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Abstract—The rapid upsurge of numerical sources of infor-
mation and the growth of storage capacities in recent years has
resulted in the collection of massive time series datasets. Inspired
by association rule mining and other rule discovery algorithms,
several approaches have been proposed in the literature to
discover temporal association rules from time series data. These
methods place interpretability at the top of their priorities and
aim to provide domain experts with relevant and qualitative
rules. In this paper, we aim to fill t he g ap b etween temporal
association rule mining and time series classification t asks to
increase the interpretability of current classification methods. We
propose rule transform (RT), a novel algorithm for multivariate
time series classification (MTSC) t hat g enerates discriminative
temporal rules for the sake of classification. RT generates a new
feature space that represents the support of the mined temporal
rules which can easily be qualitatively interpreted by domain
experts. The algorithm uses Allen’s Interval Algebra to extract
the most prominent temporal rules from a given dataset. To our
knowledge, this is the first e ffort t o u se s hapelets a s a u nit for
temporal rule mining studies for the purpose of classification.
We evaluate our algorithm on the UEA archive of multivariate
time series. Results show that RT produces accuracies superior
to state-of-the-art time series classification a Igorithms w ith the
additional advantage of interpretability.

Index Terms—time series mining, multivariate time series
mining, shapelets, temporal association rules

I. INTRODUCTION

The exponential increase of time series data in terms of use
and availability makes it necessary for the data mining research
community to multiply the efforts to improve state-of-the-art
algorithms and develop new ones [1], [2]. In the context of
time series classification (TSC), while most of the efforts have
been directed towards the univariate case, a limited number
of algorithms have been proposed for multivariate time series
classification (MTSC) [3]. TSC can be applied in a multitude
of domains including aerospace, astronomy, healthcare, and fi-
nance [4]-[9]. In a recent comprehensive study benchmarking
different univariate time series classification a pproaches and
algorithms by Bagnall et al. [10], shapelet-based classification
algorithms were found to be among the most powerful algo-
rithms, in addition to being highly interpretable. In particular,
the shapelet transform (ST) algorithm [11] had the second-
best overall performance. The only algorithm that performed
better was based on the ensemble learning technique. However,
ensemble learning techniques are usually hard to interpret.
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In a similar study focusing on MTSC by Pasos Ruiz et
al. [3], more recent algorithms were compared on the UEA
archive [12]. However, the only algorithms that achieved a
higher performance compared to ST were either based on
ensemble learning, deep learning, or domain transformations.
Nevertheless, compared to ST, these techniques are not very
interpretable.

Inspired by association rule mining and other rule discovery
algorithms, several approaches to extract temporal association
rules from time series data have been proposed in the literature
[13]-[21] These temporal relationships can then be interpreted
by domain experts in order to achieve a better understanding of
the problem at hand, in a purely qualitative way. An example
of a temporal relation that Das et al. introduced in their paper is
“A stock which follows a 2.5-week declining pattern will likely
incur a short sharp fall within 4 weeks” [13]. In this work, we
aim to fill the gap between rule discovery and classification
in time series mining and to increase the interpretability of
the current classification method. We propose rule transform
(RT), an algorithm that combines shapelet-based representa-
tion learning and temporal rule finding. Using ST, we extract
the most important shapelets from the time series, which
we consider as our time intervals, i.e. the antecedents and
subsequents of our rules. Then, we combine them using
Allen’s Interval [22] relationships to create temporal rules and
select the most important ones based on their support. Finally,
we transform the time series dataset using this set of rules and
use it for classification. The motivation for this work builds
on the idea that these same temporal rules which can help
domain experts draw qualitative conclusions from the data
can be used for classification purposes. We demonstrate its
success by evaluating RT on the UEA archive of multivariate
time series datasets [23].

The rest of this paper is organized as follows: In Section II, we
discuss previous works in the context of shapelet-based time
series classification and temporal association rules mining; in
Section III, we provide technical background; in Section IV,
we describe the RT algorithm; in Section V we introduce the
UEA MTSC archive and discuss some implementation details;
in Section VI, we evaluate the experiments; and in Section VII,
we conclude with a summary.

II. RELATED WORK

A shapelet is defined as a characteristic discriminatory,
phase-independent subsequence that happens frequently in a
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time series. The first shapelet-based algorithm was introduced
by Ye et al. [24]. It consisted in finding all possible shapelets
and using them to construct a decision tree. Rakthanmano et
al. [25] introduced Fast Shapelets (FS) that improves upon the
original shapelet algorithm by discretizing and approximating
the shapelets using Symbolic Aggregate Approximation (SAX)
[26], resulting in a significant speedup. Grabocka et al. [27]
introduced Learning Time Series Shapelets (LTS). The main
novelty of LTS consists in the use of gradient descent for
mining shapelets. This optimization approach allows learn-
ing shapelets that are not subsequences of the original time
series dataset. Fang et al. [28] introduced Efficient learning
Interpretable Shapelets (ELIS), an algorithm that improves on
LTS by discovering shapelets from a Piecewise Aggregate
Approximation (PAA) [29] word space and developing a
mechanism for computing the optimal number of shapelets.
Lines et al. [30] introduced the ST algorithm which was later
improved by Hills et al. [31]. ST finds all possible shapelets
of given lengths and keeps the best ones in terms of their
closeness to the original time series and of their discriminatory
power. In addition, ST presents an advantage over the previous
approaches: it separates shapelet discovery and classification.
Therefore, different classifiers can be trained independently
in the feature space generated by ST. In two recent studies,
several time series classification methods were benchmarked
including the aforementioned shapelet-based classifiers. ST
proved to be one the best algorithms, and the first choice if
full, inherent interpretability is required [3], [10]. Therefore,
ST has been used as the shapelet mining component in other
domains such as data augmentation [32] and counterfactual
explanations [33], [34].

Equally important to the classification task, time series rule
discovery has received less focus where most of the research
efforts have been inspired by frequent pattern mining (e.g.,
market basket analysis). In the context of this paper, we are
interested in the intersection of rule discovery and classifica-
tion studies. We name the process femporal association rule
mining. A temporal rule consists of an antecedent interval
A and a subsequent interval B. In its simplest form, the
relationship between the two is precedes, ie. A — B,
meaning that A happens before B. In some works, a time
lag T is introduced to the precedes rule [13], [15], [16],
[18], [19], which suggests the rule to become if A happens,
it is very likely that B will happen within 7. In addition,
subsequences constraints have been added in order to include
several subsequents and/or antecedents within the same rule
[16] or to create sequential and cyclic rules [19]. The first
step in rule discovery using time series data is to discretize
the data. This can be either achieved using a sliding window to
extract the time intervals and applying a clustering technique
[13], [14], [16], [19], or using a PAA [35] approach [18]. Once
the time series have been divided into discrete time intervals,
the temporal rules are formed and pruned based on some
modification of the Apriori [36], [37] algorithm [14], [15],
[17]-[19] or other association rule mining techniques based
on support and confidence [13], [16]. In addition, Kam and
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TABLE I: Allen’s Interval relationships
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Fu [38] and Hoppner [17] used Allen’s Interval relationships
[22] to extend the types of rules between an antecedent and a
subsequent time interval.

In this work, we propose to generalize all the proposed
approaches by broadening the scope of possible interval
relationships. Using temporal algebra, we extract the most
prominent temporal rules from a given dataset and use them
for the classification task.

III. BACKGROUND

In this section, we introduce ST and Allen’s Interval Alge-
bra, as two important elements of our approach

A. Shapelet Transform

ST was introduced by Lines et al. [30] and later improved
by Hills et al. [31], and by Bostrom and Bagnall [11]. In
ST, shapelet discovery is performed independently from the
classification task. The process starts by finding all possible
candidate shapelets of predefined lengths for each time series.
Then, the distance between each shapelet S; and the other
time series is computed by sliding it along the series and
retrieving the minimum Euclidian distance between S; and
all subsequences w of similar length. The sliding window
function is defined in Equation 1, where W is the set of all
subsequences of the same length as S.

sDist(S,T) = minyew (dist(S,w)) (1)

The next step is to select the shapelets with the highest
discriminative power based on the information gain of each
shapelet. Overlapping shapelets are discarded and the dataset
is transformed to the new shapelet feature space, where each
time series is represented by its distance to the best shapelets.
Finally, any machine learning classifier can be used to perform
the classification based on the shapelet space.

B. Allen’s Interval Algebra

Allen’s Interval Algebra is a system for reasoning about
temporal relations. It was introduced by James F. Allen [22].
The algebra is built on a set of 13 relationships between time
intervals. These relationships are (1) distinct, meaning that
no pair of antecedent and subsequent time intervals can be
related by more than one “relation”; (2) exhaustive, meaning
that the temporal relationship between any pair of antecedent
and subsequent intervals can be described by one relation; and
(3) qualitative, as no quantitative attribute is considered in their
definition. Table I shows the relationships and their operator
symbols (e.g., p for precedes and P for preceded by).
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Fig. 1: Rule Transfo

IV. RULE TRANSFORM
A. The Proposed Algortihm

RT aims to fill the gap between temporal association rule
mining and time series classification. Since ST has proved
to be one of the most efficient time series classification
algorithms [10], and that shapelets represent nothing but time
intervals, we designed an algorithm that relies on shapelets
as building blocks for constructing rules. To our knowledge,
this is the first effort to use shapelets as a unit for temporal
rule mining. By definition, shapelets are phase-independent.
Our idea is to introduce a notion of phase dependence by
extracting relevant information from their relationships across
multiple dimensions.

The main outline of the RT algorithm is described in Algo-
rithm 1. The first step is to apply the ST algorithm in order
to extract the best shapelets. This is done independently for
each dimension of the multivariate time series (step 1). During
ST, when computing the distance between each shapelet and
dataset sample, a sliding window is used and the distances
between each shapelet and all subsequences of the same length
are computed (see Equation 1). We save all these distances and
use them in the following steps. In step 2, the occurrences of
each shapelet are found by selecting the closest subsequences
—which lie under a user-defined threshold—, based on the
distances computed during ST. This process might result in

rm on a toy dataset

overlapping occurrences of the same shapelet, which are in fact
only one occurrence extended by a single time step to one or
both sides. Therefore, we remove the overlapping occurrences
and only keep the one with the shortest distance to the original
shapelet. This process is described in Algorithm 2. In step 3,
all possible rules between the shapelets across all dimensions
are constructed using Allen’s Interval relationships. Since the
relationships are symmetric, it suffices to consider seven of
them, namely A precedes B, A meets B, A overlaps B,
A finishes B, A starts B, A during B and A equals B.
Next, rules containing overlapping shapelets are dropped and
the support of each rule at each dataset sample is computed as
described in Algorithm 3. We define the support of a rule as
the number of times it occurs in each dataset sample. Finally,
the dataset is transformed to the new rule space, where each
data sample is described by the support of the mined rules.
After the transformation, the resulting dataset can be used to
fit any standard machine learning classifier.

In Figure 1, the three steps involved in RT are illustrated
and applied to a toy dataset with three samples and three
dimensions. The final rule space table shows the dataset being
transformed into the new rule feature space. The last row
of the table represents the aggregate supports of the rules,
i.e. the total number of times a rule appears throughout all
the dataset samples. For example, the first sample in Figure
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Algorithm 1 Rule Transform algorithm

Algorithm 3 Count_supports

Input: Dataset D of n samples and D dimensions, shapelet
similarity threshold %,
QOutput: Dataset D transformed into the Rules Space

1: Step 1: Perform Shapelet Transform on each dimension

2: for d in D

3: shapeletsg, sh_occurrencesq = ST(Dy)

4: Step 2: Select the closest occurrences of shapelets and
remove overlapping ones
sh_locations = > Alg.2
Get_shapelets_occurences(D, sh_occurrences)
Step 3: Get the supports of all rules at each sample
all_sups = Count_supports(sh_locations) > Alg3
return all_sups

LRI

1 shows the existence of four shapelets connected with six
temporal relationships recorded in the final rule space table.
The intuition behind our proposed RT miner is that if temporal
rules can provide domain experts with qualitative insights on
the data, they should also help a machine learning classifier
distinguish between different classes. Going back to Figure 1
and assuming that each sample belongs to a different class,
the A precedes B rule will help identify the class of the first
sample, given that it does not occur in the second and third
samples, although shapelet A is present under those.

Algorithm 2 Get_shapelets_occurences

Input: Dataset D of n samples and D dimensions, list of oc-
curences of all shapelets sh_occurrences, shapelet similarity
threshold ¢y,

Output: List sh_locations holding the location of each
shapelet occurrence throughout all dataset samples

1: Create empty list sh_locations to hold the location of
each shapelet occurrence throughout all D samples.

2: for d in D

3 for each shapelet s

4 (idxo,starto,endg,disto)<—sh_occurrencesq,s,o

5: for (idz,start,end,dist) in sh_occurrencesgq,s

6: if dist < tgp

7 if (idz,start,end) N (idzo,starto,endp)

8 if dist < distg

9: sh_locationsg s.drop(—1)

10:

sh_locationsg, s.append(idz,start,end)
11: else
12: continue
13: end if
14: else
15: sh_locationsg,s.append(idz,start,end)
16: end if
17: end if
18: (idzo,startg,endp,disty)<+ (idz,start,end,dist)
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Input: List SL holding the location of each shapelet occur-
rence throughout all dataset samples

Output: List allsups holding the support of each rule at each
dataset sample

1: Create empty lists P, O, D, M, S, F and F to hold the
supports of A precedes B rules, A overlaps B rules, A
during B rules, A meets B rules, A starts B rules, A
finishes B rules and A equals B rules respectively, at
each sample.

2: for each pair of shapelets (4, B)

3: for each (ia,sa,€ea), (iB,SB,€B), in range (SLA, SLB)
4: ifig =—ip

5: if sp > sy

6: Py dasadp,sn < Pigdasadsss T1
7. elseif sy <sp & eqx>sp &ey <ep
8: Oigidpnsadp.sp$Oigdasadpsptl

9: elseif sy > sp & ex <ep

10: Diy,dg,sp.dgsg€Dig,dg,spdg,sgtl

11: else if sy < sp & eq == sp & ca<en
12: M dgsp.dg.sgeMig,dgsp.dg,sgtl

13: else if sy == sp & e4q < ep

14: S'L.AydA,SA7dBysB A S'L.AydA75A7dBysB +1
15: elseif sy >sp & ey ==ep

16: Fipdasadp,sn < Figda,sadsss T1
17: else if sy==sp & cp==cp a (da1=dplssl=sp)
18: Eijidgsp.dg.spgtBigdgsadg,sgTl

19: end if

20: end if

21: all_sups = concat(P,0,D, M,S, F, E)
22: return all_sups

B. Time Complexity

For a dataset D of n samples and m time steps, the time
complexity of the ST algorithm is O(n?m?) [31]. Therefore,
for D dimensions, the time complexity becomes O(Dn?m?*).
Concerning RT (Algorithm 1), the complexity of step 1 is the
same as ST. For step 2, the complexity is O(Dngpnm), where
ngp 1s the number of shapelets extracted per dimension. Step
3, is the most time consuming step of the rule mining phase
with a complexity of O(D?*n?,a?,n). In general, the number
of dimensions D is lower than the number of dataset samples
n. Therefore, D? < Dn. Also, since the number of shapelets
in each dimension ngj, and the number of shapelets per dataset
sample ap, are both lower than the time length of the dataset
m, then n?,a?, < m*. Thus, O(D?*n?,a% n) < O(Dn?*m?),
which means that the complexity of RT is upper bounded by
that of ST.

C. Time Contracting

Since the time complexity of ST is O(n?m?), the running
time can become very long for large datasets. Therefore,
Bostrom and Bagnall [39] introduced a time contracted version
of ST and proved that it does not significantly hurt the
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performance of the algorithm. The main idea is to sample the
shapelet space instead of going through all possible shapelets,
and it is achieved by simply selecting random shapelets from
the dataset until the user-defined time contract (limit) runs out.
In the following experiments, we run the contracted version
of ST, and adapt it to the multivariate case by dividing the
time contract by the number of dimensions in the dataset. In
case the number of dimensions is higher than the number of
minutes in the time contract, a subset of dimensions is dropped
from the dataset until the two numbers match. In addition, in
order to time-bound the entire RT algorithm, we extended the
same idea to the rule mining phase. In that case, instead of
counting the supports of rules formed by all shapelet pairs,
we sort the shapelets at each dimension by their score and
mine the rules formed by the best pairs for as long as the
time contract allows.

D. Shapelets Lengths Selection

To run ST, the lengths of the shapelets to be mined have to
be predetermined. In order to automate this process, Lines et
al. [30] proposed a length parameter approximation algorithm.
The algorithm mines 10 shapelets from 10 randomly selected
dataset samples. This procedure is repeated 10 times until a
total of 100 shapelets is formed. Then, these shapelets are
sorted by length, and the lengths of the 25th and the 75th
are respectively considered as the minimum and maximum
shapelet lengths. We have implemented this algorithm, with
two minor modifications. First, we adapt it to the multivariate
case by randomly selecting a dimension from which to select
each 10 dataset samples. Then, to keep the runtime of the
ST algorithm within the time bound, we use the contracted
version of ST for each of the 10 runs.

E. Shapelet Clustering

The shapelet mining phase results in multiple similar,
nearly duplicate shapelets. During classification, this should
not cause an issue as long as the classification model can
resolve correlations. However, when visualizing the rules for
qualitative insights, grouping similar shapelets can improve
interpretability. Therefore, we implement the post hoc shapelet
clustering procedure proposed by Hills et al. [31], with minor
modifications to adapt it to the multivariate time series. For
each dimension, clusters containing one shapelet are formed.
Then, the distances between all clusters are computed and
stored in a n X n matrix, where n is the number of shapelets.
Finally, we perform a recursive step where the two closest
clusters are merged until the total number of clusters desired
is reached. The distance between two clusters is computed
as the average distance between their respective elements. As
we will discuss in Section VI, while this improves the visual
analysis of the rule space, it might cause performance loss.

E. Rule Selection

1) Fisher Score: The main drawback of the rule space
created by RT is its high dimensionality. To reduce the
number of rules used for classification and to improve the
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interpretability of the algorithm, we perform the Fisher score-
based feature selection method [40], [41]. Moreover, we find
that rule selection results in important performance gains,
as we discuss in Section VI. We also show that reducing
the feature space by a factor of 100 does not affect the
performance.

2) Support Level: In addition, we propose an alternative
rule selection method that includes computing the aggregate
rule supports and discarding the set of rules with the lowest
values. We define the aggregate support of a rule as the total
number of times it occurs in all dataset samples. Therefore, it
can be computed by summing up the supports of each rule as
shown in the Total row in the final rule space (Figure 1).

V. EXPERIMENTAL SETUP
A. Datasets

We evaluate the performance of RT and compare it to
ST and LTS on the UEA MTSC archive [23]. The archive
contains 30 multivariate time series datasets representing dif-
ferent domains, such as human activity recognition, motion
classification, ECGeclassification, EEG/MEG, audio spectra
classification, and others. In addition, the datasets have a
high variance in terms of dimensionality (from 2 to 1,345),
time series length (from 8 to 3,000), and size (from 27 to
10,992). Four of the datasets in the archive contain series
of different lengths. To avoid preprocessing issues during our
benchmarking, we discard these four datasets from the study.
The remaining 26 datasets are described in Table II.

B. Baselines

e FS: Constructs a SAX word (discrete approximation of
shapelets) dictionary for each shapelet length from the
time series dataset, performs dimensionality reduction
using random projections, and builds frequency count
histograms for each class. The best SAX words are
selected according to their discriminatory power and
remapped to the original shapelets [25].

e LTS: Shapelet discovery is performed as an optimization
problem using stochastic gradient descent and a regu-
larized logistic loss function. The final learned, optimal
shapelets do not necessarily exist in the original dataset
[27].

o ELIS: Shapelets are first discovered from the PAA space,
ranked based on their TFIDF scores, and remapped to
the original space. Then, they are adjusted using logistic
regression and stochastic gradient descent. The length of
shapelets and their total numbers do not need to be set
as input parameters [28].

e ST [11], [30], [31]: See Section III.A.

C. Implementation Details

We used the sktime [42] implementation of ST, and intro-
duced a slight modification to the ST implementation to extract
the indices of the occurrences of each shapelet along with
their distances as described in Section IV. For LTS, we used
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Fig. 2: Rule interpretability example from the PenDigits dataset.
All the shapelets that makeup class O are also contained in class 8.
The A starts B rule is present only in samples with label 0.

the implementation provided in the pyts, a Python Package
for Time Series Classification [43], and for FS and ELIS, we
use the code provided in the original papers [25], [28]. The
code for RT is available in our GitHub repository! and in the
project web page?.

Given that FS, LTS, ELIS, and ST were proposed for univariate
time series datasets, we adapted them to the multivariate case
as follows. For ST, we apply the transformation independently
to each dimension of the dataset to extract the shapelets. Then,
we concatenate the resulting shapelets to form a larger feature
space. Since FS, LTS, and ELIS include a built-in classifier
(decision tree for FS and logistic regression for LTS and
ELIS), we fit a model to each dimension of the dataset and
use a majority vote to decide the final output prediction.

VI. EXPERIMENTAL RESULTS
A. Rule Space Visualization

One of the main advantages of using temporal rules is their
inherent interpretability. As we discussed previously, temporal
rules have been used in the literature in a qualitative way
only. By visualizing them, domain experts can achieve a better
understanding of the problem and perhaps discover new trends
and patterns. In RT, each rule of the feature space can be
visualized and interpreted by domain experts. In what follows,
we show a simple example from the PenDigits dataset [44]
(see description in Table II). The PenDigits dataset is designed
for handwritten digit classification. Each sample represents a
digit (from O to 9) and contains two variables representing
the x and y coordinates of the trajectory of the pen-tip when
writing the digit. The dataset was constructed by 44 writers,
and each instance was spatially resampled to 8 time steps. By
looking at the plots of class 0 samples (Figure 2.a) and class
8 samples (Figure 2.c), we can see that all the shapelets that
makeup class 0 are also contained in class 8, which means that

Thttps://github.com/omarbahri/Rule Transform
Zhttps://sites.google.com/view/ruletransform/home
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a shapelet-based classifier might not be able to identify class 0
elements. On the other hand, the A starts B rule is present only
in samples with the label 0. So, it can be used to discriminate
class 0. In addition, we can notice that (1) the two numbers
are mostly written according to the trajectories in Figure 2.b
and 2.d, where the red dot represents the beginning (where
the pen-tip touches the paper) and the red arrow represents
the end (where the pen tip is drawn off), (2) A represents the
lower arcs of 0 and 8 on the x-axis, and (3) B represents the
entire numbers on the y-axis. Therefore, in the case of class
0 samples, A starts from the very beginning of the trajectory
(i.e. at the same time as B), whereas it starts later in the case
of 8. Moreover, the lower arc in 8 is shorter, and therefore
takes less time to trace. This explains why A starts B occurs
under class 0 only.

B. Performance Evaluation

We used the default train-test split for all datasets. In Table
II, the accuracy of RT with different levels of rule selection
using the Fisher-based method is assessed against that of FS,
LTS, ELIS, and ST. For each dataset, the highest accuracy
is printed in bold. The last two rows show the number of
wins of each classifier and their average ranks. The time
contract was fixed at 6 hours —for RT, it is broken down into
4 hours for shapelet mining and 2 hours for rule mining—
and the downstream classifier used for ST and RT is the
random forest (number of trees: 500). The results using the
support threshold rule selection were slightly inferior. Due to
the space limit, we include them in the project web page?. The
grayed cells under FS, LTS, and ELIS represent the datasets
that did not complete under the given time limit. When it
comes to smaller datasets, FS and LS were the fastest of the
five algorithms. However, they faced difficulties when training
on larger datasets, especially on long time series instances
(some of which we ran for 150+ hours without any results).
Although this highly affected their overall performance, it is
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TABLE II: UEA datasets description and performance comparison of FS, LTS, ELIS, ST, and RT with different rule
selection thresholds on the archive

Dataset Train | Test Dims TS # FS LTS ELIS ST RT (by % of rules selected)

Size Size Length | Classes 100% 50% 20% 10% 5% 1% 0.1%
ArticularyWordRecognition 275 300 9 144 25 88.67% 94.33% 80.67% 99.33% 99.33% 99.00% 99.00% 99.33% 98.67% 98.33%
AtrialFibrillation 15 15 2 640 3 33.33%  40.00% 26.67% | 20.00% | 20.00% 33.33% 26.67% 20.00% 26.67% 26.67% 13.33%
BasicMotions 40 40 6 100 4 90.00% 100.00% | 25.00% | 50.00% 100.00% | 97.50% 100.00 % 100.00% | 97.50% 100.00% | 97.50%
Cricket 108 72 6 1197 12 62.50% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 98.61%
DuckDuckGeese 50 50 1345 270 5 28.00%  20.00% 20.00% | 18.00% | 18.00% 16.00% 18.00% 20.00% 12.00% 20.00% 18.00%
EigenWorms 128 131 6 17,984 5 53.44% 58.78% 59.54% 60.31% 60.31% 55.73% 52.67% 45.80%
Epilepsy 137 138 3 206 4  89.86%  92.75% 51.45% | 84.78% | 99.28% 98.55% 98.55% 97.83% 97.10% 96.38% 90.58%
EthanolConcentration 261 263 3 1751 4 47.15% 39.54% 38.40% 41.44% 43.73% 41.83% 48.67% 58.56 %
ERing 30 270 4 65 6 86.67%  86.67% 84.44% | 40.74% | 81.85% 81.11% 83.70% 82.96% 80.74% 78.89% 52.22%
FaceDetection 5890 | 3524 144 62 2 58.09%  48.95% 51.19% | 50.74% 52.07% 52.67% 50.94% 50.91% 50.77% 50.20%
FingerMovements 316 100 28 50 2 48.00% 51.00% 49.00% | 53.00% 59.00% 54.00% 57.00% 54.00% 52.00% 52.00% 51.00%
HandMovementDirection 160 74 10 400 4 36.49% 45.95% | 33.78% 25.68% 40.54% 39.19% 45.95% 35.14% 39.19%
Handwriting 150 850 3 152 26 16.94% 26.59% 5.53% 26.94% 26.35% 26.24% 27.76% 30.47% 3141% 29.06%
Heartbeat 204 206 61 405 2 72.68% 72.20% 72.20% 72.68% 73.17% 73.17% 73.17% 73.66% 72.68% 72.20%
Libras 180 180 2 45 15 6222% 11.11% 15.56% | 61.11% | 85.56% 85.00% 86.67% 85.56% 84.44% 71.78% 67.78%
LSST 2459 2466 6 36 14 49.35% 5.03% 33.90% 33.62% 34.43% 36.62% 38.00% 39.29% 40.31% 41.24%
MotorImagery 278 100 64 3000 2 50.00% | 50.00% 48.00% 51.00% 44.00% 46.00% 51.00% 44.00%
NATOPS 180 180 24 51 6 75.00%  80.00% 73.33% | 51.11% | 871.78% 88.33% 87.22% 88.33% 83.89% 83.33% 82.22%
PenDigits 7494 3498 2 8 10 25.10% 10.41% | 93.48% | 62.09% 62.09% 62.01% 61.18% 52.12% 24.41% 24.41%
PEMS-SF 267 173 963 144 7 85.55%  11.56% 53.18% | 36.42% 36.99% 35.84% 35.26% 33.53% 36.42% 32.37%
PhonemeSpectra 3315 3353 11 217 39 2.56% 8.59% 17.86% 19.18% 19.12% 18.25% 18.31% 14.29% 6.71%
RacketSports 151 152 6 30 4 76.32% 67.11% 28.29% | 60.53% 84.87% 85.53% 84.87% 86.84% 87.50% 87.50% 84.87%
SelfRegulationSCP1 268 293 6 896 2  78.83%  73.72% 74.40% | 85.67% 86.69% 86.35% 87.37% 86.69% 87.03% 86.69%
SelfRegulationSCP2 200 180 7 1152 2 48.89% 44.44% 55.00% 47.78% 56.67 % 53.89% 48.89% 48.89% 52.22% 53.89%
StandWalkJump 12 15 4 2500 3 46.67%  33.33% 46.67% | 40.00% 40.00% 33.33% 40.00% 40.00% 33.33% 33.33%
UWaveGestureLibrary 120 320 3 315 8 65.31% 59.38% | 87.50% 86.56% 87.50% 86.88% 86.56% 86.25% 81.25%

Average Rank 6.54 7.58 9.23 6.92 4.42 3.92 3.54 3.62 4.46 4.54 6.46

Wins/Ties 6 3 0 3 7 5 7 5 3 4 1

worth noting that FS achieved good results on several datasets.
ELIS was able to complete 11 datasets only and had the worse
performance. The best performance was produced by RT with
20% of the rule space. Another important observation is that
the performance of RT remains more or less stable while
reducing the feature space all the way down to 1% of the
total number of rules. Next, we select the RT column with
the best performance from Table II (20% of the rule space)
and compare it to FS, LTS, ELIS, and ST. The results of the
comparison in Figure 3 show that the discriminatory power of
the rule feature space created by RT allows it to outperform
the other algorithms by an even larger margin (13 wins vs. 6
for FS, 4 for LTS, and 5 for ST).

C. Ablation Study

In this section, we assess the effect of the different com-
ponents of RT on its overall performance. First, we consider
the most basic version of the algorithm, i.e. without shapelet
length selection, rule selection, and clustering. In this case,
three different shapelet lengths are selected at 25%, 50%, and
75% of the time series length. Then, we include the shapelet
length selection procedure. Next, we add rule selection using
the support threshold method and using the Fisher-score-
based method. Finally, we include shapelet clustering. We
compute the average accuracy of the 5 versions over the
datasets of the UEA archive and compare them in Table
III. The shapelet lengths selection procedure had the highest
impact. The support threshold and Fisher-score rule selection
approaches improved the performance as well, with a similar
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effect. On the other hand, clustering resulted in an overall
loss in performance. However, as discussed in Section IV.E,
it fulfills its main purpose of enhancing the interpretability of
the temporal rules.
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Fig. 3: Performance Comparison in the UEA MTSC Archive
(RT with 20% of rule space)

D. Clustering Ratio Tuning

Clustering shapelets before rule mining improves the visual
analysis of the rule space by grouping similar shapelets. In
general, this might come at the cost of a slight decrease
in performance. However, some datasets might also benefit
from clustering at the quantitative level. In the previous
section, two datasets from the UEA archive —ERing and
DuckDuckGeese— showed signs of improvement with clus-
tering. Therefore, we decided to further tune their clustering
ratio. The results in Table IV and Table V show significant
performance gains for both datasets.
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TABLE III: Ablation study: assessing the effect of each RT
component on the overall performance

RT Version Averag?‘;: )c curacy Average Rank
Basic 58.05 2.92
Shapelet I.Jengths 61.60 271
Selection
Shapelet Lengths
Selection 62.13 233
Support Rule Selection
Shapelet Lengths
Selection 62.42 233
Fisher Rule Selection
Shapelet Lengths
Selection 59.66 2.67
Clustering

TABLE IV: ERing Clustering Ratio Tuning

Clustering Ratio (%)
Accuracy (%)

10
92.59

15
88.15

No Clustering 5
83.70 83.70

E. Case Study

1) Solar Flare Dataset: We perform a case study on a real-
life solar flare-based multivariate time series dataset produced
by a research team from Georgia State University [45]. Solar
flares are defined as rare and sporadic massive eruptions
of electromagnetic radiation from the sun’s surface that can
highly affect astronauts, space infrastructure, the atmosphere,
and ground surfaces. Each sample in the dataset is made
of 33 dimensions representing active region magnetic field
parameters recorded at 12 minutes intervals for a duration of
12 hours (60 time steps in total), and labeled according to
the largest solar flare that occurred in the next 12 hours (5
different classes: X, M, C, B, and Q). The original data is
collected in the form of solar vector magnetograms, captured
by the Helioseismic Magnetic Imager (HMI) [46]-[48] on-
board NASA’s Solar Dynamics Observatory (SDO) [49]. Since
the dataset suffers from an important imbalance problem, we
are using a balanced version where the B and C classes have
been merged into a B/C class, and the dataset has been under-
sampled. The final dataset contains 1354 samples, distributed
across 4 classes as shown in Table VI.

2) Performance Evaluation: First, we compare the perfor-
mance of FS, LTS, ELIS, ST, and RT. The algorithms were
trained using a 5-fold cross-validation, with a 6 hours time
contract for each fold. ELIS did not complete in time. Table
VII shows that RT achieves the highest mean accuracy. In
addition, it has the second smallest standard deviation, which
demonstrates the robustness of the algorithm.

3) Effect of Time Bounding: In the previous sections, we
assumed that time bounding RT does not significantly hurt the
performance of the algorithm. We verify this assumption by

TABLE V: DuckDuckGeese Clustering Ratio Tuning

Clustering Ratio (%)
Accuracy (%)

10
24.00

15
36.00

20
28.00

No Clustering
20.00
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TABLE VI: Solar flare dataset class distribution

Q
345

Class
Number of elements

X
303

M
350

B/C
356

All
1354

TABLE VII: Performance Comparison on the Solar Flare

Dataset
Algorithm FS LTS ST RT
Accuracy (%) 46.40 | 43.50 | 44.39 | 72.82
Standard Deviation 1.60 2.21 2.79 1.77

running RT without time contract. The accuracy was 74.30%,
close to the 72.82% accuracy of the contracted runs.
4) Rule Space Analysis:

a) Qualitative Analysis: As discussed in Section VLA,
visualizing the temporal rules extracted by RT can provide
significant insights to domain experts and helps understand the
decisions of the classifier. In particular, it is highly interesting
to examine rules that happen uniquely under one output class.
We extract such rules by considering the per-class distribution
of the aggregate supports and selecting the ones with the
largest distance from a random probability distribution. Figure
4 shows an A overlaps B and an A precedes B rule which
happen uniquely under the X class. Furthermore, shapelet A
in the A precedes B happens also under class Q, which
highlights the importance of the rule in discriminating the two
classes, and in this case, in preventing damage from high-risk
solar flare events.

b) Quantitative Analysis: When performing rule selec-
tion using fisher scores or simply thresholding the aggregate
rule supports as described in Section IV.F, we noticed that
the performance of RT is not significantly affected until the
rule space is decreased by a factor of more than 100. In this
section, we explore the rule space extracted from the solar
flare dataset. We calculate the distributions of the rule supports
by the aggregate support threshold and display the results in
Figure 5. The boxplots show that dropping rules with low
support increases the variation of the data at the level of
the IQR. Also, lowering the support threshold increases the
median value of the aggregate distribution. This confirms our
previous results and proves the importance of rule selection.

VII. CONCLUSION

In this work, we proposed RT, an MTSC algorithm that ex-
tends a state-of-the-art shapelet-based classifier with temporal
rules. By this, we aim to fill the gap between temporal associ-
ation rule mining and TSC and to increase the interpretability
of current classification techniques. The ideas behind this
approach are: (1) using ST to extract the most discriminative
shapelets from the time series dataset, (2) mining rules using
these shapelets and based on Allen’s Interval relationships, and
(3) transforming the dataset to the new rule feature space and
use it to perform classification. To the best of our knowledge,
this is the first effort to use shapelets as the building blocks
for temporal rule mining. We tested the proposed approach
on the UEA MTSC archive and evaluated its performance
against Fast Shapelets (FS), Learning Time Series Shapelets
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(LTS), Efficient learning Interpretable Shapelets (ELIS), and
Shapelet Transform (ST). The results show that our approach
produces higher accuracies, with the additional interpretability
edge. As a first effort to combine rule mining and classification
tasks, RT holds significant promises as an interpretable model.
Visualizing the temporal rules that happen exclusively under
one class (or a subset of classes) will provide useful insights
to domain experts.
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