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Abstract

In a recent study by Wang et al. (2021a) that introduced a dynamical efficiency to the
intensification potential of a tropical cyclone (TC) system, a simplified energetically based
dynamical system (EBDS) model was shown to be able to capture the intensity-dependence of
TC potential intensification rate (PIR) in both idealized numerical simulations and observations.
Although the EBDS model can capture the intensity-dependence of TC intensification as in
observations, a detailed evaluation has not yet been done. This study provides an evaluation of
the EBDS model in reproducing the intensity-dependent feature of the observed TC PIR based
on the best-track data for TCs over the North Atlantic, central, eastern and western North Pacific
during 1982-2019. Results show that the theoretical PIR estimated by the EBDS model can
capture basic features of the observed PIR reasonably well. The TC PIR in the best-track data
increases with increasing relative TC intensity (intensity normalized by its corresponding
maximum potential intensity—MPI) and reaches a maximum at an intermediate relative intensity
around 0.6, and then decreases with increasing relative intensity to zero as the TC approaches its
MPI, as in idealized numerical simulations. Results also show that the PIR for a given relative
intensity increases with the increasing MPI and thus increasing sea surface temperature, which
is also consistent with the theoretical PIR implied by the EBDS model. In addition, future
directions to include environmental effects and make the EBDS model applicable to predict

intensity change of real TCs are also discussed.
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1. Introduction

Under the assumption of a tropical cyclone (TC) as a natural Carnot heat engine, there exists
an upper limit of the TC intensity, namely, the maximum potential intensity (MPI) a TC may
reach given favorable atmospheric and oceanic thermodynamic conditions (Emanuel 1986, 1991,
1997). Similarly, recent observational and theoretical studies have shown that there also exists a
maximum potential intensification rate (MPIR) for an intensifying TC, i.e., the upper-limit of
intensification rate (IR) a TC can attain given favorable thermodynamic environmental
conditions (Xu et al. 2016; Xu and Wang 2018a). The MPIR has been shown to occur at an
intermediate TC intensity in observations. Based on the TC best-track dataset during 1988-2014
in the North Atlantic, Xu et al. (2016) statistically analyzed the relationship between the TC
MPIR and the underlying sea surface temperature (SST) and found a functional dependence of
the MPIR on SST, similar with that of MPI. A similar empirical functional dependence of the
MPIR on SST was also found for TCs over the western North Pacific (Xu and Wang 2018a).

Observations show that the TC intensification rate (IR), in particular the maximum IR for
a given intensity (we refer to this as the potential IR or simply PIR), increases with TC intensity,
reaches a maximum (namely, MPIR) when the TC is at its intermediate intensity with the 10-m
sustained maximum wind speed (Vmax) of about 30-40 m s! (Kaplan et al. 2010; Xu et al. 2016;
Xu and Wang 2015, 2018a), and then decreases to zero as Vmax further increases to approach
its MPI. Kaplan et al. (2010) qualitatively explained this intensity-dependence of TC IR by a

hypothesis that TCs are likely to intensify rapidly when its eyewall is well developed with strong
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organized convection but still far from their MPI, while afterwards, the IR tends to slow down
when the intensity of the intensifying TC is getting close to its MPI, with the enhanced heating
efficiency is mostly offset by the surface frictional dissipation effect. Xu et al. (2016) and Xu
and Wang (2018a) argued that the initial increase in PIR with increasing TC intensity can be
explained by the quasi-balanced dynamics, which predicts an increase of heating efficiency of
eyewall convection with increasing inner-core inertial stability, which is a function of the TC
intensity and inner-core size (Schubert and Hack, 1982; Vigh and Schubert 2009; Pendergrass
and Willoughby 2009).

Previous studies on TC intensification mechanisms are all qualitative based on some
positive feedback processes (see a review by Montgomery and Smith 2014). Recent studies have
attempted to quantify TC PIR based on various assumptions and/or approximations. Two such
efforts have been made to develop the time-dependent theories of TC intensification (Emanuel
2012; Ozawa and Shimokawa 2015). Emanuel (2012) started with the boundary layer entropy
budget equation, assumed an axisymmetric vortex in thermal wind balance with neutral
slantwise moist convection in the outwardly sloping eyewall, and derived an equation for the
rate of change in TC intensity in terms of maximum tangential wind speed. The other time-
dependent theory of TC intensification was developed by Ozawa and Shimokawa (2015), which
views a TC as a Carnot heat engine and assumes that the TC intensifies, as measured by the
increasing rate in the inner-core mechanical energy, when the energy production rate due to
surface enthalpy flux is greater than the surface frictional dissipation rate (Wang 2012, 2015).

Although based on different assumptions/approximations, both theories result in similar
3
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mathematical expressions for TC IR and predict IR to maximal at zero azimuthal velocity and
decreasing with increasing TC intensity. This is not consistent with the observed intensity-
dependence of TC IR as mentioned above (Xu et al. 2016; Xu and Wang 2015, 2018a). As also
recently questioned by Montgomery and Smith (2019), it is unclear how a storm could intensify
from a quiescent state because the surface enthalpy flux would be negligible as the TC maximum
near-surface wind speed is close to zero, and thus supposedly no sufficient energy supply to
initiate the intensification.

Recently, Wang et al. (2021a, hereafter W21a) indicated that the unrealistic intensity-
dependence of TC IR in the theory of Ozawa and Shimokawa (2015) results mainly from the
assumption of a constant efficiency for the transfer of the production rate of potential energy to
the production rate of the inner-core mechanical kinetic energy. They introduced a dynamical
efficiency to the TC system and developed a simplified energetically based dynamical system
(EBDS) model to quantify the intensity-dependence of TC IR. According to this EBDS model,
the TC IR is determined by the net increasing rate in the inner-core mechanical energy, which is
the difference between the intensification potential due to the energy production rate and the
weakening potential due to surface frictional dissipation under the eyewall. The intensification
potential is a function of the thermodynamic conditions of the environment and the dynamical
efficiency (E) of the TC system. The E depends strongly on the degree of convective
organization within the eyewall and the inner-core inertial stability of the TC vortex. Unlike
previous time-dependent theories that include mainly the environmental conditions (DeMaria

2009; Emanuel 2012; Ozawa and Shimokawa 2015; Emanuel and Zhang 2017), the new EBDS
4
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model includes the TC intrinsic dynamical efficiency determined by the inner-core inertial
stability in the time-dependent theory of TC intensification. W21la showed that with the
introduced an ad-hoc (intrinsic) dynamical efficiency, the EBDS model can quantitatively
reproduce the TC IR in idealized numerical simulations and capture the basic features of the
observed time-dependence of TC IR as mentioned above. More recently, Wang et al. (2021b,
hereafter W21b) developed a new time-dependent theory of TC intensification based on the
tangential wind budget equation and assumed a thermodynamic quasi-equilibrium in the slab
TC boundary layer. By introducing an ad-hoc intensity-dependent parameter to measure the
extent to which the absolute angular momentum and the moist entropy surfaces are congruent,
W21b derived an equation for the TC IR, which has the same mathematical form as the one
obtained in W21a but with a different physical interpretation for the parameter equivalent to the
dynamical efficiency in the EBDS model. There are two main differences in the theories
between W21b and Emanuel (2012). First, W21b did not assume the radius of maximum wind
being a material surface, namely the absolute angular momentum following the RMW is not
conserved, which was an unrealistic assumption used in Emanuel (2012). Second, in W21b the
congruent assumption between the entropy and absolute angular momentum surfaces (namely
the moist neutral eyewall ascent) in Emanuel (2012) is removed since later studies have
demonstrated that the moist neutral slantwise assumption is actually not hold during the
intensification rate, only at the mature stage (Peng et al. 2018; Kieu et al. 2020).

In both W21la and W21b, the new time-dependent equation for TC IR was carefully

evaluated using idealized ensemble full-physics model simulations with a nonhydrostatic,
5
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convection-resolving model. They showed that the simulated TC IR initially increases with the
relative TC intensity (namely, the TC intensity normalized by its MPI) and reaches a maximum
at an intermediate relative intensity, and then decreases with increasing relative intensity to zero
as the TC approaches its MPI, as in observations. W21b also found that for a given relative
intensity, the TC IR increases with the square of its MPI. Since no environmental flow was
included in their idealized simulations, the IR of the modeled TCs can be considered as the PIR,
which is governed primarily by the internal dynamics under the given favorable thermodynamic
conditions, such as the realistic environmental atmospheric soundings and SSTs. Although the
EBDS model was shown to be able to qualitatively capture the overall intensity-dependence of
the observed TC PIR as briefly mentioned in both W21a and W21b, a detailed comparison
between the PIRs of the EBDS model and those of the observed TCs has not yet been done. This
study attempts to validate and evaluate the EBDS model using the best-track data for TCs over
the main TC basins (North Atlantic, central, eastern and western North Pacific) in the Northern
Hemisphere. We will show that the calibrated intrinsic dynamical efficiency based on idealized
numerical simulations is supported by observations, and the EBDS model can well reproduce
the basic features of the observed PIR of TCs. The rest of the paper is organized as follows.
Section 2 briefly describes the data and the analysis methods. The EBDS model is briefly
reviewed in section 3. The basic features of TC PIR obtained from the best-track TC data are
discussed and compared with the theoretical PIR obtained from the EBDS model in section 4.

Major conclusions are drawn in the last section.
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2. Data and methodology

The statistical hurricane intensity prediction scheme (SHIPS) dataset (Knaff et al, 2005;
updated on April 3, 2020) is used in this study. All best-track data of TCs over the main basins
of the Northern Hemisphere, including all TCs over the North Atlantic, the central and eastern
North Pacific during 1982-2019 and those over the western North Pacific during 1990-2017,
are considered in our analysis. The 6-hourly maximum sustained 10-m wind speed, Reynolds
SST, and the Emanuel’s maximum potential intensity (MPI) are all adopted from the SHIPS
dataset. The MPI and other environmental variables in the SHIPS dataset are estimated using
the operational synoptic datasets (DeMaria and Kaplan 1999; Knaff et al. 2005), which are
derived from the Climate Forecast System Reanalysis (CFSR) reanalysis dataset. To minimize
the influence of TC translation on its intensity, the 40% of the TC translation speed was
subtracted from the initial maximum wind speed for all TC cases, and the result is used as the
measure of TC intensity (Vmax), as done by Emanuel et al. (2004). The TC intensity changes
at 6-h intervals are calculated accordingly (IRg, = V,EE8" — VE,.). Only the intensification
cases (IRs, > 0) with Vmax greater than 17 m s™! are included in our analysis. TCs in SHIPS
dataset with missing values for SSTs and MPIs are removed to avoid the landfalling TCs. Only
TCs with tropical nature and with SST greater than 25°C and south of 35°N are considered in
our analysis to avoid extratropical transition stages. The time period and corresponding numbers
of TCs and intensification cases in individual basins included in this study are summarized in

Table 1.
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Although the MPI can reasonably capture the observed TC maximum intensity, it still
understates the observed maximum intensity of some TCs. Those cases are often termed as
superintensity (e.g., Persing and Montgomery 2003; Montgomery et al. 2006; Wang and Xu
2010; Rousseau-Rizzi and Emanuel 2019; Li et al. 2020). The superintensity will cause negative
IR for those intensifying TC cases according to the IR equations (see Eq.17 in Emanuel 2012;
Eq. 12 in W21a; Eq. 16 in W21b). To avoid such unrealistic situations, W21a and W21b used
the steady-state intensity of the simulated TCs instead of the theoretical MPI in their time-
dependent theory of TC intensification. The steady-state intensity of the simulated TC in both
W21laand W21b refers to the maximum intensity attained in the quasi-steady state in an idealized
simulation, while the theoretical MPI for a real TC is estimated by using the actual atmospheric
sounding under a given SST and the environmental atmospheric soundings. Based on the
diagnostic results of Wang and Xu (2010) and Li et al. (2020) and the theoretical work of
Kowaleski and Evans (2016), the superintensity resulted from the ignorance of any possible
inward transport of energy production due to enthalpy flux from the underlying ocean outside
the RMW in the classic MPI theory (Emanuel 1997). Wang and Xu (2010) demonstrated that
the inward transport of energy production from the outside of the RMW can be an extra energy
source (25%) to balance the power dissipation due to surface friction under the eyewall. Wang
and Xu (2010) showed that this extra energy source can lead to an 11.2% increase of the
estimated MPI. Li et al. (2020) also showed that the quasi-steady state intensity of the simulated
TCs can be 7%~18% greater than their theoretical MPI in idealized simulations with realistic

tropical environmental conditions. Note that some other studies have attributed the TC
8
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superintensity to the unbalanced flow in the boundary layer (Bryan and Rotunno 2009; Frisius
et al. 2013) In the SHIPS dataset, we found that there are 166 superintensity cases out of 11758
intensifying cases with their intensities exceeding 11% of their MPIs, which is within the range
of the simulated TCs in Li et al. (2020). We therefore simply multiplied the SHIPS MPI by a
factor of 1.11 to take into account of the superintensity nature of TCs. After such a modification,
all TC MPIs are greater than or equal to their intensities, and thus there is no negative theoretical
IR for any intensifying TCs in our analysis.

We should mention here that uncertainties in the estimated MPI and also the best-track TC
intensity exist and are unavoidable. For example, the estimated MPI depends on the definition
of the environmental thermodynamic conditions (e.g., Xu et al. 2019a,b). The surface drag
coefficient in the theoretical MPI is currently treated to be independent of the near-surface wind
speed while it is a strong function of the near-surface wind speed (e.g., Donelan et al. 2004;
Soloviev et al. 2017; Donelan 2018). The estimated best-track maximum wind speed varies as a
result of the storm intensity and the available observations and may not well-represent the storm-
scale intensity (Landsea and Franklin 2013). Therefore, some constraints used in modifying the
SHPIS MPIs and the occurrences of some small TC cases that show the theoretically estimated
PIR underestimates the maximum IR in the best-track data should be considered necessary and
acceptable. Nevertheless, our results seem to strongly suggest that the use of TC MPIs from the
SHIPS dataset with the modification to take into account of the possible superintensity nature is
acceptable for the purpose of this study. Actually, we will show that the theoretically estimated

PIR using the SHIPS MPI and best-track TC intensity well captures the maximum IR calculated
9
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using the best-track TC intensity, suggesting that some uncertainties in the data used in this study

should not be a big issue with some constraints as mentioned above.

3. An overview of the EBDS model of TC intensification
The EBDS model developed in W21a is a time-dependent equation for the IR of a TC given
its current intensity Vi and the corresponding MPI (Vi)

OVmax C
o1 = FD (Evrzlpi - Vrrzlax)- (1)

av,
where —2%%

is the rate of TC intensity change, Vma 1s the time-dependent near-surface
maximum wind speed (referred to as intensity) of the TC, V,,: is the corresponding MPI as
discussed in section 2, which partly includes the contribution of superintensity, Cp is surface
drag coefficient, H is an undetermined height parameter, which is roughly twice the depth of the
boundary layer (Emanuel 2012)!. In W21a and W21b, Cp was taken directly from their idealized
numerical simulations and the MPI was taken from the steady-state intensity, which includes the
superintensity component. They found that H = 2000 m gives the best fit of the theoretical IR
to the TC IR in their idealized simulations. Although Cp and H are two independent parameters
in the EBDS model, Cp/H can be considered as one parameter in practice since neither of Cp nor

H can be accurately determined from observations. Nevertheless, after many tests based on the

best-track TC data described above, we found that H = 2000 m and Cp = 2.4 X 1073 are the

1 Note that H = 2h in Emanuel (2012) with /4 being the boundary layer depth near the radius of maximum
wind. In previous studies, various values have been used for £, e.g., 5,000 m in Emanuel (2012); 4,000 m (with
H=8,000 m) in Ozawa and Shimokawa (2015); 1,400 m in Emanuel and Zhang (2017) and Emanuel (2017)
with Cp = 1.2 X 1073, Observations suggest that the characteristic height scale of the TC inner-core
boundary layer is usually between 500-2000 m (Zhang et al. 2011), the reasonable height parameter H can be
considered to be between ~1000-4000 m. W21a and W21b found that the predicted IR using the EBDS model

with H = 2,000 m fits well the IR of their simulated TCs.
10
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best choice and thus will be used in our following analysis. Actually, both are quite reasonable
under TC conditions (e.g., Donelan et al. 2004; Zhang et al. 2011). This implies that several key
parameters used in the EBDS model calibrated using idealized full-physics model simulations
discussed in W21a or the new time-dependent theory of TC intensification developed in W21b
are applicable to real TCs. We will show in the next section that the EBDS model with the above-
mentioned values of Cp and H can provide quite good estimation of PIR of TCs in observations.
The dynamical efficiency £ (0 < E < 1) in Eq. (1) reflects the effective conversion of potential
energy production to kinetic energy production for the TC system. The first term on the right-
hand side of Eq. (1) represents the intensification potential of a TC, and the second term is the
weakening potential due to surface frictional effect. Note that the TC genesis in nature is related
to many other processes that have not been considered in the EBDS model. That is, some
assumptions made in deriving the new IR equation are not relevant to TC genesis in nature, such
as the axisymmetric structure with favorable environmental conditions.

Different from TCs in idealized simulations in which no unfavorable environmental factors
were included, a real TC is always embedded in an environmental flow and may be affected by
various unfavorable environmental conditions, such as the large-scale vertical wind shear and
the negative feedback associated with cooling due to upwelling and mixing in the upper ocean
induced by the TC itself. Since these effects play a role in deterring TC intensification, it is not
unrealistic to assume that the dynamical efficiency E determined by the storm-scale dynamics
(or simply the intrinsic dynamical efficiency) would be reduced by a fraction (£’) due to all

possible inhibiting environmental effects. This means that we can simply rewrite £ in Eq. (1) as
11
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E=E"xE, 2
where E* is the intrinsic dynamical efficiency of the TC system, and E’ is the environmental
dynamical efficiency measuring all inhibiting environmental effects on TC intensification. By
definition, £’ should be less than 1 and greater than 0, similar to £, In this sense, the case of
E' =1 and thus E = E* means that an intensifying TC can reach its PIR given all favorable
environmental conditions.

For a given TC, E in Eq. (1) can be calculated using the observed IR (—==) and intensity

a Vmax
at

Vimax with the corresponding Vi if Cp/H is also given. We can assume that the intrinsic
dynamical efficiency E£* should be comparable to the maximum £ for a given relative intensity
(Vinax/Vmpi) and the corresponding MPI (¥Vmi). In this sense, the theoretical IR should be
comparable to the observed maximum IR, or PIR by definition. Since the main objective of this
study is to evaluate the EBDS model using observations, we will focus on the theoretically
estimated PIR using the best-track TC data and other available data as mentioned in section 2.
Note that the theoretical PIR is obtained based on several key assumptions as mentioned in
section 1. Vmax in Eq. (6) should be referred to the near-surface azimuthal mean wind speed.
However, the real TCs may include asymmetric structure and the estimated best-track intensity
may partly contributed by the asymmetric structure of the TC even on the storm scale (Landsea
et al. 2017). Although we have minimized the possible contribution by subtracting 40% of the
storm translation speed (Emanuel 2004), the internally generated or environmentally forced
asymmetries in the storm are neither included in the theory nor considered in our analysis. Our

results seem to suggest that in terms of the PIR, the effect of asymmetric structure is secondary
12
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and thus will be discussed in our following discussion.
The intrinsic dynamical efficiency E* introduced by W21a is a function of the inner-core
inertial stability (/) normalized by the inertial stability of the TC at its mature stage with MPI

(Lmpi), namely

n

oo ) - e o

2V arvV\ mpi
f+7)(f+rar)|rmpi

Impi

where 7, is RMW of the intensifying TC and 7mpi is the RMW of the TC at its mature stage of
MPI. The power constant » =1.0 is found to provide the best fit of the theoretical IR predicted
by Eq. (1) with the IR of the simulated TCs in W21a. For the simplest case, assuming both the
rm and the Coriolis parameter (f) are not too large, we can assume that the TC eye region is in

solid body rotation and Eq. (3) with n = 1.0 can be approximated as

f +2Vmax v
* A~ ™m ~ Ymax  Tmpi
E* = mpr | = v X S (4)
4 mpi m
T"mpi

Although r, of a TC at a given time is available in the best-track data, 7.y of the corresponding
MPI is unknown. Considering the fact that a TC intensifies with the contraction of the RMW (Li
et al. 2019; 2021), we can parameterize the RMW ratio in Eq. (4) as a function of the relative

intensity as well, and thus we can rewrite Eq. (4) as

m
v,
E* = (ﬂ) , 5

Vmpi ( )
where m is a power constant and can be calibrated using results from idealized full-physics
numerical simulations or observations. W21b found that m = 3/2 gives the best fit of the

estimated theoretical PIR to the IR of TCs in idealized numerical simulations. We will show in
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the next section that m = 3/2 is also the best choice for the PIR of the observed TCs.

Substituting (2) and (5) into Eq. (1), we have

anax _ Cp 2 1 [ Vmax m Vimax 2
T_vapi E'(— -\, . . (6)

Vimpi Vipi
Equation (6) has the same form as Eq. (23) in W21b if £’ here is replaced by B in W21b and
m = 3/2 is taken. As mentioned earlier, this study focuses on the PIR of a given TC at a given
time, we thus intentionally take E' = 1.0 in the following analysis. As a result, three parameters
are needed to be given to determine the PIR of a TC at a given time; they are the surface drag
coefficient Cp, the boundary layer depth H, and the MPI if m is calibrated based on the best-

track TC data.

4. Evaluation of the EBDS model against observations
a. The intrinsic dynamical efficiency (E”)

Figure 1a shows the calculated dynamical efficiency (E) in Eq. (1) using the 6-h best-track
TC data in section 2 and other parameters discussed in section 3 versus the relative intensity. We
can see that the power constant m = 3/2 in Eq. (5) gives the best fit of the upper-limit of E,
which corresponds to the intrinsic dynamical efficiency (£7). With m = 3/2, Eq. (1) or (6) will
become the same as the IR equation derived in the new time-dependent theory of TC
intensification in W21b. For a comparison, we also give the results for m = 1.0 and m = 1.2
in Fig. 1a. For those smaller m, E" is overestimated, resulting in too large theoretical PIR (Figs.

Ib and 1c¢). With m = 3/2, the PIR provides good quantitative estimate of the observed

14
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maximum IR although some of the observed maximum IRs (about 0.6% cases) are
underestimated (Fig. 1d) because the intrinsic dynamical efficiency E” for some intensification
cases could be underestimated (Fig. 1a). We checked the cases with the underestimated PIR and
found that the occurrences are likely random (not shown). Such a small underestimation is
acceptable considering the fact that the EBDS model only includes several key parameters, while
it still can capture the major features of the intensity-dependencies of both the intrinsic dynamical
efficiency and the PIR of TCs in observations.

The above results demonstrate that the intrinsic dynamical efficiency can be defined as a
function of the relative intensity, with which the EBDS model has skills in capturing the PIR of
the observed TCs. It is also important to see the characteristics of the remaining component of
the dynamical efficiency £’ in Eq. (2) or (6), which measures all inhibiting environmental effects
on TC intensification, or termed the environmental dynamical efficiency. Figure 2 shows the
dependences of E’, which is calculated by E/E* [see Eq. (2) above], on the relative intensity
and the normalized IR (namely IR normalized by the corresponding theoretical PIR at a given
time). We can see that overall £’ is less than 1.0 but greater than 0.5, with high density at 0.6—
0.7, suggesting that the environmental factors may slow down the TC intensification, and the
PIR of an intensifying TC is determined primarily by the TC internal dynamics given favorable
environmental thermodynamic conditions. In general, £’ increases with increasing TC relative
intensity (Fig. 2a). This indicates that TCs that approach their MPI correspond to higher
dynamical efficiency with favorable environmental conditions and/or are potentially more

resistant to unfavorable environmental conditions. From Fig. 2b, we can see that although £’
15
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also shows a general tendency to increase with increasing normalized IR as with increasing
relative intensity, the dependence on the former is relatively weaker than on the latter.
Particularly, the high-density dots in Fig. 2b indicate that the slowly intensifying TC (with the
normalized IR less than 0.4) is largely due to the inhibiting effect of unfavorable environmental
factors, or equivalently, TCs embedded in favorable environment can intensify more rapidly. An
effort on determining the environmental factors that contribute to the environmental dynamical
efficiency £’ is under way and the results will be reported in due course. Nevertheless, the above
analyses further imply that the intrinsic dynamical efficiency determined and discussed above is

reasonable.

b. Comparison of PIR in the EBDS model with observations

Based on the parameter settings as mentioned above, we can calculate the theoretical PIR
for all intensifying TCs at 6-h intervals using Eq. (6) and compare it with the corresponding
maximum IR calculated based on the best-track data. Figure 3 compares the distributions of the
theoretical PIR and the 99th percentile of IRs from observations in the phase spaces of Viax—Vmpi
and relative intensity (Vimax/Vmpi)—Vmpi, respectively. The 99th percentile of IRs is used to
represent the maximum IR (IRmax) under favorable environmental conditions for a relatively
fair comparison with the theoretical PIR estimated from the EBDS model. It is clear that the
theoretical PIR increases with increasing MPI monotonously, while for a given MPI it increases
with TC intensity initially and reaches the maximum at an immediate intensity, and then

decreases with increasing TC intensity (Fig. 3a). This dependence can be more explicitly seen
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from the phase space in relative intensity (Vuax/ Vipi)—Vmpi. Note that the maximum PIR (MPIR)
increases with increasing MPI [actually the square of MPI as inferred from Eq. (6)] and occurs
when the relative intensity is between 0.5-0.6 (Fig. 3b). The observed IRmax (Figs. 3¢ and 3d)
shows very similar distributions as the theoretically estimated PIR in the phase spaces of TC
intensity/relative intensity and V.. This demonstrates that the EBDS model is well supported
by observations. Namely, with the introduced intrinsic dynamical efficiency, the EBDS model
can reasonably capture the upper-limit of the observed TC IR and its dependence on TC intensity
and its corresponding MPI. Note that at relatively lower MPIs, IRmax occurs at higher relative
intensity side (Fig. 3d). This might be due to the fact that Cp often increases with increasing TC
intensity when the TC is weak (Donelan et al. 2004). This can explain the shift of IRmax to the
high relative intensity side for weak TCs.

It is our interest to further examine the major features of the observed TC IR, including its
dependence on TC intensity and the underlying SST and see whether the EBDS model can
capture these features. Figure 4 shows the observed IR and the corresponding theoretical PIR
estimated using Eq. (6), respectively, against TC intensity in different SST bins. For each SST
bin, the upper limit of the theoretical PIR, namely the 99th percentile of PIR, increases with
increasing TC intensity before V.. reaches an intermediate intensity as implied in Fig. 3a, which
is consistent with the idealized simulations in W21a and W21b. The theoretical PIR captures
well the upper limits of TC IRs in all SST bins, suggesting that the EBDS model can well define
the PIR of observed TCs. The theoretical MPIR in each SST bin increases with increasing SST

and occurs at the relative intensity of around 0.5-0.6 (Fig. 4f). For example, the MPIR is about
17
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15 m s (6h)! when SST is below 26.5°C, and increases to about 25 m s (6h)"! when SST is
greater than 29.5°C (Fig. 4f).

Since the theoretical PIR is determined by two processes (terms): the intensification
potential (%D E *V,fwi) and the frictional weakening potential (%D V;2.%) as given in Eq. (1), it is
our interest to further examine the dependence of the two terms on TC relative intensity in each
SST bin in observations. The intensity-dependent intensification potential and frictional
weakening potential against relative intensity in each SST bins are compared in Fig. 5. It is clear
that with the introduced intrinsic dynamical efficiency E*, the median of the intensification
potential increases almost linearly with increasing relative intensity for each SST bin, while the
frictional weakening potential increases quadratically with increasing relative intensity. As a
result, both terms are relatively small when a TC is weak, giving rise to a relatively small IR. As
the TC intensifies, the frictional weakening potential increases with relative intensity slower than
the intensification potential, corresponding to the increase of IR with increasing relative intensity.
After the TC attains an intermediate relative intensity, the frictional weakening potential
increases with increasing relative intensity faster than the intensification potential. As a result,
the IR reaches a maximum at some intermediate relative intensity, and then decreases with
increasing relative intensity, and approaches zero when the TC reaches its MPI. This
demonstrates that the intensity-dependence of PIR in the EBDS model is well supported by
observations. In addition, as we can see from Eq. (6) with m = 3/2, the IR is proportional to
the square of the corresponding MPI for a given relative intensity, which can also be implied by

the fact that the slopes of both intensification potential and frictional weakening potential
18
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increase with increasing SST (or the corresponding MPI) in Fig. 5f.

5. Conclusions and discussion

In a recent study, W21a introduced a dynamical efficiency to the intensification potential of
a TC system in a simplified EBDS model and showed that the modified EBDS model can
reproduce the intensity-dependence of TC potential intensification rate (PIR) in idealized
numerical simulations. Although they also briefly indicated that the EBDS model can capture
the overall intensity-dependence of PIR in observations, such as those documented in Xu et al.
(2016) and Xu and Wang (2015, 2018a), they did not perform any detailed evaluation. In this
study, the EBDS model’s capability in capturing the basic features of the observed TC PIR has
been evaluated based on the best-track TC data over the North Atlantic, central, eastern and
western North Pacific during 1982-2019. Results first demonstrate that the intrinsic dynamical
efficiency obtained based on the idealized numerical simulations in W21b is well supported by
observations.

With the defined intrinsic dynamical efficiency, the EBDS model can reproduce well the
observed intensity-dependence of the 99th percentile IRs in the best-track data over the North
Atlantic, central, eastern and western North Pacific. Both the estimated theoretical PIR and the
observed maximum IR initially increase with increasing TC relative intensity (intensity
normalized by its corresponding MPI) and reach their maxima at an intermediate relative
intensity of around 0.6, and then decrease with further increase in relative intensity and approach

zero as the TC reaches its MPI. The increase in the theoretical PIR for a given relative intensity
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with increasing MPI is also well supported by observations. Results also show that the maximum
PIR of 15 m s (6h)! for SST below 26.5°C increases to around 25 m s™! (6h)! for SST greater
than 29.5°C. The consistency between the theoretical PIR and the observed maximum IRs
strongly suggests that the EBDS model can reliably estimate the PIR of real TCs, which can be
considered as an upper limit of the TC IR or used as a parameter in statistical TC intensity
prediction schemes.

We have also shown that the modified EBDS model can explain well the observed intensity-
dependent TC PIR. The PIR is determined by the difference between the intensification potential
and the frictional weakening potential. In the initial intensifying stage when the TC is weak with
small relative intensity, the intensification potential is larger than the frictional weakening
potential but both are small, corresponding to relatively small PIR. As the TC intensifies, the
increase in the frictional weakening potential with increasing relative intensity is slower than the
increase in the intensification potential, leading to the increase of PIR with increasing relative
intensity. After the TC intensifies to attain an intermediate relative intensity, the increase in the
frictional weakening potential with increasing relative intensity is faster than the increase in the
intensification potential, giving rise to a maximum PIR at some intermediate relative intensity.
This is followed by a decrease of PIR with increasing relative intensity, and then the PIR
approaches zero when the TC reaches its MPI.

With the intrinsic dynamical efficiency £* that determines the PIR, the actual TC IR will be
controlled by the environmental factors, which can be included as the environmental dynamical

efficiency (£’) in the EBDS model Eq. (6). We have shown that the environmental effects
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represented as the environmental dynamical efficiency (0 < E’ < 1) suppress TC IR by reducing
the intrinsic dynamical efficiency (E£*). Note that since the detrimental environmental effects
may lead to the weakening of a TC, £’ should be quantified by the intensity change during the
whole lifetime of a TC rather than the intensifying stage only. The weakening TC cases should
be included in characterizing and quantifying the environmental dynamical efficiency, which
could be a function of the environmental vertical wind shear, the TC translational speed, and so
on. In our next step, we will quantify the environmental dynamical efficiency with not only the
intensifying TC cases but also both quasi-steady and weakening TC cases based on the best-track
TC data, the SHIPS dataset, and the global reanalysis data. Once the environmental dynamical
efficiency is determined, the EBDS model may be used to estimate and predict real TC intensity
change given the environmental parameters. In addition, Previous studies have shown that
although the surface exchange coefficient (C) is almost independent of the near surface wind
speed, the drag coefficient Cp depends strongly on the near surface wind speed and thus the TC
intensity (Soloviev et al. 2017; Donelan 2018). A wind-dependent Cp could be used in the EBDS
model. In that case, Cp in Eq. (6) will vary with TC intensity and the MPI should be recalculated
since it is a function of Cp. This will be considered in our follow-up study when the model is
further developed for the real-time TC intensity prediction. The results will be reported

separately in due course.
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586  Table 1. List of basic information about TC sample size and the intensification cases in each
587  basin considered in this study.

Basin TC numbers Intensification cases
North Atlantic 362 (24.2%) 2885 (24.5%)
Western North Pacific 591 (39.5%) 5167 (44.0%)
Central and eastern North 543 (36.3%) 3706(31.5%)
Pacific
Total 1496 11758
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Figure 1. Scatter diagrams of E estimated from observations against relative intensity

(Vmax/Vmpi) based on Eq. (1), together with m =1 (red), m = 1.2 (blue), and m = 1.5 (purple)

for £* from Eq. (5) based on the best-track dataset (a), the theoretical PIR [m s (6h)!]

calculated with (b) m =1, (c) m = 1.2, and (d) m = 1.5, respectively, against observed IR [m

s1(6h)!]. Solid lines in (b-d) denote for y=x and percentage value on the right bottom gives

percentage of the case numbers of theoretical PIR less than that of observed IR.
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[red, m s™! (6h)!] against relative intensity, with the 99th percentile of PIR fitted by non-
parametric quantile regression for different SST bins (purple solid). The 99th percentile of
theoretical PIR (solid) and PIR dots of each SST bins are shown together in ().
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613  Figure 5. Scatter diagram of intensification potential [m s™' (6h)!, grey] and frictional weakening

614 rate [m s (6h)"!, pink] against relative intensity for all intensifying TC cases in various SST
615 bins (a ~ e). The medians of IP and FD are given in blue, purple solid curves, respectively.
616 The corresponding medians for each SST bin are also shown in (f) for a comparison.
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