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Abstract 19 

In a recent study by Wang et al. (2021a) that introduced a dynamical efficiency to the 20 

intensification potential of a tropical cyclone (TC) system, a simplified energetically based 21 

dynamical system (EBDS) model was shown to be able to capture the intensity-dependence of 22 

TC potential intensification rate (PIR) in both idealized numerical simulations and observations. 23 

Although the EBDS model can capture the intensity-dependence of TC intensification as in 24 

observations, a detailed evaluation has not yet been done. This study provides an evaluation of 25 

the EBDS model in reproducing the intensity-dependent feature of the observed TC PIR based 26 

on the best-track data for TCs over the North Atlantic, central, eastern and western North Pacific 27 

during 1982–2019. Results show that the theoretical PIR estimated by the EBDS model can 28 

capture basic features of the observed PIR reasonably well. The TC PIR in the best-track data 29 

increases with increasing relative TC intensity (intensity normalized by its corresponding 30 

maximum potential intensity–MPI) and reaches a maximum at an intermediate relative intensity 31 

around 0.6, and then decreases with increasing relative intensity to zero as the TC approaches its 32 

MPI, as in idealized numerical simulations. Results also show that the PIR for a given relative 33 

intensity increases with the increasing MPI and thus increasing sea surface temperature, which 34 

is also consistent with the theoretical PIR implied by the EBDS model. In addition, future 35 

directions to include environmental effects and make the EBDS model applicable to predict 36 

intensity change of real TCs are also discussed. 37 

38 
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1. Introduction 39 

Under the assumption of a tropical cyclone (TC) as a natural Carnot heat engine, there exists 40 

an upper limit of the TC intensity, namely, the maximum potential intensity (MPI) a TC may 41 

reach given favorable atmospheric and oceanic thermodynamic conditions (Emanuel 1986, 1991, 42 

1997). Similarly, recent observational and theoretical studies have shown that there also exists a 43 

maximum potential intensification rate (MPIR) for an intensifying TC, i.e., the upper-limit of 44 

intensification rate (IR) a TC can attain given favorable thermodynamic environmental 45 

conditions (Xu et al. 2016; Xu and Wang 2018a). The MPIR has been shown to occur at an 46 

intermediate TC intensity in observations. Based on the TC best-track dataset during 1988–2014 47 

in the North Atlantic, Xu et al. (2016) statistically analyzed the relationship between the TC 48 

MPIR and the underlying sea surface temperature (SST) and found a functional dependence of 49 

the MPIR on SST, similar with that of MPI. A similar empirical functional dependence of the 50 

MPIR on SST was also found for TCs over the western North Pacific (Xu and Wang 2018a). 51 

Observations show that the TC intensification rate (IR), in particular the maximum IR for 52 

a given intensity (we refer to this as the potential IR or simply PIR), increases with TC intensity, 53 

reaches a maximum (namely, MPIR) when the TC is at its intermediate intensity with the 10-m 54 

sustained maximum wind speed (Vmax) of about 30-40 m s-1 (Kaplan et al. 2010; Xu et al. 2016; 55 

Xu and Wang 2015, 2018a), and then decreases to zero as Vmax further increases to approach 56 

its MPI. Kaplan et al. (2010) qualitatively explained this intensity-dependence of TC IR by a 57 

hypothesis that TCs are likely to intensify rapidly when its eyewall is well developed with strong 58 



3 
 

organized convection but still far from their MPI, while afterwards, the IR tends to slow down 59 

when the intensity of the intensifying TC is getting close to its MPI, with the enhanced heating 60 

efficiency is mostly offset by the surface frictional dissipation effect. Xu et al. (2016) and Xu 61 

and Wang (2018a) argued that the initial increase in PIR with increasing TC intensity can be 62 

explained by the quasi-balanced dynamics, which predicts an increase of heating efficiency of 63 

eyewall convection with increasing inner-core inertial stability, which is a function of the TC 64 

intensity and inner-core size (Schubert and Hack, 1982; Vigh and Schubert 2009; Pendergrass 65 

and Willoughby 2009).  66 

Previous studies on TC intensification mechanisms are all qualitative based on some 67 

positive feedback processes (see a review by Montgomery and Smith 2014). Recent studies have 68 

attempted to quantify TC PIR based on various assumptions and/or approximations. Two such 69 

efforts have been made to develop the time-dependent theories of TC intensification (Emanuel 70 

2012; Ozawa and Shimokawa 2015). Emanuel (2012) started with the boundary layer entropy 71 

budget equation, assumed an axisymmetric vortex in thermal wind balance with neutral 72 

slantwise moist convection in the outwardly sloping eyewall, and derived an equation for the 73 

rate of change in TC intensity in terms of maximum tangential wind speed. The other time-74 

dependent theory of TC intensification was developed by Ozawa and Shimokawa (2015), which 75 

views a TC as a Carnot heat engine and assumes that the TC intensifies, as measured by the 76 

increasing rate in the inner-core mechanical energy, when the energy production rate due to 77 

surface enthalpy flux is greater than the surface frictional dissipation rate (Wang 2012, 2015). 78 

Although based on different assumptions/approximations, both theories result in similar 79 
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mathematical expressions for TC IR and predict IR to maximal at zero azimuthal velocity and 80 

decreasing with increasing TC intensity. This is not consistent with the observed intensity-81 

dependence of TC IR as mentioned above (Xu et al. 2016; Xu and Wang 2015, 2018a). As also 82 

recently questioned by Montgomery and Smith (2019), it is unclear how a storm could intensify 83 

from a quiescent state because the surface enthalpy flux would be negligible as the TC maximum 84 

near-surface wind speed is close to zero, and thus supposedly no sufficient energy supply to 85 

initiate the intensification.  86 

Recently, Wang et al. (2021a, hereafter W21a) indicated that the unrealistic intensity-87 

dependence of TC IR in the theory of Ozawa and Shimokawa (2015) results mainly from the 88 

assumption of a constant efficiency for the transfer of the production rate of potential energy to 89 

the production rate of the inner-core mechanical kinetic energy. They introduced a dynamical 90 

efficiency to the TC system and developed a simplified energetically based dynamical system 91 

(EBDS) model to quantify the intensity-dependence of TC IR. According to this EBDS model, 92 

the TC IR is determined by the net increasing rate in the inner-core mechanical energy, which is 93 

the difference between the intensification potential due to the energy production rate and the 94 

weakening potential due to surface frictional dissipation under the eyewall. The intensification 95 

potential is a function of the thermodynamic conditions of the environment and the dynamical 96 

efficiency (E) of the TC system. The E depends strongly on the degree of convective 97 

organization within the eyewall and the inner-core inertial stability of the TC vortex. Unlike 98 

previous time-dependent theories that include mainly the environmental conditions (DeMaria 99 

2009; Emanuel 2012; Ozawa and Shimokawa 2015; Emanuel and Zhang 2017), the new EBDS 100 
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model includes the TC intrinsic dynamical efficiency determined by the inner-core inertial 101 

stability in the time-dependent theory of TC intensification. W21a showed that with the 102 

introduced an ad-hoc (intrinsic) dynamical efficiency, the EBDS model can quantitatively 103 

reproduce the TC IR in idealized numerical simulations and capture the basic features of the 104 

observed time-dependence of TC IR as mentioned above. More recently, Wang et al. (2021b, 105 

hereafter W21b) developed a new time-dependent theory of TC intensification based on the 106 

tangential wind budget equation and assumed a thermodynamic quasi-equilibrium in the slab 107 

TC boundary layer. By introducing an ad-hoc intensity-dependent parameter to measure the 108 

extent to which the absolute angular momentum and the moist entropy surfaces are congruent, 109 

W21b derived an equation for the TC IR, which has the same mathematical form as the one 110 

obtained in W21a but with a different physical interpretation for the parameter equivalent to the 111 

dynamical efficiency in the EBDS model. There are two main differences in the theories 112 

between W21b and Emanuel (2012). First, W21b did not assume the radius of maximum wind 113 

being a material surface, namely the absolute angular momentum following the RMW is not 114 

conserved, which was an unrealistic assumption used in Emanuel (2012). Second, in W21b the 115 

congruent assumption between the entropy and absolute angular momentum surfaces (namely 116 

the moist neutral eyewall ascent) in Emanuel (2012) is removed since later studies have 117 

demonstrated that the moist neutral slantwise assumption is actually not hold during the 118 

intensification rate, only at the mature stage (Peng et al. 2018; Kieu et al. 2020). 119 

In both W21a and W21b, the new time-dependent equation for TC IR was carefully 120 

evaluated using idealized ensemble full-physics model simulations with a nonhydrostatic, 121 
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convection-resolving model. They showed that the simulated TC IR initially increases with the 122 

relative TC intensity (namely, the TC intensity normalized by its MPI) and reaches a maximum 123 

at an intermediate relative intensity, and then decreases with increasing relative intensity to zero 124 

as the TC approaches its MPI, as in observations. W21b also found that for a given relative 125 

intensity, the TC IR increases with the square of its MPI. Since no environmental flow was 126 

included in their idealized simulations, the IR of the modeled TCs can be considered as the PIR, 127 

which is governed primarily by the internal dynamics under the given favorable thermodynamic 128 

conditions, such as the realistic environmental atmospheric soundings and SSTs. Although the 129 

EBDS model was shown to be able to qualitatively capture the overall intensity-dependence of 130 

the observed TC PIR as briefly mentioned in both W21a and W21b, a detailed comparison 131 

between the PIRs of the EBDS model and those of the observed TCs has not yet been done. This 132 

study attempts to validate and evaluate the EBDS model using the best-track data for TCs over 133 

the main TC basins (North Atlantic, central, eastern and western North Pacific) in the Northern 134 

Hemisphere. We will show that the calibrated intrinsic dynamical efficiency based on idealized 135 

numerical simulations is supported by observations, and the EBDS model can well reproduce 136 

the basic features of the observed PIR of TCs. The rest of the paper is organized as follows. 137 

Section 2 briefly describes the data and the analysis methods. The EBDS model is briefly 138 

reviewed in section 3. The basic features of TC PIR obtained from the best-track TC data are 139 

discussed and compared with the theoretical PIR obtained from the EBDS model in section 4. 140 

Major conclusions are drawn in the last section.  141 
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2. Data and methodology 142 

The statistical hurricane intensity prediction scheme (SHIPS) dataset (Knaff et al, 2005; 143 

updated on April 3, 2020) is used in this study. All best-track data of TCs over the main basins 144 

of the Northern Hemisphere, including all TCs over the North Atlantic, the central and eastern 145 

North Pacific during 1982–2019 and those over the western North Pacific during 1990–2017, 146 

are considered in our analysis. The 6-hourly maximum sustained 10-m wind speed, Reynolds 147 

SST, and the Emanuel’s maximum potential intensity (MPI) are all adopted from the SHIPS 148 

dataset. The MPI and other environmental variables in the SHIPS dataset are estimated using 149 

the operational synoptic datasets (DeMaria and Kaplan 1999; Knaff et al. 2005), which are 150 

derived from the Climate Forecast System Reanalysis (CFSR) reanalysis dataset. To minimize 151 

the influence of TC translation on its intensity, the 40% of the TC translation speed was 152 

subtracted from the initial maximum wind speed for all TC cases, and the result is used as the 153 

measure of TC intensity (Vmax), as done by Emanuel et al. (2004). The TC intensity changes 154 

at 6-h intervals are calculated accordingly (𝐼𝑅6ℎ = 𝑉𝑚𝑎𝑥
𝑡+6ℎ − 𝑉𝑚𝑎𝑥

𝑡 ). Only the intensification 155 

cases (IR6h > 0) with Vmax greater than 17 m s-1 are included in our analysis. TCs in SHIPS 156 

dataset with missing values for SSTs and MPIs are removed to avoid the landfalling TCs. Only 157 

TCs with tropical nature and with SST greater than 25℃ and south of 35°N are considered in 158 

our analysis to avoid extratropical transition stages. The time period and corresponding numbers 159 

of TCs and intensification cases in individual basins included in this study are summarized in 160 

Table 1. 161 
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Although the MPI can reasonably capture the observed TC maximum intensity, it still 162 

understates the observed maximum intensity of some TCs. Those cases are often termed as 163 

superintensity (e.g., Persing and Montgomery 2003; Montgomery et al. 2006; Wang and Xu 164 

2010; Rousseau-Rizzi and Emanuel 2019; Li et al. 2020). The superintensity will cause negative 165 

IR for those intensifying TC cases according to the IR equations (see Eq.17 in Emanuel 2012; 166 

Eq. 12 in W21a; Eq. 16 in W21b). To avoid such unrealistic situations, W21a and W21b used 167 

the steady-state intensity of the simulated TCs instead of the theoretical MPI in their time-168 

dependent theory of TC intensification. The steady-state intensity of the simulated TC in both 169 

W21a and W21b refers to the maximum intensity attained in the quasi-steady state in an idealized 170 

simulation, while the theoretical MPI for a real TC is estimated by using the actual atmospheric 171 

sounding under a given SST and the environmental atmospheric soundings. Based on the 172 

diagnostic results of Wang and Xu (2010) and Li et al. (2020) and the theoretical work of 173 

Kowaleski and Evans (2016), the superintensity resulted from the ignorance of any possible 174 

inward transport of energy production due to enthalpy flux from the underlying ocean outside 175 

the RMW in the classic MPI theory (Emanuel 1997). Wang and Xu (2010) demonstrated that 176 

the inward transport of energy production from the outside of the RMW can be an extra energy 177 

source (25%) to balance the power dissipation due to surface friction under the eyewall. Wang 178 

and Xu (2010) showed that this extra energy source can lead to an 11.2% increase of the 179 

estimated MPI. Li et al. (2020) also showed that the quasi-steady state intensity of the simulated 180 

TCs can be 7%~18% greater than their theoretical MPI in idealized simulations with realistic 181 

tropical environmental conditions. Note that some other studies have attributed the TC 182 
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superintensity to the unbalanced flow in the boundary layer (Bryan and Rotunno 2009; Frisius 183 

et al. 2013) In the SHIPS dataset, we found that there are 166 superintensity cases out of 11758 184 

intensifying cases with their intensities exceeding 11% of their MPIs, which is within the range 185 

of the simulated TCs in Li et al. (2020). We therefore simply multiplied the SHIPS MPI by a 186 

factor of 1.11 to take into account of the superintensity nature of TCs. After such a modification, 187 

all TC MPIs are greater than or equal to their intensities, and thus there is no negative theoretical 188 

IR for any intensifying TCs in our analysis.  189 

We should mention here that uncertainties in the estimated MPI and also the best-track TC 190 

intensity exist and are unavoidable. For example, the estimated MPI depends on the definition 191 

of the environmental thermodynamic conditions (e.g., Xu et al. 2019a,b). The surface drag 192 

coefficient in the theoretical MPI is currently treated to be independent of the near-surface wind 193 

speed while it is a strong function of the near-surface wind speed (e.g., Donelan et al. 2004; 194 

Soloviev et al. 2017; Donelan 2018). The estimated best-track maximum wind speed varies as a 195 

result of the storm intensity and the available observations and may not well-represent the storm-196 

scale intensity (Landsea and Franklin 2013). Therefore, some constraints used in modifying the 197 

SHPIS MPIs and the occurrences of some small TC cases that show the theoretically estimated 198 

PIR underestimates the maximum IR in the best-track data should be considered necessary and 199 

acceptable. Nevertheless, our results seem to strongly suggest that the use of TC MPIs from the 200 

SHIPS dataset with the modification to take into account of the possible superintensity nature is 201 

acceptable for the purpose of this study. Actually, we will show that the theoretically estimated 202 

PIR using the SHIPS MPI and best-track TC intensity well captures the maximum IR calculated 203 
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using the best-track TC intensity, suggesting that some uncertainties in the data used in this study 204 

should not be a big issue with some constraints as mentioned above.   205 

3. An overview of the EBDS model of TC intensification 206 

The EBDS model developed in W21a is a time-dependent equation for the IR of a TC given 207 

its current intensity Vmax and the corresponding MPI (Vmpi) 208 

𝜕𝑉𝑚𝑎𝑥

𝜕𝜏
=

𝐶𝐷

𝐻
(𝐸𝑉𝑚𝑝𝑖

2 − 𝑉𝑚𝑎𝑥
2 ).        (1) 209 

 where 
𝜕𝑉𝑚𝑎𝑥

𝜕𝜏
  is the rate of TC intensity change, Vmax is the time-dependent near-surface 210 

maximum wind speed (referred to as intensity) of the TC, Vmpi is the corresponding MPI as 211 

discussed in section 2, which partly includes the contribution of superintensity, 𝐶𝐷 is surface 212 

drag coefficient, H is an undetermined height parameter, which is roughly twice the depth of the 213 

boundary layer (Emanuel 2012)1. In W21a and W21b, CD was taken directly from their idealized 214 

numerical simulations and the MPI was taken from the steady-state intensity, which includes the 215 

superintensity component. They found that 𝐻 = 2000 𝑚 gives the best fit of the theoretical IR 216 

to the TC IR in their idealized simulations. Although CD and H are two independent parameters 217 

in the EBDS model, CD/H can be considered as one parameter in practice since neither of CD nor 218 

H can be accurately determined from observations. Nevertheless, after many tests based on the 219 

best-track TC data described above, we found that 𝐻 = 2000 𝑚 and 𝐶𝐷 = 2.4 × 10−3 are the 220 

 
1 Note that 𝐻 = 2ℎ in Emanuel (2012) with h being the boundary layer depth near the radius of maximum 

wind. In previous studies, various values have been used for h, e.g., 5,000 m in Emanuel (2012); 4,000 m (with 

H=8,000 m) in Ozawa and Shimokawa (2015); 1,400 m in Emanuel and Zhang (2017) and Emanuel (2017) 

with 𝐶𝐷 = 1.2 × 10−3 . Observations suggest that the characteristic height scale of the TC inner-core 
boundary layer is usually between 500–2000 m (Zhang et al. 2011), the reasonable height parameter H can be 

considered to be between ~1000–4000 m. W21a and W21b found that the predicted IR using the EBDS model 

with H = 2,000 m fits well the IR of their simulated TCs.  
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best choice and thus will be used in our following analysis. Actually, both are quite reasonable 221 

under TC conditions (e.g., Donelan et al. 2004; Zhang et al. 2011). This implies that several key 222 

parameters used in the EBDS model calibrated using idealized full-physics model simulations 223 

discussed in W21a or the new time-dependent theory of TC intensification developed in W21b 224 

are applicable to real TCs. We will show in the next section that the EBDS model with the above-225 

mentioned values of CD and H can provide quite good estimation of PIR of TCs in observations. 226 

The dynamical efficiency E (0 ≤ 𝐸 ≤ 1) in Eq. (1) reflects the effective conversion of potential 227 

energy production to kinetic energy production for the TC system. The first term on the right-228 

hand side of Eq. (1) represents the intensification potential of a TC, and the second term is the 229 

weakening potential due to surface frictional effect. Note that the TC genesis in nature is related 230 

to many other processes that have not been considered in the EBDS model. That is, some 231 

assumptions made in deriving the new IR equation are not relevant to TC genesis in nature, such 232 

as the axisymmetric structure with favorable environmental conditions. 233 

Different from TCs in idealized simulations in which no unfavorable environmental factors 234 

were included, a real TC is always embedded in an environmental flow and may be affected by 235 

various unfavorable environmental conditions, such as the large-scale vertical wind shear and 236 

the negative feedback associated with cooling due to upwelling and mixing in the upper ocean 237 

induced by the TC itself. Since these effects play a role in deterring TC intensification, it is not 238 

unrealistic to assume that the dynamical efficiency E determined by the storm-scale dynamics 239 

(or simply the intrinsic dynamical efficiency) would be reduced by a fraction (E’) due to all 240 

possible inhibiting environmental effects. This means that we can simply rewrite E in Eq. (1) as  241 
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𝐸 = 𝐸∗ × 𝐸′,                            (2) 242 

where 𝐸∗ is the intrinsic dynamical efficiency of the TC system, and 𝐸′ is the environmental 243 

dynamical efficiency measuring all inhibiting environmental effects on TC intensification. By 244 

definition, E’ should be less than 1 and greater than 0, similar to E*. In this sense, the case of 245 

𝐸′ = 1 and thus 𝐸 = 𝐸∗ means that an intensifying TC can reach its PIR given all favorable 246 

environmental conditions.  247 

For a given TC, E in Eq. (1) can be calculated using the observed IR (
𝜕𝑉𝑚𝑎𝑥

𝜕𝜏
) and intensity 248 

Vmax with the corresponding Vmpi if CD/H is also given. We can assume that the intrinsic 249 

dynamical efficiency E* should be comparable to the maximum E for a given relative intensity 250 

(𝑉𝑚𝑎𝑥/𝑉𝑚𝑝𝑖 ) and the corresponding MPI (Vpmi). In this sense, the theoretical IR should be 251 

comparable to the observed maximum IR, or PIR by definition. Since the main objective of this 252 

study is to evaluate the EBDS model using observations, we will focus on the theoretically 253 

estimated PIR using the best-track TC data and other available data as mentioned in section 2. 254 

Note that the theoretical PIR is obtained based on several key assumptions as mentioned in 255 

section 1. Vmax in Eq. (6) should be referred to the near-surface azimuthal mean wind speed. 256 

However, the real TCs may include asymmetric structure and the estimated best-track intensity 257 

may partly contributed by the asymmetric structure of the TC even on the storm scale (Landsea 258 

et al. 2017). Although we have minimized the possible contribution by subtracting 40% of the 259 

storm translation speed (Emanuel 2004), the internally generated or environmentally forced 260 

asymmetries in the storm are neither included in the theory nor considered in our analysis. Our 261 

results seem to suggest that in terms of the PIR, the effect of asymmetric structure is secondary 262 
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and thus will be discussed in our following discussion.  263 

 The intrinsic dynamical efficiency 𝐸∗ introduced by W21a is a function of the inner-core 264 

inertial stability (I) normalized by the inertial stability of the TC at its mature stage with MPI 265 

(Impi), namely 266 

𝐸∗ = (
𝐼

𝐼𝑚𝑝𝑖
)

𝑛

= [
√(𝑓+

2𝑉

𝑟
)(𝑓+

𝜕𝑟𝑉

𝑟𝜕𝑟
)|𝑟𝑚

√(𝑓+
2𝑉

𝑟
)(𝑓+

𝜕𝑟𝑉

𝑟𝜕𝑟
)|

𝑟𝑚𝑝𝑖
𝑚𝑝𝑖

]

𝑛

,               (3) 267 

where rm is RMW of the intensifying TC and rmpi is the RMW of the TC at its mature stage of 268 

MPI. The power constant n =1.0 is found to provide the best fit of the theoretical IR predicted 269 

by Eq. (1) with the IR of the simulated TCs in W21a. For the simplest case, assuming both the 270 

rm and the Coriolis parameter (f) are not too large, we can assume that the TC eye region is in 271 

solid body rotation and Eq. (3) with 𝑛 = 1.0 can be approximated as 272 

𝐸∗ ≅ (
𝑓+

2𝑉𝑚𝑎𝑥
𝑟𝑚

𝑓+
2𝑉𝑚𝑝𝑖

𝑟𝑚𝑝𝑖

) ≅
𝑉𝑚𝑎𝑥

𝑉𝑚𝑝𝑖
×

𝑟𝑚𝑝𝑖

𝑟𝑚
,                (4) 273 

Although rm of a TC at a given time is available in the best-track data, rmpi of the corresponding 274 

MPI is unknown. Considering the fact that a TC intensifies with the contraction of the RMW (Li 275 

et al. 2019; 2021), we can parameterize the RMW ratio in Eq. (4) as a function of the relative 276 

intensity as well, and thus we can rewrite Eq. (4) as 277 

𝐸∗ ≅ (
𝑉𝑚𝑎𝑥

𝑉𝑚𝑝𝑖
)

𝑚

,                    (5) 278 

where m is a power constant and can be calibrated using results from idealized full-physics 279 

numerical simulations or observations. W21b found that 𝑚 = 3/2  gives the best fit of the 280 

estimated theoretical PIR to the IR of TCs in idealized numerical simulations. We will show in 281 
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the next section that 𝑚 = 3/2  is also the best choice for the PIR of the observed TCs. 282 

Substituting (2) and (5) into Eq. (1), we have  283 

𝜕𝑉𝑚𝑎𝑥

𝜕𝜏
=

𝐶𝐷

𝐻
𝑉𝑚𝑝𝑖

2 [𝐸′ (
𝑉𝑚𝑎𝑥

𝑉𝑚𝑝𝑖
)

𝑚

− (
𝑉𝑚𝑎𝑥

𝑉𝑚𝑝𝑖
)

2

].        (6) 284 

Equation (6) has the same form as Eq. (23) in W21b if E’ here is replaced by B in W21b and 285 

𝑚 = 3/2 is taken. As mentioned earlier, this study focuses on the PIR of a given TC at a given 286 

time, we thus intentionally take 𝐸′ = 1.0 in the following analysis. As a result, three parameters 287 

are needed to be given to determine the PIR of a TC at a given time; they are the surface drag 288 

coefficient CD, the boundary layer depth H, and the MPI if m is calibrated based on the best-289 

track TC data.  290 

4. Evaluation of the EBDS model against observations 291 

a. The intrinsic dynamical efficiency (E*) 292 

Figure 1a shows the calculated dynamical efficiency (E) in Eq. (1) using the 6-h best-track 293 

TC data in section 2 and other parameters discussed in section 3 versus the relative intensity. We 294 

can see that the power constant 𝑚 = 3/2 in Eq. (5) gives the best fit of the upper-limit of E, 295 

which corresponds to the intrinsic dynamical efficiency (E*). With 𝑚 = 3/2, Eq. (1) or (6) will 296 

become the same as the IR equation derived in the new time-dependent theory of TC 297 

intensification in W21b. For a comparison, we also give the results for 𝑚 = 1.0 and  𝑚 = 1.2 298 

in Fig. 1a. For those smaller m, E* is overestimated, resulting in too large theoretical PIR (Figs. 299 

1b and 1c). With 𝑚 = 3/2 , the PIR provides good quantitative estimate of the observed 300 
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maximum IR although some of the observed maximum IRs (about 0.6% cases) are 301 

underestimated (Fig. 1d) because the intrinsic dynamical efficiency E* for some intensification 302 

cases could be underestimated (Fig. 1a). We checked the cases with the underestimated PIR and 303 

found that the occurrences are likely random (not shown). Such a small underestimation is 304 

acceptable considering the fact that the EBDS model only includes several key parameters, while 305 

it still can capture the major features of the intensity-dependencies of both the intrinsic dynamical 306 

efficiency and the PIR of TCs in observations.  307 

The above results demonstrate that the intrinsic dynamical efficiency can be defined as a 308 

function of the relative intensity, with which the EBDS model has skills in capturing the PIR of 309 

the observed TCs. It is also important to see the characteristics of the remaining component of 310 

the dynamical efficiency E’ in Eq. (2) or (6), which measures all inhibiting environmental effects 311 

on TC intensification, or termed the environmental dynamical efficiency. Figure 2 shows the 312 

dependences of E’, which is calculated by 𝐸/𝐸∗ [see Eq. (2) above], on the relative intensity 313 

and the normalized IR (namely IR normalized by the corresponding theoretical PIR at a given 314 

time). We can see that overall E’ is less than 1.0 but greater than 0.5, with high density at 0.6–315 

0.7, suggesting that the environmental factors may slow down the TC intensification, and the 316 

PIR of an intensifying TC is determined primarily by the TC internal dynamics given favorable 317 

environmental thermodynamic conditions. In general, E’ increases with increasing TC relative 318 

intensity (Fig. 2a). This indicates that TCs that approach their MPI correspond to higher 319 

dynamical efficiency with favorable environmental conditions and/or are potentially more 320 

resistant to unfavorable environmental conditions. From Fig. 2b, we can see that although E’ 321 
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also shows a general tendency to increase with increasing normalized IR as with increasing 322 

relative intensity, the dependence on the former is relatively weaker than on the latter. 323 

Particularly, the high-density dots in Fig. 2b indicate that the slowly intensifying TC (with the 324 

normalized IR less than 0.4) is largely due to the inhibiting effect of unfavorable environmental 325 

factors, or equivalently, TCs embedded in favorable environment can intensify more rapidly. An 326 

effort on determining the environmental factors that contribute to the environmental dynamical 327 

efficiency E’ is under way and the results will be reported in due course. Nevertheless, the above 328 

analyses further imply that the intrinsic dynamical efficiency determined and discussed above is 329 

reasonable. 330 

b. Comparison of PIR in the EBDS model with observations 331 

Based on the parameter settings as mentioned above, we can calculate the theoretical PIR 332 

for all intensifying TCs at 6-h intervals using Eq. (6) and compare it with the corresponding 333 

maximum IR calculated based on the best-track data. Figure 3 compares the distributions of the 334 

theoretical PIR and the 99th percentile of IRs from observations in the phase spaces of Vmax–Vmpi 335 

and relative intensity (Vmax/Vmpi)–Vmpi, respectively. The 99th percentile of IRs is used to 336 

represent the maximum IR (IRmax) under favorable environmental conditions for a relatively 337 

fair comparison with the theoretical PIR estimated from the EBDS model. It is clear that the 338 

theoretical PIR increases with increasing MPI monotonously, while for a given MPI it increases 339 

with TC intensity initially and reaches the maximum at an immediate intensity, and then 340 

decreases with increasing TC intensity (Fig. 3a). This dependence can be more explicitly seen 341 
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from the phase space in relative intensity (Vmax/Vmpi)–Vmpi. Note that the maximum PIR (MPIR) 342 

increases with increasing MPI [actually the square of MPI as inferred from Eq. (6)] and occurs 343 

when the relative intensity is between 0.5-0.6 (Fig. 3b). The observed IRmax (Figs. 3c and 3d) 344 

shows very similar distributions as the theoretically estimated PIR in the phase spaces of TC 345 

intensity/relative intensity and Vmpi. This demonstrates that the EBDS model is well supported 346 

by observations. Namely, with the introduced intrinsic dynamical efficiency, the EBDS model 347 

can reasonably capture the upper-limit of the observed TC IR and its dependence on TC intensity 348 

and its corresponding MPI. Note that at relatively lower MPIs, IRmax occurs at higher relative 349 

intensity side (Fig. 3d). This might be due to the fact that CD often increases with increasing TC 350 

intensity when the TC is weak (Donelan et al. 2004). This can explain the shift of IRmax to the 351 

high relative intensity side for weak TCs. 352 

It is our interest to further examine the major features of the observed TC IR, including its 353 

dependence on TC intensity and the underlying SST and see whether the EBDS model can 354 

capture these features. Figure 4 shows the observed IR and the corresponding theoretical PIR 355 

estimated using Eq. (6), respectively, against TC intensity in different SST bins. For each SST 356 

bin, the upper limit of the theoretical PIR, namely the 99th percentile of PIR, increases with 357 

increasing TC intensity before Vmax reaches an intermediate intensity as implied in Fig. 3a, which 358 

is consistent with the idealized simulations in W21a and W21b. The theoretical PIR captures 359 

well the upper limits of TC IRs in all SST bins, suggesting that the EBDS model can well define 360 

the PIR of observed TCs. The theoretical MPIR in each SST bin increases with increasing SST 361 

and occurs at the relative intensity of around 0.5–0.6 (Fig. 4f). For example, the MPIR is about 362 
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15 m s-1 (6h)-1 when SST is below 26.5℃, and increases to about 25 m s-1 (6h)-1 when SST is 363 

greater than 29.5℃ (Fig. 4f).  364 

Since the theoretical PIR is determined by two processes (terms): the intensification 365 

potential (
𝐶𝐷

𝐻
𝐸∗𝑉𝑚𝑝𝑖

2 ) and the frictional weakening potential (
𝐶𝐷

𝐻
𝑉𝑚𝑎𝑥

2 ) as given in Eq. (1), it is 366 

our interest to further examine the dependence of the two terms on TC relative intensity in each 367 

SST bin in observations. The intensity-dependent intensification potential and frictional 368 

weakening potential against relative intensity in each SST bins are compared in Fig. 5. It is clear 369 

that with the introduced intrinsic dynamical efficiency E*, the median of the intensification 370 

potential increases almost linearly with increasing relative intensity for each SST bin, while the 371 

frictional weakening potential increases quadratically with increasing relative intensity. As a 372 

result, both terms are relatively small when a TC is weak, giving rise to a relatively small IR. As 373 

the TC intensifies, the frictional weakening potential increases with relative intensity slower than 374 

the intensification potential, corresponding to the increase of IR with increasing relative intensity. 375 

After the TC attains an intermediate relative intensity, the frictional weakening potential 376 

increases with increasing relative intensity faster than the intensification potential. As a result, 377 

the IR reaches a maximum at some intermediate relative intensity, and then decreases with 378 

increasing relative intensity, and approaches zero when the TC reaches its MPI. This 379 

demonstrates that the intensity-dependence of PIR in the EBDS model is well supported by 380 

observations. In addition, as we can see from Eq. (6) with 𝑚 = 3/2, the IR is proportional to 381 

the square of the corresponding MPI for a given relative intensity, which can also be implied by 382 

the fact that the slopes of both intensification potential and frictional weakening potential 383 
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increase with increasing SST (or the corresponding MPI) in Fig. 5f.  384 

5. Conclusions and discussion 385 

In a recent study, W21a introduced a dynamical efficiency to the intensification potential of 386 

a TC system in a simplified EBDS model and showed that the modified EBDS model can 387 

reproduce the intensity-dependence of TC potential intensification rate (PIR) in idealized 388 

numerical simulations. Although they also briefly indicated that the EBDS model can capture 389 

the overall intensity-dependence of PIR in observations, such as those documented in Xu et al. 390 

(2016) and Xu and Wang (2015, 2018a), they did not perform any detailed evaluation. In this 391 

study, the EBDS model’s capability in capturing the basic features of the observed TC PIR has 392 

been evaluated based on the best-track TC data over the North Atlantic, central, eastern and 393 

western North Pacific during 1982–2019. Results first demonstrate that the intrinsic dynamical 394 

efficiency obtained based on the idealized numerical simulations in W21b is well supported by 395 

observations. 396 

With the defined intrinsic dynamical efficiency, the EBDS model can reproduce well the 397 

observed intensity-dependence of the 99th percentile IRs in the best-track data over the North 398 

Atlantic, central, eastern and western North Pacific. Both the estimated theoretical PIR and the 399 

observed maximum IR initially increase with increasing TC relative intensity (intensity 400 

normalized by its corresponding MPI) and reach their maxima at an intermediate relative 401 

intensity of around 0.6, and then decrease with further increase in relative intensity and approach 402 

zero as the TC reaches its MPI. The increase in the theoretical PIR for a given relative intensity 403 



20 
 

with increasing MPI is also well supported by observations. Results also show that the maximum 404 

PIR of 15 m s-1 (6h)-1 for SST below 26.5℃ increases to around 25 m s-1 (6h)-1 for SST greater 405 

than 29.5℃. The consistency between the theoretical PIR and the observed maximum IRs 406 

strongly suggests that the EBDS model can reliably estimate the PIR of real TCs, which can be 407 

considered as an upper limit of the TC IR or used as a parameter in statistical TC intensity 408 

prediction schemes.  409 

We have also shown that the modified EBDS model can explain well the observed intensity-410 

dependent TC PIR. The PIR is determined by the difference between the intensification potential 411 

and the frictional weakening potential. In the initial intensifying stage when the TC is weak with 412 

small relative intensity, the intensification potential is larger than the frictional weakening 413 

potential but both are small, corresponding to relatively small PIR. As the TC intensifies, the 414 

increase in the frictional weakening potential with increasing relative intensity is slower than the 415 

increase in the intensification potential, leading to the increase of PIR with increasing relative 416 

intensity. After the TC intensifies to attain an intermediate relative intensity, the increase in the 417 

frictional weakening potential with increasing relative intensity is faster than the increase in the 418 

intensification potential, giving rise to a maximum PIR at some intermediate relative intensity. 419 

This is followed by a decrease of PIR with increasing relative intensity, and then the PIR 420 

approaches zero when the TC reaches its MPI.  421 

With the intrinsic dynamical efficiency E* that determines the PIR, the actual TC IR will be 422 

controlled by the environmental factors, which can be included as the environmental dynamical 423 

efficiency (E’) in the EBDS model Eq. (6). We have shown that the environmental effects 424 



21 
 

represented as the environmental dynamical efficiency (0 ≤ 𝐸′ ≤ 1) suppress TC IR by reducing 425 

the intrinsic dynamical efficiency (E*). Note that since the detrimental environmental effects 426 

may lead to the weakening of a TC, E’ should be quantified by the intensity change during the 427 

whole lifetime of a TC rather than the intensifying stage only. The weakening TC cases should 428 

be included in characterizing and quantifying the environmental dynamical efficiency, which 429 

could be a function of the environmental vertical wind shear, the TC translational speed, and so 430 

on. In our next step, we will quantify the environmental dynamical efficiency with not only the 431 

intensifying TC cases but also both quasi-steady and weakening TC cases based on the best-track 432 

TC data, the SHIPS dataset, and the global reanalysis data. Once the environmental dynamical 433 

efficiency is determined, the EBDS model may be used to estimate and predict real TC intensity 434 

change given the environmental parameters. In addition, Previous studies have shown that 435 

although the surface exchange coefficient (Ck) is almost independent of the near surface wind 436 

speed, the drag coefficient CD depends strongly on the near surface wind speed and thus the TC 437 

intensity (Soloviev et al. 2017; Donelan 2018). A wind-dependent CD could be used in the EBDS 438 

model. In that case, CD in Eq. (6) will vary with TC intensity and the MPI should be recalculated 439 

since it is a function of CD. This will be considered in our follow-up study when the model is 440 

further developed for the real-time TC intensity prediction. The results will be reported 441 

separately in due course. 442 
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Table 1. List of basic information about TC sample size and the intensification cases in each 586 

basin considered in this study. 587 

Basin TC numbers Intensification cases 

North Atlantic 362 (24.2%) 2885 (24.5%) 

Western North Pacific 591 (39.5%) 5167 (44.0%) 

Central and eastern North 

Pacific 

543 (36.3%) 3706(31.5%) 

Total 1496 11758 

  588 
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 589 

 590 

Figure 1. Scatter diagrams of E estimated from observations against relative intensity 591 

(Vmax/Vmpi) based on Eq. (1), together with m = 1 (red), m = 1.2 (blue), and m = 1.5 (purple) 592 

for E* from Eq. (5) based on the best-track dataset (a), the theoretical PIR  [m s-1 (6h)-1] 593 

calculated with (b) m = 1, (c) m = 1.2, and (d) m = 1.5, respectively, against observed IR [m 594 

s-1 (6h)-1]. Solid lines in (b-d) denote for y=x and percentage value on the right bottom gives 595 

percentage of the case numbers of theoretical PIR less than that of observed IR. 596 
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597 

Figure 2. The 2-D histogram of the environmental dynamical efficiency (E’) and (a) the 598 

relative intensity (Vmax / Vmpi), and (b) the relative IR (namely IR normalized by the theoretical 599 

PIR) . 600 

601 
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 602 

 603 

Figure 3. Distribution of TC theoretical PIR [m s-1 (6h)-1] as a function of MPI (Vmpi, m s-1) and 604 

(a) Vmax (m s-1) and (b) relative intensity (Vmax / Vmpi) , respectively, (c) ~ (d) are same as (a) 605 

~ (b), but for the 99th percentile of the observed IRs [m s-1 (6h)-1].  606 
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  607 

Figure 4. (a) – (e) show the Scatter diagram of TC PIR [dark grey, m s-1 (6h)-1], and observed IR 608 

[red, m s-1 (6h)-1] against relative intensity, with the 99th percentile of PIR fitted by non-609 

parametric quantile regression for different SST bins (purple solid). The 99th percentile of 610 

theoretical PIR (solid) and PIR dots of each SST bins are shown together in (f). 611 
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 612 

Figure 5. Scatter diagram of intensification potential [m s-1 (6h)-1, grey] and frictional weakening 613 

rate [m s-1 (6h)-1, pink] against relative intensity for all intensifying TC cases in various SST 614 

bins (a ~ e). The medians of IP and FD are given in blue, purple solid curves, respectively. 615 

The corresponding medians for each SST bin are also shown in (f) for a comparison. 616 


