3 4 4 4 4 5 5 4
10,000 100,000 5 3 4 4 4 5 5 5 5 5 5
1,000 10,000 10 3 4 6 8 8 10 10 9 8 8
1,000 100,000 10 10 10 9 9 9 9 9 9 8 8
1,000 1,000,000 10 8 8 10 10 10 9 9 9 9 7
10,000 10,000 10 2 4 6 8 8 9 10 10 10 10
10,000 100,000 10 8 8 10 10 10 10 10 10 10 13

Allele frequencies and fixation indexes, Fsr, are sampled from the values of SNPs in the TGP data. Admixture proportions are sampled from a Dirichlet distribution

with « = 0.02. See the text for simulation details.

is unstable, with estimated values of K usually too low but
occasionally too high. Again, the gap statistic is stymied
by the limited information available.

Large-scale real datasets

Hard clustering via SKFR

To evaluate the clustering performance of SKFR, we ran it
on the TGP data with K = 8 clusters, the HGDP data
with K = 10 clusters, and the HO data with K = 14 clus-
ters, choices consistent with previous analyses of these
data.''"'® Recall that in the TGP data, each individual is
labeled as coming from one of 26 populations and one of
five superpopulations. We tried ten different initializations
for sparsity level § = 100,000 and chose the best clus-
tering according to the loss function of Equation 2. Then
we successively decremented S to 80,000, 60,000, 40,000,
20,000, 10,000, and 5,000 by using the warm start tactic
described in section “warm start for a path with different
sparsity level S”. We computed the adjusted Rand index
(ARD*** and the normalized mutual information
(NMI)*” between our hard clusterings and the five superpo-
pulation labels originally attributed to the sample individ-
uals. Although these two metrics are rather opaque, they
do allow the number of clusters to differ in each clustering.
These measures were also computed for the baseline
K-means clustering with all SNPs included. The baseline
results also reflect ten different initializations.

Table 3 for the TGP data shows that SKFR’s hard cluster-
ings clearly outperform the baseline K-means results and
that the SKFR results are stable across a wide range of
selected SNPs. When we exclude the admixed American
(AMR) superpopulation in our assessment, our clusters
perfectly capture the four remaining superpopulations. It
appears that including uninformative SNPs or admixed
samples creates unwanted noise that obscures true clusters.
For the HGDP and HO data (Tables S3 and S4, respectively),
the ARI and NMI measures delivered by SKFR are compara-

ble to but slightly worse than those of the baseline
K-means. For the HGDP data this anomalous result may
stem from the admixed nature of the HGDP superpopula-
tions. It is also noteworthy that the HO data include 163
different population labels. For the HGDP and HO data,
ARI and NMI decrease as we choose more AIMs, up to a
total of 100,000 selected AIMs. This anomaly may have
two sources. First, we are relying on possibly inaccurate
self-reported population labels. Second, we are hard label-
ing individuals who may be admixed. Unlike the TGP
data, where it is straightforward to distinguish admixed
populations (one continental label is literally “admixed
Americans”), it is much more difficult to isolate less ad-
mixed populations from continental labels in the HGDP
data, as it intentionally collected samples with more
diverse background. In the case of HO, no continental la-
bels are provided to compare to the 163 population labels.
Admixture estimation

We recorded concordance with ancestry labels included
in the datasets as a performance measure for soft clustering
under OpenADMIXTURE. We also trained a softmax
(multinomial logistic) classifier to predict superpopulation
labels using TGP data with the inferred admixture propor-
tions as predictors. Since the results are continuous
proportions rather than hard clusters, cross-entropy is a
reasonable measure of error. We additionally matched
clusters as discussed in section “permutation matching
of clusters” and computed root-mean-square error
(RMSE) compared to the OpenADMIXTURE estimates
with all SNPs included.

Tables 4, S5, and S6 display our complex findings for the
TGP, HGDP, and HO datasets, respectively. The accuracy of
OpenADMIXTURE classification with a limited number
of AIMs is roughly comparable to that of SCOPE, which
employs all SNPs. In general, cross-entropy decreases (im-
proves) as we select more AIMs in OpenADMIXTURE's
inference. In particular for the HO and TGP datasets, the
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Table 3. Hard clustering performance on the TGP data with all samples

All samples Without AMR

Number of AlMs ARI NMI ARI NMI

5,000 0.824 0.839 1.000 1.000
10,000 0.825* 0.840 1.000 1.000
20,000 0.825* 0.840 1.000 1.000
40,000 0.825* 0.841* 1.000 1.000
60,000 0.824 0.840 1.000 1.000
80,000 0.825* 0.840 1.000 1.000
100,000 0.822 0.837 1.000 1.000
All SNPs 0.575 0.726 0.726 0.802

Performance for “all samples” measured relative to the five superpopulation labels and also for the samples not including the admixed Americans (“without AMR")
relative to the remaining four superpopulation labels. Performance is evaluated with the adjusted Rand index (ARI) and the normalized mutual information (NMI).
The best value in each column is denoted with an asterisk, except when the maximum value of 1.0 is reached. The category “all SNPs” refers to baseline results

under K-means.

OpenADMIXTURE estimates with 60,000 or more AIMs
outperform SCOPE. The RMSEs of SCOPE and AIM-driven
OpenADMIXTURE are also roughly comparable within
each of the three datasets. SCOPE does somewhat better
on the HO data, while OpenADMIXTURE does better on
the HGDP and TGP data. Again, we stress that the admixed
nature of the data may obscure the value of limiting anal-
ysis to AIMs and cloud the choice of the optimal number
of AIMs.

The TGP data demonstrate the value of excluding samples
known tobe admixed. Table 4 shows that OpenADMIXTURE
classification is perfect for the non-AMR individuals with at
least 20,000 AIMs selected. The table also shows better
cross-entropy for classifying non-admixed samples versus
all samples. Table S7 reinforces these findings by omitting
AMR samples during SKFR AIM selection prior to admixture
analysis. Table S7 shows slightly better classification perfor-
mance than that recorded in Table 4 with the same number
of AIMs.

For the UKB data with K = 4 and K = 15 clusters, we
computed the accuracy of the softmax classifier with three
sets of labels. The first set (L1) uses all 22 raw labels. The sec-
ond (L2) uses the eight labels, British, Irish, Indian, Pakistani,
Bangladeshi, Caribbean, African, and Chinese, for roughly
homogeneous populations and removes mixed or uncertain
labels such as “mixed” or “other.” The third set (L3) merges
L2’s populations into four continental groupings, British-
Irish, Indian-Pakistani-Bangladeshi, Caribbean-African, and
Chinese. Table S8 reports this classification accuracy for
OpenADMIXTURE with § = 100,000 AIMs for K = 4 clus-
ters and with § = 80,000 AIMs for K = 15 clusters and for
SCOPE with all SNPs included. SCOPE failed to run with
K = 15 clusters, giving not-a-number (NaN) internal errors.
Note that our preprocessing is simpler than that of Chiu
etal."?

We checked whether OpenADMIXTURE can capture
regional structure in the historically British subset of the
UKB data used to compute PCs."* The subset consists of

147,604 typed SNPs on 430,815 subjects who self-identify
their ethnicity as British. As dictated by the gap statistic, we
set the number of populations to K = 9 and trained a
softmax classifier to predict the assessment region of
each subject. The 22 assessment centers across UK can
be grouped into five regions: North England, South En-
gland, North Wales, South Wales, and Scotland. There is
no center in North Ireland. The training accuracy with
OpenADMIXTURE is 67.7%. SCOPE with K = 9 exhibits
a training accuracy of 64.9%. We also trained the softmax
classifier with eight PCs to match the number of free pa-
rameters under clustering.”’ The training accuracy with
principal-component analysis (PCA) is 67.5%, very similar
to OpenADMIXTURE’s 67.7%. Our results are displayed in
Table S9. This type of analysis is limited by the imperfect
relationship between assessment centers visited and
ancestry.

Visualization

Figures 1, 2, and 3 depict the inferred admixture proportions
for the TGP, HGDP, and HO datasets. Each figure includes
three graphs: first, the results from OpenADMIXTURE with
all SNPs; second, the results from OpenADMIXTURE with
100,000 AIMs; and third, the results from SCOPE.

Computation times and maximum memory
requirements

Most of our numerical experiments were run on Amazon
Web Services (AWS). Table S10 lists the hardware instances
invoked for computation. For our GPU experiments, we
used two types of GPUs. The first, Nvidia A10G in a
g5.4xlarge instance, is a moderate-grade GPU designed
for low-cost performance. The second, Nvidia V100 in a
p3.2xlarge instance, is specialized for scientific computing.
The main difference between the two is double precision
performance. By design, double precision performance
on Nvidia A10G is 32 times slower than single precision,
while double precision on Nvidia V100 is only twice as
slow as single precision.
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Table 4. Performance comparison of OpenADMIXTURE and SCOPE on the TGP dataset

All samples Without AMR
Number of AIMs Accuracy Cross-entropy Accuracy Cross-entropy RMSE from Baseline
5,000 0.941 313 1.000 37.4 0.234
10,000 0.947 295 0.998 34.9 0.185
20,000 0.947 284 1.000 33.4 0.152
40,000 0.953 274 1.000 31.7 0.164
60,000 0.971 242 1.000 29.0 0.043
80,000 0.968 241 1.000 30.5 0.033
100,000 0.969 241 1.000 30.1 0.027*
All SNPs 0.980* 232* 1.000 27.3* -
SCOPE 0.979 248 1.000 32.1 0.044

Performance is measured by training accuracy and cross-entropy with the five (four without admixed Americans [“without AMR"]) continental labels delivered
by the trained softmax classifier. Root-mean-square error (RMSE) from baseline compares estimated admixture coefficients to those with all SNPs included and
regular ADMIXTURE run without prior SKFR AIM selection (“all SNPs”). The best value in each column is denoted with an asterisk; accuracy has a maximum

value of 1.0.

Comparison to SCOPE

It is instructive to compare the runtimes of OpenADMIX-
TURE (pipelining SKFR followed by admixture estimation)
to those of SCOPE. For our pipeline on the TGP data, when
all 16 available threads are used in a g5.4xlarge instance, a
single SKFR run takes 1 min 36 s. Filtering takes less than a
minute. The subsequent run of admixture estimation takes
less than 5 min with 100,000 or fewer SNPs. Cumulatively,
the pipeline takes fewer than 7 min. On the other hand, a
SCOPE run on the TGP data takes slightly over 16 min on
the same hardware.

For the UKB data with K = 4, a single run of SKFR takes
44 min on a compute-optimized c6i.16xlarge instance
with 128 GB memory. The maximum memory footprint
is 73.2 GB. Creating the PLINK files containing only the
selected AIMs takes less than 10 min. The subsequent
admixture estimation run with 100,000 selected SNPs
takes 29 min on a V100 GPU. Thus, the total pipeline
runtime, invoked by a single OpenADMIXTURE call, was
under 83 min. SCOPE took a similar 91 min to run on
the UKB dataset. Since SCOPE’s memory requirement for
this dataset is 250 GB, it had to be run on a more expensive
memory-optimized r6i.16xlarge instance with 512 GB
memory. In summary, total computation times are compa-
rable, but OpenADMIXTURE is clearly less memory inten-
sive than SCOPE.

Runtime improvement versus the original ADMIXTURE soft-
ware

Although itinvokes the same statistical model and optimiza-
tion strategy, OpenADMIXTURE delivers better performance
than the original ADMIXTURE software. Table S11 records
the per-iteration times of various admixture estimation rou-
tines on the TGP data with 100,000 AIMs. 16-thread CPU
and A10G GPU experiments were performed on an AWS
g5.4xlarge hardware instance; V100 GPU experiments were
performed on an AWS p3.2xlarge hardware instance.

OpenADMIXTURE software, when restricted to CPUs, is
2.8 times faster on a single thread, and 8 times faster in a
16-thread run, compared to the original ADMIXTURE.
When a GPU is available, OpenADMIXTURE accelerates
computation by another factor of 2-4, depending of course
on the GPU hardware and the floating-point precision
invoked.

Discussion

This paper presents a biobank-scalable, unsupervised pipe-
line for AIM selection and admixture estimation. Our proced-
ures provide both interpretable admixture coefficients and
population-specific allele frequencies. Our Julia package
OpenADMIXTURE implements the entire pipeline. The
SKFR (sparse K-means with feature ranking) component of
the pipeline is highly parallelized and effective in AIM
selection. SKFR’s unsupervised clustering is insensitive to a
small fraction of labeling errors and admixed samples. SKFR
also delivers an explicit ranking of AIMs. Our experiments
suggest that 10,000-100,000 AIMs deliver better clusters
than full biobank-scale SNP sets. Uninformative SNPs
simply constitute noise that slows clustering and obscures
subpopulations.

The second component of the pipeline, estimation of
admixture proportions, is an open-source re-implementa-
tion in the Julia programming language of our previous pack-
age ADMIXTURE. The original ADMIXTURE’ is widely used,
with over 5,400 Google citations. OpenADMIXTURE is up to
8 times faster than ADMIXTURE on CPUs with multithread-
ing and even faster on computers with GPUs. Total computa-
tion time is comparable to SCOPE, another method
currently scalable to biobank data. We have shown that
both OpenADMIXTURE and SCOPE can analyze a dataset
with 500,000 individuals and 600,000 SNPs in well under
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A OpenADMIXTURE: All SNPs

B OpenADMIXTURE: 100,000 SNPs

C SCOPE
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GIH: Gujarati Indians in Houston, USA
YRI: Yoruba in Ibadan, Nigeria
LWK: Luhya in Webuye, Kenya

KHV: Kinh in Ho Chi Minh City, Vietham
JPT: Japanese in Tokyo, Japan

CHS: Han Chinese in South China

CHB: Han Chinese in Beijing, China
FIN: Finnish in Finland

GBR: British in England and Scotland

CDX: Chinese Dai in Xishuangbanna, China

CEU: NW European Ancestry in Utah, USA
IBS: Iberian in Spain

TSI: Toscani in Italy

ACB: African Caribbean in Barbados

ASW: African Ancestry in SW USA

PUR: Puerto Rican in Puerto Rico

CLM: Colombian in Medellin, Colombia

PEL: Peruvian in Lima, Peru

MXL: Mexican Ancestry in Los Angeles, USA

Superpopulations

[ SAS | EAS |

EUR

SAS: South Asian

AFR: African

EAS: East Asian

EUR: European

AMR: Admixed American

Figure 1. Estimated ancestry of TGP data samples

(A-C) Using OpenADMIXTURE with all SNPs, using OpenADMIXTURE with 100,000 AIMs (B), and using SCOPE (C). These are stacked
bar plots with the y axis indicating the proportion of total ancestry. The x axis runs over all samples; the population labels originally
assigned to these samples within the dataset are provided in the lower sections of the figure.

2 h. The paper'’ introducing SCOPE took about 24 h to
analyze the same data. However, the current version of
SCOPE is more efficient than the original version, and com-
puters are more powerful.

The memory demands of OpenADMIXTURE are excep-
tionally light as a result of its systematic exploitation of
PLINK'’s binary format for both computation and genotype
storage. OpenADMIXTURE’s peak memory footprint is
less than 120% of the size of the genotype input file.
Overall, OpenADMIXTURE’s memory footprint is less than
30% of that of SCOPE. Specifically, to analyze the above
biobank dataset, SCOPE requires 250 GB of RAM, while

OpenADMIXTURE needs under 75 GB. OpenADMIXTURE
is also based on a likelihood model that incorporates basic
population genetics concepts.

The computational complexity O(IJK?) of Hessian compu-
tation is a bottleneck for OpenADMIXTURE in dealing with
K > 20 populations. Limiting analysis to a small number of
AIMs reduces runtimes but does not eliminate the K? depen-
dence. If it is found desirable to tackle problems with large K,
then gradient ascent might be helpful. Unfortunately,
gradient ascent subject to constraints tends to be slow unless
one can determine a nearly optimal step size. Line searches
along the gradient direction require repeated log likelihood
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Figure 2. Estimated ancestry of HGDP data samples

(A-C) Using OpenADMIXTURE with all SNPs (A), using OpenADMIXTURE with 100,000 AIMs (B), and using SCOPE (C). These are
stacked bar plots, with the y axis indicating the proportion of total ancestry. The x axis runs over all samples; the population labels orig-
inally assigned to these samples within the dataset are provided in the lower section of the figure.

evaluations and are expensive. We defer resolution of this
issue to future research.

We have ignored the possible biological insights offered by
the AIMs selected by SKFR. The genomic locations of AIMs
and their relation to the ancestral populations of the samples
warrant further research. The version of the SKFR algorithm
that selects different AIM sets for different clusters may

potentially improve biological interpretability. This issue
also warrants further research. Selecting the number of clus-
ters K and the sparsity level S is a third issue. Methods based
on cross-validation require repeated runs of the pipeline and
may be impractical on biobank-scale data. Because OpenAD-
MIXTURE relies on a likelihood model, determination of K is
possible on the basis of the Akaike information criterion

A OpenADMIXTURE: All SNPs

1.0
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0.4
0.2
0.0

B OpenADMIXTURE: 100,000 SNPs

1.0
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Figure 3.

Estimated ancestry of HO data samples
(A-C) Using OpenADMIXTURE with all SNPs (A), using OpenADMIXTURE with 100,000 AIMs (B), and using SCOPE (C). These are
stacked bar plots, with the y axis indicating the proportion of total ancestry. The x axis runs over all samples.

322 The American Journal of Human Genetics 170, 314-325, February 2, 2023



(AIC) or the Bayesian information criterion (BIC). The cur-
rent paper relies on the standard gap statistic for choosing
K.*® Alternatively, one can run SKFR with a variety of K values
and then check AIC or BIC with the selected clusters and
AIMs with OpenADMIXTURE. For selecting the sparsity level
S, avariant of gap statistics may be helpful as well.** If genetic
structure is weak, K may be overestimated, particularly when
too few AIMs are chosen. We recommend a minimum of
10,000 AIMs. Again, the optimal method for choosing K is
a question for future research.

OpenADMIXTURE offers the option of inferring
admixture proportions on the basis of the population allele
frequencies available in reference panels such as TGP. This
approach fixes the allele frequency matrix P and only
updates the admixture coefficient matrix Q. Sequential
quadratic programming easily solves this simplified convex
problem, which is parameter separated across samples.
Thus, OpenADMIXTURE can be readily applied to sample
collections ranging from small to biobank scale.

In summary, OpenADMIXTUREis a substantial upgrade of
ADMIXTURE. Although the full panoply of options already
available in ADMIXTURE has not yet been implemented,
the ADMIXTURE community will surely welcome an open-
source version that can be cooperatively developed further.
The OpenMendel tools that OpenADMIXTURE already ex-
ploits provide a clear path to further improvement. We also
expect Julia’s parallelization ecosystem to expand over
time. We solicit the suggestions and assistance of committed
users in the ADMIXTURE community in our efforts.

Appendix A

Algorithm 1A. SKFR Algorithm

Input: Standardized genotype matrix X e R™/, num-
ber of clusters K, sparsity level S, and initial clusters Cy.
repeat
for all cluster k: do
O = &g 2 Xi
end for &
for all feature j: do
Rank j by criterion b = 3|Cy|6;
end for k
Let L be the set of S features with the highest h;
for all sample i: do
Assign sample i to the cluster Cy that minimizes
¥ (i — ) + > x;
jel jé€L
end for
for all feature j&L: do
Put j-th column of © to zero
end for
until convergence
return Cluster assignments B (byx = licc,), ©, and
ranked list L.

Algorithm 1B. SKFR Algorithm Incorporating Missing
Genotypes

Input: Standardized genotype matrix X e R™*/, num-
ber of clusters K, sparsity level S, initial clusters C,
and iteration number n.
Initialize ® = m1 KIIT, where m is the mean of non-
missing entries of X
repeat
n=n+1
Y, = PQ(X) + Py (Bn—l@n—l)
Run the standard SKFR algorithm on ¥, to obtain B,
and 0,, and the ranked list of AIMs L
until convergence
return B, ©,, and L.

Data and code availability

The stand-alone SKFR package can be found at https://github.com/
kose-y/SKFR.jl. The OpenADMIXTURE package can be found at
https://github.com/OpenMendel/OpenADMIXTURE.jl. The code
for the experiments, and instructions to download publicly available
data, can be found at https://github.com/kose-y/OpenADMIX
TURE-resources. One exception is the UK Biobank data, which are
available via application at https://www.ukbiobank.ac.uk. The UK
Biobank data were retrieved under Project ID: 48152.

Supplemental information

Supplemental information can be found online at https://doi.org/
10.1016/j.ajhg.2022.12.008.
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