

1                   **The Relationship between Pre-landfall Intensity Change and Post-landfall**  
2                   **Weakening of Tropical Cyclones over China**

3                   Wenjun Han<sup>a,b</sup>, Yuqing Wang<sup>c\*</sup>, and Lu Liu<sup>a</sup>

4                   <sup>a</sup> *State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China*  
5                   *Meteorological Administration, Beijing, China*

6                   <sup>b</sup> *College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing,*  
7                   *China*

8                   <sup>c</sup> *International Pacific Research Center and Department of Atmospheric Sciences, School of*  
9                   *Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, USA*

10                   October 28, 2022 (submitted)

11                   November 30, 2022 (revised)

12                   Dateline

13                   Submitted to ***Frontiers in Earth Science***

14                   \* *Corresponding author:* Yuqing Wang, yuqing@hawaii.edu

15

## Abstract

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

The accurate prediction of the weakening of landfalling tropical cyclones (TC) is of great importance to the disaster prevention but is still challenging. In this study, based on the 6-hourly TC best-track data and global reanalysis data, the relationship between the intensity change prior to landfall of TCs and the energy dissipation rate after landfall over mainland China is statistically analyzed, and the difference between East and South China is compared. Results show that TCs making landfall over East China often experienced pre-landfall weakening and usually corresponded to a rapid decay after landfall, while most TCs making landfall over South China intensified prior to landfall and weakened slowly after landfall. The key factors affecting both pre-landfall intensity change and post-landfall energy dissipation rate are quantitatively analyzed. It is found that the decreasing sea surface temperature (SST), increasing SST gradient, and increasing environmental vertical wind shear are the major factors favoring high pre-landfall weakening occurrence, leading to rapid TC weakening after landfall over East China. In South China, changes in the large-scale environmental factors are relatively small and contribute little to the post-landfall weakening rate.

**Keywords:** **landfalling tropical cyclones, intensity change, post-landfall weakening rate, large-scale environmental factors**

33 **1. Introduction**

34 Landfalling tropical cyclones (LTCs), especially those weakening slowly after landfall,  
35 seriously threaten to our life and property (Klotzbach et al., 2018). LTCs caused annual deaths of  
36 472 and annual economic loss of 28.7 billion RMB in China during 1983-2006 (Zhang et al., 2009).  
37 Typhoon Nina (7503) triggered a disastrous dam collapse in the inland province of Henan in 1975,  
38 which led to flood spread to more than 1 million hectares of farmland in 29 counties and cities and  
39 eventually caused a total economic loss of about 10 billion RMB (Liu et al., 2009). Therefore, it is  
40 important but challenging for accurate prediction of LTC intensity and thus for disaster prevention  
41 because of dramatically changes in tropical cyclone (TC) structure and intensity (Elsberry and Tsai,  
42 2014). From a social and economic point of view, it is also very important to accurately predict the  
43 regional changes in the intensity of LTCs (Walsh et al., 2016).

44 The weakening of TCs after landfall is driven by many factors, including LTC intensity (Tuleya  
45 et al., 1984), land-atmosphere interaction (Andersen et al., 2013, 2014), and topographic effect  
46 (Done et al., 2020). The sudden reduction of surface enthalpy source and the increase of surface  
47 roughness would lead to weakening of the eyewall convection and the decrease of surface wind  
48 speed, and thus the filling of a TC over land (Miller, 1964; Power, 1991; Ooyama, 1969; Tuleya,  
49 1994). Li et al. (2020) statistically analyzed the TCs making landfall over the North Atlantic in  
50 recent fifty years and found that the increasing sea surface temperature (SST) increases the  
51 moisture stored in TCs during its passage over the coastal ocean, which can supply extra enthalpy  
52 source and help maintain warm-core structure and thus the intensity of TCs after landfall. However,  
53 some other studies have found that the SST may not be a major factor determining the weakening  
54 rate of LTCs over the western North Pacific (Chen et al., 2021). In addition, the influence of large-  
55 scale environmental conditions on LTC weakening cannot be ignored. Wood and Ritchie (2015)  
56 studied the rapid weakening events of TCs in the North Atlantic and eastern North Pacific during  
57 1982–2013. Their results showed that the strong SST gradient and the contribution by dry air  
58 intrusion induced more rapid weakening events in the eastern North Pacific than in the North  
59 Atlantic. The increase in coastal SST, land surface temperature and soil moisture, the decrease in

60 low-level vertical wind shear (VWS), and the increase in upper-level divergence are all favorable  
61 for intensification of TCs and their survival after landfall (Wang et al., 2015; Liang et al., 2016;  
62 Liu et al., 2020; Ji et al., 2020). Previous studies have qualitatively examined how environmental  
63 factors affect the weakening of TCs while a quantitative study on the environmental factors  
64 affecting the weakening of TCs after landfall has not been comprehended.

65 In recent years, more attention has been given to how nearshore intensity change of TCs may  
66 affect the post-landfall weakening. TCs that experienced rapid intensification prior to landfall are  
67 more destructive, such as Hurricanes Andrew (1992), Opal (1995), and Charley (2004), all resulted  
68 in devastating to the coastal regions in the United States (Franklin et al., 2006). Rappaport et al.  
69 (2010) discussed the intensity change of TCs within 48 h before landfall along the Gulf coast and  
70 concluded that weak (intense) TCs strengthened (weakened) prior to landfall. Park et al. (2011)  
71 analyzed TCs making landfall in Korea and Japan and found a trend of increasing duration after  
72 landfall relative to the intensity prior to landfall, and further affect the temporal variation of the  
73 TC-induced rainfall in the region. Zhu et al. (2021) found that hurricanes undergoing rapid  
74 intensification prior to landfall weakened at a slower rate after landfall in the Continental United  
75 States and the weakening rate was also weakly and positively correlated with the landfall intensity.  
76 They also indicated that the pre-landfall intensification was more common along the Gulf Coast  
77 but there was no significant correlation between regions and weakening rate. Song et al (2021)  
78 further showed that a slower weakening rate prior to landfall of TCs over the South China Sea and  
79 an increased intensification rate prior to landfall of TCs east of the Philippines had a significant  
80 linkage to warmer ocean and greater upper-level divergence.

81 The aforementioned studies have mainly focused on either the TC pre-landfall intensity change  
82 or regional distribution of weakening rate after landfall. In particular, few studies have involved  
83 whether the post-landfall weakening rate of LTCs over China exhibits any obvious regional  
84 characteristics related to the pre-landfall intensity change (Kruk et al., 2010; Zhu et al., 2021).  
85 Furthermore, it is still unclear how oceanic and atmospheric environmental factors regulate the  
86 relationship between the pre-landfall intensity change and the post-landfall weakening of TCs. The

87 main objectives of this study are 1) to explore the intensity change characteristics of LTCs prior to  
88 landfall over China, 2) to analyze the difference in the weakening rate of TCs over South China  
89 and East China, 3) to identify key factors affecting LTC dissipation and quantify their relative  
90 contributions based on the box difference index (BDI) method. The rest of the paper is organized  
91 as follows. Section 2 describes the data and analysis methods used in this study. The intensity  
92 change of TCs prior to landfall over China and the weakening of TCs after landfall are presented  
93 in section 3. Section 4 shows the spatial distribution characteristics of LTCs. The relative  
94 importance of various factors affecting the decay and regional differences is analyzed and discussed  
95 in section 5. The main findings are summarized in the last section.

## 96 **2. Data and methods**

### 97 *a. Data*

98 The 6-hourly TC best-track data used in this study were obtained from the China  
99 Meteorological Administration-Shanghai Typhoon Institute (CMA/STI), which include 6-hourly  
100 TC center location (longitude and latitude), maximum sustained (2-min mean) near-surface wind  
101 speed ( $V_{max}$ ) and minimum central sea level pressure (Ying et al., 2014). The 6-hourly best track  
102 data were linearly interpolated to hourly data (Liu et al., 2021) for the subsequent calculations of  
103 the accumulated cyclone energy (ACE), the change rate of  $V_{max}$ , and landfalling dissipation rate  
104 (LFDR).

105 We have focused on TCs whose centers crossed the coastline of mainland China (except  
106 Taiwan Island) at least once during their lifetimes. We first checked the hourly data to determine  
107 whether a TC was on land and then calculated the intersection of the line between 6-h pre-landfall  
108 and 6-h post-landfall using the coastline to determine the TC landfalling location and intensity (Hu  
109 et al., 2017). We only considered the landfall location south of 40°N in the peak TC season from  
110 June to October (Wang et al., 2015) during 1979–2018. In total, 90 TCs cases including at least  
111 three continuous 6-h records prior to and after landfall were selected in our study.

112 The environmental data were acquired from the European Centre for Medium-Range Weather

113 Forecasts (ECMWF) interim reanalysis (ERA-Interim) data at the horizontal resolution of  
114  $0.75^\circ \times 0.75^\circ$ , including the horizontal winds, vertical  $p$ -velocity, and specific humidity (Dee et al.,  
115 2011). The filtering algorithm of Kurihara et al. (1993) was used to remove the disturbance field,  
116 including the TC vortex, with the wavelengths less than 1,000 km from the unfiltered large-scale  
117 environmental fields at a given time. The filtered data were used to calculate the environmental  
118 vorticity, divergence, vertical wind shear (between 1000–300-hPa and 700–300-hPa, respectively),  
119 and water vapor flux divergence (QVDIV) (Table 1), in our analyses on environmental effect on  
120 TC intensity change during landfall.

121 **b. Methods**

122 The average change rate in sustained near-surface wind speed  $V_{max}$  ( $r_{vmax}$ ) is introduced as  
123 an index to characterize a TC that is intensifying or weakening within 18 h prior to landfall  
124 following Zhu et al. (2021):

125 
$$r_{vmax} = \frac{V_{max,t} - V_{max,t-18}}{18h}$$

126 where  $V_{max,t}$  and  $V_{max,t-18}$  represent the sustained near-surface wind speed at the time of  
127 landfall and the time of 18 hours prior to landfall. The intensifying TCs and weakening TCs are  
128 bounded by the 90<sup>th</sup> percentiles of positive values and negative values of  $r_{vmax}$ , respectively, and  
129 the remaining are considered as neutral TCs. Finally, 25 intensifying cases, 41 weakening cases,  
130 and 24 neutral cases were identified in our following analyses. Note that we used the period of 18  
131 hours instead of 24 hours used in Zhu et al. (2021) because most TCs that made landfall over China  
132 weakened to tropical depression about 18 hours after landfall. We also examined the 24 h period  
133 with the results quite similar to those obtained using 18 hours discussed herein.

134 Accumulated cyclone energy (ACE) is a metric to express the energy released by a TC during  
135 its lifetime (Bell et al., 2000; Trenberth et al., 2005; Emanuel, 2005). We used hourly interpolated  
136 data to compute the pre-landfall ACE ( $ACE_{-18h}$ ) and post-landfall ACE ( $ACE_{+18h}$ ) of a TC during  
137 its landfalling period (Vitat, 2009; Truchelut, 2007):

138 
$$ACE = 10^{-4} \sum V_{max}^2$$

139 where  $V_{max}$  is sustained near-surface wind speed with four continuous 6 hourly records prior to (-  
140 18h, -12h, -6h, 0h) or after (0h, 6h, 12h, 18h) landfall. The index is scaled by  $10^{-4}$  to make them  
141 more manageable.

142 In addition to quantifying the post-landfall weakening of TCs, [Zhu et al. \(2021\)](#) also defined  
143 the landfalling dissipation rate (LFDR) given below:

144

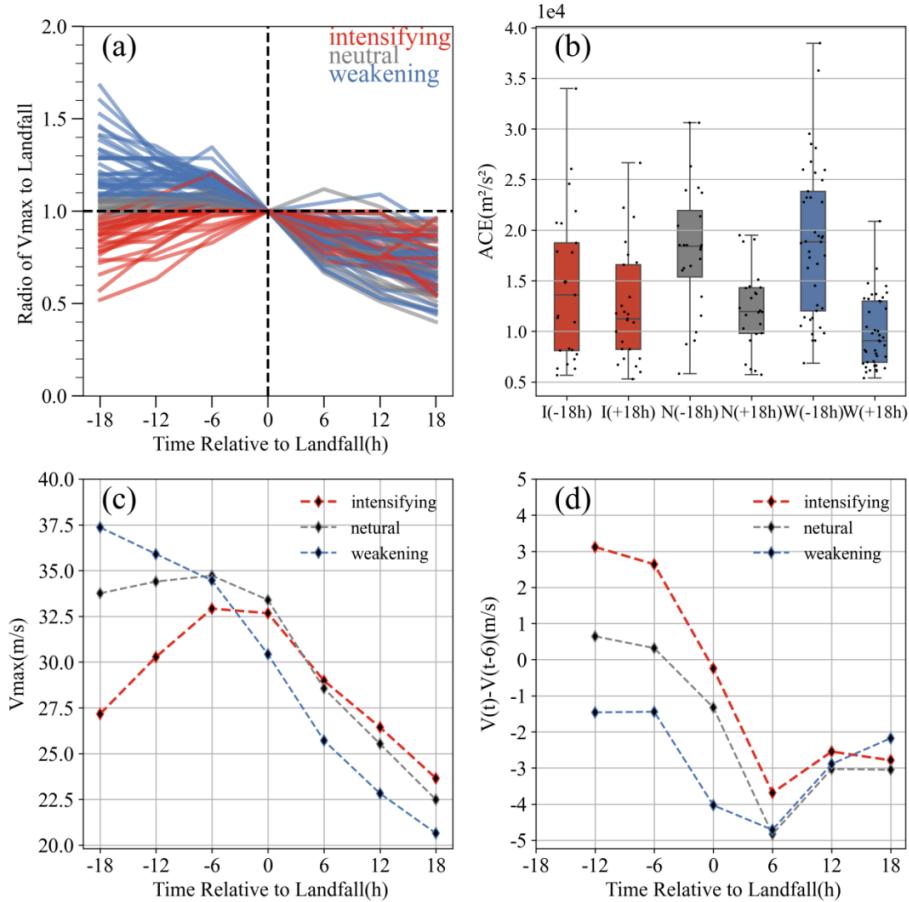
$$\text{LFDR} = 1 - \frac{\text{ACE}_{+18h}}{\text{ACE}_{-18h}}$$

145 A TC with higher  $\text{ACE}_{-18h}$  and lower  $\text{ACE}_{+18h}$  has greater LFDR, which means that the TC weakens  
146 more rapidly because of the larger energy dissipation.

147 A box difference index (BDI) was used to quantitatively measure the difference of key factors  
148 in intensifying (weakening) TCs compared to neutral TCs ([Fu et al., 2012; Li et al., 2020](#)):

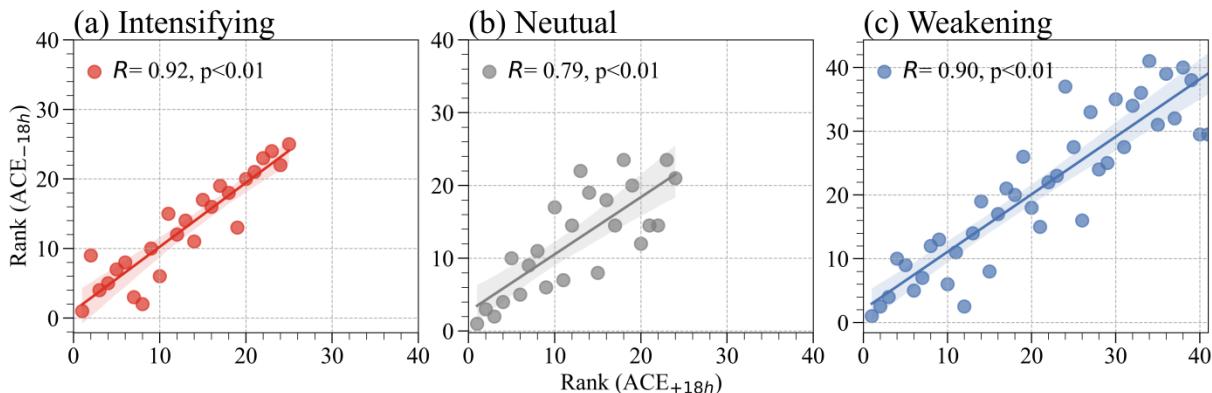
149

$$\text{BDI}_{\text{ITC}} = \frac{M_{\text{ITC}} - M_{\text{NTC}}}{\sigma_{\text{ITC}} - \sigma_{\text{NTC}}}; \text{BDI}_{\text{WTC}} = \frac{M_{\text{WTC}} - M_{\text{NTC}}}{\sigma_{\text{WTC}} - \sigma_{\text{NTC}}}$$


150 where  $M_{\text{ITC}}$  and  $\sigma_{\text{ITC}}$  ( $M_{\text{WTC}}$  and  $\sigma_{\text{WTC}}$ ,  $M_{\text{NTC}}$  and  $\sigma_{\text{NTC}}$ ) represent the mean and standard  
151 deviation of the variables for the intensifying (weakening, neutral) TC cases within 18 hours prior  
152 to landfall. The BDI is a number between -1.0 and 1.0. If the absolute value of index is greater, the  
153 corresponding factor is easier to trigger the intensifying (or weakening) process.

154 **3. Post-landfall weakening of TCs in the three categories**

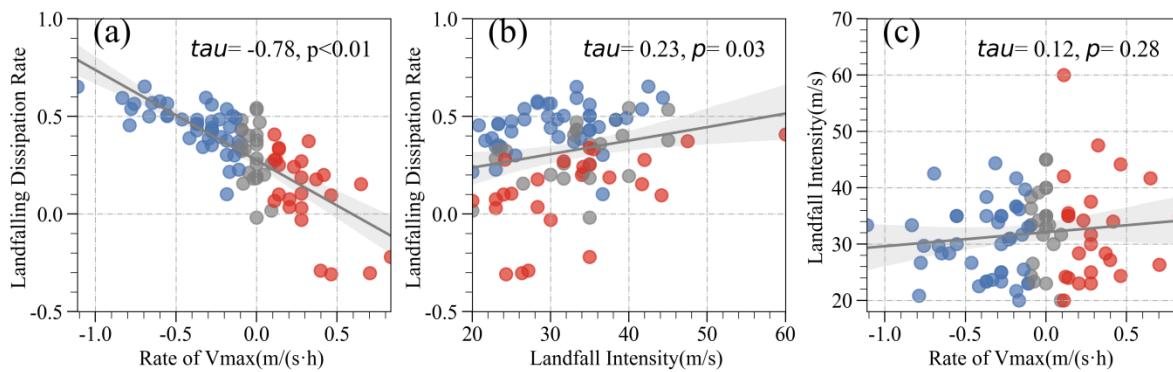
155 [Figure 1](#) shows the intensity change characteristics of TCs in, respectively, the intensifying,  
156 weakening, and neutral categories during landfall. To compare the intensity evolution during  
157 landfall, we defined the ratio of the maximum near-surface wind speed ( $V_{max}$ ) to that at the time of  
158 landfall ( $V_{0max}$ ), which can also be termed relative intensity ( $V_{max}/V_{0max}$ ). The ratios in all  
159 weakening cases are greater than 1.0 because the TC intensity decreases with time prior to landfall  
160 while those in intensifying TCs are less than 1.0 except for in a few intensifying cases whose ratios  
161 are still greater than 1 because their maximum intensities appeared at 6 h prior to landfall ([Figure](#)  
162 [1a](#)), indicating that the weakening started 6 hours prior to landfall rather than at the time of landfall.  
163 The mixed distribution pattern of TC cases after landfall illustrates that some individual TCs  
164 weakened rapidly while some others weakened slowly or a few even maintained. The pre- and post-


165 landfall ACE distributions are compared in [Figure 1b](#). The weakening TCs with an average ACE  
166 of  $1.75 \times 10^4 \text{ m}^2 \text{ s}^{-2}$  possess more energy prior to landfall but less energy after landfall relative to that  
167 at the time of landfall. This means that the weakening cases prior to landfall would experience  
168 greater energy dissipation after landfall. For intensifying TCs, the post-landfall ACE decreased  
169 slowly or even maintained their intensities. The time evolutions of the average  $V_{max}$  and the  
170 average 6-h intensity change from -18 h to +18 h in the three categories are compared in [Figures](#)  
171 [1c](#) and [1d](#), respectively. The average  $V_{max}$  of intensifying TCs increased from -18 h to -6 h and  
172 then decreased toward landfall while that of weakening TCs decreased during the whole landfalling  
173 process. The average  $V_{max}$  after landfall in weakening TCs is less than that in intensifying TCs.  
174 From the 6-h intensity decay rate, we can see that the intensification rate of the pre-landfall  
175 intensifying TCs decreases and the weakening rate of the pre-landfall weakening TCs increases  
176 prior to landfall. Both types of the TCs weaken rapidly within 6 h after landfall and then the  
177 weakening rate shows a decreasing trend.

178 To explore whether the pre-landfall intensity change has a direct relationship with the post-  
179 landfall intensity decay, we first examined the correlation between  $\text{ACE}_{-18h}$  and  $\text{ACE}_{+18h}$  and found  
180 that they are highly correlated, which is statistically significant over the 99% confidence level  
181 ([Figures 2a~2c](#)). Namely, a strong TC that undergoes slow weakening prior to landfall possesses  
182 relatively higher intensity at landfall and tends to decay more rapidly after landfall, while a weak  
183 TC with lower ACE prior to landfall decays more slowly after landfall. This is different from those  
184 documented in [Zhu et al. \(2021\)](#), who found that the correlation for the weakening TCs is very  
185 weak and insignificant. The difference may be due to the different environmental conditions in the  
186 United States and mainland China.



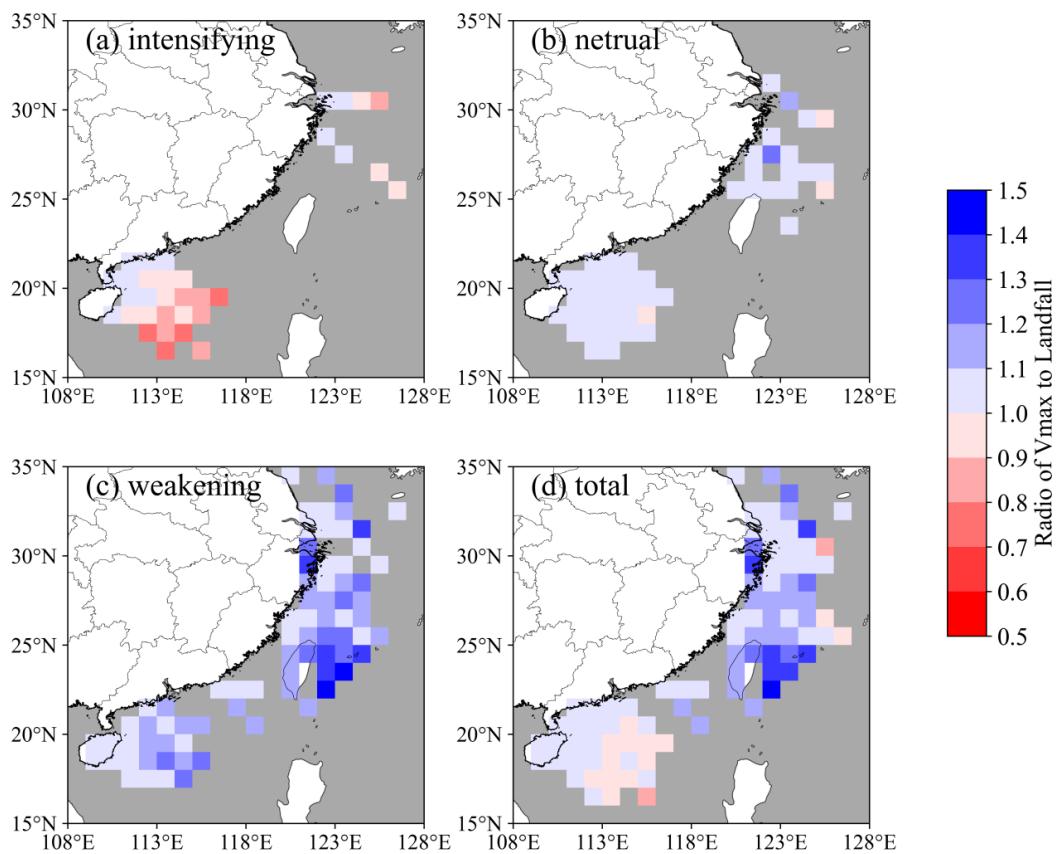
187  
188  
189  
190  
191  
192


Figure 1. (a) Time evolutions of the ratio of maximum sustained near-surface wind to that at the time of landfall ( $V_{max}/V_{0max}$ ); (b) the accumulated cyclone energy (ACE) within 18 h prior to landfall (-18 h) and 18 h after landfall (+18 h), with black dots representing the TC cases and the horizontal line representing the median; (c) the average  $V_{max}$  from -18 h to +18 h during landfall; and (d) the average 6-h intensity change. The red, gray and blue colors represent intensifying, neutral and weakening TCs, respectively.



193  
194  
195  
196

Figure 2. Mann-Kendall's tau-b correlation (non-parametric) of the rank between accumulated cyclone energy (ACE) within 18 h prior to landfall (-18h) and 18 h after landfall (+18h) for (a) intensifying, (b) neutral, and (c) weakening TCs.

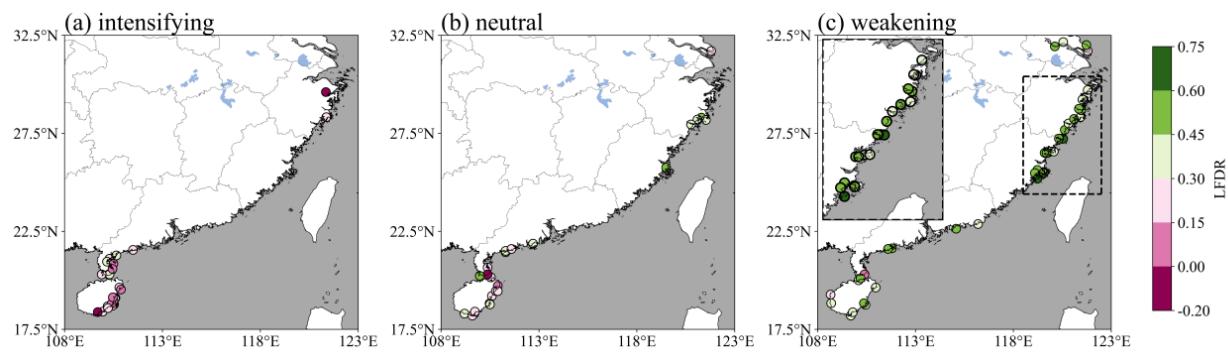

197 We further choose LFDR as a metric to describe the energy dissipation process during landfall,  
 198 which can help quantify the influence of pre-landfall intensity on the subsequent post-landfall  
 199 dissipation. As we can see from Figure 3a,  $r_{vmax}$  has a significant negative correlation with LFDR  
 200 with a correlation coefficient as high as -0.6, which is statistically significant over the 99%  
 201 confidence level. This indicates that a TC undergoing pre-landfall intensification would be filled  
 202 slowly after landfall while a TC that weakens prior to landfall would dissipate rapidly, which is  
 203 consistent with the results for hurricanes making landfall over the United States reported by Zhu et  
 204 al. (2020). Previous studies have also demonstrated that the landfall intensity is one of the factors  
 205 related to the weakening characteristics of TCs after landfall. Li et al. (2017) found that increasing  
 206 landfall intensity would result in greater destruction over China. However, recent studies have  
 207 revealed that TCs with higher landfall intensity usually have longer duration after landfall (Liu et  
 208 al., 2020; Liu et al., 2021; Song et al., 2021; Chen et al., 2021). This does not necessarily mean that  
 209 the weakening of a strong TC is slower. We found that the LFDR is significantly correlated with  
 210 the landfall intensity over the 95% confidence level (Figure 3b). Since  $r_{vmax}$  depends on landfall  
 211 intensity (Figure 3c), we can conclude that the landfall intensity also has a weak effect on the post-  
 212 landfall weakening.



213  
 214 Figure 3. (a) The relationship between the rate of  $V_{max}$  ( $r_{vmax}$ ) and landfalling dissipation rate (LFDR) in  
 215 intensifying (red), neutral (gray) and weakening (blue) TCs. Solid line represents the linear regression trend.  
 216 Dashed lines show the 99% confidence interval. (b) As in (a) but for landfall intensity ( $V0max$ ) and LFDR.  
 217 (c) As in (a) but for  $r_{vmax}$  and landfall intensity.

218 **4. Characteristics of spatial distribution**

219 Figure 4 depicts the spatial distribution of the relative intensity ( $V_{max}/V_{0max}$ ) for TCs in the  
 220 three individual categories and for all TCs as a whole. The relative intensity of TCs making landfall  
 221 in northern Taiwan Island and East China Sea shows a maximum and decreases toward the north  
 222 (Figure 4d), which is dominated by the weakening TCs (Figure 4c). However, the pre-landfall  
 223 relative intensity in the South China Sea shows little change. This is mainly because of the high  
 224 landfall frequency over the South China Sea (Liu et al., 2020), dominated by both northwestward  
 225 moving intensifying TCs (Figure 4a) and westward moving weakening TCs (Figure 4c).




226  
 227 Figure 4. Spatial distribution of relative intensity ( $V_{max}/V_{0max}$ ) for (a) intensifying, (b) neutral, (c) weakening,  
 228 and (d) total TCs prior to landfall.

229 We next examine the spatial distribution of the relationship between pre-landfall TC intensity  
 230 change ( $r_{vmax}$ ) and the inland LFDR, with the results shown in Figure 5. Most frequent landfalls of  
 231 TCs occurred in the southeastern Hainan Island, which are classified into South China in our study,  
 232 and the northern Fujian Province and Zhejiang Province (namely East China). Due to the blocking

233 effect of the Central Range over the Taiwan Island, TCs making landfall in Guangdong and  
 234 southern Fujian often decayed too quickly to maintain over 18 h, which were not included in our  
 235 analysis. As we can see from Figure 5a, the intensifying TCs with larger  $r_{vmax}$  were distributed in  
 236 South China. Only two cases are located in the northern Zhejiang, namely Bill (8807) in 1988 and  
 237 YAGI (1814) in 2018 because of the sufficient water vapor supply to support active convection in  
 238 the inner core of the TCs (Jiang et al., 1989; Huang et al., 2018; Ji et al., 2019). The weakening  
 239 TCs were densely distributed over East China (Figure 5c), and neutral TCs were distributed in both  
 240 South and East China (Figure 5b). This indicates that TCs making landfall in East China would  
 241 carry larger pre-landfall ACE and tend to have greater landfall intensity.

242 We now discuss the spatial distribution of inland LFDR in East and South China. Intensifying  
 243 TCs in South China show weak LFDR, with values ranging from -0.2 to 0.45. Note that a few  
 244 weakening TCs with small LFDR also made landfall in this area, making the dissipation pattern a  
 245 little bit complicated there. The larger LFDR ranging from 0.45 to 0.60 appeared in East China, all  
 246 of which came from the weakening TCs. This indicates that the pre-landfall weakening TCs in East  
 247 China experienced rapid dissipation after landfall. Some previous studies have shown that the  
 248 apparent regional difference over mainland China might be controlled by various large-scale  
 249 environmental conditions (Wong et al., 2008; Song et al., 2021). Whether the large-scale  
 250 environmental factors affect  $r_{vmax}$  and LFDR will be discussed in detail in the next section.



251  
 252 Figure 5. Spatial distribution of landfalling dissipation rate (LFDR) for (a) intensifying, (b) neutral,  
 253 (c) weakening TCs. The weakening TCs over East China is magnified in the inset box for clarity in (c).

254 **5. Factors affecting LFDR over South China and East China**

255 Most studies have shown that the rapid weakening of TCs may be caused by low SST and large  
 256 SST gradient (Zhang et al., 2007; Qian and Zhang, 2013; DeMaria et al., 2012; Wood and Ritchie,  
 257 2015) and large-scale environmental factors, such as strong vertical wind shear and dry air intrusion  
 258 (Frank and Ritchie, 2001; Wood and Ritchie, 2015; Wang et al., 2015; Fei et al., 2019). In our study,  
 259 we selected SST, SST gradient, environmental low-level vorticity, upper-level divergence, vertical  
 260 wind shear, mid-level specific humidity, and low-level water vapor flux divergence as possible  
 261 environmental factors affecting LFDR after landfall over mainland China and compare the different  
 262 characteristics of persistence of these factors in South China and East China (Table 1).

263 **Table 1.** The factors analyzed in this study with their units and descriptions given.

| Factors          | Unit                | Description                                                                                                                      |
|------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|
| SST              | °C                  | Sea surface temperature within a radius of 3 degrees of the TC center                                                            |
| SST Gradient     | °C km <sup>-1</sup> | SST gradient within a radius of 3 degrees of the TC center                                                                       |
| VOR850           | s <sup>-1</sup>     | Environmental relative vorticity averaged within a radius of 9 degrees of the<br>TC center at 850 hPa                            |
| DIV200           | s <sup>-1</sup>     | Environmental divergence averaged within a radius of 9 degrees of the TC<br>center at 200 hPa                                    |
| VWS300-<br>1000  | m s <sup>-1</sup>   | Environmental vertical wind shear averaged within a radius of 4.5 degrees of<br>the TC center between 1000 hPa and 300 hPa       |
| UVWS300-<br>1000 | m s <sup>-1</sup>   | Zonal environmental vertical wind shear averaged within a radius of 4.5<br>degrees of the TC center between 1000 hPa and 300 hPa |
| VWS700-<br>1000  | m s <sup>-1</sup>   | As in VWS300-1000 but between 1000 hPa and 700 hPa                                                                               |
| UVWS700-<br>1000 | m s <sup>-1</sup>   | As in UVWS300-1000 but between 1000 hPa and 700 hPa                                                                              |
| q500             | g kg <sup>-1</sup>  | Environmental specific humidity averaged within a radius of 5 degrees of the<br>TC center at 500 hPa                             |
| QVDIV            | s <sup>-1</sup>     | Environmental water vapor flux divergence within a radius of 9 degrees of<br>the TC center between 1000 hPa and 850 hPa          |

264 **Table 2** compares the linear correlation coefficients between the change and average value of  
 265 each of the pre-landfall factors and LFDR. Among them, SST, SST gradient, zonal deep vertical  
 266 wind shear (UVWS), and low-level water vapor flux divergence (QVDIV) are highly correlated  
 267 with LFDR, while upper-level divergence (DIV200) and mid-level specific humidity (q500) show  
 268 weak correlations with LFDR, while low-level vorticity has no obvious correlation with LFDR.

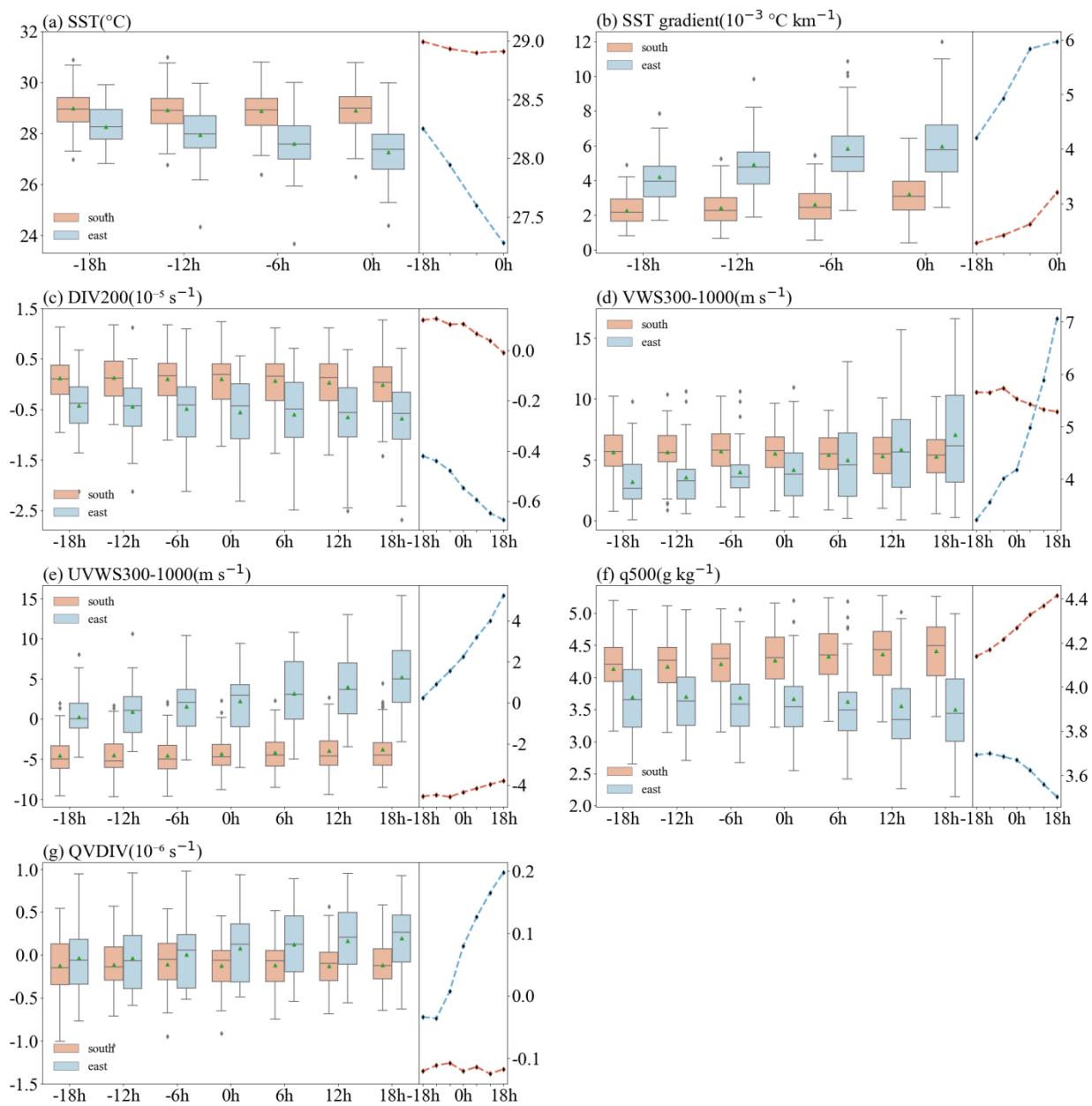
269 We can see that the average SST was 28.47°C with the negative correlation coefficient of -0.28  
 270 with LFDR. Compared with 18 h prior to landfall, the SST decreased by 0.44°C at the time of  
 271 landfall with a negative correlation of -0.31 with LFDR. This implies that a TC crossing a region  
 272 with lower SST and greater decreasing SST trend has a larger LFDR. This is consistent with  
 273 previous result in [Li et al. \(2020\)](#), who drawn a conclusion that the water content carried by a  
 274 hurricane would be reduced to retard the supply of ocean heat when the nearshore SST was cooler  
 275 and decreased faster. However, [Bender et al. \(1993\)](#) showed that the upwelling and vertical mixing  
 276 under a TC had a negative effect on TC intensity and could lead to rapid TC weakening after  
 277 landfall. In addition to SST, the SST gradient is another key ocean parameter. Prior to landfall, the  
 278 average SST gradient was  $3.67 \times 10^{-3}$  °C km<sup>-1</sup> and increased by  $1.25 \times 10^{-3}$  °C km<sup>-1</sup> with the significant  
 279 positive correlation with LFDR, which implies that the large SST gradient favors rapid decay of  
 280 TC after landfall.

281 **Table 2.** The average factors and Mann-Kendall correlation coefficients with LFDR. Change ( $T_{0h} - T_{-18h}$ ), average  
 282 values indicate the pre-landfall change and average value, respectively. Correlation coefficients that are  
 283 statistically significant above 95% confidence level are boldfaced.

| Factors      | Change Values          |              | Average Values           |              |
|--------------|------------------------|--------------|--------------------------|--------------|
|              | Change.                | Corr coef.   | Avg.                     | Corr coef.   |
| SST          | -0.44                  | <b>-0.31</b> | 28.47                    | <b>-0.28</b> |
| SST Gradient | $1.25 \times 10^{-3}$  | <b>0.20</b>  | $3.67 \times 10^{-3}$    | <b>0.26</b>  |
| VOR850       | $0.06 \times 10^{-7}$  | -0.04        | $-0.96 \times 10^{-6}$   | 0.11         |
| DIV200       | $-0.60 \times 10^{-6}$ | -0.04        | $-0.12 \times 10^{-5}$   | <b>-0.22</b> |
| VWS300-1000  | 0.31                   | <b>0.14</b>  | 4.88                     | <b>0.19</b>  |
| UVWS300-1000 | 0.92                   | <b>0.22</b>  | $-2.19 \text{ m s}^{-1}$ | <b>0.23</b>  |
| VWS700-1000  | 0.38                   | -0.01        | $1.78 \text{ m s}^{-1}$  | 0.05         |
| UVWS700-1000 | 0.10                   | 0.09         | $-0.34 \text{ m s}^{-1}$ | 0.01         |
| q500         | 0.067                  | <b>-0.19</b> | 4.08                     | -0.03        |
| QVDIV        | $0.045 \times 10^{-6}$ | 0.01         | $-0.06 \times 10^{-6}$   | <b>0.25</b>  |

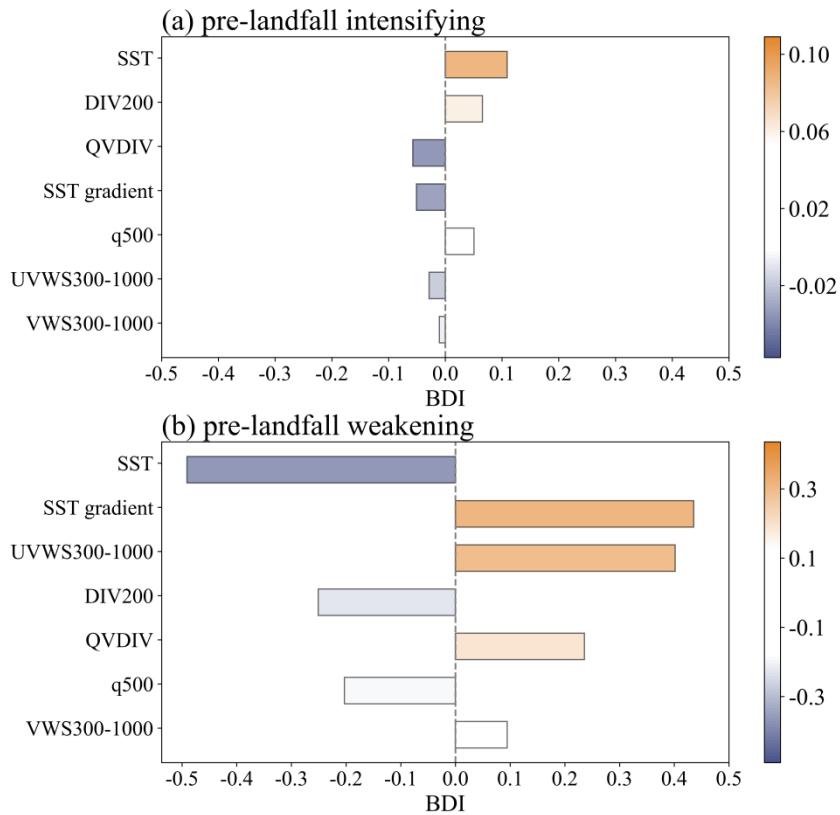
284 The large-scale environmental atmospheric conditions are also important to TC intensity  
 285 change and thus the weakening of LTCs. From [Table 2](#), we can see that the low-level vorticity  
 286 shows little correlation with LFDR, while the upper-level divergence is negatively correlated with  
 287 LFDR. This suggests that the upper tropospheric convergence forcing ( $-0.12 \times 10^{-5} \text{ s}^{-1}$ ) may

288 contribute to the weakening of TCs after landfall over China. The VWS is considered a detrimental  
289 dynamical environmental factor that is unfavorable for TC intensification (Zeng et al., 2010; Liang  
290 et al., 2016; Wang et al., 2015). We examined both the deep-layer VWS between 300–1000 hPa  
291 and the low-level VWS between 700–1000 hPa, representative of the VWS effect on TC intensity  
292 change over the western North Pacific (Wang et al., 2015). As we can see from Table 2, the deep-  
293 layer VWS and the deep-layer vertical shear of zonal wind have higher linear correlations with  
294 LFDR ( $r=0.19$  and  $0.23$ , respectively) than the low-level VWS, which implies that TCs with larger  
295 VWS may weaken more rapidly after landfall over China. This is different from the results of Wang  
296 et al. (2015), who found the low-level VWS during the active TC season is more significantly  
297 correlated with TC intensity change than the VWS at other layers. This is mainly because they  
298 considered the area of  $123^{\circ}\text{E}$ – $180^{\circ}\text{E}$  while we focused on the area west of  $127^{\circ}\text{E}$ . Importantly, the  
299 vertical shear of zonal wind can have a more detrimental effect on TC intensity after landfall, or  
300 equivalently more beneficial to LFDR. This suggests that the effect of VWS on TC intensity  
301 depends not only on the magnitude of the shear but also on the direction of the shear. For example,  
302 Wang et al. (2013) found that nearly 70% of the rapid intensification of TCs occurred in easterly  
303 shear while westerly shear inhibits TC development, suggesting that westerly shear has a greater  
304 negative effect on TC intensity than easterly shear.


305 The dry air intrusion and water vapor supply are two other factors that may affect the  
306 weakening rate of landfalling TCs (Wood and Ritchie, 2015; Fei et al., 2019). We thus examined  
307 the mid-level environmental specific humidity and low-level water vapor flux divergence. The  
308 change in 500-hPa specific humidity prior to landfall shows a weakly negative correlation with the  
309 LFDR, with the correlation coefficient of  $-0.19$ , indicating that the TCs experiencing large  
310 decreasing specific humidity nearshore usually tend to weaken rapidly after landfall. Note that the  
311 specific humidity decreased little prior to landfall with one possible reason is that changes in the  
312 environmental humidity in South China and East China offset each other, which will be discussed  
313 later (Figure 6g). The water vapor flux divergence prior to landfall is positively correlated with  
314 LFDR, with the correlation coefficient of  $0.25$ , which is statistically significant above 95%

315 confidence level, indicating that the reduced moisture supply with weak horizontal water vapor  
316 flux convergence provides favorable environmental conditions for TC post-landfall weakening.

317 Based on the above correlation analysis, we examine the trends of key factors, including SST,  
318 SST gradient, DIV200, VWS300-1000, UVWS300-1000, q500, and QVDIV during landfall over  
319 South China and East China, with the results shown in [Figure 6](#). The average SST over East China  
320 is lower and the SST gradient is greater than those over South China, with a decreasing trend of  
321 the former and an increasing trend of the latter ([Figures 6a,b](#)). The high-level divergence in both  
322 East and South China is decreasing during the landfall from -18 h to +18 h ([Figure 6c](#)). However,  
323 the high-level flow is dominated by decreasing divergence in South China while that in East China  
324 shows convergence (around  $-1.5 \times 10^{-5} \text{ s}^{-1}$ ). This means that the upper-level flow is more unfavorable  
325 for the maintenance of TCs making landfall over East China. This seems to be consistent with the  
326 predominant pre-landfall weakening TCs over East China and intensifying TCs in South China.  
327 Moreover, the VWS initially is weaker but increases rapidly over East China while that is moderate  
328 over South China ([Figure 6d](#)). The westerly vertical shear ( $\text{UVWS} > 0$ ) increases during landfall  
329 over East China, which implies that a TC would dissipate rapidly after landfall over East China  
330 ([Figure 6e](#)), consistent with the significant correlation coefficient of 0.22 between LFDR and  
331 UVWS300-1000 ([Table 2](#)). In contrast, both the deep-layer total VWS and the deep-layer easterly  
332 vertical shear ( $\text{UVWS} < 0$ ) did not change much during landfall over South China. This implies that  
333 the large-scale environmental VWS may not be the key factor affecting TC intensity and post-  
334 landfall weakening of TCs over South China.


335 The mid-tropospheric specific humidity during landfall shows different evolutions over East  
336 and South China ([Figure 6f](#)). South China is characterized by high mid-tropospheric specific  
337 humidity due to the effect of South China Sea summer monsoon compared with East China. Note  
338 that the specific humidity increased and decreased the equivalent range over South China and East  
339 China, respectively. This explains why the average change in specific humidity for all TC cases is  
340 feeble in [Table 2](#). Because of the negative correlation between the mid-tropospheric humidity trend  
341 and LFDR ( $r=-0.19$ , [Table 2](#)), the decreasing humidity over East China contributes to post-landfall

342 weakening while increasing humidity over South China has an opposite effect. The low-level water  
 343 vapor flux in East China changed from convergence to divergence at 6 h prior to landfall (Figure  
 344 6g), indicating that the reduction of water vapor transport into the TC core. Over South China, the  
 345 low-level water vapor flux maintained a weak convergence of  $-0.1 \times 10^{-6} \text{ s}^{-1}$ . The above results  
 346 suggest that the faster post-landfall weakening of TCs over East China than over South China was  
 347 primarily due to lower SST, larger SST gradient, and stronger zonal vertical wind shear, together  
 348 with the convergence of upper-level flow and the divergence of lower-level water vapor flux.



349

350 Figure 6. Evolutions of (a) SST ( $^{\circ}$ C), (b) SST gradient ( $10^{-3}$   $^{\circ}$ C  $km^{-1}$ ), (c) divergence at 200 hPa ( $10^{-5}$   $s^{-1}$ ), (d)  
 351 vertical wind shear ( $m s^{-1}$ ) between 1000 hPa and 300 hPa, (e) zonal vertical wind shear ( $m s^{-1}$ ) between  
 352 1000 hPa and 300 hPa, (f) specific humidity ( $g kg^{-1}$ ) at 500 hPa, (g) low-level water vapor flux divergence  
 353 ( $10^{-6}$   $s^{-1}$ ) between 1000 hPa and 850 hPa during TC landfall over East China (red) and South China (blue).  
 354 Green dots and horizontal lines represent mean value and median lines, respectively. Right part in each  
 355 panel represents the evolution of the corresponding mean value of the factor over East China (red) and  
 356 South China (blue).



357  
 358 Figure 7. Key factors in (a) intensifying TCs and (b) weakening TCs and their corresponding box difference  
 359 index (BDI) values prior to landfall. The factors are ordered based on the average values within 18 h prior to  
 360 landfall.

361 Factors analyzed above are linked to the ACE prior to and after landfall and can represent their  
 362 effects of TC intensity change prior to landfall on TC weakening after landfall. This means that the  
 363 environmental conditions that affect the post-landfall dissipation are mediated by pre-landfall  
 364 intensity change of TCs. [Figure 7](#) quantifies the relative contributions of key factors to pre-landfall  
 365 intensifying and weakening TCs using the BDI index, respectively. The results show that the most  
 366 important factors for distinguishing intensifying TCs from neutral TCs are SST with the BDI value

367 of 0.109. The contributions by other factors are generally secondary with the BDI less than 0.1. As  
368 intensifying TCs mostly occurs in South China, the least contribution of UVWS300–1000 (-0.029)  
369 and VWS (-0.011) also confirms the above-mentioned conclusion that the large-scale  
370 environmental VWS may not be the main factor affecting the pre-landfall weakening of TCs over  
371 South China (Figures 6d,e). The q500 also contributes little to LFDR of intensifying TCs over  
372 South China, which explains why the specific humidity increases but the TC intensity weakens  
373 after landfall in South China. The key factors contributing to the weakening of TCs are SST, SST  
374 gradient, and UVWS300–1000 with the BDI values of -0.491, 0.436, and 0.402, respectively. The  
375 rests are DIV200 (-0.251), QVDIV (0.236), q500 (-0.203) and VWS300-1000 (0.095). It is worth  
376 noting that the contribution by ocean thermodynamic conditions (SST and SST gradient) is very  
377 significant, especially for pre-landfall weakening TCs, which is followed by environmental UVWS,  
378 consistent with the higher correlation of these factors with LFDR shown in Table 2. In addition, it  
379 is clear to see that the BDI values in the intensifying TCs are much smaller than those in the  
380 weakening TCs. In other words, environmental factors play a more crucial role in the post-landfall  
381 weakening of TCs over East China while the post-landfall dissipation over South China may be  
382 controlled by other factors, such as the TC size and structure. As a result, the post-landfall  
383 weakening is largely regulated by the intensity change of TCs prior to landfall, which is affected  
384 significantly by the coastal ocean thermodynamic and large-scale environmental atmospheric  
385 dynamic and thermodynamic conditions.

## 386 6. Conclusions

387 In this study, we first analyzed the intensity change of TCs within 18 h prior to landfall over  
388 mainland China during 1979–2018 in the active typhoon season (June–October). The results show  
389 that the pre-landfall intensifying TCs usually tend to have small accumulation cyclone energy  
390 (ACE<sub>-18</sub>) and easily maintain larger post-landfall energy (ACE<sub>+18</sub>) while the weakening TCs with  
391 great intensity tend to experience larger energy dissipation after landfall. This indicates that there  
392 is a relationship between the pre-landfall intensity change and post-landfall weakening. We also

393 found that the average intensity of intensifying TCs prior to landfall is small and the increasing rate  
394 decreases during landfall, while the decreasing rate after landfall is smaller than that of the  
395 weakening TCs. The results thus demonstrate that the post-landfall weakening difference of LTCs  
396 may result from intensity change prior to landfall.

397 The distribution of the average change rate in  $V_{max}(r_{vmax})$  and LFDR show different regional  
398 characteristics over East China and South China. The intensifying TCs are mostly concentrated  
399 southeast of Hainan Island, mainly with a southeast-northwest track. The weakening TCs are  
400 distributed in both Hainan Province and northern Guangdong to Zhejiang Provinces, moving  
401 westward and north-northwestward, respectively. Compared with South China, due to pre-landfall  
402 weakening of TCs, TCs making landfall over East China present relatively higher pre-landfall  
403 intensity than the intensity at the time of landfall (relative intensity), but possess faster weakening  
404 prior to landfall and high LFDR after landfall.

405 To determine what caused the regional dependence, relevant oceanic and atmospheric  
406 environmental factors are statistically analyzed and quantified. Five factors are found to be  
407 significantly correlated with LFDR, including SST, SST gradient, environmental VWS between  
408 1000 hPa and 300 hPa (VWS300–1000), zonal environmental VWS between 1000 hPa and 300  
409 hPa (UVWS300–1000), and low-level water vapor flux divergence (QVDIV). This indicates that  
410 TCs with greater post-landfall weakening rate usually cross the region with lower SST and greater  
411 SST gradient, and are embedded in environment with larger environmental westerly VWS, larger  
412 high-level flow convergence and smaller low-level moisture convergence prior to landfall. In  
413 addition, decreasing environmental moisture at 500 hPa (q500) are weakly correlated with LFDR,  
414 often under 95% significance level.

415 Results from this study illustrate that the cooling SST and the sharper SST gradient nearshore  
416 would promote the high occurrence of rapid weakening prior to landfall because of high BDI values  
417 in both intensifying and weakening TCs. For the environmental atmospheric factors, the large deep  
418 westerly VWS is also favorable for pre-landfall weakening of TCs, favoring LFDR over mainland  
419 China. Nevertheless, above-considered environmental conditions are not key factors leading to pre-

420 landfall intensifying of TCs with very small BDI values over South China and thus play weak role  
421 in post-landfall dissipation of intensifying TCs.

422 The oceanic thermodynamic conditions and the environmental atmospheric conditions over  
423 East China show more drastic changes, characterized by smaller and decreasing SST, larger and  
424 increasing SST gradient and increasing VWS (particularly, the increasing zonal VWS) in  
425 weakening LTCs, resulting in faster energy dissipation after landfall. In addition, upper-  
426 tropospheric convergence, decreasing environmental moisture and decreasing convergence of low-  
427 level water vapor flux are additional factors conducive to rapid weakening of TCs after landfall  
428 over East China. In general, most of these factors changed little over South China but with average  
429 values featured with larger SST, small SST gradient, lower VWS, eastern VWS ranging from  $-2.5\text{m}$   
430  $\text{s}^{-1}$  to  $-5\text{m s}^{-1}$  and wetter environment, all being favorable for pre-landfall weakening TCs over  
431 South China to maintain great landfall intensify and weak post-landfall dissipation, and weakly  
432 affecting the intensity change of pre-landfall intensifying TCs.

433 Although we evaluated the relationship between the post-landfall weakening and the pre-  
434 landfall TC intensity change of LTCs over mainland China, the conclusions are subject to the  
435 limited sample size and the involvements of complex ocean-atmospheric, ocean-land, and land-  
436 atmospheric interactions. Note that land surface properties, such as land surface temperature, soil  
437 temperature and moisture, vegetation coverage, etc. also affect the post-landfall weakening of TCs  
438 ([Tuleya and Kurihara, 1978; Tuleya, 1994; Song et al., 2021; Liu et al., 2022; Thomas and Shepherd, 2022](#)). In future studies, the possible effects of land surface properties, including mesoscale terrains  
439 ([Liu and Wang, 2022](#)), on TC post-landfall weakening can be further examined in combination  
440 with large-scale environmental conditions. In addition, it can be also a good topic to introduce the  
441 pre-landfall intensity change into the empirical decay model of TCs after landfall ([Kaplan and Demaria, 1995; Vickery et al., 2005; Wong et al., 2008; Liu et al., 2021; Liu and Wang, 2022](#)). With  
442 improved understanding of key factors affecting TC post-landfall weakening, the forecast accuracy  
443 of landfalling TC intensity could be improved.

446 **DATA AVAILABILITY STATEMENT**

447 The STI/CMA TC best track dataset was downloaded from <http://tcdatatyphoon.org.cn>. The  
448 ECMWF Interim data used in this study were downloaded from <http://apps.ecmwf.int/datasets/>.

449 **AUTHOR CONTRIBUTIONS**

450 YW developed the main idea. WH analyzed the datasets and generated figures. WH and YW wrote  
451 the manuscript. LL helped with data pre-processing and provided feedback on the manuscript.

452 **FUNDING**

453 This study has been supported by the National Natural Science Foundation of China under  
454 grants 41730960 and 42175011. YW has been supported by the NSF grant AGS-1834300.

455 **Conflict of interest**

456 The authors declare that the research was conducted in the absence of any commercial or financial  
457 relationships that could be construed as a potential conflict of interest.

458 **References**

459 Andersen, T. K., and Shepherd, J. M. (2014). A global spatiotemporal analysis of inland tropical  
460 cyclone maintenance or intensification. *Int. J. Climatol.* 24, 391–402. doi: 10.1002/joc.3693

461 Andersen, T. K., Radcliffe, D. E., and Shepherd, J. M. (2013). Quantifying surface energy fluxes  
462 in the vicinity of inland-tracking tropical cyclones. *J. Appl. Meteorol. Sci.* 52, 2797–2808. doi:  
463 10.1175/jams-d-13-035.1

464 Bell, G. D., Halpert, M. S., Ropelewski, C. F., Kousky, V. E., Douglas, A. V., Schnell, R. C., et al.  
465 (2000). Climate assessment for 1998. *Bull. Am. Meteorol. Soc.* 80, S1 – S48. doi:  
466 10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2

467 Bender M. A., Ginis, I., Kurihara, Y. (1993). Numerical simulations of the tropical cyclone-ocean  
468 interaction with a high resolution coupled model. *J. Geophys. Res. Atmos.* 98, 23245-23263.  
469 doi: 10.1029/93jd02370

470 Chen, J. L., Tam, C. Y., Cheung, K., Wang, Z., Murakami, H., Lau, N. C., et al. (2021). Changing  
471 impacts of tropical cyclones on East and Southeast Asian inland regions in the past and a  
472 globally warmed future climate. *Front. Earth Sci.* 9, 769005. doi: 10.3389/feart.2021.769005

473 Dee, D. P., and Coauthors. (2011). The ERA-Interim reanalysis: configuration and performance of

474 the data assimilation system. *Quart. J. Roy. Meteor. Soc.* 137, 553–597. doi: 10.1002/qj.828

475 DeMaria, M., DeMaria, R. T., Knaff, J. A., and Molenar, D. (2012). Tropical cyclone lightning and  
476 rapid intensity change. *Mon. Weather Rev.* 140, 1828–1842. doi: 10.1175/mwr-d-11-00236.1

477 Done, J. M., Ge, M., Holland, G., Dima-West, I., Phibbs, S., Saville, G. R., et al. (2020). Modelling  
478 global tropical cyclone wind footprints. *Nat. Hazards Earth Syst. Sci.* 20, 67–580. doi:  
479 10.5194/nhes-20-567-2020

480 Elsberry, R. L., and Tsai, H. C. (2014). Situation-dependent intensity skill metric and intensity  
481 spread guidance for western North Pacific tropical cyclones. *Asia-Pac. J. Atmos. Sci.* 50, 297–  
482 306. doi: 10.1007/s13143-014-0018-5

483 Emanuel, K., (2005). Increasing destructiveness of tropical cyclones over the past 30 years. *Nature*  
484 436, 686–688. doi: 10.1038/nature03906

485 Fei, R., Xu, J., Wang, Y. and Yang, C. (2020). Factors affecting the weakening rate of tropical  
486 cyclones over the western North Pacific. *Mon. Weather Rev.* 148, 3693–3712. doi:  
487 10.1175/mwr-d-19-0356.1

488 Frank, W. M., and Ritchie, E. A. (2001). Effects of vertical wind shear on the intensity and structure  
489 of numerically simulated hurricanes. *Mon. Weather Rev.* 129, 2249–2269. doi: 10.1175/1520-  
490 0493(2001)129<2249:Eovwso>2.0.Co;2

491 Franklin, C. N., Holland, G. J. and May, P. T. (2006). Mechanisms for the generation of mesoscale  
492 vorticity features in tropical cyclone rainbands. *Mon. Weather Rev.* 134, 2649–2669. doi:  
493 10.1175/mwr3222.1

494 Fu, B., Peng, M. S., Li, T., and Stevens, D. E. (2012). Developing versus nondeveloping  
495 disturbances for tropical cyclone formation. Part II: Western North Pacific. *Mon. Weather Rev.*  
496 140, 1067–1080. doi: 10.1175/2011mwr3618.1

497 Hu, H., Duan, Y., Wang, Y., and Zhang, X. (2017). Diurnal cycle of rainfall associated with  
498 landfalling tropical cyclones in China from rain gauge observations. *J. Appl. Meteor. Climatol.*  
499 56, 2595–2605. doi: 10.1175/jamc-d-16-0335.1

500 Huang, M., Li, Q., Xu, H., Lou, W., and Lin, N. (2018). Non-stationary statistical modeling of  
501 extreme wind speed series with exposure correction. *Wind Struct.* 26, 129–146. doi:  
502 10.12989/was.2018.26.3.129

503 Ji, Q., Xu, F., Xu, J., Liang, M., Tu, S., and Chen, S. (2019). Large-scale characteristics of  
504 landfalling tropical cyclones with abrupt intensity change. *Front Earth Sci.* 13, 808–816. doi:  
505 10.1007/s11707-019-0792-6

506 Jiang, J. (1989). Analysis of some important characteristics of typhoon No.7 in 1988. *Marine*  
507 *Forecasts* 6, 41–49

508 Kaplan, J., and DeMaria, M. (1995). A simple empirical model for predicting the decay of tropical

509        cyclone winds after landfall. *J. Appl. Meteor.* 34, 2499–2512. doi: 10.1175/1520-  
510        0450(1995)034<2499:asemfp>2.0.co;2

511        Kaplan, J., and DeMaria, M. (2001). On the decay of tropical cyclone winds after landfall in the  
512        New England area. *J. Appl. Meteor.* 40, 280–286. doi: 10.1175/1520-  
513        0450(2001)040<0280:Otdotc>2.0.Co;2

514        Klotzbach, P. J., Steven, S. G. Jr, R. P., and Bell, M. (2018). Continental U.S. hurricane landfall  
515        frequency and associated damage: Observations and future risks. *Bull. Am. Meteorol. Soc.* 99,  
516        1359-1276. doi: 10.1175/BAMS-D-17-0184.1

517        Kruk, M. C., Gibney, E. J., Levinson, D. H., and Squires, M. (2010). A climatology of inland winds  
518        from tropical cyclones for the eastern United States. *J. Appl. Meteor. Climatol.* 49, 1538–1547.  
519        doi: 10.1175/2010jamc2389.1

520        Kurihara, Y. M., Bender, M. A., and Ross, R. J. (1993). An initialization scheme of hurricane  
521        models by vortex specification. *Mon. Weather Rev.* 121, 2030–2045. doi: 10.1175/1520-  
522        0493(1993)121<2030:AIOSH>2.0.CO;2

523        Li, L., and Chakraborty, P. (2020). Slower decay of landfalling hurricanes in a warming world.  
524        *Nature* 587, 230–234. doi: 10.1038/s41586-020-2867-7

525        Li, R. C. Y., Zhou, W., Shun, C. M., and Lee, T. C. (2017). Change in destructiveness of landfalling  
526        tropical cyclones over China in recent decades. *J. Clim.* 30, 3367–3379. doi: 10.1175/jcli-d-  
527        16-0258.1

528        Li, X., Zhan, R., Wang, Y., and Xu, J. (2021). Factors controlling tropical cyclone intensification  
529        over the marginal seas of China. *Front. Earth Sci.* 9, 795186. doi: 10.3389/feart.2021.795186

530        Liang, J., Wu, L., Gu, G., and Liu, Q. (2016). Rapid weakening of Typhoon Chan-Hom (2015) in  
531        a monsoon gyre. *Geophys. Res. Lett.* 121, 9508–9520. doi: 10.1002/2016jd025214

532        Liu, D., Pang, L., and Xie, B. (2009). Typhoon disaster in China: prediction, prevention, and  
533        mitigation. *Nat. Hazards* 49, 421–436. doi: 10.1007/s11069-008-9262-2

534        Liu, L., Wang, Y., Zhan, R., Xu, J., and Duan, Y. (2020). Increasing destructive potential of  
535        landfalling tropical cyclones over China. *J. Cim.* 33, 3731–3743. doi: 10.1175/jcli-d-19-0451.1

536        Liu, L., Wang, Y., and Wang, H. (2021). The performance of three exponential decay models in  
537        estimating tropical cyclone intensity change after landfall over China. *Front. Earth Sci.* 9,  
538        792005. doi: 10.3389/feart.2021.792005

539        Liu, L., and Wang, Y. (2022). A physically based statistical model with the parameterized  
540        topographic effect for predicting the weakening of tropical cyclones after landfall over China.  
541        *Geophys. Res. Lett.* 49, 1-8. doi: 10.1029/2022gl099630

542        Liu, Q., Song, J., and Klotzbach, P. J. (2021). Trends in western North Pacific tropical cyclone  
543        intensity change before landfall. *Front. Earth Sci.* 9, 780353. doi: 10.3389/feart.2021.780353

544 Miller, B. I. (1964) A study of the filling of Hurricane Donna (1960) over land. *Mon. Weather Rev.*  
545 92, 389–406. doi: 10.1175/1520-0493(1964)092<0389:asotfo>2.3.CO;2

546 Ooyama, K. (1969). Numerical simulation of the life cycle of tropical cyclones. *J. Atmos. Sci.* 26,  
547 3-40. doi: 10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2

548 Park, D. S. R., Ho, C. H., Kim, J. H., and Kim, H. S. (2011). Strong landfall typhoons in Korea and  
549 Japan in a recent decade. *J. Geophys. Res. Atmos.* 116, 1-11. doi: 10.1029/2010jd014801

550 Powell, M. D., Dodge, P. P., and Black, M. L. (1991). The landfall of Hurricane Hugo in the  
551 Carolinas: Surface wind distribution. *Wea. Forecasting* 6, 379–399. doi: 10.1175/1520-  
552 0434(1991)006<0379:tlohhi>2.0.co;2

553 Qian, Y., and Zhang, S. (2013). Cause of the rapid weakening of Typhoon Bebinca (0021) in the  
554 South China Sea. *Trop. Cycl. Res. Rev.* 2, 159–168. doi: 10.6057/2013TCRR03.03

555 Rappaport, E. N., Franklin, J. L., Schumacher, A. B., DeMaria, M., Shay, L. K., and Gibney, E. J.  
556 (2010). Tropical cyclone intensity change before U.S. Gulf coast landfall. *Wea. Forecasting*  
557 25, 1380–1396. doi: 10.1175/2010waf2222369.1

558 Song, J. J., Klotzbach, P. J., Zhao, H., and Duan, Y. H. (2021). Slowdown in the decay of western  
559 North Pacific tropical cyclones making landfall on the Asian continent. *Front. Earth Sci.* 9,  
560 749287. doi: 10.3389/feart.2021.749287

561 Thomas, A. M., and Shepherd, J. M. 2022: A machine-learning based tool for diagnosing inland  
562 tropical cyclone maintenance or intensification events. *Front. Earth Sci.* 10, 818671. doi:  
563 10.3389/feart.2022.818671

564 Trenberth, K. (2005). Uncertainty in hurricanes and global warming. *Science* 308, 1753-1754. doi:  
565 10.1126/science.1112551

566 Truchelut, R. E., and Staehling, E. M. (2017). An energetic perspective on United States tropical  
567 cyclone landfall droughts. *Geophys. Res. Lett.*, 44, 12013–12019. doi: 10.1002/2017gl076071

568 Tuleya, R. E. (1994). Tropical storm development and decay: Sensitivity to surface boundary  
569 conditions. *Mon. Weather Rev.* 122, 291–304. doi: 10.1175/1520-  
570 0493(1994)122<0291:tsdads>2.0.CO;2

571 Tuleya, R. E., and Kurihara, Y. (1978). A numerical simulation of the landfall of tropical cyclones.  
572 *J. Atmos. Sci.* 35, 242–257. doi: 10.1175/1520-0469(1978)035<0242:ANSOTL>2.0.CO;2

573 Tuleya, R. E., Bender, M. A., and Kurihara, Y. (1984). A simulation study of the landfall of tropical  
574 cyclones. *Mon. Weather Rev.* 112, 124–136. doi: 10.1175/1520-  
575 0493(1984)112<0124:assotl>2.0.CO;2

576 Vickery, P. J. (2005). Simple empirical models for estimating the increase in the central pressure of  
577 tropical cyclones after landfall along the coastline of the United States. *J. Appl. Meteor.* 44,  
578 1807–1826. doi: 10.1175/jam2310.1

579 Vitart, F. (2009). Impact of the Madden Julian Oscillation on tropical storms and risk of landfall in  
580 the ECMWF forecast system. *Geophys. Res. Lett.* 36, 6. doi: 10.1029/2009gl039089

581 Walsh, K. J. E., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo, S. J., Holland, G., et  
582 al. (2016). Tropical cyclones and climate change. *WIREs. Climate. Change* 7, 65–89. doi:  
583 10.1002/wcc.371

584 Wang, W., and YU, J. (2013). Characteristic comparison between the rapid intensification of  
585 tropical cyclones in easterly and westerly wind shear over the Northwest Pacific. (in Chinese).  
586 *Trans. Atmos. Sci.* 36, 337–345. doi: 10.13878/j.cnki.dqkxxb.2013.03.011

587 Wang, Y., Rao, Y., Tan, Z., and Schonemann, D. (2015). A statistical analysis of the effects of  
588 vertical wind shear on tropical cyclone intensity change over the western North Pacific. *Mon.*  
589 *Weather Rev.* 143, 3434–3453. doi: 10.1175/mwr-d-15-0049.1

590 Wong, M. L. M., Chan, J. C. L., and Zhou, W. (2008). A simple empirical model for estimating the  
591 intensity change of tropical cyclones after landfall along the South China coast. *J. Appl. Meteorol.*  
592 *Climatol.* 47, 326–338. doi: 10.1175/2007jamc1633.1

593 Wood, K. M., and E Ritchie, A. (2015). A definition for rapid weakening of North Atlantic and  
594 eastern North Pacific tropical cyclones. *Geophys. Res. Lett.* 42, 10091–10097. doi:  
595 10.1002/2015gl066697

596 Ying, M., Zhang, W., Yu, H., Lu, X., Feng, J., Fan, Y., et al. (2014). An overview of the China  
597 Meteorological Administration tropical cyclone database. *J. Atmos. Oceanic Technol.* 31, 287–  
598 301. doi: 10.1175/jtech-d-12-00119.1

599 Zeng, Z., Wang, Y., and Chen, L. (2010). A statistical analysis of vertical shear effect on tropical  
600 cyclone intensity change in the North Atlantic. *Geophys. Res. Lett.* 37, L02802. doi:  
601 10.1029/2009gl041788

602 Zhang, Q., Wu, L., and Liu, Q. (2009). Tropical cyclone damages in China 1983-2006. *Bull. Am.*  
603 *Meteorol. Soc.* 90, 489-496. doi: 10.1175/2008bams2631.1

604 Zhang, X., Xiao, Q., and Fitzpatrick, P. J. (2007). The impact of multisatellite data on the  
605 initialization and simulation of Hurricane Lili's (2002) rapid weakening phase. *Mon. Weather*  
606 *Rev.* 135, 526–548. doi: 10.1175/mwr3287.1

607 Zhu, Y. J., Collins, J. M., and Klotzbach, P. J. (2021). Nearshore hurricane intensity change and  
608 post-landfall dissipation along the United States Gulf and east coasts. *Geophys. Res. Lett.* 48,  
609 1-10. doi: 10.1029/2021gl094680