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Abstract. This paper studies an optimization problem on the sum of traces of matrix quadratic
forms in m semiorthogonal matrices, which can be considered as a generalization of the synchro-
nization of rotations. While the problem is nonconvex, this paper shows that its semidefinite pro-
gramming relaxation solves the original nonconvex problems exactly with high probability under an
additive noise model with small noise in the order of O(m!/4). In addition, it shows that, with high
probability, the sufficient condition for global optimality considered in Won, Zhou, and Lange [STAM
J. Matriz Anal. Appl., 2 (2021), pp. 859-882] is also necessary under a similar small noise condition.
These results can be considered as a generalization of existing results on phase synchronization.
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1. Introduction. This paper considers the orthogonal trace-sum maximization
(OTSM) problem [35] of estimating m matrices Oy,...,O,, with O; € R%*" from
the optimization problem:

(OTSM) maximize Z tr(0] 8;;0;) subject to O; € Oy, ., i =1,...,m,
1<i,j<m

where S;; = ST, € REX% for 4,5 = 1,...,m, r < minj—1,..md;, and Oy, = {O €

R . 0TO = I} is the Stiefel manifold of semiorthogonal matrices; I, denotes the

identity matrix of order r.

The OTSM problem has applications in generalized canonical correlation analysis
(CCA) [18] and Procrustes analysis [17, 30]. Furthermore, if dy = --- = d,;, = r, then
(OTSM) reduces to the problem of synchronization of rotations [5], which has wide
applications in multireference alignment [4], cryogenic electron microscopy (cryo-EM)
[29, 36], 2D/3D point set registration [19, 12, 9], and multiview structure from motion
2, 3, 32.

1.1. Related works. While the OTSM problem is proposed recently in [35],
it is closely related to many well-studied problems. In particular, its special cases
have been studied in the name of angular synchronization, which can be considered

*Received by the editors June 1, 2021; accepted for publication (in revised form) June 8, 2022;

published electronically August 30, 2022.
https://doi.org/10.1137/21M 1422707
Funding: JW was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (2019R1A2C1007126). TZ was partly supported by the
NSF grants CNS-1818500. HZ was partly supported by NIH grants HG006139, GM141798 and NSF
grants DMS-2054253 and 11S-2205441.
TDepartment of Statistics, Seoul National University, Seoul 08826, Korea (wonj@stats.snu.ac.kr).
fDepartment of Mathematics, University of Central Florida, Orlando, FL 32816 USA
(Teng.Zhang@ucf.edu).
§Departments of Biostatistics and Computational Medicine, University of California, Los Angeles,
CA 90095 USA (huazhou@ucla.edu).

2180

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/21M1422707
mailto:wonj@stats.snu.ac.kr
mailto:Teng.Zhang@ucf.edu
mailto:huazhou@ucla.edu

Downloaded 09/03/22 to 131.179.222.31 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ORTHOGONAL TRACE-SUM MAXIMIZATION 2181

as a special case of (OTSM) in the complex-valued setting, Zs synchronization, and
synchronization of rotations. The OTSM problem itself can also be considered as a
special case of the group synchronization problem.

Angular synchronization. The complex-valued OTSM problem with d; =
-+« = d;, = 1 is equivalent to a problem called angular synchronization or phase
synchronization, which estimates angles 61, ...,60,, € [0,27) from the observation of
relative offsets (6; — 6;) mod 27. The problem has applications in cryo-EM [28],
comparative biology [16], and many others. To address this problem, Singer [28]
formulates the problem as a nonconvex optimization problem
(1.1) max x*Cz subject to |z1] =+ = |zm| =1,

xecCm
where z;, = €' for all 1 < k < m. In fact, (1.1) can be considered as the special case
of (OTSM) when dy =---=d,,, =r=2.

The angular synchronization problem (1.1) has been studied extensively. For
example, Singer [28] proposes two methods, by eigenvectors and semidefinite pro-
gramming, respectively. The performance of the method is analyzed using random
matrix theory and information theory. In [4], Bandeira, Boumal, and Singer assume
the model C' = zz* + oW, where z € C™ satisfies |z1] = -+ = |z = 1 and
W e C™*™ is a Hermitian Gaussian Wigner matrix, and show that if o < %mi,
then the solution of the semidefinite programming approach is also the solution to
(1.1) with high probability. Using a more involved argument and a modified power

method, Zhong and Boumal [37] improve the bound in [4] to o = O(, /=2-).

logm

There is another line of works that solves (1.1) using power methods. In partic-
ular, Boumal [6] investigates a modified power method and shows that the method
converges to the solution of (1.1) when o = O(m#); Liu, Yue, and Man-Cho So
[24] investigate another generalized power method and prove the convergence for

o = O(m1); and Zhong and Boumal [37] improve the rate to o = O(, / =2-).

logm

There are some other interesting works for the angular synchronization problem
that are not based on semidefinite programming or power method. [23] assumes that
the pairwise differences are only observed over a graph, studies the landscape of a
proposed objective function, and shows that the global minimizer is unique when
the associated graph is incomplete and follows the Erdés—Rényi model. [27] pro-
poses an approximate message passing (AMP) algorithm and analyzes its behavior by
identifying phases where the problem is easy, computationally hard, and statistically
impossible.

Zo synchronization. The real-valued OTSM problem with d; = --- =d,, = 1
is called the Zo-synchronization problem [11] for Zo = {1,—1}. For this problem,
[14] shows that the solution of the semidefinite programming method matches the
minimax lower bound on the optimal Bayes error rate for the original problem (1.1).

Synchronization of rotations. The OTSM problem with d; = --- = d,,, =
r > 2 is called “synchronization of rotations” in some literature. This special case
has wide applications in graph realization and point cloud registration, multiview
structure from motion [2, 3, 32|, common lines in cryo-EM [29], orthogonal least
squares [36], and 2D/3D point set registration [19]. [8] studies the problem from the
perspective of manifold optimization and derives the Cramér—Rao bounds, which are
the lower bounds of the variance of any unbiased estimator. [31] proposes a distributed
algorithm with theoretical guarantees on convergence. [33] discusses a method to
make the estimator in (OTSM) more robust to outlying observations. Another robust
algorithm based on the maximum likelihood estimator is proposed in [7]. As for
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the theoretical properties, [5] analyzes a semidefinite program approach that solves
the problem approximately and studies its approximation ratio. [25] investigates a
generalized power method for this problem. A recent manuscript [22] follows the line

of [4, 6, 24, 37] and proves that the original problem and the relaxed problem have
vm

d+\/alogm)'

Group synchronization. The OTSM problem can also be considered as a spe-

cial case of the group synchronization problem, which recovers a vector of elements
in a group, given noisy pairwise measurements of the relative elements g, g, . The
OTSM problem is the special case when the group is Oy .., the set of orthogonal matri-
ces. [1] studies the properties of weak recovery when the elements are from a generic
compact group and the underlying graph of pairwise observations is the d-dimensional
grid. [27] proposes an AMP algorithm for solving synchronization problems over a
class of compact groups. [26] generates the estimation from compact groups to the
class of Cartan motion groups, which includes the important special case of rigid mo-
tions by applying the compactification process. [10] assumes that the measurement
graph is sparse and there are corrupted observations and shows that minimax recov-
ery rate depends almost exclusively on the edge sparsity of the measurement graph
irrespective of other graphical metrics.

the same solution when o < O(

1.2. Our contribution. The main contribution of this work is the study of the
OTSM problem under an additive noise model. The main results are threefold: First,
we propose a semidefinite programming approach for solving (OTSM) and show that
it solves (OTSM) exactly when the size of noise is bounded. Second, we show that,
under a similar bounded noise condition, the sufficient condition for global optimality
of a critical point, studied in [35], is in fact necessary and sufficient. Finally, these
noise boundedness conditions are satisfied with high probability under Gaussianity.
These results can be considered as a generalization of [4] from angular synchronization
to the OTSM problem.

2. The OTSM problem.

2.1. Model assumption. In this work, we assume the MAXBET model of
generating S;;, which postulates the existence of {®;}i<i<m and {Wi;}i<izj<m
such that ©; € Oy, , for all 1 <7 < m, and

(MAXBET) Sij =©,0] + W;, where W;; = W, for all 1 <i,j < m.

In this model, @iGJT is considered as the “clean measurement of relative elements,”
and W;; is considered as an additive noise. This is a natural model for the gen-
eralized CCA in [35]. Consider a latent variable model in which a latent variable
z € R" has zero mean and covariance matrix I,, and an observation in the ith
group is given by a; = @,z + € € R%, i = 1,...,m, with the noise € uncorre-
lated with z and €;, j # i. If the noise covariance is 714, then the auto-covariance
of group ¢ is X;; + 7I4,. The (population) cross-covariance matrix between groups
iand jis X;; = ®¢®?. The generalized CCA [30, 35] seeks (semi)orthogonal ma-
trices {O; € Oy, »} such that the expected inner product between matrices Ozrai
and OjTaj is summed and maximized for each pair (4, j), which is , ; tr(0] 2;,0;).
Also note that E[(O] a;, O] a;)] = tr(O] £;0;) + const. If we assume that {@;} is
(semi)orthogonal, then this problem is precisely (OTSM), and the forthcoming Propo-
sition 2.1 shows that the population version of this generalized CCA recovers precisely
the transformations {©;} of the latent variable z. Now let us turn to the practical
setting. Appealing to the law of large numbers, the sample estimate of X;; can then be
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written as S;; = 3;;+W,;; = ®¢®JT+WU. A statistical interest is whether {©;} can
be precisely estimated by solving the sample version of (OTSM). Model (MAXBET)
is also standard for synchronization problems, such as synchronization of rotations
[33, 8] and group synchronization [1, 27].

In some applications [30, 18], it is also natural to assume the MAXDIFF model
that ignores the auto-covariance terms:

(MAXDIFF) Sii=0 and S;;=0,0] + W, i #j.

In this work, we will present our main results based on the MAXBET model and
discuss the MAXDIFF model in the remarks.

When there is no noise in either the MAXBET or MAXDIFF model, setting
O;,=0,;,i=1,...,m, solves problem (OTSM). The proof is deferred to section 5.1.

PROPOSITION 2.1. In the noiseless case (W;; = 0 for all i,j), (O1,...,0) =
(©4,...,0,,) globally solves (OTSM) under the model (MAXBET) or (MAXDIFF).

However, in the presence of noise, Proposition 2.1 does not hold, and problem
(OTSM) is difficult to solve. To establish theoretical guarantees for the noisy setting,
we investigate two approaches; one is based on semidefinite programming, and the
other one is based on finding locally optimal solutions of (OTSM).

2.2. Approach 1: Semidefinite programming relaxation. While the prob-
lem (OTSM) is nonconvex and difficult to solve, we can relax it to a convex optimiza-
tion problem based on semidefinite programming that can be solved efficiently. In
fact, semidefinite programming—based approaches have been proposed and analyzed
for the problem of angular synchronization [28, 4, 37] and synchronization of rotations
[5], and our proposed method can be considered as a generalization of these existing
methods.

The argument of the relaxation is as follows. Let D = Y"1 | d;,

Sll 512 Slm 0
Sa S Som '

(21)  S=| . _ . | eRP*Pand O=| € RPxr,
Sml Sm2 Smm Om

then by setting U = OO”, the problem (OTSM) is equivalent to finding
(2.2) U=argmax{tr(SU): U 3= 0, rank(U) =7, U;; < I, tr(Uy) =7, i=1,...,m}
for U € RP*P such that U = U”, which can be relaxed to solving

(SDP) max (S,U) subject to U = 0,U;; < Ltr(Uy;) =,
UERPxD U=UT

where M = 0 (resp., M < 0) means that a matrix M is positive (resp., neg-

ative) semidefinite. If a solution U to problem (SDP) has rank-r, then we can

set U = II which can be decomposed to U = VVT7 where V' € RPX". Write

V = [VT, . .,Vi]T; then V; € Oy, for all 1 <4 < m and (Vy,...,V,,) globally
solves problem (OTSM).
This work shows that if the noises W;; are “small,” then the solutions of problems

N ~ ~T ~
(OTSM) and (SDP) are equivalent in the sense that U = V'V with V rank-r; hence
the convex relaxation is tight. Furthermore, each V; converges to ®; as m — oo, as
desired for CCA applications.
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2.3. Approach 2: Characterization of critical points. While the semidef-
inite programming (SDP) approach is convex and can be solved with high accuracy,
it has a large computational cost when D is large, and solving the original noncon-
vex problem (OTSM) without lifting the variable (from O to U) is more efficient.
A natural question is, Is there any guarantee on whether a critical point of problem
(OTSM), which local nonconvex optimization algorithms usually deliver, is globally
optimal?

Using the optimality conditions for the convex relaxation (SDP), Won, Zhou, and
Lange [35] study sufficient conditions for a critical point of problem (OTSM) to be
globally optimal. Specifically, the first-order necessary condition for local optimality
of (OTSM) is

(23) OZAZ :ZSUOJ’ 1= 1,...,m,

j=1

for some symmetric matrix A;. The latter matrix is the Lagrange multiplier associated
with the constraint O; € Oy, ,» and has a representation A; = Z;”:l 0/S,;0;. In
what follows, a critical point is defined as (Oq,...,O0y,) with O; € Oy, , satisfying
(2.3). If 7; is the smallest eigenvalue of A;, then a critical point is a global optimum
of (OTSM) if

2.4
( L)(O,A) =0, whereO=[0T,...,07)7 A= (A4,...,A,,), and
O,A 0T +7,(1;,—0,07)
L(O,A)= - 5.
0, A, OF +7,,(1;,—0,,0%)

A block relaxation-type algorithm that converges to a critical point is also proposed
in [35]. However, characterization of such a point that does not satisfy condition (2.4)
has remained an open question.

This paper shows that, if the noises W;; are “small” in a similar sense to that
of Approach 1, the sufficient condition (2.4) is also necessary for global optimality.
Thus, under this regime we can fully determine whether or not a critical point, which
can be found by a simple local algorithm, is globally optimal. Furthermore, each
O; converges to ®; as m — oo, up to a common phase shift, as desired for CCA
applications.

2.4. Notation. This work sometimes divides a matrix X of size D x D into m?
submatrices such that the (¢, j) block is a d; x d; submatrix. We use X;; or [X];;
to denote this submatrix. Similarly, sometimes we divide a matrix of Y € RP>" or a
vector y € R into m submatrices or an m vector, where the ith component, denoted
by Y, [Y]i or y;, [y]:, is a matrix of size d; x r or a vector of length d;.

For any matrix X, we use || X|| to represent its operator norm and | X||r to
represent its Frobenius norm. In addition, Px represents an orthonormal matrix
whose column space is the same as X, Px . is an orthonormal matrix whose column
space is the orthogonal complement of the column space of X, IIx = P XP§ is
the projector to the column space of X, and IIx. is the projection matrix to the
orthogonal complement of the column space of X. If Y € R"*™ is symmetric, we use
M) > (YY) > > A (Y) to denote its eigenvalues in descending order.
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3. Main results. In this section, we present our main results. The first main
result, Theorem 3.1, shows that if the noises W; are “small,” then the convex relax-
ation in (SDP) solves the original problem (OTSM) exactly. The second main result,
Theorem 3.9, shows that if the noises W;; are “small,” then a critical point is globally
optimal if and only if condition (2.4) holds.

3.1. Theoretical guarantees on the SDP approach. This section provides
conditions that if the noises W;; are “small,” then the solution of problem (SDP)
has rank-r and is equivalent to the solution of the problem (OTSM) in the sense that
U= VVT with V rank-r; hence the convex relaxation is tight.

We begin with two deterministic conditions on W in Theorem 3.1 and Corol-
lary 3.3, with showing that the condition holds with high probability under a Gauss-
ian model in Corollary 3.4, and with a statement on the consistency of the solution
in Corollary 3.7. The statement of the first deterministic theorem is as follows.

THEOREM 3.1. If m > [|[W|(4y/7 4+ 1) +1 and W € RP*P s small in the sense
that
2 (maxi<ico WO r + 4| W /7)
m—[[W][(4y/r+1) -1

. 2 |7 r
(3.) +2 (W OL e + 41w 2y [ 2 )+ sIWi - o+ 2w,

then the solutions of (OTSM) and relazation (SDP) are equivalent in the sense that
a solution U to (SDP) also solves (2.2).

The proof of Theorem 3.1 will be presented in section 4.1. While the condi-
tion (3.1) is rather complicated, we expect that it holds for large m when ||[W|| and
max;=1, .m ||[(W®);||r grow slowly as m increases. To prove this idea rigorously,
we introduce the notion of ©®-discordant noise, which is inspired by the notion of
“z-discordant matrix” in [4, Definition 3.1].

DEFINITION 3.2 (@®-discordance). Let ® = (@y,...,0,,) € X ,0q, . Recall
D=3, ,di. Amatric W is said to be ©-discordant if it is symmetric and satisfies

(W] < 3v'D and maxi=1,..m ||[[WO);||r < 3v/Drlogm.

Based on the definition of ®-discordant noise, The next corollary is a determin-
istic, nonasymptotic statement that simplifies the condition (3.1) in Theorem 3.1. Its
proof is deferred to section 4.2.

COROLLARY 3.3. Letd = D/m. If m > 8 and 0~ 'W is ©-discordant for
1/4

m > 4m

o m
g 3

© 60Vdr
then condition (3.1) holds, and the solutions of (OTSM) and (SDP) are equivalent.

Next, we apply a natural probabilistic model and investigate the @-discordant
property. In particular, we follow [6, 4, 37] and use an additive Gaussian noise model
to generate the symmetric noise matrix W':

(3.2)

Upper triangular part of W € RP*P is elementwisely
(3.3) independent and identically distributed (i.i.d.) sampled from N(0,0?).
For this model, we have the following corollary that shows if o < O(”\”L/ldi;1 ), then (3.1)

holds with high probability. Its proof is deferred to section 4.3.
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COROLLARY 3.4. Assume the additive Gaussian noise model in (3.3), m > 3 or

cam . ' 0 (3-2v2)*
m > 2 and mini", d; > 6; then with probability at least 1 —1/m —2exp(——3"-D),

W satisfies the ©®-discordant property.

As a result, if o < 6’6’\1//:7 and m > 8, then with the same probability, the condition

(3.1) holds, and the solutions of (OTSM) and (SDP) are equivalent.

Remark 3.5. The assumption m > 8 in Corollary 3.3 can be relaxed but with a

different constant factor in the upper bound of ¢ in (3.2). For example, if m > 3 is
ml/4
124vdr”

Remark 3.6. The result in this section can be naturally adapted to the MAXDIFF
model. The main intermediate results for the proof of Theorem 3.1 given in section 4.1,
including Lemma 4.1 and Lemma 4.2, still hold with W ;; = 0. While the estimations
in Lemma 4.3 do not hold, following the steps given at the end of section 5.2.1, we are
still able to obtain similar bounds on the difference between V and ©. In summary, we
are able to obtain parallel results to Theorem 3.1 and Corollary 3.3 for the MAXDIFF
setting. In particular, if W is generated using the model in Corollary 3.3, then
the solutions of (OTSM) and (SDP) with the MAXDIFF model are equivalent with

probability at least 1 — 1/m — 2exp(—%D) if o < 1;’61/; and m > 10. This

more restrictive bound under the MAXDIFF model is expected since (MAXDIFF)
utilizes less information on the clean signal ® for the same number of measurements.

assumed, then we need o <

Following the proof of Theorem 3.1, we have a consistency result, i.e., that the
solution of (SDP) recovers the true signal @ if m is sufficiently large.

COROLLARY 3.7. Assuming the conditions in Corollary 3.3, then the solution of
(SDP), U, admits a decomposition U = VVT with V. € RPX" such that

- 2 (30+/dmr1 360%dy/
(3.4) e [V O < (30v/dmrlogm + 360 rm).
i=1,...,m m — 3ovdm(4y/r+1) — 1

Thus, if o = 0(%), then max;—1__m |[Vi— Oil|r — 0 as m — oco.

Remark 3.8. For the MAXDIFF model, (3.4) is replaced with

6o+v/dmrlogm + % AN
_ 120vVdm3r ’

m—2

. Inax HVz - eiHF S
i=1,....,m

The bound follows from the discussion of Lemma 4.3 in the MAXDIFF setting. If
o= 0(%), then max;—1 ., [|[Vi — ©4]|r — 0 as m — oo.

3.2. Theoretical guarantees on critical points. This section presents the
condition on the size of the noise W that ensures condition (2.4) holds for any glob-
ally optimal point (O4, ..., O,,) and its associated Lagrange multipliers (A1, ..., A,,).
We begin with two deterministic conditions on W in Theorem 3.9 and Corollary 3.10,
show that the condition in Corollary 3.10 holds with high probability under the
additive Gaussian model (3.3) in Corollary 3.11, and establish the consistency in
Corollary 3.14.
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Recall that the first-order necessary condition for local optimality of (OTSM) is
given in (2.3). The associated Lagrange multiplier is symmetric:

(3.5) i

o (vsol-lSs.o R P T
J
A =07 |3 8,0, > 50, | 0i=5>075,0,+35 % 07S;0.
i=1

j=1 j=1 j=1

It is also known that a necessary condition for global optimality of a critical point is
that the A; in (3.5) is symmetric and positive semidefinite for all ¢ [35, Proposition
3.1]. Note this result does not imply condition (2.4). The first deterministic result
implying condition (2.4) is given in the following.

THEOREM 3.9. Suppose noise W is small in the sense that

r
m > WA+ 1) + max |[WOl|r+ 4||W|2\/;
n 2m(maxi <i<m [[[WOi|F + 4(|W* /%)
m— AW

If(On,...,0y,) is a global optimum of (OTSM), then (Oy,...,O.,) and its associated
Lagrange multipliers (A1, ..., Ap) satisfy condition (2.4).

(3.6)

T
+ 16| W || —.
m

The proof of this theorem is deferred to section 4.5. Theorem 3.9 implies that,
under the small noise regime quantified by inequality (3.6), condition (2.4) is necessary
and sufficient for global optimality.

The following corollary is a deterministic, nonasymptotic statement that simplifies
condition (3.6) using the notion of @-discordance (Definition 3.2). The idea is similar
to (3.1). The left-hand side of condition (3.6) dominates the right-hand side (RHS)
as m — oo if ||W/| and max;=1___n [|[(W®);||r are bounded or increase slowly as m
increases. Thus, we can expect that inequality (3.6) is satisfied if noise variance o is
small and the number of observations m is large.

COROLLARY 3.10. Let d = D/m. Suppose that m > 2,

ml/4

31Vdr’

and o~*W is ©-discordant; then (3.6) holds. Thus if (O1,...,0,,) is a global
optimum of (OTSM), then (O1,...,0y,) and its associated Lagrange multipliers
(A1,...,A,) satisfy condition (2.4).

The proof is deferred to section 4.6.

Finally, since Corollary 3.4 shows that W in the additive Gaussian noise model
(3.3) is O©-discordant after scaling by o, Corollary 3.10 implies the following result on
the probabilistic model.

(3.7) o<

COROLLARY 3.11. Suppose the additive Gaussian noise model in (3.3) holds. If

o< 3’?\1//:71 and m >3 orm > 2 and min;,—y_.__,, d; > 6, then with probability at least

1-1/m— 2exp(—%D), any global optimum (O1,...,0.,) of (OTSM) and its
associated Lagrange multipliers (Aq, ..., Ay,) satisfy condition (2.4).
Remark 3.12. The upper bound of ¢ in the RHS of (3.7) can be made smaller if

mt/t .
29V/dr’

,,,,,

m increases. For example, if we have m > 4, then (3.7) can be relaxed to o <

. ml/4
1fm29,a§26m

suffices.
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Remark 3.13. If instead the MAXDIFF model is assumed, the present analysis
holds for m > 4 and (3.7) replaced with o < 64\/7 This is a worse bound as opposed
to QQW for (MAXBET) (See Remark 3.12). To obtain the same bound as (3.7), we
need m > 9; see section 4.7. Similar to the SDP relaxation, the more restrictive bound

in the MAXDIFF model is expected since (MAXDIFF) utilizes less information on
the clean signal ® for the same number of measurements.

The following consistency result is a by-product of the proof of Theorem 3.9. Re-
call that problem (OTSM) is invariant to “simultaneous rotation,” i.e., postmultiply-
ing a fully orthogonal matrix @ € O, to O;’s (see, e.g., [34, equation (8.2)]).

COROLLARY 3.14. Let (O, ...,04)eXT 0y, » be a global optimum of (OTSM).
If the noise 0 ='W is @-discordant and m > 14402dr, we have an estimation error

(30—,/‘1“7257” + 3602d\/:)
0, O,l|lr < .
G 2 10:Q - &illr < T

1/4

Thus if 0 = o \/CT) then we have mingeo,, maxi<i<m [|0:Q — ©;f|r — 0 as

m — 00, as desired.

Remark 3.15. If the MAXDIFF model is assumed, m > 2, and m3/2 — 2m!/2 —
120V drm — 3 > 0, then under ®-discordance

drlogm 2 d\/T
<3cm/m + 360 \/EQ/W)

min max 10.Q — O;||r <

Q€e0,. . 1<i _ Vdr _ 3
= 1 =120 757w — m

3.3. Comparison with existing works. Our results generalize the work [4]
on angular synchronization, which analyzes the setting d = r = 1 with complex
values. In particular, Theorem 3.1, Corollary 3.3, Corollary 3.4, and Corollary 3.11
are generalizations of Lemma 3.2, Theorem 2.1, and Proposition 4.5 in [4], respectively.
Corollary 3.3 is similar to Lemma 3.2 in [4] in the sense that both results establish
deterministic conditions such that the original problem and the relaxed problem have
the same solutions under a “discordant” condition. In addition, Corollary 3.4 is a
generalization of [4, Theorem 2.1] in the sense that both results establish upper bounds
on the size of noise o under an additive Gaussian model. At last, both Corollary 3.11
and Proposition 4.5 in [4] show that local solutions satisfying an assumption are global
optima.

Theorem 2.1 and Proposition 4.5 in [4] require o < £m7. In comparison, Corol-

H

lary 3.4 and Corollary 3.11 require o < 6—10m4 and o0 < %m% under the setting
d =r =1, so our result is only worse by a constant factor.

i . . .
The upper bound ¢ < 1gm# in [4, Theorem 2.1] is later improved to o <

O(y/og5m) n [37], based on a much more complicated argument and an algorithmic
implementation. After finishing this work, we became aware of a recent manuscript
[22], which investigates the synchronization-of-rotations problem using the method in

[37], and proves that the original problem and the relaxed problem have the same

solution when o < O(%). While it is better than our rate o < O(%M) when

r = d, our analysis investigates a more generic problem where r could be smaller

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/03/22 to 131.179.222.31 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ORTHOGONAL TRACE-SUM MAXIMIZATION 2189

than d and establishes deterministic conditions that can be verified for a variety of
probabilistic models. In comparison, the method in [22] is specifically designed for
the additive Gaussian noise model.

While the results in this section are generalizations of the results in [4] to the
group of semiorthogonal matrices, we remark that the generalization is nontrivial in
two aspects. First, as commented in the conclusion of [4], the noncommutative nature
of semiorthogonal matrices renders the analysis more difficult. For example, the
derivation in (5.29) is more difficult than the corresponding equation in [4, equation
(4.3)]. Second, to analyze the more generic problem, we introduce a novel optimality
certificate in Lemma 4.1, which is very different from the corresponding certificate in
[4, Lemma 4.4]. In particular, our certificate concerns three variables, c, T(l), and
T(z), while [4, Lemma 4.4] only depends on a single variable. More importantly, the
certificate in [4, Lemma 4.4] has an explicit formula, but there is no explicit formula
for the certificates (¢, T, T) in our work. To address this issue, we let ¢ = m/2
and define T and T™® in a constructive way in (5.10).

Ling [21] also proposes a generalization of [4] to the group of orthogonal matrices,
which can be considered as our setting with » = d. Similar to [4, Lemma 4.4], the
certificate in [21, Proposition 5.1] is based on a single variable with an explicit formula.
While =T in our work serves a similar purpose as the certificates in [4, Lemma 4.4]
and [21, Proposition 5.1], T®? and ¢ are required for our setting and do not have

an explicit formula. In comparison, under the setting of orthogonal matrices (i.e.,
ml/4

r = d), our rate is in the order of o = O(™;—), which is slightly worse than the
rate of O(%ﬁ) in [21] by a factor of d*/4. We suspect that this is due to the more

generic problem that we analyze, and our rate could be improved with a different way
of constructing the certificates than (5.10), but we will leave it as a possible future
direction. Related, in the simulation study presented in Appendix A, it is numerically
demonstrated that the certificate (2.4) of global optimality is satisfied by the critical
points generated by the proximal block ascent algorithm in [35] for a wide range of
noise variances, even if condition (3.6) or (3.7) is not satisfied. This observation also
suggests that condition (3.7) may be further improved.

4. Proof of main results.

4.1. Proof of Theorem 3.1. Recall that (OTSM) and (2.2) are equivalent in
the sense that f]ij = OZOT for all 1 < 4,5 < m, where U = (07]) is a solution to
(2.2) and O = (O;) is a solution to (OTSM). It is sufficient to show that (2.2) and
its relaxation (SDP) have the same solution. Then, the proof of Theorem 3.1 can be
divided into three components as follows.

1. Lemma 4.1 shows that if S admits a decomposition T 4 7@ 4 cI, where
TW T and a solution of (2.2) satisfy the conditions (4.1)—(4.2), then this solution
is also the unique solution to the relaxed problem (SDP).

2. By constructing the certificates T and T®, Lemma 4.2 establishes (4.3), a
sufficient condition such that (4.1)—(4.2) hold.

3. Lemma 4.3 establishes a perturbation result for the solution of (2.2). When
W is small, the perturbation result can be used to verify (4.3).

We first present our lemmas and a short proof of Theorem 3.1 based on these
lemmas and leave the technical proofs of the lemmas to section 5.

LEMMA 4.1 (a condition for the equivalence between (2.2) and (SDP)). Let U

be a solution to (2.2), and assume that it admits a decomposition U=vVV' with
V € RPX". [If there exists a decomposition S = TW + T 4 I such that
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(4.1) TW =1, TW,., T =1y Ty forall1 <i<m,
(4.2) {PVTiTz('iQ)PVi}?il and 7P‘—/TLT(1)P‘~/L are positive definite matrices,

then U is also the unique solution to the relazed problem (SDP). Therefore, (2.2) and
(SDP) have the same unique solution.

LEMMA 4.2 (a simplified condition in terms of the solution of (2.2)). Let U
be a solution to (2.2), and assume that it admits a decomposition U=vVV' with
V e RDX’!'. If

(4.3)

.
" e [ WV,

2 1<i<m

x [V = O + |07V —mI| + W],

then there exist TV and T'® such that S = T +T® + 21, and (4.1)—(4.2) hold
with ¢ = m/2.

LEMMA 4.3 (perturbation bounds of the solutions of (2.2)). Ifm > |W|(4/r+

1) + 1, then for U, any solution to (2.2), there is a decomposition U = VvV with
Ve RD” such that

IV —elr <4W/7,

4.4
4 s [WVLlle < mas [[WOLlp +4|W /2,
and

- 2(maX1<Z‘<mH[W@]Z‘HF-FZL”WHQ./L)
4.5 VvV, — ®i < — me,
(4:5) x| I m— WA +1) -1

Proof of Theorem 3.1. Lemma 4.1 and Lemma 4.2 imply that, to prove The-
orem 3.1, it is sufficient to prove (4.3), which can be verified by application of
Lemma 4.3. O

4.2. Proof of Corollary 3.3.

Proof of Corollary 3.3. Under the ®-discordant property, inequality (3.1) is sat-
isfied if m is greater than

Vdrm1 2dy/
Sm[30drm logm + 3607dy/rm] +2[30\/drmlog m+360%dy/rm]+240V dr+60Vdm
m —2— 60vdm(2y/r + 1)

or, by dividing the above expression by m,

8 [BUx/dr logm N 3602d\/1 N 240+\/dr N 60vd

1- 2 _ 60\/E\(2ﬁ\ﬁ+1) Vm vm m NG
m m

1> |2+

Ifo < 6m \ﬁ’ then the RHS of the above inequality is upper bounded by

2+

8 3 VI 17 241 61 1
|G ]

1_2_ %N}H L) L60 mi/ 3600 Vr] 60 m3/4 * 60 \/r m1/4

8 3 logm 24 1 6 1
<24+ - —
- ( + 1—2 - 18_1 > [60 ml/4 + 3600] 3600 m3/4 + 3600 m1/4

m 60 m1/4
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< 3. The last line is decreasing in m if m > 8. At m = 8, the

18 1

denominator in the last line is 1 — % — o577 > 0, and the value of the whole line is

less than 1. ]

since r > 1 and 2\[%

4.3. Proof of Corollary 3.4.

Proof of Corollary 3.4. Considering Corollary 3.3, it is sufficient to show that
Gaussian noise W satisfies the ®-discordance with high probability under the MAX-
BET model. Assume 0~ 'W; hasi.i.d. standard normal entries. Then from [W®]; =
Z;nzl W;;©; € R4*" it is obvious that this matrix has zero-mean normal entries.
To see the variance, note

vec(Wij@j) = VeC(IdiWij(")j) = (@;F ® Id7) VEC(W”‘).
Then Cov(vec(W;)) = 6°14,4, and

Cov(vec(W;0;)) = 0*(O] ©14,)(0F ©14,)" =0*(0] ®14,)(0; ®14,)
= 02(®?®j ® IdiIdi) = UQ(IT ® Idi) = UQITdi;
i.e., W;;©; has i.i.d. normal entries with variance 0. Then [W®]; is the sum of m

iid. copies of W;;©;; hence entries have variance mo?. Now from Theorem 9.26 of
[15];

1 2
Pr | —||[W®];|| > Vd; t) <et/?
(IOl = Va4 i) <

for t > 0. Applying the union bound and noting that %H[W@]ZHF < (W O);]|2, we
obtain

Pr ( max ||[[WO]|p < U(\/%Jrr\/ﬁﬂ\/?)) >1—me /2

=1,....m

where d = min;—; .., d;. Now choose ¢ such that e V2 = 1/77127 ie., t = 2y/logm.
Then,

(4.6) Pr ( max [WOlillr < o(\/drm + rvm + 2\/rlogm)> >1-— %

i=1,...,

Since d > max{r,2} and m > 2, we have r < y/dr and /dm > 2. Furthermore, if
m > 3, then m < mlogm. Thus

(4.7) Vdrm 4+ rvm + 2¢/rlogm < 3y/drmlogm < 3/Drlogm.

If m=2and d > 6,

V2dr + V2r2 4+ 24/rlog2 < 3y/2drlog2 < 3v/Drlog 2.

Thus if m > 3 or m > 2 and d > 6, then max;—1,...,, [|[2WO];||r < 3v/Drlogm with
probability at least 1 — 1/m.

To bound ||[W||, observe that W 2w 4 W@ where W) ¢ RP*P has
entries i.i.d. from N(0,02/2), and W® is generated as follows: [W®)];; = [W(l)]};
for i # j, and [W®];; has entries iid. from N(0,02/2) under (MAXBET), or

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/03/22 to 131.179.222.31 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2192 JOONG-HO WON, TENG ZHANG, AND HUA ZHOU

W®),; = - [W®],; under (MAXDIFF). Marginally both W® and W® have
entries i.i.d. from N(0,02/2). Then, [13, Theorem II.13] implies that

2 2
Pr <f||W<1)| > 2@+t) — Pr <\[||W(2) > 2@+t> s
g g

Applying the union bound and |[W|| < [[WD|| + [|[W @) yields
Pr (||W|| <ov2(2VD + t)) >1-2¢t/2

2
(3724\/5) D

for t>0. Choose t= ( —~2)3/D to have Pr (|W||<30vD)>1—2¢~ O

4.4. Proof of Corollary 3.7. The proof follows from (4.5) in Lemma 4.3 and
Corollary 3.3.

4.5. Proof of Theorem 3.9. As a preparation, we provide intermediate results
first. Proofs of these results are provided in section 5.3.

LEMMA 4.4. Let A; be the Lagrange multiplier of a critical point (O1,...,0)
of problem (OTSM). That is, it is a symmetric r X r matriz satisfying O;A; =
Z;nzl 8:;0;. Then, for block matrices O = or,..., Oﬁ]T and © = [OF ..., @Z;]T,
the following holds under (MAXBET):

1A; = mI|| < | 7L, Wi 05 +ml|O} ©; — 1| +[|©70 — m|.
Under (MAXDIFF), we have
1A; = (m = DI < | 22, Wi05] +ml|Of ©; ~ L[| + |©70 — mL||.

Results parallel to Lemma 4.3 are also obtained.
LEMMA 4.5. Let (O1,...,0,,) € ><l 104, be a a global optimum of (OTSM). If

we build a block matriz O = [OlT
R € O, such that (O1R, ...,

following error estimates hold:

) 0,17, then there exists an orthogonal_matriz
O, ) 18 also a global optimum and for O = OR the

4|\w ||\/L under (MAXBET),
48) [O0-0|r<
4|W | =577 under (MAXDIFF),
(4.9)
4w der (MAXBET),
4|W|| =4 under (MAXDIFF),
(4.10)
AW 2 under (MAXBET),
max |[[WOill|lr < max [[WOli|r+ T
1<i<m 1<i<m 4||WH Tar T under (MAXDIFF),

(4.11)

2(Inaxl<z<m (I(We]; HF+4HWH2 f)

m—4||W|l/r
max [|0; - 8illr < 2 (masy << (WO r +4|W? o)

m—4||W || =7 -3

under (MAXBET),

A

under (MAXDIFF),
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where

4|W||/7 under (MAXBET),
m
5+4\|WH\/77+\/16|H2/V||2r+40||WH\/F—&-l under (MAXDIFF).

Assume the data model (MAXBET). We want a condition on the noise matrices

W, that guarantees the certificate (2.4) to hold. Let (Oy,...,0,,) be a global

optimum of (OTSM) and O = [Oi .. ,(N):L] Since LO = 0 for O = [OIT, ce Oi]
whenever (Oq,...,0,,) is a critical point, it suffices to find a condition that

' L(O,AN)x >0 forall x = (x1,...,2,),x; € R% such that 0 'z = 0,

where A = (Ay,...,A,), A; = ZT:I OiTSijOj, is the collection of the associated
Lagrange multipliers.

Let (Oy,...,0,,) be a critical point and O = [OT,... OL]". Then, for any =
satisfying OTa = 0,

2T L(O,A)x =

NE

(27 0:A0 2 + 72T 0+ 0F"z) — 2™ Sx
1

.
I

3

L
> (TixiTOiOiTwi + TiaciTOiLOiLTsci) —z7 Sz
1

<.

TZHCL'ZH2 —zTSz.

I
NgE

1

.
Il

The block matrix (2.1) can be written as
(4.12) S=00" +w,
where W' is a block matrix constructed from W; in a similar fashion to (2.1). Then

TSz =270z + "™ Wax =2T(© -0)(0 -0) 'z + "W
(4.13) =(®-0)"z|* +a" Wz < |© - O|*|z|* + [W|]|=|>.
The second equality is due to OT = 0. Hence we have
(4.14) 2" L0, M)z > 7illzil® — |© — Of||z||* — |W[=|*.
i=1
Combining Weyl’s inequality and Lemma 4.4, we obtain a lower bound on 7;:
7 > m—||[WOl| - m|07®,; — 1| - [©70 — mi|.

Substituting this with inequality (4.15), we see
(4.15)

&' L(0,A)z > (m ~ ©70 —mI|)|z|* - |© - O|||z|?

=3 (Iwolllz:? + m|OT©; ~ Tja:?) ~ [W]|z|?
i=1

> (m 070 - mi|| - |© - O

i=1,...,m

— max |[WOJ| —m max [07©, 1| - ||W||) )2
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Thus if
m > ||@'0 —mI|| + ||© - O|?

4.16
(4.16) + max [[WOL|+m max [OT®, —I| + W],
i=1,....m i=1,...,m

then we have L(O,A) = 0. } } }
Now suppose (O1,...,0,,) is a global optimum and A = (A4,...,A,,;) is the

collection of the associated Lagrange multipliers. Let 0= [OlT, ceey Oi]T Then, by
Lemma 4.5 there exists R € O,, such that O = OR satisfies inequalities (4.8)—(4.11).
Then, for this O the RHS of inequality (4.16) can be bounded:

1070 —mI||+ wax [(WO)| +m max [OF©;~T|+||©-O|*+|W]|
< AWV + max WO +4|W I/

| 2mmaxicicn [WOLilr +4IWI2/37)
m —4|W|v/r

,
+16[|W*— + W]

If this bound is less than or equal to m, the resulting inequality is precisely (3.6),
and then condition (4.16) is satisfied. In other words, L(O,A) > 0, where A =
(A1,...,A,) and A; = Z;”:l OiTSijOj = RA;RT.i=1,...,m, are the associated
Lagrange multipliers.

Finally, observing that

L(A,(By,...,B,)) =L(AQ,(Q"B:Q....,Q"B,Q))

for any Q € O,,, A =[A],..., AL]T with A; € R%*" and B; € R™" shows that
L(O,A) =0
For the similar result under the model (MAXDIFF), see section 4.7.

4.6. Proof of Corollary 3.10. Under the ®-concordance of %W, the RHS of
inequality (3.6) in Theorem 3.9 is upper bounded by

2m(3c+/Drlogm + 360%D ./~
120V Dr + 30/ Drlogm + 366D r + ( & m)
V m m — 120/ Dr

(4.17)
5 Dr
+ 1440 30vD
if 0 < 12\/D7 If (4.17) is less than or equal to m or equivalently
1
1> 120\/ " 30 q/dr BN 4 360 2d,/
(4.18)

2(30v/drm logm + 3602d+/rm) 4 14do o dr +3 d
o] —
— 120vdrm m m

for o < 12@ then from the proof of Theorem 3.9, we see that condition (4.16) is

satisfied, and thus the claim is proved.
The fourth term on the RHS of inequality (4.18) is

drlogm 2 T
2(3(7\/m + 360 d\/m> 3 \/m+36 2d\/>
1-120,/9 T l-gtmn
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3 f Thus, by replacing o with the RHS of (4.18) is upper bounded

31W’
by

12 1 <1+ 2 )(3\/Iog 36 1> 144 1 3001
1- il/4

3/ T\ i 961 ) 96t miZ 31 e/

Since r > 1, anﬁg/f < \/g , and the rest of the terms are decreasing in m, the above
quantity is less than 1 for m > 2.

4.7. Theorem 3.9, Corollary 3.10, and Corollary 3.11 under (MAXDIFF).
Under the MAXDIFF model, inequality (4.13) is replaced by

z'Sz < [|© — O|* |l — ) _ [1©:0] i[> + W |||z|

=1
< (1e-01 - min 10117+ W) o
<i<m
and (4.15) by
TLOA)e > (-1 070 i - wx [[WOL
“m s 07, 1] - [© - OJF ~ W1+ min € ) Jal?
= (m — H@TO —ml|| — _max I[W Ol
“m e [070; 1] - © - O ~ W) ]

since ||®;]] = 1 for all ¢. Thus condition (4.16) for L(O,A) = 0 to hold remains
unchanged. Applying Lemma 4.5, we obtain

m > AW L + maxicin |[WO 5+ A[WIP e 4 W]
+ 2m(maxi<i<m [|[WO]il| r +4HW”2%) 16| W || )
_ m—2//m)2"
m— 4| W= =3 .

Proceeding as above for (MAXBET), we obtain the bound on o as stated in Re-
mark 3.13.
Furthermore, inequality (4.6) is replaced by

1
Pr ( _max WO|lr < o(/dr(m—1)+rvm—1 +2\/rlogm)> >1-— =
7 N ] m

(recall that d = min,,—1, .. m d;), and inequality (4.7) holds for m > 2 for all d since
— 1 < mlogm for all m > 2. Thus the conclusmn of Corollary 3.11 holds without

as stated in Remark 3.13.

modlﬁcatlon provided that m > 4 and o < ” f

4.8. Proof of Corollary 3.14. The desired results follow immediately from
inequality (4.11) of Lemma 4.5 and Definition 3.2.
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5. Proofs of technical lemmas and propositions.

5.1. Proof of Proposition 2.1.

Proof of Proposition 2.1. First consider model (MAXBET). We have S;; =
@iO? for all ¢, j. Then the objective of (OTSM) is

> tr(07©:0]0)) = u[(©]0,)"(6]0;,).
4,J iyJ
Each term is bounded by the von Neumann—Fan inequality [20, Example 2.8.7]
(5.1) tr[(©;0,)T(070;)] < Y _01(0] 0:)01(©; 0;),

k=1

where oy, (M) is the kth largest singular value of matrix M. Since O ©;0] O;
O?Oi = I,, we see maxg—g . rcm(@?Oi) < 1lforall O; € Og,,, 1 =1,...,
Thus the largest possible value of the RHS of inequality (5.1) is r, and (OTSM) has

<

maximum m?2r. This is achieved by O; = @; for i = 1,...,m since 7 ©; = I,
It is straightforward to modify the above proof for model (MAXDIFF). The
maximum is m(m — 1)r. |

5.2. Proofs of Lemmas for Theorem 3.1.

Proof of Lemma 4.1. For any U in the constraint set of (SDP) such that U # U
and X =U —-U, WehaveP?LXP~L :P?LUP~L—PTLUP~L :P?LUP"L =0
\Z v \Z \4 v v \% v

and sz;iXiiPVi = P‘z/jiUiiPVi — Pgiﬁiin/i = P‘Z;iU”'P‘;i —I<0. In summary, X
has the properties of
(5.2) PgLXPVL =0, tr(X;) = 0 and Pgixiipf,i <0forall<i<m.

In addition, either P;:C X PvL is nonzero or P‘T/ X Py is nonzero for some 7. If
i K
they are all zero matrices, then we have

(5.3) PLLUP,. = PLLUP,. =0,
(5.4) Pl U;Py, =Pl U;Py =1,.

Since U;; = 0, we have V?UZl‘N/'Z > 0. Combining it with tr(PgU”-Pf,i) =7 (due
to (54)) and r = tT(U“‘) = tr(Pg.Uiin/t) + tr(V?UiiVi), we have ‘N/ZTU“‘N/Z =0.

~ T ~
Combining it with U;; = 0, we have V; U;; = 0 and UZ»Vi = 0. It implies that
U, = V;Z;VT for some positive semidefinite Z;. That U;; < I and tr(Uy;) = r in
turn implies that Z; = I,.. Thus,

(5.5) Ui=V,V,.

In addition, (5.3) and U %= 0 mean that U = H‘T~/UHV; that is, there exists a matrix
Z € R™" such that U = VZVT, and as a result, U;; = ViZf/ZT Combining it with

(5.5), we have Z =T and U = vV = U, which is a contradiction to assumption
U+#U.
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Combining the property of X in (5.2) with the assumption of T in (4.2) that
{Pg_TEQ)P 3™, and PT T(l)P 1 are positive definite matrices, we have

tr(X S) = tr(XTW) + tr(XT®) + ctr(X)

= tr[(PL. X Py )(PY 1)PV )+ S (X Ty
(56) o T T
_tr[(PVLXPVL)(P TP )]

m 2
+ 0, tr[(PVTiXﬁPm(PVTiT;>Pvl.>1 <.

The first equality uses assumption (4.1). The last inequality is strict because either
PgLXP‘;.L is nonzero or P‘Z;,Xiipf/i is nonzero for some 1 < ¢ < m. Then (5.6)

implies that tr(SU) < tr(SU) for all U # U, and as a result, U is the unique
solution to (SDP). d

Proof of Lemma 4.2. In this proof, we aim to construct the certificate in Lemma
4.1. The process can be divided into three steps:
e Find a decomposition of S = § M + 8@ hased on the first-order optimality.
e Construct the certificate T and T from the decomposition S M and §@.
The explicit expression is given in (5.10).
e Verify that the certificate satisfies the conditions in Lemma 4.1.
Step 1: Decomposition of S based on the first-order optimality. We
investigate the first-order condition for any solution of (2.2) and summarize the result
in Lemma 5.1 as below.

LEMMA 5.1. Let U = V'V be a solution to (2.2) with V. € RP*". Then the

input matriz S can be decomposed into S = s 4 S(z), where SY and 8@ are such
that

Si‘7 i J,

(5.7) [SM]y; =4"" m r
Z S”V Vi , 1=,

0, R

(5.8) [SP]ij =< . T ' #‘7.
21 S5 ViV, i=j,

and satisfy that
(5.9)  SW=1y,.8W . and S =TIy Sy forall1<i<m.

The properties of SM and §@® in (5.9) are exactly the same as the condition
(4.1) for certificates T and T® in Lemma 4.1. As a result, it is convenient to
construct our certificates T and T based on S and ). In fact, the explicit
expression of (5.10) in step 2 shows that T is derived from S and T® is derived
from S§@.

Proof of Lemma 5.1. Since V' must satisfy the first-order local optimality condi-
tion (2.3), that is, V;A; = Z S.;V j, we can construct the block diagonal matrix

S® by letting S& = V,A;V; =3, S;V;V; . Then it follows that

My SP1, = VAV, =S2.
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Furthermore,

[SOV); =SV = VA =Y 8V, = [SV]..
J

Thus SPV = SV, and for s —g_ 5(2)7 we see SV =0 and VTS(I) =0 (by
symmetry). This implies Iy, S(l)H"}.J_ = SW. Hence condition (5.9) is satisfied. 0O

Step 2: Construction and verification of a certificate. We construct the
certificates T and T® based on S and S as follows:

(1) .y @) o

(5.10) T = | 7 7@ _ ) S i # J,
: 17 S(l) 11 L ij (2) . .
i € Vj" =1 Siz‘ _CHVi7 1=7.

It remains to verify that the certificate satisfies the assumptions in Lemma 4.1.

Step 2a: Proof of (4.1). From the properties of S and §@ from step 1, it
is clear that § = T +T@ 4 1, HVLT(l)HVL =T, and TE?) = HV,iTz("L?)HVi'

Step 2b: Prove that {PL T\” Py, }7, is positive definite. Applying, for
all 1 <i < m,

~ T ~ m ~ ~ T ~
(G11) |V SPNVe - mIl<| 7, W Vi + ml Ve, 1)+ €7V — m1]|

(which will be proved in step 3) and Weyl’s inequality for perturbation of eigenvalues
and noting that HVZTQz —I|| < ||V — ©;]|, we see P‘T/iTE?)PVi is positive definite for
all 1 <i<mif

m X7 T ) Txr
(5.12) m>c+lrgnizgnHZj=1WwVZ +m max ||V = O+ €7V —mi|.

which follows from (4.3) with ¢ = m/2.

Step 2c: Prove that —PVTJ_T(l)PvL is positive definite. Let Sp(X) be the
column space of the matrix X, and define the subspaces L; = Sp(®), Ly = {x € R :
z; € Sp(©,)}, and Ly = Ly = {w € R : @; € Sp(©;")}, and let SM* = —mIl}, ;.

and TW* = §W* o1, = —mlIly, o — cllp,. More specifically, we have
(5.13) [V = 0,07 for i # j, [V = —(m —1)©,0]

and T™W* as follows: TE;)* = SE;)*, T = s - g .
Considering that dim(Ly N L) = dim(Lg) — dim(Ly) = rm — r and dim(L3) =
D — dim(L3) = D — rm, we have )\TH(T(I)*) = —c. Applying Weyl’s inequality and
. ~ =T ~ ~ ~ T ~
noting ©,0] —V,V, || = [|©i(©; - Vi)' +(V; - ©,)V, | <2|©; - V|, we have
At (D) = A1 (TW)] < T — 70
< |8 = SW | + cmaxi<icm [TMgr — My |

- T
= [|SM* — SW|| + cmaxi<i<;n |©,0] =V, V|
<8 — 8W|| + 2cmaxi<icom |©; — Vi|.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/03/22 to 131.179.222.31 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ORTHOGONAL TRACE-SUM MAXIMIZATION 2199
Combining it with
- s < Vi—©, m WLV
sag ST SUISm s Vi O e I WVl
+[©7V —mI| +||W]|

(which will be proved in step 3) and

v, JR— . .. W, . T W, J—
(5.15) ¢ > (m+2c) max |[V; ®l||+1r§niaé)5nHZ;WUVJH+H@ V —ml|+|W]|
]:

(which follows from (4.3) with ¢ = m/2), A1 (T™)) is negative, which means that
T has at least D — r negative eigenvalues. By definition, T™ has r zero eigenval-
ues with eigenvectors spanning the column space of V, SO P‘Z; L T(l)Pvi is negative
definite.

Step 3: Proof of auxiliary inequalities (5.11) and (5.14).

Step 3a: Proof of (5.11). Combining (5.8) with
(5.16) Y eiv,=e'v,
we see

o519, < [ (259,) i

|| wuvs| + Ve (s et v,) - m

~ ,.,T m - m ~
<[Srwavi|+ |vietsrerv.| +[srer v, - m|
<[ w ] oot v

where S;; = W; + @ief when ¢ # j is used for the first inequality.
Step 3b: Proof of (5.14). Applying (5.7), (5.8), and (5.13), we have that, for
both MAXBET and MAXDIFF models,

T f— .. . .
(5.17) s — S(l)*}ij - Sij — ©:0; = VV:”, . i # 7,
Wii— (Z}’;lsijvj)vi +m@®,0!, i=j.

As a result,

(5.18) IS0 =SV < W + max H(Z _1swv)vffm@i®f

Using (5.16), we have

/ m g T
I(),0:0] Vi) Vi —m®,0] | = [(L}-,0]V,)V; —me]|
<=, etV

(5.19) o
—mI|| +m||V; — 0;|=(0TV —mI| + m|V,; — 6.
Applying (5.18), (5.19), and S;; = W; + 61‘@? when i # j, (5.14) is proved. d
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Proof of Lemma 4.3. First, we remark that the choice of V € RP*" is only unique
up to an r X 1 orthogonal matrix. That is, for any orthogonal matrix O € R™", VO
is also a potential choice. In this proof, we choose V such that @7V ¢ RT” is a
symmetric, positive semidefinite matrix, and as a result, tr(@7V) = [|@TV||,.

Then we have that

IV =@ =" IVi— 05 = S0 IVills + 1067 — 26:(Vi®])

(5.20) =Y Vil + ||©:]|% — 2tx(®T V) = 2rm — 2tr (Z e{fa)
i=1 i=1
=2rm — 2tr(@TV) = 2rm — 2|@TV|,,
where || - || represents the nuclear norm that is the summation of all singular values

(and since VTV is positive semidefinite, it is also the summation of its eigenvalues).
Using the definition in (2.2), we have

(5.21) tr(V' SV) > tr(075O).
Applying § = @O + W, (5.21) implies
(V' WV)+ [V O = tr(V WV) + t2(V' ©07V)
>tr(@TWe) +tr(@'ee’e) =t(@'we) +|e’e|%
and
(522) (V' WV) - (@ W) > e8|} — |V O =rm’ |V o]}
Since | X |7 = >, \i(X)?, we have
by IVl =St a7 e y
>m Y (m—N(V' ©) =m(rm — |V ©lL.).

The combination of (5.22), (5.23), |[V|r = |®|lr = rm, tr(AB) < | Al ||B|r,
and |AB|r < ||A|||B| r implies that

m@rm — |V ©],) < te(V WV) - tr(@T W)

=tr((V - ©)TWV) + tr(@"W(V — @))
< WV = 8leIVIe+ W[V —©|r|O|r
=2[WIV - ®©|rvrm.

Combining it with (5.20), we have

(5.24) 2V - ©|% <2|W||V - ©|rim,

which implies

(5.25) IV —®llr < 4|Wlly/7,

proving the first inequality in (4.4). It implies that

~ T ~ ~
(5.26) V' © —mI|r = |(V-0)70|r <[V - O|rvm < 4|W|r.
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Applying (5.25), the second inequality in (4.4) is proved:
max [|[WV]i||lr < max |[[WO|r+ max |[W(V —©)|r

1<i<m

< ) —
(5.27) < llgnigll[W@]zllFJr IIWIIHV O|r

< max [[WOli||r +4|W|*/7.

Now let us consider V' e RPxr deﬁned by V;
1<j<m,j#1i. By deﬁmtlon we have tr(V SV) >
Tg

to tf((Y—V)TSV)+tr(V S(V-V))—tr((V-V)
of V, V, and S, we have

= @, and V; = V; for all
tr (V S V), and it is equivalent
S(V—V)) > 0. By the definition

2tr((‘~/i — GZ)T(-)l@TV) + 21?1"((‘7,‘ - @Z)T[W‘N/L)

(5.28) —tr((V; — ©)784:(V,—©,)) >0

Recall that V is chosen such that ®TV is symmetric and positive semidefinite,
and apply the fact that, when A is positive semidefinite, then tr(BA) = tr(B” A); and
when both A, B are positive semidefinite, tr(AB) > tr(AAmin(B)I) > Apin(B) tr(A)
(Amin represents the smallest eigenvalue), we have

(@, V—)T@)-@Tf/] —tr[1-V, ©,)(©"V)]
(5:29) = Ller[(21- vV, e,-eTv, )OIV =1tr [(Vi-0,)T(V,-0,)(07V)]
tr [ ©,)" (V- ©)|\.(0TV) = 1|V, - @A (87V).
In addition, we have

(5.30) tr((Vi—0:)78:(Vi—0,)) > —||Sull|[Vi—0il|F > —(1+|Wul)[|Vi—O:ll3,

L\?h—‘ L\D\»—A

(2
(V

>

and tr(AB) < ||A||r||B||r implies
(5.31) tr((Vi = @) [WV]) < |Vi - Ol [WV||p.
Combining (5.28), (5.29), (5.30), and (5.31),

IVi—Oillp|[WVIillr > Vi — O[5(A(©7V) — 1 — [W]|).
Combining it with (5.27) and (5.26), which implies that A.(@7 V) > m — 4|W /7,
and noting that ||W| > [|[W ]|, (4.5) is proved. |

5.2.1. Lemma 4.3 under (MAXDIFF).
Proof of Lemma 4.3 under (MAXDIFF). Following the proof of Lemma 4.3 un-
der (MAXBET), we have
AWV — O pvrm > te(V' WV) — tr(©@" W)
T
> (rm® — |V ©3) — (rm — X0, |V ©4]3)
> 2|V -0l X, IVi- 6} = (2 -1V -8,
where the first inequality is (5.23), the second inequality is from the definition of
S under the MAXDIFF setting, and the third inequality is from r — ||‘~/ZT@1Hfm <
IV — 0% = 2r — tx(V; ©,) since |V, ©2 — 2tx(V; ©) + 7 = |V, ©; — L|2.
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As a result, if m > 2,

IV —O|r <4|W|[LZ, [V © —mI||p < 4| W||2Ls

m—27 m—2"
Ville < . 2 Vrm.
ax [[WVLilr < max [[WOl|r +4|W[" 5=

In addition, (5.28) is replaced with 2 trg(f/i —@T;)TQi@TV) +2 tr~((‘7¢ -0,)T[WV],)
> 0. Then we have 1\, (@7V)|©; — V|2 < [|©; — V,||p(|[[WV]i| r) and

N 2 max; <i<m [|[[WO]| + 8| W2 X2
m_ax H@z_VzHF S m\/F
1<ism m—4|W||

m—2

for m > 4|W||\/r + 2. 0
5.3. Proof of lemmas for Theorem 3.9.

Proof of Lemma 4.4. From O;A; = Z;n:l S;;0;, we have A; = Z;n:l 07 S;,0;.
Hence, under (MAXBET),

1A; = mL | = || 7, 07 §5;0; — mL|
<07 X7, W05 + |07 ©: 327, ©70, — ml, |
<1327 Wi05) + 1(07©; = 1,) 37 ©70; + 377, ©70; —mL|

Jj=1 J=
m m

<[> W05 +11(07©; —1.)> 070+ > 6]0; —mL||

j=1 j=1 j=1
<272 W05 + 11070 — L ||| X)L, ©5 0| + |©70 — mL,|
< |1 X272 W04l +m||0f ©; — 1| + [|©70 — mL|
since |©] Oj|| < 1. Under the MAXDIFF model,
1A = (m = DL || = | 32, 07 805 — (m = DL||
< ||0? Ej;éi Wz‘joj” + HOZT@z Zj;éi Q?Oj —(m— 1L ||
<124 Wi 05l +11(07©; = 1,) Y7L, ©70; +32,,,©070; — (m = 1)L |
<1324 W05l +11(07©; = 1,) 32, ©7 04 + (| 2, ©7 O — (m — DL

< S w0+ Ho?ei ~L||[Sero,| + |70 —m1, —-efo, +1|
JFi i

<32 W05l + (m = 1) 0] ©; — L[| + |[©70 — mIL,| + |0 ©; — L

=132, Wi;0;] + m|O] ©; — 1| + |©"0 — m1,|. o

The following technical lemma is needed to prove Lemma 4.5.

LEMMA 5.2. Suppose X,Y € Og4,, and A € R™? s symmetric and positive
semidefinite. Then, there holds tr[ X A(Y — X)] <O0.

Proof. Note

tr[XA(Y — X)] < tr(ATXT(Y — X)) = tr(A(XTY - 1,))

—tr(A) = tr(YTXA) — tr(A)

—u() =tr [A (3XTY + 3YTX -1, )]
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Since XX Iy, (XTY)'(XTY)=YT'XXTY Y'Y =1,.. Thus | X7Y, < 1.
Likewise [|[Y7 X, < 1. Then, because %XTY + %YTX is symmetric,

Amax (%XTY + %YTX> < H%XTY n %YTXH < HIXTY |l + HIYTX|| <1

and 3X7Y +1Y"X —1, < 0. Since A 3= 0, it follows that tr[XA(Y — X)] <0. O

Proof of Lemma 4.5. Let the singular value decomposition of ®70 be UV,
where U,V € O,, and ¥ € R"™™" is diagonal with nonnegative entries. Let R =
VUT € O,,. Then, for O = OR, it holds ®70 = UXUT = 0.

Clearly, (O4,...,0,,) = (OlR, ol OmR) is globally optimal. Therefore,

tr(©@780) < tr(0*' S0),

which is similar to inequality (5.21) in the proof of Lemma 4.3. It immediately follows
that, under (MAXBET),

2/ WO - ©] > tr(0TWO) — tx(@7W®) > 20 — O
and, under (MAXDIFF),
2/ [ WO — O]l > x(OTWO) — tr(@TWe) > (2 —1) [0 - O],
from which inequality (4.8) holds. Inequality (4.10) follows from

[WOlillr <[[W(O = 0O)illr + [[WOllr = [Wi(O - 0)|lr + [[WOL|
< [WilllO = O|r + [[WOli|r < [W]|O - O] r + [[Wel|r

and inequality (4.8), where W;. = [W 1, ..., W, ], is the ith row block of W.
Inequality (4.8) also implies

4|W ||/ under (MAXBET),

4|W |27 under (MAXDIFF).

(5.32) [©T0 —ml,| < {

We first consider the MAXBET model. The global optimality of (Oq,...,0,,)
asserts that the associated Lagrange multiplier A; of O; satisfies O;A; = Z;nzl S;0;
(see (2.3)) and is symmetric and positive semidefinite [35, Proposition 3.1]. Since
Sij =0,0] + W,

(5.33) > 8,0;=> 0,0/0;+> W;;0,=6,0"0+ WO,
j=1 j=1 j=1
Thus from Lemma 5.2, we have
0> tr[(@i - Oi)T Zj;ﬁi Sijoj}

(5.34)
= tr[(®; — 0,)7©,070] + tr[(®; — 0,)" [WO];].

Using that ©70 is symmetric and positive semidefinite, we have, similar to inequality
(5.29),

(5.35) tr[(®; — 0,)79,070] > 1),.(070)|0; — 0,|%.
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Then the Cauchy—Schwarz inequality and inequality (4.10) entail

1 T _ O , ) 2 /T
2Ar(©70) max [[©; — Oillr < max [[[WOL|r < max [[[W6]i|r+4|W|*7Z.
Combining inequality (5.32) and Weyl’s inequality, A\.(©70) > m — 4|W||/r, and
inequality (4.11) is obtained.

Under the MAXDIFF model, (5.33) becomes O;A; =

©,07 0, + [WO];, and inequality (5.34) is replaced by

T
14150, =©,070 —

0> tr[(®; — 0,)79,070] — tr[(®; — 0,)T©,81 0,] + tr[(®; — 0,)T WO,
Inequality (5.35) remains intact, and

—t1[(©,-0,)T©®,8] 0;]=tr[(0,-0,)Te,81 (0; — ©,)] — tr[(®,; — 0,)70,06] 6]

> —|©,0] ||[|0; — ©;|% — tr[(®; — 0,)T8),]
> —0; - 0|3 — tr(I, — O] ©;)
> —[|0; — O3 — 1[|0:]1% + [|©4]|3 — 2tx(O7 ©;)] = —3(|0; — O[3,

where the third line is due to |©;©7]] < 1. Hence the Cauchy-Schwarz inequality
and inequality (4.10) now give

IN

3(\(070) = 3) max [|©; - Oilr

max [[[WOJ;|r
1< 1<i<m

IN

, 2.V
fgfgﬁn [WOli|lr+4|W| Vm—2/m"

Inequality (5.32) and Weyl’s inequality now result in A\ (@7 0) > m — 4||W||%,

and inequality (4.11) is obtained. For a valid bound we need m > 4||W/|| ljgm + 3.

Solving the involved quadratic inequality provides the desired lower bound for m. 0O

6. Conclusion. This paper studies the OSTM problem [35]. It shows two results
when the noise is small: first, that while the problem is nonconvex, its solution can
be achieved by solving its convex relaxation; second, condition (2.4) is necessary
and sufficient for global optimality of a critical point, making the former a genuine
certificate.

A future direction is to improve the estimation on maximum noise that this
method can handle. While this paper shows that the method succeeds when ¢ =
O(m!/*), we expect that it would also hold for noise as large as o = O(m!/2), which
has been proven in [37] for phase synchronization and in [22] for synchronization of
rotations. We suspect that the suboptimality of this result arises from the estimation
of maxi<ij<m || Z;":l W V|| in (4.4), where standard tools from the theory of mea-

sure concentration cannot be used as V' depends on W. Likewise, in certifying global
optimality of a critical point, estimation of maxi<i<m || 227, Wi;0;| in inequality
(4.10) becomes a bottleneck. To solve this problem, some decoupling techniques in
probability theory might be needed to disentangle the dependence structure. An-
other future direction is to use a more generic model than the additive Gaussian noise
model, which would have a larger range of real-life applications.

Appendix A. Simulation study.
We conducted a simulation study to see how tight the conditions (3.6) and (3.7)
are. Under the data generation model (MAXBET), we fixed d = 5, » = 3 and varied
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TABLE 1
Frequency of satisfaction of conditions (3.6), (3.7) and certificate (2.4).

m o (3.6)1 3.7 4
0.01 100 TRUE 100

10 0.10 10 FALSE 100
1.00 0 FALSE 0
1.50 0 FALSE 0
0.01 100 TRUE 100

20 0.10 0 FALSE 100
1.00 0 FALSE 21
1.50 0 FALSE 0
0.01 100 TRUE 100

30 0.10 0 FALSE 100
1.00 0 FALSE 99
1.50 0 FALSE 0

fReported numbers are out of 100 replicates in each scenario.

the number of groups m € {2,5,10} and the noise level o € {0.01,0.1,1,10}. The
semiorthogonal matrices @1, ..., ®,, were generated by taking the QR decomposition
of random d x r matrices with i.i.d. standard normal entries. The upper triangular
part including the diagonal of W was generated from i.i.d. normal with mean zero
and variance o2. For each combination of m and o, we generated 100 replicates and
reported the number of replicates for which the proximal block ascent algorithm in [35]
produced a critical point satisfying certificate (2.4) using the ten Berge initialization
strategy (“tb” in [35]) in Table 1. In addition, we also counted the frequency of
satisfying conditions (3.6) and (3.7) for Corollaries 3.10 and 3.11, respectively, and
the certificate of global optimality of a critical point (2.4).

Table 1 shows that condition (3.6) is satisfied at small noise levels. Condition
(3.7), which is fully determined by the combination of m and o, is less frequently sat-
isfied than (3.6). In case either condition (3.6) or (3.7) is satisfied, the certificate (2.4)
is always satisfied as predicted by the theory. It is remarkable that certificate (2.4) is
satisfied more frequently than condition (3.6) or (3.7), leaving room for improvement
of these conditions.
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