

1 **Potential Intensification Rate of Tropical Cyclones in a Simplified**
2 **Energetically Based Dynamical System Model: An Observational Analysis**

3 Jing Xu¹, and Yuqing Wang^{2*}

4 ¹State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences,
5 China Meteorological Administration, Beijing, China

6 ²International Pacific Research Center and Department of Atmospheric Sciences, University of
7 Hawaii at Mānoa, Honolulu, HI 96822

8 August 6, 2021 (submitted)
9 November 20, 2021 (revised)
10 Dataline

11 Submitted to ***Journal of the Atmospheric Sciences***

12 Corresponding author: Prof. Yuqing Wang
13 Room 404A, IPRC/SOEST
14 University of Hawaii at Manoa
15 1680 East-West Road
16 Honolulu, HI 96822
17 Email: yuqing@hawaii.edu

18

19

Abstract

20 In a recent study by Wang et al. (2021a) that introduced a dynamical efficiency to the
21 intensification potential of a tropical cyclone (TC) system, a simplified energetically based
22 dynamical system (EBDS) model was shown to be able to capture the intensity-dependence of
23 TC potential intensification rate (PIR) in both idealized numerical simulations and observations.
24 Although the EBDS model can capture the intensity-dependence of TC intensification as in
25 observations, a detailed evaluation has not yet been done. This study provides an evaluation of
26 the EBDS model in reproducing the intensity-dependent feature of the observed TC PIR based
27 on the best-track data for TCs over the North Atlantic, central, eastern and western North Pacific
28 during 1982–2019. Results show that the theoretical PIR estimated by the EBDS model can
29 capture basic features of the observed PIR reasonably well. The TC PIR in the best-track data
30 increases with increasing relative TC intensity (intensity normalized by its corresponding
31 maximum potential intensity–MPI) and reaches a maximum at an intermediate relative intensity
32 around 0.6, and then decreases with increasing relative intensity to zero as the TC approaches its
33 MPI, as in idealized numerical simulations. Results also show that the PIR for a given relative
34 intensity increases with the increasing MPI and thus increasing sea surface temperature, which
35 is also consistent with the theoretical PIR implied by the EBDS model. In addition, future
36 directions to include environmental effects and make the EBDS model applicable to predict
37 intensity change of real TCs are also discussed.

38

39 **1. Introduction**

40 Under the assumption of a tropical cyclone (TC) as a natural Carnot heat engine, there exists
41 an upper limit of the TC intensity, namely, the maximum potential intensity (MPI) a TC may
42 reach given favorable atmospheric and oceanic thermodynamic conditions (Emanuel 1986, 1991,
43 1997). Similarly, recent observational and theoretical studies have shown that there also exists a
44 maximum potential intensification rate (MPIR) for an intensifying TC, i.e., the upper-limit of
45 intensification rate (IR) a TC can attain given favorable thermodynamic environmental
46 conditions (Xu et al. 2016; Xu and Wang 2018a). The MPIR has been shown to occur at an
47 intermediate TC intensity in observations. Based on the TC best-track dataset during 1988–2014
48 in the North Atlantic, Xu et al. (2016) statistically analyzed the relationship between the TC
49 MPIR and the underlying sea surface temperature (SST) and found a functional dependence of
50 the MPIR on SST, similar with that of MPI. A similar empirical functional dependence of the
51 MPIR on SST was also found for TCs over the western North Pacific (Xu and Wang 2018a).

52 Observations show that the TC intensification rate (IR), in particular the maximum IR for
53 a given intensity (we refer to this as the potential IR or simply PIR), increases with TC intensity,
54 reaches a maximum (namely, MPIR) when the TC is at its intermediate intensity with the 10-m
55 sustained maximum wind speed (Vmax) of about $30\text{--}40\text{ m s}^{-1}$ (Kaplan et al. 2010; Xu et al. 2016;
56 Xu and Wang 2015, 2018a), and then decreases to zero as Vmax further increases to approach
57 its MPI. Kaplan et al. (2010) qualitatively explained this intensity-dependence of TC IR by a
58 hypothesis that TCs are likely to intensify rapidly when its eyewall is well developed with strong

59 organized convection but still far from their MPI, while afterwards, the IR tends to slow down
60 when the intensity of the intensifying TC is getting close to its MPI, with the enhanced heating
61 efficiency is mostly offset by the surface frictional dissipation effect. Xu et al. (2016) and Xu
62 and Wang (2018a) argued that the initial increase in PIR with increasing TC intensity can be
63 explained by the quasi-balanced dynamics, which predicts an increase of heating efficiency of
64 eyewall convection with increasing inner-core inertial stability, which is a function of the TC
65 intensity and inner-core size (Schubert and Hack, 1982; Vigh and Schubert 2009; Pendergrass
66 and Willoughby 2009).

67 Previous studies on TC intensification mechanisms are all qualitative based on some
68 positive feedback processes (see a review by Montgomery and Smith 2014). Recent studies have
69 attempted to quantify TC PIR based on various assumptions and/or approximations. Two such
70 efforts have been made to develop the time-dependent theories of TC intensification (Emanuel
71 2012; Ozawa and Shimokawa 2015). Emanuel (2012) started with the boundary layer entropy
72 budget equation, assumed an axisymmetric vortex in thermal wind balance with neutral
73 slantwise moist convection in the outwardly sloping eyewall, and derived an equation for the
74 rate of change in TC intensity in terms of maximum tangential wind speed. The other time-
75 dependent theory of TC intensification was developed by Ozawa and Shimokawa (2015), which
76 views a TC as a Carnot heat engine and assumes that the TC intensifies, as measured by the
77 increasing rate in the inner-core mechanical energy, when the energy production rate due to
78 surface enthalpy flux is greater than the surface frictional dissipation rate (Wang 2012, 2015).
79 Although based on different assumptions/approximations, both theories result in similar

80 mathematical expressions for TC IR and predict IR to maximal at zero azimuthal velocity and
81 decreasing with increasing TC intensity. This is not consistent with the observed intensity-
82 dependence of TC IR as mentioned above (Xu et al. 2016; Xu and Wang 2015, 2018a). As also
83 recently questioned by Montgomery and Smith (2019), it is unclear how a storm could intensify
84 from a quiescent state because the surface enthalpy flux would be negligible as the TC maximum
85 near-surface wind speed is close to zero, and thus supposedly no sufficient energy supply to
86 initiate the intensification.

87 Recently, Wang et al. (2021a, hereafter W21a) indicated that the unrealistic intensity-
88 dependence of TC IR in the theory of Ozawa and Shimokawa (2015) results mainly from the
89 assumption of a constant efficiency for the transfer of the production rate of potential energy to
90 the production rate of the inner-core mechanical kinetic energy. They introduced a dynamical
91 efficiency to the TC system and developed a simplified energetically based dynamical system
92 (EBDS) model to quantify the intensity-dependence of TC IR. According to this EBDS model,
93 the TC IR is determined by the net increasing rate in the inner-core mechanical energy, which is
94 the difference between the intensification potential due to the energy production rate and the
95 weakening potential due to surface frictional dissipation under the eyewall. The intensification
96 potential is a function of the thermodynamic conditions of the environment and the dynamical
97 efficiency (E) of the TC system. The E depends strongly on the degree of convective
98 organization within the eyewall and the inner-core inertial stability of the TC vortex. Unlike
99 previous time-dependent theories that include mainly the environmental conditions (DeMaria
100 2009; Emanuel 2012; Ozawa and Shimokawa 2015; Emanuel and Zhang 2017), the new EBDS

model includes the TC intrinsic dynamical efficiency determined by the inner-core inertial stability in the time-dependent theory of TC intensification. W21a showed that with the introduced an *ad-hoc* (intrinsic) dynamical efficiency, the EBDS model can quantitatively reproduce the TC IR in idealized numerical simulations and capture the basic features of the observed time-dependence of TC IR as mentioned above. More recently, Wang et al. (2021b, hereafter W21b) developed a new time-dependent theory of TC intensification based on the tangential wind budget equation and assumed a thermodynamic quasi-equilibrium in the slab TC boundary layer. By introducing an *ad-hoc* intensity-dependent parameter to measure the extent to which the absolute angular momentum and the moist entropy surfaces are congruent, W21b derived an equation for the TC IR, which has the same mathematical form as the one obtained in W21a but with a different physical interpretation for the parameter equivalent to the dynamical efficiency in the EBDS model. There are two main differences in the theories between W21b and Emanuel (2012). First, W21b did not assume the radius of maximum wind being a material surface, namely the absolute angular momentum following the RMW is not conserved, which was an unrealistic assumption used in Emanuel (2012). Second, in W21b the congruent assumption between the entropy and absolute angular momentum surfaces (namely the moist neutral eyewall ascent) in Emanuel (2012) is removed since later studies have demonstrated that the moist neutral slantwise assumption is actually not hold during the intensification rate, only at the mature stage (Peng et al. 2018; Kieu et al. 2020).

In both W21a and W21b, the new time-dependent equation for TC IR was carefully evaluated using idealized ensemble full-physics model simulations with a nonhydrostatic,

122 convection-resolving model. They showed that the simulated TC IR initially increases with the
123 relative TC intensity (namely, the TC intensity normalized by its MPI) and reaches a maximum
124 at an intermediate relative intensity, and then decreases with increasing relative intensity to zero
125 as the TC approaches its MPI, as in observations. W21b also found that for a given relative
126 intensity, the TC IR increases with the square of its MPI. Since no environmental flow was
127 included in their idealized simulations, the IR of the modeled TCs can be considered as the PIR,
128 which is governed primarily by the internal dynamics under the given favorable thermodynamic
129 conditions, such as the realistic environmental atmospheric soundings and SSTs. Although the
130 EBDS model was shown to be able to qualitatively capture the overall intensity-dependence of
131 the observed TC PIR as briefly mentioned in both W21a and W21b, a detailed comparison
132 between the PIRs of the EBDS model and those of the observed TCs has not yet been done. This
133 study attempts to validate and evaluate the EBDS model using the best-track data for TCs over
134 the main TC basins (North Atlantic, central, eastern and western North Pacific) in the Northern
135 Hemisphere. We will show that the calibrated intrinsic dynamical efficiency based on idealized
136 numerical simulations is supported by observations, and the EBDS model can well reproduce
137 the basic features of the observed PIR of TCs. The rest of the paper is organized as follows.
138 Section 2 briefly describes the data and the analysis methods. The EBDS model is briefly
139 reviewed in section 3. The basic features of TC PIR obtained from the best-track TC data are
140 discussed and compared with the theoretical PIR obtained from the EBDS model in section 4.
141 Major conclusions are drawn in the last section.

142 **2. Data and methodology**

143 The statistical hurricane intensity prediction scheme (SHIPS) dataset (Knaff et al, 2005;
144 updated on April 3, 2020) is used in this study. All best-track data of TCs over the main basins
145 of the Northern Hemisphere, including all TCs over the North Atlantic, the central and eastern
146 North Pacific during 1982–2019 and those over the western North Pacific during 1990–2017,
147 are considered in our analysis. The 6-hourly maximum sustained 10-m wind speed, Reynolds
148 SST, and the Emanuel's maximum potential intensity (MPI) are all adopted from the SHIPS
149 dataset. The MPI and other environmental variables in the SHIPS dataset are estimated using
150 the operational synoptic datasets (DeMaria and Kaplan 1999; Knaff et al. 2005), which are
151 derived from the Climate Forecast System Reanalysis (CFSR) reanalysis dataset. To minimize
152 the influence of TC translation on its intensity, the 40% of the TC translation speed was
153 subtracted from the initial maximum wind speed for all TC cases, and the result is used as the
154 measure of TC intensity (Vmax), as done by Emanuel et al. (2004). The TC intensity changes
155 at 6-h intervals are calculated accordingly ($IR_{6h} = V_{max}^{t+6h} - V_{max}^t$). Only the intensification
156 cases ($IR_{6h} > 0$) with Vmax greater than 17 m s^{-1} are included in our analysis. TCs in SHIPS
157 dataset with missing values for SSTs and MPIs are removed to avoid the landfalling TCs. Only
158 TCs with tropical nature and with SST greater than 25°C and south of 35°N are considered in
159 our analysis to avoid extratropical transition stages. The time period and corresponding numbers
160 of TCs and intensification cases in individual basins included in this study are summarized in
161 Table 1.

162 Although the MPI can reasonably capture the observed TC maximum intensity, it still
163 understates the observed maximum intensity of some TCs. Those cases are often termed as
164 superintensity (e.g., Persing and Montgomery 2003; Montgomery et al. 2006; Wang and Xu
165 2010; Rousseau-Rizzi and Emanuel 2019; Li et al. 2020). The superintensity will cause negative
166 IR for those intensifying TC cases according to the IR equations (see Eq.17 in Emanuel 2012;
167 Eq. 12 in W21a; Eq. 16 in W21b). To avoid such unrealistic situations, W21a and W21b used
168 the steady-state intensity of the simulated TCs instead of the theoretical MPI in their time-
169 dependent theory of TC intensification. The steady-state intensity of the simulated TC in both
170 W21a and W21b refers to the maximum intensity attained in the quasi-steady state in an idealized
171 simulation, while the theoretical MPI for a real TC is estimated by using the actual atmospheric
172 sounding under a given SST and the environmental atmospheric soundings. Based on the
173 diagnostic results of Wang and Xu (2010) and Li et al. (2020) and the theoretical work of
174 Kowaleski and Evans (2016), the superintensity resulted from the ignorance of any possible
175 inward transport of energy production due to enthalpy flux from the underlying ocean outside
176 the RMW in the classic MPI theory (Emanuel 1997). Wang and Xu (2010) demonstrated that
177 the inward transport of energy production from the outside of the RMW can be an extra energy
178 source (25%) to balance the power dissipation due to surface friction under the eyewall. Wang
179 and Xu (2010) showed that this extra energy source can lead to an 11.2% increase of the
180 estimated MPI. Li et al. (2020) also showed that the quasi-steady state intensity of the simulated
181 TCs can be 7%~18% greater than their theoretical MPI in idealized simulations with realistic
182 tropical environmental conditions. Note that some other studies have attributed the TC

183 superintensity to the unbalanced flow in the boundary layer (Bryan and Rotunno 2009; Frisius
184 et al. 2013) In the SHIPS dataset, we found that there are 166 superintensity cases out of 11758
185 intensifying cases with their intensities exceeding 11% of their MPIs, which is within the range
186 of the simulated TCs in Li et al. (2020). We therefore simply multiplied the SHIPS MPI by a
187 factor of 1.11 to take into account of the superintensity nature of TCs. After such a modification,
188 all TC MPIs are greater than or equal to their intensities, and thus there is no negative theoretical
189 IR for any intensifying TCs in our analysis.

190 We should mention here that uncertainties in the estimated MPI and also the best-track TC
191 intensity exist and are unavoidable. For example, the estimated MPI depends on the definition
192 of the environmental thermodynamic conditions (e.g., Xu et al. 2019a,b). The surface drag
193 coefficient in the theoretical MPI is currently treated to be independent of the near-surface wind
194 speed while it is a strong function of the near-surface wind speed (e.g., Donelan et al. 2004;
195 Soloviev et al. 2017; Donelan 2018). The estimated best-track maximum wind speed varies as a
196 result of the storm intensity and the available observations and may not well-represent the storm-
197 scale intensity (Landsea and Franklin 2013). Therefore, some constraints used in modifying the
198 SHPIS MPIs and the occurrences of some small TC cases that show the theoretically estimated
199 PIR underestimates the maximum IR in the best-track data should be considered necessary and
200 acceptable. Nevertheless, our results seem to strongly suggest that the use of TC MPIs from the
201 SHIPS dataset with the modification to take into account of the possible superintensity nature is
202 acceptable for the purpose of this study. Actually, we will show that the theoretically estimated
203 PIR using the SHIPS MPI and best-track TC intensity well captures the maximum IR calculated

204 using the best-track TC intensity, suggesting that some uncertainties in the data used in this study
205 should not be a big issue with some constraints as mentioned above.

206 **3. An overview of the EBDS model of TC intensification**

207 The EBDS model developed in W21a is a time-dependent equation for the IR of a TC given
208 its current intensity V_{max} and the corresponding MPI (V_{mpi})

209

$$\frac{\partial V_{max}}{\partial \tau} = \frac{C_D}{H} (EV_{mpi}^2 - V_{max}^2). \quad (1)$$

210 where $\frac{\partial V_{max}}{\partial \tau}$ is the rate of TC intensity change, V_{max} is the time-dependent near-surface
211 maximum wind speed (referred to as intensity) of the TC, V_{mpi} is the corresponding MPI as
212 discussed in section 2, which partly includes the contribution of superintensity, C_D is surface
213 drag coefficient, H is an undetermined height parameter, which is roughly twice the depth of the
214 boundary layer (Emanuel 2012)¹. In W21a and W21b, C_D was taken directly from their idealized
215 numerical simulations and the MPI was taken from the steady-state intensity, which includes the
216 superintensity component. They found that $H = 2000 \text{ m}$ gives the best fit of the theoretical IR
217 to the TC IR in their idealized simulations. Although C_D and H are two independent parameters
218 in the EBDS model, C_D/H can be considered as one parameter in practice since neither of C_D nor
219 H can be accurately determined from observations. Nevertheless, after many tests based on the
220 best-track TC data described above, we found that $H = 2000 \text{ m}$ and $C_D = 2.4 \times 10^{-3}$ are the

¹ Note that $H = 2h$ in Emanuel (2012) with h being the boundary layer depth near the radius of maximum wind. In previous studies, various values have been used for h , e.g., 5,000 m in Emanuel (2012); 4,000 m (with $H=8,000 \text{ m}$) in Ozawa and Shimokawa (2015); 1,400 m in Emanuel and Zhang (2017) and Emanuel (2017) with $C_D = 1.2 \times 10^{-3}$. Observations suggest that the characteristic height scale of the TC inner-core boundary layer is usually between 500–2000 m (Zhang et al. 2011), the reasonable height parameter H can be considered to be between ~1000–4000 m. W21a and W21b found that the predicted IR using the EBDS model with $H = 2,000 \text{ m}$ fits well the IR of their simulated TCs.

221 best choice and thus will be used in our following analysis. Actually, both are quite reasonable
222 under TC conditions (e.g., Donelan et al. 2004; Zhang et al. 2011). This implies that several key
223 parameters used in the EBDS model calibrated using idealized full-physics model simulations
224 discussed in W21a or the new time-dependent theory of TC intensification developed in W21b
225 are applicable to real TCs. We will show in the next section that the EBDS model with the above-
226 mentioned values of C_D and H can provide quite good estimation of PIR of TCs in observations.
227 The dynamical efficiency E ($0 \leq E \leq 1$) in Eq. (1) reflects the effective conversion of potential
228 energy production to kinetic energy production for the TC system. The first term on the right-
229 hand side of Eq. (1) represents the intensification potential of a TC, and the second term is the
230 weakening potential due to surface frictional effect. Note that the TC genesis in nature is related
231 to many other processes that have not been considered in the EBDS model. That is, some
232 assumptions made in deriving the new IR equation are not relevant to TC genesis in nature, such
233 as the axisymmetric structure with favorable environmental conditions.

234 Different from TCs in idealized simulations in which no unfavorable environmental factors
235 were included, a real TC is always embedded in an environmental flow and may be affected by
236 various unfavorable environmental conditions, such as the large-scale vertical wind shear and
237 the negative feedback associated with cooling due to upwelling and mixing in the upper ocean
238 induced by the TC itself. Since these effects play a role in deterring TC intensification, it is not
239 unrealistic to assume that the dynamical efficiency E determined by the storm-scale dynamics
240 (or simply the intrinsic dynamical efficiency) would be reduced by a fraction (E') due to all
241 possible inhibiting environmental effects. This means that we can simply rewrite E in Eq. (1) as

242 $E = E^* \times E'$, (2)

243 where E^* is the intrinsic dynamical efficiency of the TC system, and E' is the environmental
244 dynamical efficiency measuring all inhibiting environmental effects on TC intensification. By
245 definition, E' should be less than 1 and greater than 0, similar to E^* . In this sense, the case of
246 $E' = 1$ and thus $E = E^*$ means that an intensifying TC can reach its PIR given all favorable
247 environmental conditions.

248 For a given TC, E in Eq. (1) can be calculated using the observed IR ($\frac{\partial V_{max}}{\partial \tau}$) and intensity
249 V_{max} with the corresponding V_{mpi} if C_D/H is also given. We can assume that the intrinsic
250 dynamical efficiency E^* should be comparable to the maximum E for a given relative intensity
251 (V_{max}/V_{mpi}) and the corresponding MPI (V_{pmi}). In this sense, the theoretical IR should be
252 comparable to the observed maximum IR, or PIR by definition. Since the main objective of this
253 study is to evaluate the EBDS model using observations, we will focus on the theoretically
254 estimated PIR using the best-track TC data and other available data as mentioned in section 2.
255 Note that the theoretical PIR is obtained based on several key assumptions as mentioned in
256 section 1. V_{max} in Eq. (6) should be referred to the near-surface azimuthal mean wind speed.
257 However, the real TCs may include asymmetric structure and the estimated best-track intensity
258 may partly contributed by the asymmetric structure of the TC even on the storm scale (Landsea
259 et al. 2017). Although we have minimized the possible contribution by subtracting 40% of the
260 storm translation speed (Emanuel 2004), the internally generated or environmentally forced
261 asymmetries in the storm are neither included in the theory nor considered in our analysis. Our
262 results seem to suggest that in terms of the PIR, the effect of asymmetric structure is secondary

263 and thus will be discussed in our following discussion.

264 The intrinsic dynamical efficiency E^* introduced by W21a is a function of the inner-core
265 inertial stability (I) normalized by the inertial stability of the TC at its mature stage with MPI
266 (I_{mpi}), namely

$$267 \quad E^* = \left(\frac{I}{I_{mpi}} \right)^n = \left[\frac{\sqrt{(f + \frac{2V}{r})(f + \frac{\partial rV}{r\partial r})|_{rm}}}{\sqrt{(f + \frac{2V}{r})(f + \frac{\partial rV}{r\partial r})|_{rmpi}}} \right]^n, \quad (3)$$

268 where r_m is RMW of the intensifying TC and r_{mpi} is the RMW of the TC at its mature stage of
269 MPI. The power constant $n = 1.0$ is found to provide the best fit of the theoretical IR predicted
270 by Eq. (1) with the IR of the simulated TCs in W21a. For the simplest case, assuming both the
271 r_m and the Coriolis parameter (f) are not too large, we can assume that the TC eye region is in
272 solid body rotation and Eq. (3) with $n = 1.0$ can be approximated as

$$273 \quad E^* \cong \left(\frac{f + \frac{2V_{max}}{r_m}}{f + \frac{2V_{mpi}}{r_{mpi}}} \right) \cong \frac{V_{max}}{V_{mpi}} \times \frac{r_{mpi}}{r_m}, \quad (4)$$

274 Although r_m of a TC at a given time is available in the best-track data, r_{mpi} of the corresponding
275 MPI is unknown. Considering the fact that a TC intensifies with the contraction of the RMW (Li
276 et al. 2019; 2021), we can parameterize the RMW ratio in Eq. (4) as a function of the relative
277 intensity as well, and thus we can rewrite Eq. (4) as

$$278 \quad E^* \cong \left(\frac{V_{max}}{V_{mpi}} \right)^m, \quad (5)$$

279 where m is a power constant and can be calibrated using results from idealized full-physics
280 numerical simulations or observations. W21b found that $m = 3/2$ gives the best fit of the
281 estimated theoretical PIR to the IR of TCs in idealized numerical simulations. We will show in

282 the next section that $m = 3/2$ is also the best choice for the PIR of the observed TCs.

283 Substituting (2) and (5) into Eq. (1), we have

284

$$\frac{\partial V_{max}}{\partial \tau} = \frac{C_D}{H} V_{mpi}^2 \left[E' \left(\frac{V_{max}}{V_{mpi}} \right)^m - \left(\frac{V_{max}}{V_{mpi}} \right)^2 \right]. \quad (6)$$

285 Equation (6) has the same form as Eq. (23) in W21b if E' here is replaced by B in W21b and

286 $m = 3/2$ is taken. As mentioned earlier, this study focuses on the PIR of a given TC at a given

287 time, we thus intentionally take $E' = 1.0$ in the following analysis. As a result, three parameters

288 are needed to be given to determine the PIR of a TC at a given time; they are the surface drag

289 coefficient C_D , the boundary layer depth H , and the MPI if m is calibrated based on the best-

290 track TC data.

291 **4. Evaluation of the EBDS model against observations**

292 *a. The intrinsic dynamical efficiency (E^*)*

293 Figure 1a shows the calculated dynamical efficiency (E) in Eq. (1) using the 6-h best-track

294 TC data in section 2 and other parameters discussed in section 3 versus the relative intensity. We

295 can see that the power constant $m = 3/2$ in Eq. (5) gives the best fit of the upper-limit of E ,

296 which corresponds to the intrinsic dynamical efficiency (E^*). With $m = 3/2$, Eq. (1) or (6) will

297 become the same as the IR equation derived in the new time-dependent theory of TC

298 intensification in W21b. For a comparison, we also give the results for $m = 1.0$ and $m = 1.2$

299 in Fig. 1a. For those smaller m , E^* is overestimated, resulting in too large theoretical PIR (Figs.

300 1b and 1c). With $m = 3/2$, the PIR provides good quantitative estimate of the observed

301 maximum IR although some of the observed maximum IRs (about 0.6% cases) are
302 underestimated (Fig. 1d) because the intrinsic dynamical efficiency E^* for some intensification
303 cases could be underestimated (Fig. 1a). We checked the cases with the underestimated PIR and
304 found that the occurrences are likely random (not shown). Such a small underestimation is
305 acceptable considering the fact that the EBDS model only includes several key parameters, while
306 it still can capture the major features of the intensity-dependencies of both the intrinsic dynamical
307 efficiency and the PIR of TCs in observations.

308 The above results demonstrate that the intrinsic dynamical efficiency can be defined as a
309 function of the relative intensity, with which the EBDS model has skills in capturing the PIR of
310 the observed TCs. It is also important to see the characteristics of the remaining component of
311 the dynamical efficiency E' in Eq. (2) or (6), which measures all inhibiting environmental effects
312 on TC intensification, or termed the environmental dynamical efficiency. Figure 2 shows the
313 dependences of E' , which is calculated by E/E^* [see Eq. (2) above], on the relative intensity
314 and the normalized IR (namely IR normalized by the corresponding theoretical PIR at a given
315 time). We can see that overall E' is less than 1.0 but greater than 0.5, with high density at 0.6–
316 0.7, suggesting that the environmental factors may slow down the TC intensification, and the
317 PIR of an intensifying TC is determined primarily by the TC internal dynamics given favorable
318 environmental thermodynamic conditions. In general, E' increases with increasing TC relative
319 intensity (Fig. 2a). This indicates that TCs that approach their MPI correspond to higher
320 dynamical efficiency with favorable environmental conditions and/or are potentially more
321 resistant to unfavorable environmental conditions. From Fig. 2b, we can see that although E'

322 also shows a general tendency to increase with increasing normalized IR as with increasing
323 relative intensity, the dependence on the former is relatively weaker than on the latter.
324 Particularly, the high-density dots in Fig. 2b indicate that the slowly intensifying TC (with the
325 normalized IR less than 0.4) is largely due to the inhibiting effect of unfavorable environmental
326 factors, or equivalently, TCs embedded in favorable environment can intensify more rapidly. An
327 effort on determining the environmental factors that contribute to the environmental dynamical
328 efficiency E' is under way and the results will be reported in due course. Nevertheless, the above
329 analyses further imply that the intrinsic dynamical efficiency determined and discussed above is
330 reasonable.

331 *b. Comparison of PIR in the EBDS model with observations*

332 Based on the parameter settings as mentioned above, we can calculate the theoretical PIR
333 for all intensifying TCs at 6-h intervals using Eq. (6) and compare it with the corresponding
334 maximum IR calculated based on the best-track data. Figure 3 compares the distributions of the
335 theoretical PIR and the 99th percentile of IRs from observations in the phase spaces of $V_{max}-V_{mpi}$
336 and relative intensity $(V_{max}/V_{mpi})-V_{mpi}$, respectively. The 99th percentile of IRs is used to
337 represent the maximum IR (IRmax) under favorable environmental conditions for a relatively
338 fair comparison with the theoretical PIR estimated from the EBDS model. It is clear that the
339 theoretical PIR increases with increasing MPI monotonously, while for a given MPI it increases
340 with TC intensity initially and reaches the maximum at an immediate intensity, and then
341 decreases with increasing TC intensity (Fig. 3a). This dependence can be more explicitly seen

342 from the phase space in relative intensity (V_{max}/V_{mpi})– V_{mpi} . Note that the maximum PIR (MPIR)
343 increases with increasing MPI [actually the square of MPI as inferred from Eq. (6)] and occurs
344 when the relative intensity is between 0.5–0.6 (Fig. 3b). The observed IRmax (Figs. 3c and 3d)
345 shows very similar distributions as the theoretically estimated PIR in the phase spaces of TC
346 intensity/relative intensity and V_{mpi} . This demonstrates that the EBDS model is well supported
347 by observations. Namely, with the introduced intrinsic dynamical efficiency, the EBDS model
348 can reasonably capture the upper-limit of the observed TC IR and its dependence on TC intensity
349 and its corresponding MPI. Note that at relatively lower MPIs, IRmax occurs at higher relative
350 intensity side (Fig. 3d). This might be due to the fact that C_D often increases with increasing TC
351 intensity when the TC is weak (Donelan et al. 2004). This can explain the shift of IRmax to the
352 high relative intensity side for weak TCs.

353 It is our interest to further examine the major features of the observed TC IR, including its
354 dependence on TC intensity and the underlying SST and see whether the EBDS model can
355 capture these features. Figure 4 shows the observed IR and the corresponding theoretical PIR
356 estimated using Eq. (6), respectively, against TC intensity in different SST bins. For each SST
357 bin, the upper limit of the theoretical PIR, namely the 99th percentile of PIR, increases with
358 increasing TC intensity before V_{max} reaches an intermediate intensity as implied in Fig. 3a, which
359 is consistent with the idealized simulations in W21a and W21b. The theoretical PIR captures
360 well the upper limits of TC IRs in all SST bins, suggesting that the EBDS model can well define
361 the PIR of observed TCs. The theoretical MPIR in each SST bin increases with increasing SST
362 and occurs at the relative intensity of around 0.5–0.6 (Fig. 4f). For example, the MPIR is about

363 15 m s⁻¹ (6h)⁻¹ when SST is below 26.5°C, and increases to about 25 m s⁻¹ (6h)⁻¹ when SST is
364 greater than 29.5°C (Fig. 4f).

365 Since the theoretical PIR is determined by two processes (terms): the intensification
366 potential ($\frac{C_D}{H} E^* V_{mpi}^2$) and the frictional weakening potential ($\frac{C_D}{H} V_{max}^2$) as given in Eq. (1), it is
367 our interest to further examine the dependence of the two terms on TC relative intensity in each
368 SST bin in observations. The intensity-dependent intensification potential and frictional
369 weakening potential against relative intensity in each SST bins are compared in Fig. 5. It is clear
370 that with the introduced intrinsic dynamical efficiency E^* , the median of the intensification
371 potential increases almost linearly with increasing relative intensity for each SST bin, while the
372 frictional weakening potential increases quadratically with increasing relative intensity. As a
373 result, both terms are relatively small when a TC is weak, giving rise to a relatively small IR. As
374 the TC intensifies, the frictional weakening potential increases with relative intensity slower than
375 the intensification potential, corresponding to the increase of IR with increasing relative intensity.
376 After the TC attains an intermediate relative intensity, the frictional weakening potential
377 increases with increasing relative intensity faster than the intensification potential. As a result,
378 the IR reaches a maximum at some intermediate relative intensity, and then decreases with
379 increasing relative intensity, and approaches zero when the TC reaches its MPI. This
380 demonstrates that the intensity-dependence of PIR in the EBDS model is well supported by
381 observations. In addition, as we can see from Eq. (6) with $m = 3/2$, the IR is proportional to
382 the square of the corresponding MPI for a given relative intensity, which can also be implied by
383 the fact that the slopes of both intensification potential and frictional weakening potential

384 increase with increasing SST (or the corresponding MPI) in Fig. 5f.

385 **5. Conclusions and discussion**

386 In a recent study, W21a introduced a dynamical efficiency to the intensification potential of
387 a TC system in a simplified EBDS model and showed that the modified EBDS model can
388 reproduce the intensity-dependence of TC potential intensification rate (PIR) in idealized
389 numerical simulations. Although they also briefly indicated that the EBDS model can capture
390 the overall intensity-dependence of PIR in observations, such as those documented in Xu et al.
391 (2016) and Xu and Wang (2015, 2018a), they did not perform any detailed evaluation. In this
392 study, the EBDS model's capability in capturing the basic features of the observed TC PIR has
393 been evaluated based on the best-track TC data over the North Atlantic, central, eastern and
394 western North Pacific during 1982–2019. Results first demonstrate that the intrinsic dynamical
395 efficiency obtained based on the idealized numerical simulations in W21b is well supported by
396 observations.

397 With the defined intrinsic dynamical efficiency, the EBDS model can reproduce well the
398 observed intensity-dependence of the 99th percentile IRs in the best-track data over the North
399 Atlantic, central, eastern and western North Pacific. Both the estimated theoretical PIR and the
400 observed maximum IR initially increase with increasing TC relative intensity (intensity
401 normalized by its corresponding MPI) and reach their maxima at an intermediate relative
402 intensity of around 0.6, and then decrease with further increase in relative intensity and approach
403 zero as the TC reaches its MPI. The increase in the theoretical PIR for a given relative intensity

404 with increasing MPI is also well supported by observations. Results also show that the maximum
405 PIR of $15 \text{ m s}^{-1} (6\text{h})^{-1}$ for SST below 26.5°C increases to around $25 \text{ m s}^{-1} (6\text{h})^{-1}$ for SST greater
406 than 29.5°C . The consistency between the theoretical PIR and the observed maximum IRs
407 strongly suggests that the EBDS model can reliably estimate the PIR of real TCs, which can be
408 considered as an upper limit of the TC IR or used as a parameter in statistical TC intensity
409 prediction schemes.

410 We have also shown that the modified EBDS model can explain well the observed intensity-
411 dependent TC PIR. The PIR is determined by the difference between the intensification potential
412 and the frictional weakening potential. In the initial intensifying stage when the TC is weak with
413 small relative intensity, the intensification potential is larger than the frictional weakening
414 potential but both are small, corresponding to relatively small PIR. As the TC intensifies, the
415 increase in the frictional weakening potential with increasing relative intensity is slower than the
416 increase in the intensification potential, leading to the increase of PIR with increasing relative
417 intensity. After the TC intensifies to attain an intermediate relative intensity, the increase in the
418 frictional weakening potential with increasing relative intensity is faster than the increase in the
419 intensification potential, giving rise to a maximum PIR at some intermediate relative intensity.
420 This is followed by a decrease of PIR with increasing relative intensity, and then the PIR
421 approaches zero when the TC reaches its MPI.

422 With the intrinsic dynamical efficiency E^* that determines the PIR, the actual TC IR will be
423 controlled by the environmental factors, which can be included as the environmental dynamical
424 efficiency (E') in the EBDS model Eq. (6). We have shown that the environmental effects

425 represented as the environmental dynamical efficiency ($0 \leq E' \leq 1$) suppress TC IR by reducing
426 the intrinsic dynamical efficiency (E^*). Note that since the detrimental environmental effects
427 may lead to the weakening of a TC, E' should be quantified by the intensity change during the
428 whole lifetime of a TC rather than the intensifying stage only. The weakening TC cases should
429 be included in characterizing and quantifying the environmental dynamical efficiency, which
430 could be a function of the environmental vertical wind shear, the TC translational speed, and so
431 on. In our next step, we will quantify the environmental dynamical efficiency with not only the
432 intensifying TC cases but also both quasi-steady and weakening TC cases based on the best-track
433 TC data, the SHIPS dataset, and the global reanalysis data. Once the environmental dynamical
434 efficiency is determined, the EBDS model may be used to estimate and predict real TC intensity
435 change given the environmental parameters. In addition, Previous studies have shown that
436 although the surface exchange coefficient (C_k) is almost independent of the near surface wind
437 speed, the drag coefficient C_D depends strongly on the near surface wind speed and thus the TC
438 intensity (Soloviev et al. 2017; Donelan 2018). A wind-dependent C_D could be used in the EBDS
439 model. In that case, C_D in Eq. (6) will vary with TC intensity and the MPI should be recalculated
440 since it is a function of C_D . This will be considered in our follow-up study when the model is
441 further developed for the real-time TC intensity prediction. The results will be reported
442 separately in due course.

443 **Acknowledgments:** This study was supported in part by National Natural Science Foundation of
444 China under grants 41730960, 41875057, 41875114 and in part by the National Key R&D

445 Program of China under grant 2017YFC1501602. Y. Wang was supported partly by NSF grant
446 AGS-1834300. The SHIPS data are downloaded from [https://rammb.cira.colostate.edu/research/
447 tropical_cyclones/ships/developmental_data.asp](https://rammb.cira.colostate.edu/research/tropical_cyclones/ships/developmental_data.asp).

448 **References**

449 Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. *Meteor. Atmos. Phys.*, **80**, 131–164, doi:10.1007/BF01030791.

450 Bryan, G. H., and R. Rotunno, 2009: Evaluation of an analytical model for the maximum
451 intensity of tropical cyclones. *J. Atmos. Sci.*, **66**, 3042–3060, doi:10.1175/2009JAS3038.1.

452 Carrasco, C., C. Landsea, and Y. Lin, 2014: The influence of tropical cyclone size on its
453 intensification. *Wea. Forecasting*, **29**, 582–590, doi:10.1175/WAF-D-13-00092.1.

454 DeMaria, M. 2009: A simplified dynamical system for tropical cyclone intensity prediction. *Mon. Wea. Rev.*, **137**, 68–82, doi:10.1175/2008MWR2513.1.

455 DeMaria, M., and J. Kaplan, 1999: An updated statistical hurricane intensity prediction scheme
456 (SHIPS) for the Atlantic and eastern north Pacific basins. *Wea. Forecasting*, **14**, 326–337,
457 doi:10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

458 Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and
459 E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong
460 winds. *Geophys. Res. Lett.*, **31**, L18306, doi:10.1029/2004GL019460.

461 Donelan, M. A., 2018: On the decrease of the oceanic drag coefficient in high winds. *J. Geophys. Res.: Oceans*, **123**, 1485–1501, doi: 10.1002/2017JC013394.

462 Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. *J. Atmos. Sci.*, **54**, 1014–1026, doi:10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

463 Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state
464 maintenance. *J. Atmos. Sci.*, **43**, 585–604, doi:10.1175/1520–
465 0469(1986)043<0585:AASITF>2.0.CO;2.

466 Emanuel, K. A., 1991: The theory of hurricanes. *Annu. Rev. Fluid Mech.*, **23**, 179–196,
467 doi:10.1146/ANNUREV.FL.23.010191.001143.

468 Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. *J. Atmos. Sci.*, **54**, 1014–1026, doi:10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

469 Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of
470 tropical cyclone intensity. *J. Atmos. Sci.*, **61**, 843–858, doi:10.1175/1520–
471 0469(2004)061<0843:ETCI>2.0.CO;2.

476 0469(2004)061,0843:ECOTCI.2.0.CO;2.

477 Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow: Part II: Implications to
478 storm intensification. *J. Atmos. Sci.*, **69**, 988–996, doi:10.1175/JAS-D-11-0177.1.

479 Emanuel, K., 2017: A fast intensity simulator for tropical cyclone risk analysis. *Nat. Hazards*,
480 **88**, 779–796, doi:10.1007/s11069-017-2890-7.

481 Emanuel, K. and F. Zhang, 2017: The Role of Inner-core moisture in tropical cyclone
482 predictability and practical forecast skill. *J. Atmos. Sci.*, **74**, 2315–2324, doi:10.1175/JAS-D-
483 17-0008.1.

484 Frisius, T., D. Schönemann, and J. Vigh, 2013: The impact of gradient wind imbalance on
485 potential intensity of tropical cyclones in an unbalanced slab boundary layer model. *J.*
486 *Atmos. Sci.*, **70**, 1874–1890, doi:10.1175/JAS-D-12-0160.1.

487 Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity
488 prediction scheme for the western North Pacific. *Wea. Forecasting*, **20**, 688–699,
489 doi:10.1175/WAF863.1.

490 Knapp, K. R., & Kruk, M. C. 2010: Quantifying interagency differences in tropical cyclone best-
491 track wind speed estimates. *Mon. Wea. Rev.*, **138**, 1459–1473.
492 <https://doi:10.1175/2009MWR3123.1>.

493 Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification
494 index for the Atlantic and eastern North Pacific basins. *Wea. Forecasting*, **25**, 220–241, doi:
495 10.1175/2009WAF2222280.1.

496 Kieu, C., R. Rotunno, and Q. Wang, 2020: Frictionally induced feedback in a reduced dynamical
497 model of tropical cyclone intensification. *J. Atmos. Sci.*, **77**, 3821–3831, doi: 10.1175/JAS-D-
498 20-0092.1.

499 Kowaleski, A. L., and J. L. Evans, 2016: A reformation of tropical cyclone potential intensity
500 theory incorporating energy production along a radial trajectory. *Mon. Wea. Rev.*, **144**, 3569–
501 3578, DOI: 10.1175/MWR-D-15-0383.1.

502 Landsea, C. W., & Franklin, J. L. (2013). Atlantic hurricane database uncertainty and
503 presentation of a new database format, *Mon. Wea. Rev.*, **141**, 3576–3592, doi:10.1175/MWR-
504 D-12-00254.1.

505 Li, Y.-L., Y. Wang, and Y.-L. Lin, 2019: Revisiting the dynamics of eyewall contraction of
506 tropical cyclones. *J. Atmos. Sci.*, **76**, 3229–3245, <https://doi.org/10.1175/JAS-D-19-0076.1>.

507 Li, Y., Y. Wang, Y. Lin, R. Fei, 2020: Dependence of superintensity of tropical cyclone on SST
508 in axisymmetric numerical simulations. *Mon. Wea. Rev.*, **148**, 4767–4781,
509 doi:10.1175/MWR-D-20-0141.1.

510 Li, Y.-L., Y. Wang, Y.-L. Lin, and X. Wang, 2021: Why does rapid contraction of the radius of
511 maximum wind precede rapid intensification in tropical cyclones? *J. Atmos. Sci.*, **78**, 3441–
512 3453, doi:10.1075/JAS-D-21-0129.1.

513 Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003):
514 New insights into the physics of intense storms. Part I: Mean vortex structure and maximum
515 intensity estimates. *Bull. Amer. Meteor. Soc.*, **87**, 1335–1348, doi:10.1175/BAMS-87-10-
516 1335.

517 Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. *Aust.*
518 *Meteor. Ocean.*, (*Bruce Morton Memorial Volume*), **64**, 37–66, doi:10.22499/2.6401.005.

519 Montgomery, M. T., and R. K. Smith, 2019: Toward understanding the dynamics of spinup in
520 Emanuel's tropical cyclone model. *J. Atmos. Sci.*, **76**, 3089–3093, doi:10.1175/JAS-D-19-
521 0051.1.

522 Ozawa, H., and S. Shimokawa, 2015: Thermodynamics of a tropical cyclone: generation and
523 dissipation of mechanical energy in a self-driven convection system. *Tellus A*, **67**, 24216,
524 doi:10.3402/tellusa.v67.24216.

525 Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in
526 tropical cyclones. Part I: Quasi-steady forcing. *Mon. Wea. Rev.*, **137**, 805–821,
527 doi:10.1175/2008MWR2657.1.

528 Peng, K., R. Rotunno, and G. H. Bryan, 2018: Evaluation of a time- dependent model for the
529 intensification of tropical cyclones. *J. Atmos. Sci.*, **75**, 2125–2138, doi:10.1175/JAS-D-17-
530 0382.1.

531 Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. *J. Atmos. Sci.*, **60**, 2349–
532 2371, doi:10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2.

533 Rogers R., P. Reasor, and S. Lorsolo, 2013: Airborne doppler observations of the inner-core
534 structural differences between intensifying and steady-state tropical cyclones. *Mon. Wea. Rev.*,
535 **141**, 2970–2991, doi:10.1175/MWR-D-12-00357.1.

536 Rousseau-Rizzi, R., and K. Emanuel, 2019: An evaluation of hurricane superintensity in
537 Axisymmetric Numerical Models. *J. Atmos. Sci.*, **76**, 1697–1706, doi:10.1175/JAS-D-18-
538 0238.1.

539 Schubert W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. *J.*
540 *Atmos. Sci.*, **39**, 1687–1697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

541 Soloviev, A. V., R. Lukas, M. A. Donelan, B. K. Haus, and I. Ginis, 2017: Is the state of the air-
542 sea interface a factor in rapid intensification and rapid decline of tropical cyclones? *J.*
543 *Geophys. Res. – Oceans*, **122**, 10,174–10,183, doi: 10.1002/2017JC013435.

544 Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between
545 eyewall contraction and intensification. *J. Atmos. Sci.*, **72**, 1283–1306, doi:10.1175/JAS-D-
546 14-0261.1.

547 Vigh J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. *J.*
548 *Atmos. Sc.*, **66**, 3335–3350, doi:10.1175/2009JAS3092.1.

549 Wang, Y., 2012: Recent research progress on tropical cyclone structure and intensity. *Tropical*
550 *cyclone Res. Rev.*, **1**, 254–275. doi:10.6057/2012TCRR02.05.

551 Wang, Y., 2015: Hurricane Dynamics. *Encyclopedia of Atmospheric Sciences*, 2nd edition, Vol.
552 6, 8–29, Gerald R. North (editor-in-chief), John Pyle and Fuqing Zhang (editors). Elsevier
553 Ltd, doi:10.1016/B978-0-12-382225-3.00488-6.

554 Wang, Y., and J. Xu., 2010: Energy production, frictional dissipation, and maximum intensity of
555 a numerically simulated tropical cyclone. *J. Atmos. Sci.*, **67**, 97–116, doi:
556 10.1175/2009JAS3143.1.

557 Wang, Y., Y. Li, J. Xu, Z.-M. Tan, and Y. Lin, 2021a: The intensity-dependence of tropical
558 cyclone intensification rate in a simplified energetically based dynamical system model. *J.*
559 *Atmos. Sci.*, **78**, 2033–2045, doi: 10.1175/JAS-D-20-0393.1.

560 Wang, Y., Y.-L. Li, and J. Xu, 2021b: A new time-dependent theory of tropical cyclone
561 intensification. *J. Atmos. Sci.*, **78**, 3855–3865, doi:10.1175/JAS-D-21-0169.1

562 Xu, J., and Y. Wang, 2015: A statistical analysis on the dependence of tropical cyclone
563 intensification rate on the storm intensity and size in the North Atlantic. *Wea. Forecasting*, **30**,
564 692–701, doi:10.1175/WAF-D-14-00141.1.

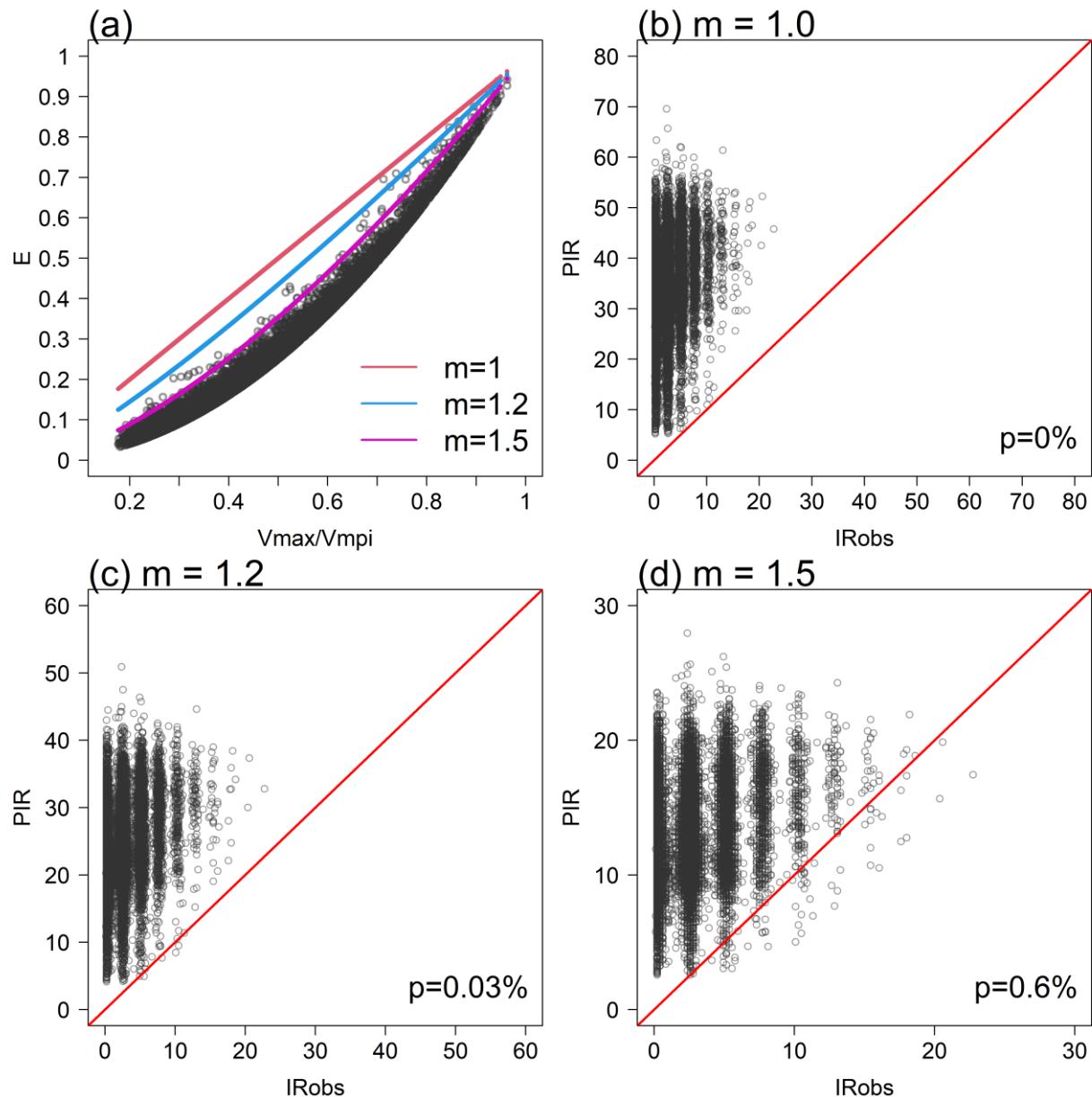
565 Xu, J., Y. Wang, and Z.-M. Tan, 2016: The relationship between sea surface temperature and
566 maximum potential intensification rate of tropical cyclones over the North Atlantic. *J. Atmos.*
567 *Sci.*, **73**, 4979–4988, doi: 10.1175/JAS-D-16-0164.1.

568 Xu, J., and Y. Wang, 2018a: Dependence of tropical cyclone intensification rate on sea surface
569 temperature, storm intensity, and size in the western North Pacific. *Wea. Forecasting*, **33**,
570 523–537, doi:10.1175/WAF-D-17-0095.1.

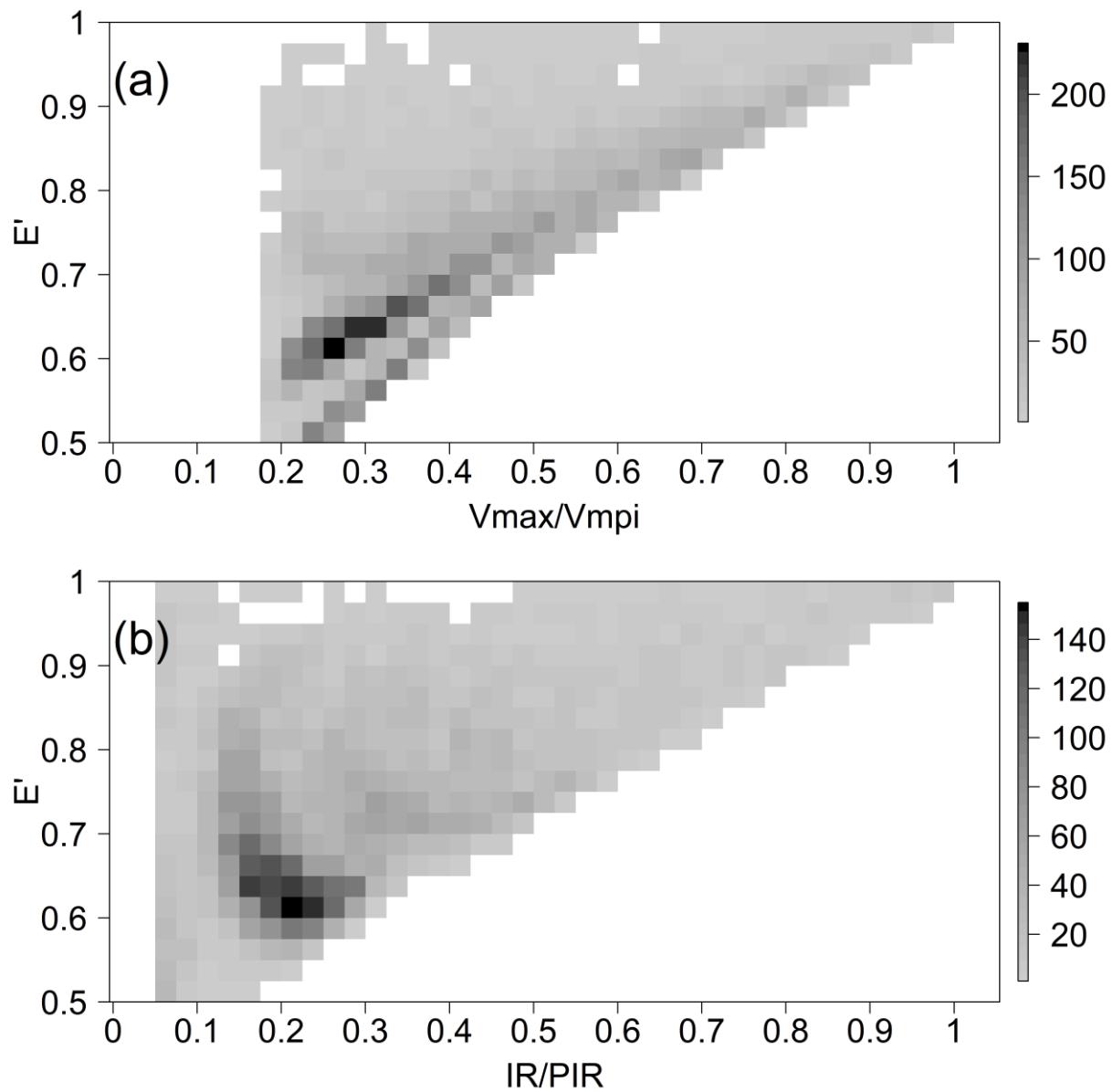
571 Xu, J., and Y. Wang, 2018b: Effects of the initial vortex structure on intensification of a
572 numerically simulated tropical cyclone. *J. Meteor. Soc. Japan*, **96**, 111–126, doi:
573 10.2151/jmsj.2018-014.

574 Xu, J., Y. Wang, and C. Yang, 2019a: Factors affecting the variability of maximum potential
575 intensity (MPI) of tropical cyclones over the North Atlantic. *J. Geophys. Res.: Atmos.*, **124**,
576 6654–6668. doi:10.1029/2019JD030283.

577 Xu, J., Y. Wang, and C. Yang, 2019b: Interbasin differences in the median and variability of
578 tropical cyclone MPI in the northern hemisphere. *J. Geophys. Res.: Atmos.*, **124**, 13,714–
579 13,730, doi:10.1029/2019JD031588.

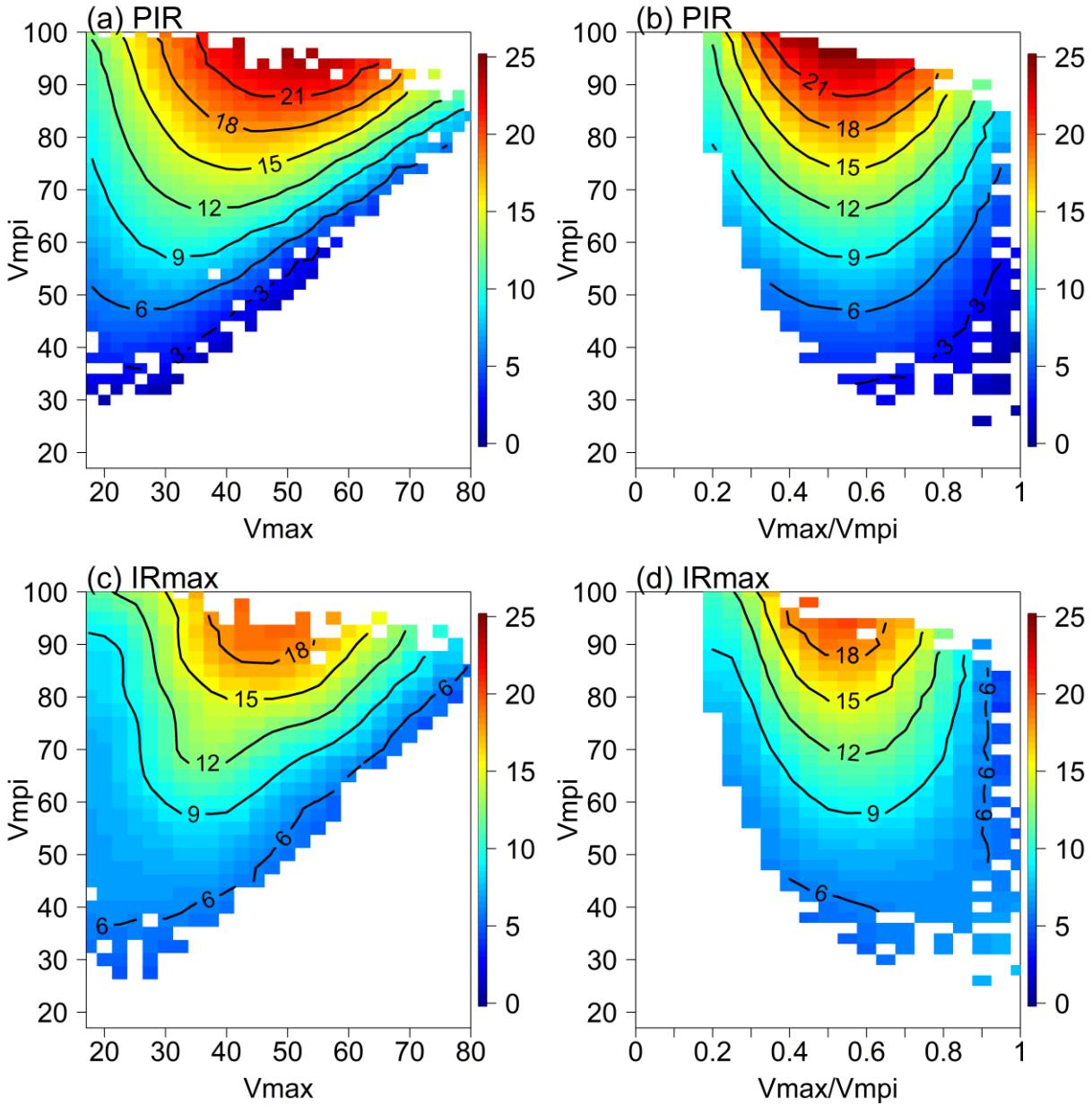

580 Zhang, J. A., R. F. Rogers, D. S. Nolan, F. D. Marks, 2011: On the characteristic height scales of
581 the hurricane boundary layer. *Mon. Wea. Rev.*, **139**, 2523–2535, doi:10.1175/MWR-D-10-
582 05017.1.

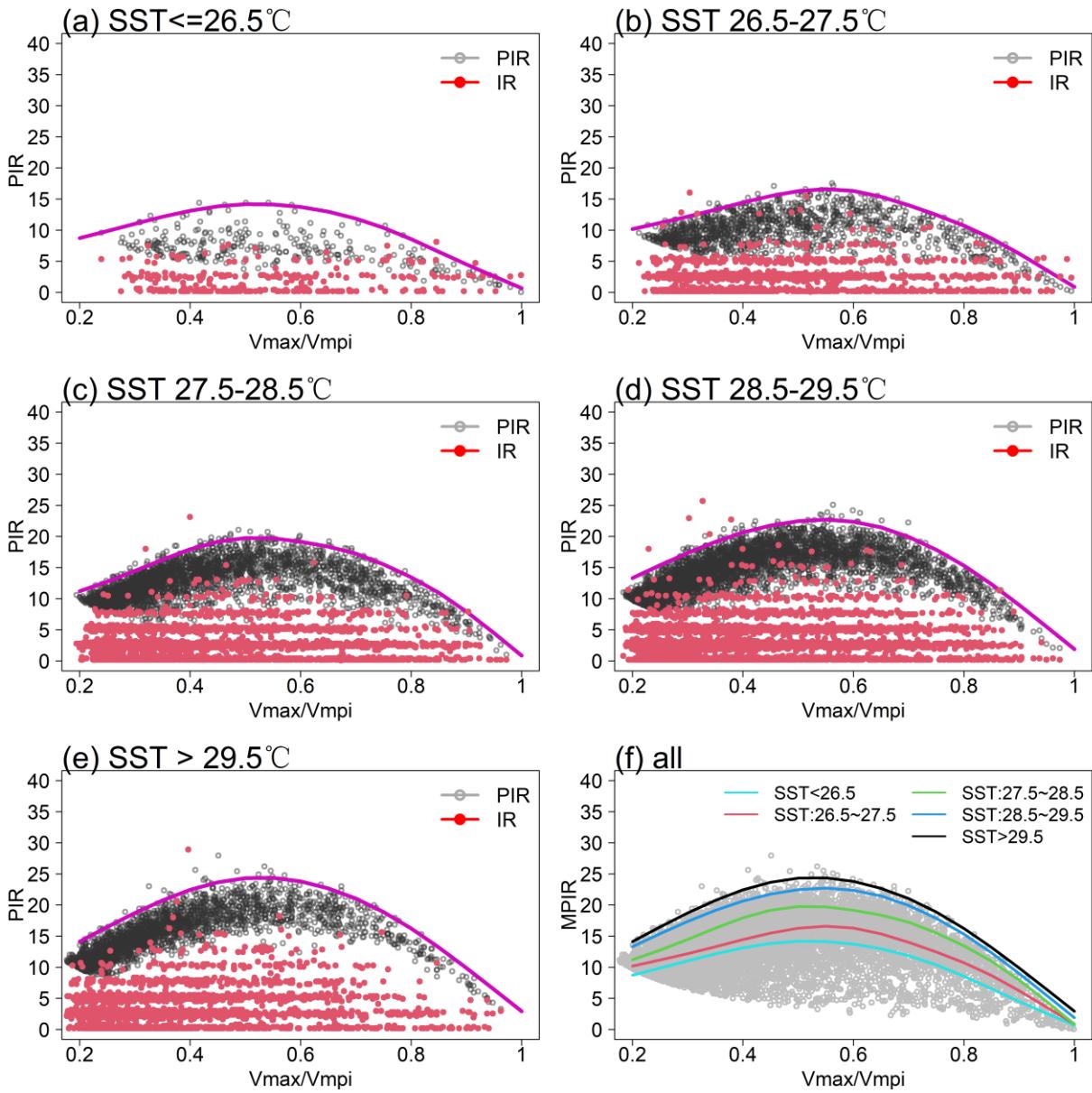
583 Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, 2011: On the characteristic height scales
584 of the hurricane boundary layer. *Mon. Wea. Rev.*, **139**, 2523–2535, doi:10.1175/MWR-D-10-
585 05017.1.


586 **Table 1.** List of basic information about TC sample size and the intensification cases in each
587 basin considered in this study.

Basin	TC numbers	Intensification cases
North Atlantic	362 (24.2%)	2885 (24.5%)
Western North Pacific	591 (39.5%)	5167 (44.0%)
Central and eastern North Pacific	543 (36.3%)	3706(31.5%)
Total	1496	11758

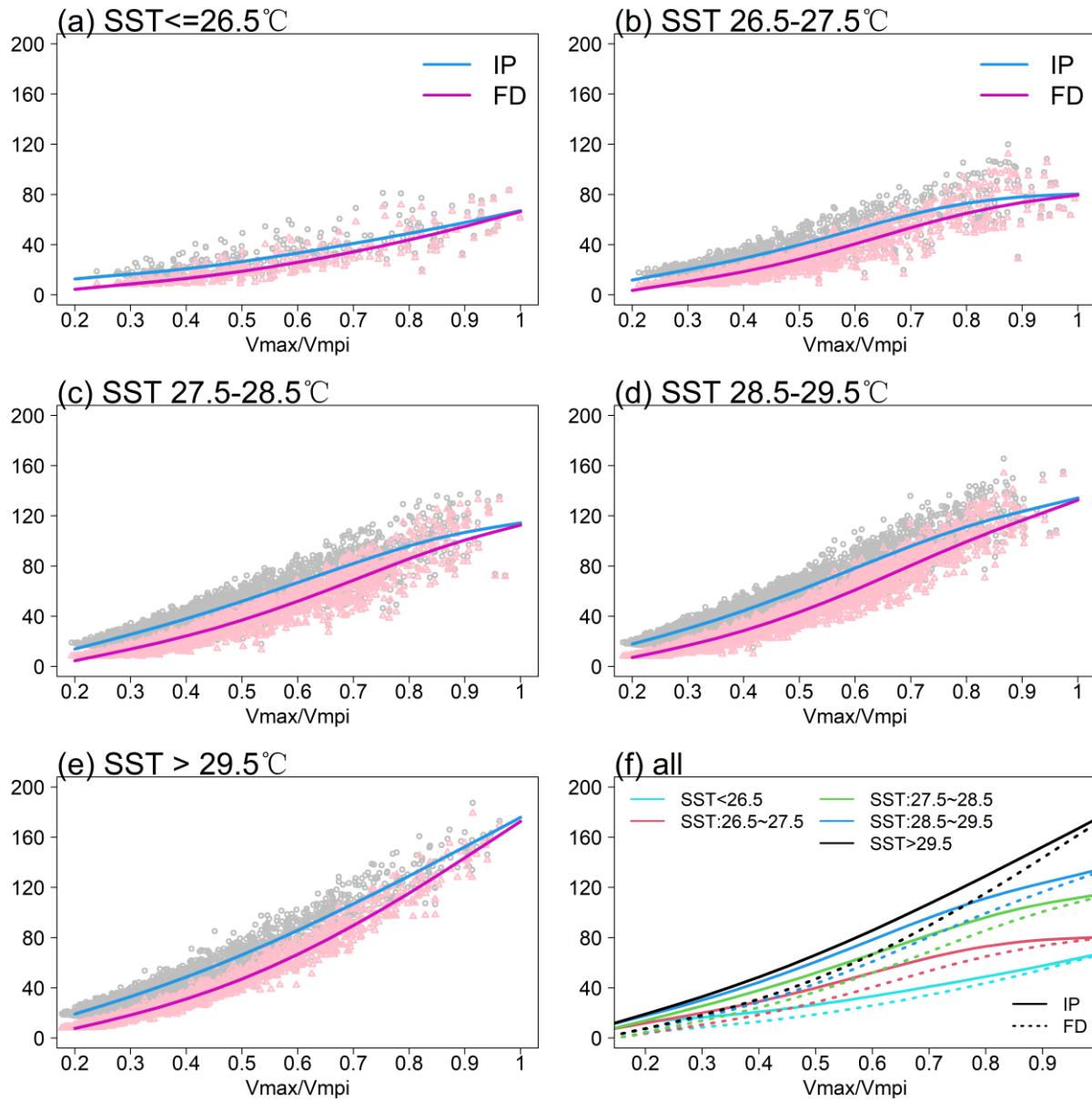
588


591 **Figure 1.** Scatter diagrams of E estimated from observations against relative intensity
 592 (V_{\max}/V_{mpi}) based on Eq. (1), together with $m = 1$ (red), $m = 1.2$ (blue), and $m = 1.5$ (purple)
 593 for E^* from Eq. (5) based on the best-track dataset (a), the theoretical PIR [$\text{m s}^{-1} (6\text{h})^{-1}$]
 594 calculated with (b) $m = 1$, (c) $m = 1.2$, and (d) $m = 1.5$, respectively, against observed IR [m
 595 $\text{s}^{-1} (6\text{h})^{-1}$]. Solid lines in (b-d) denote for $y=x$ and percentage value on the right bottom gives
 596 percentage of the case numbers of theoretical PIR less than that of observed IR.


597

598 **Figure 2.** The 2-D histogram of the environmental dynamical efficiency (E') and (a) the
 599 relative intensity (V_{max} / V_{mpi}), and (b) the relative IR (namely IR normalized by the theoretical
 600 PIR) .

601



602 **Figure 3.** Distribution of TC theoretical PIR [$\text{m s}^{-1} (6\text{h})^{-1}$] as a function of MPI (V_{mpi} , m s^{-1}) and
603 (a) V_{max} (m s^{-1}) and (b) relative intensity ($V_{\text{max}} / V_{\text{mpi}}$), respectively, (c) ~ (d) are same as (a)
604 ~ (b), but for the 99th percentile of the observed IRs [$\text{m s}^{-1} (6\text{h})^{-1}$].

607
608
609
610
611

Figure 4. (a) – (e) show the Scatter diagram of TC PIR [dark grey, $m s^{-1} (6h)^{-1}$], and observed IR [red, $m s^{-1} (6h)^{-1}$] against relative intensity, with the 99th percentile of PIR fitted by non-parametric quantile regression for different SST bins (purple solid). The 99th percentile of theoretical PIR (solid) and PIR dots of each SST bins are shown together in (f).

612
613 **Figure 5.** Scatter diagram of intensification potential [$\text{m s}^{-1} (6\text{h})^{-1}$, grey]
614 and frictional weakening
615 rate [$\text{m s}^{-1} (6\text{h})^{-1}$, pink] against relative intensity for all intensifying TC cases in various SST
616 bins (a ~ e). The medians of IP and FD are given in blue, purple solid curves, respectively. The corresponding medians for each SST bin are also shown in (f) for a comparison.