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In this work, we focus on generating counterfactual expla-
nations for the time series classification. In the context of time
series classification task, given an input query instance x and
the model’s class prediction ci, a counterfactual instance xcf

includes the minimal necessary change in the input features
that flips the predicted class to the desired label cj [12]. Ac-
cording to the recent literature on counterfactual explanations
for various data modalities, an ideal counterfactual explanation
should satisfy the following properties: validity, proximity,
sparsity, and contiguity [13], [14].

In light of the aforementioned counterfactual method prop-
erties, we propose a Shapelet-Guided Counterfactual Expla-
nation (SG-CF), a novel model that generates interpretable,
intuitive post-hoc counterfactual explanations for time series
classification. Our paper contributions are as follows: (1) We
define a new objective function that encapsulates the desirable
properties (validity, proximity, sparsity, and contiguity) of a
counterfactual explanation for time series data. Our new loss
does not require the use of class activation maps to search for
the counterfactual explanation, which makes it model-agnostic.
(2) We leverage the prior mined shapelets for guiding the per-
turbations toward an interpretable counterfactual explanation.
(3) We conduct experiments on nine real-life datasets from
various domains (image, Spectro, ECG, motion, sensor, and
simulated) and show the superiority of our methods over other
baselines.

To the best of our knowledge, this is the first effort to
leverage the prior mined shapelets to produce high-quality
counterfactual explanations of the time series classification
problems. The rest of this paper is organized as follows: in
section II, we lay the ground of our research by introducing
the background and related works. Section III introduces
the preliminary concepts. Section IV describes our proposed
method in detail. We present the experimental results and
evaluations in comparison to other baselines in section V.
Finally, we conclude our work in section VI.

II. BACKGROUND AND RELATED WORK

One of the most prominent post-hoc explanation approaches
is to determine the feature attributions given a prediction
through local approximation. Ribeiro et al. [15] propose a
feature-based approach, LIME, that examines the effect of the
perturbed input in the vicinity of the decision boundary to
generate insight. Guidotti et al. [16] extend this approach by
proposing LORE, which is a local black box model-agnostic

Abstract—EXplainable Artificial I ntelligence ( XAI) methods 
have gained much momentum lately given their ability to shed the 
light on the decision function of opaque machine learning models. 
There are two dominating XAI paradigms: feature attribution 
and counterfactual explanation methods. While the first family of 
methods explains why the model made a decision, counterfactual 
methods aim at answering what-if the input is slightly different 
and results in another classification decision. Most of the research 
efforts have focused on answering the why question for time 
series data modality. In this paper, we aim at answering the 
what-if question by finding a  g ood b alance b etween a  set 
of desirable counterfactual explanation properties. We propose 
Shapelet-guided Counterfactual Explanation (SG-CF), a novel 
optimization-based model that generates interpretable, intuitive 
post-hoc counterfactual explanations of time series classification 
models that balance validity, proximity, sparsity, and contiguity. 
Our experimental results on nine real-world time-series datasets 
show that our proposed method can generate counterfactual ex-
planations that balance all the desirable counterfactual properties 
in comparison with other competing baselines.

Index Terms—Explainable Artificial I ntelligence ( XAI), coun-
terfactual explanations, shapelet-guided, time series classification

I. INTRODUCTION

In recent years, time series classification m ethods have 
been widely adopted in various domains of physical and life 
sciences such as aerospace [1], astronomy [2], [3], medicine 
[4], [5]. The success of data-driven time series classification 
methods is enabled by the availability of big data which
has provided researchers the unprecedented opportunity to 
develop highly accurate models and deploy them in real-life 
applications [6], [7], [8]. However, most of the time series 
models, especially deep learning models, consider accuracy
as their foremost priority without necessarily providing a
tracing mechanism of the model’s decision-making process 
which limits their interpretability [9]. Although accurate, non-
explainable models are hardly adopted by science communities 
where domain experts are unlikely to put their judgment aside
in favor of a machine [10].

To address the model opacity concern, EXplainable Ar-
tificial I ntelligence ( XAI) m ethods h ave b een p roposed by
experts from different domains [11]. Significant research
advancements have been accomplished on explainability in
the computer vision and natural language processing (NLP)
domains, but there are still many challenges to be addressed
to provide interpretability for the time series domain [12].
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explanation approach based on logic rules. Similarly, Lundberg
and Lee [17] present a unified framework that assigns each
feature an importance value for a particular prediction, which
is known as SHAP. Similar to identifying feature importance,
visualizing the decision of a model is a common technique
for explaining model predictions [18]. In the computer vision
community, visualization techniques are widely applied to
different applications, ranging from highlighting the most
important parts of images to class activation maps (CAM) in
convolutional neural networks [19].

Not until recently, Wachter et al. [20] proposed a counterfac-
tual (CF) explanation method as an alternative to feature-based
methods. Wachter counterfactual method (wCF) minimizes a
loss function, using adaptive Nelder-Mead optimization, that
encourages the counterfactual to change the decision outcome
and keep the minimum Manhattan distance from the original
input instance. Following the same line of thought, GECO
has recently been proposed to tackle the plausibility and
feasibility issues of the generated counterfactual explanation.
The model achieves the desirable counterfactual properties
by introducing a new plausibility-feasibility language (PLAF)
[21]. Both GeCo and wCF focus on structured tabular datasets.
Given that both methods explore a complete search space, they
are not adequate to use in a high-dimensional feature space
such as a time-series data modality.

More recently, several studies have been proposed to pro-
vide explanations for time series data. Native Guide (NG) in
[13] integrates feature attribution information into the coun-
terfactual generation process to generate sparse counterfactual
explanations that provide information about discriminative and
meaningful areas of the time series. TimeX that developed in
[14] is an extension based on wCF. TimeX introduces a new
dynamic barycenter average Loss term that encapsulates the
desirable properties of time series counterfactual explanations.
Study in [22] proposed a Motif-guided method that generates
counterfactual explanation by naively substituting the mined
motif part from the class of interest for time series classifica-
tion. CoMTE proposed by Ates et al. [23] is a counterfactual
explanation method for multivariate time series data. CoMTE
focuses on selecting time series from the training set and
substituting variables to obtain the explanations. Study in
[24] develops a counterfactual generation algorithm SETS for
multivariate time series data. SETS is a shapelet explainer that
combines the original class-shapelet removal with target class-
shapelet introduction to generate instance-based counterfactual
explanations.

In this work, we introduce a new shapelet-guided loss term
that enforces each counterfactual instance xcf to be close to
the prominent shapelet that is representative of a specific class.

III. PRELIMINARY CONCEPTS

In this section, we formally describe the time series coun-
terfactual explanation problem and the key concepts that are
used throughout the paper.

Problem Definition. Assume a time series x =
{t1, t2, ..., tm} is an ordered set of real values, where m is

Fig. 1: Classification of Gun-draw/Finger-point movement.
We observe that a classifier f predicts the input time series
x as class Finger-point. When transforming x to xcf by
changing one segment (indicated in green), the prediction
result converts to class Gun-draw.

the length, then we can define a time series dataset T =
{x0, x1, ..., xn} as a collection of such time series where each
time series has mapped to a mutually exclusive set of classes
C = {c0, c1, ..., cn}. We split the dataset T into a training set
D and a test set respectively. The training set is used to train a
time series classifier f . For each query instance x in the test set
associated with a predicted class f(x) = ci, a counterfactual
explanation model M generates a perturbed sample xcf with
the minimal perturbation that leads to f(xcf ) = cj such that
cj ̸= ci.

To elaborate on the problem of counterfactual explanation,
we present one example from the motion domain:

Gun-draw versus finger-point: Consider the problem of
distinguishing whether one specific motion corresponds to a
gun-draw or finger-pointing. In Fig. 1, we can see the orange
time series which records a regular finger-pointing motion
(query instance x). The objective of counterfactual explanation
is to generate a perturbed sample (counterfactual instance
xcf ), such that a time series classifier f predicts it a gun-
point motion instead. The green curve in Fig. 1 represents the
perturbation result xcf that is generated by a counterfactual
explanation model M, which makes the time series classifier
f predicts the generated counterfactual instance xcf a gun-
point motion.

Shapelets. Shapelets, also known as motifs, are time series
sub-sequences that are maximally representative of a class
[25]. Shapelets provide interpretable information beneficial for
domain experts to better understand their data [25]. Figure 4a
and Figure 4b in Figure 4 show the example of the mined
shapelets from the Coffee dataset. The magenta lines show
two instances from the Robusta and Arabica classes while
the highlighted red segments represent their representative
shapelets. Shapelets are used in SG-CF to generate shapelet-
guided representative samples for assessing the closeness of
the produced CF to the desired class outcome as later discussed
in Section IV.
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IV. SHAPELET-GUIDED COUNTERFACUTAL EXPLANATION

In this section, we describe our proposed SG-CF counterfac-
tual explanation method. SG-CF perturbs time series instances
to generate an explanation by explicitly embedding the desired
properties of an ideal explanation in the loss function. The
original w-CF formulation of the counterfactual discovery
problem proposed by Wachter et al. involves minimizing an
objective function that encourages the perturbed instance to
change the label with minimal perturbed data points [20].
The first objective is measured using the class prediction
probabilities of the model f , and the second objective is
assessed using the Manhattan distance (L1-norm) between the
query instance x and the perturbed instance xcf . Equation 1
defines the loss function with respect to the prediction loss
Lpred and the distance loss LL1.

argmin
xcf

max
λ

λ (ci − cj)
2︸ ︷︷ ︸

Lpred

+ d (x, xcf )︸ ︷︷ ︸
LL1

, cj ̸= ci (1)

where cj is the class of interest that is different than the
original class ci of the query time series x.

A. Shapelet-Guided Loss

Following the original w-CF formulation, we introduce
a new shapelet-guided loss term Lshapelet to Equation 1
that guides the perturbations performed on x yielding to the
counterfactual xcf to fall in the distribution of the counter-
factual class. To achieve this purpose, prior to the post-hoc
explanation, we mine the most prominent shapelets for each
class and introduce them in the objective function to guide the
perturbations toward an interpretable counterfactual. The new
loss term enforces the counterfactual instance xcf to be close
to the prominent shapelet xshapelet extracted from the class of
interest cj . We define the shapelet-representative instance as
being the most prominent shapelet of each class. Shapelets’
prominence is assessed by their discriminatory power. To
mine the most prominent shapelets, we apply the Shapelet
Transform (ST) algorithm proposed by [26]. Our new shapelet-
guided loss is defined in Equation 2 and the new combined
proposed loss is shown in Equation 3.

Lshapelet = d(xcf , xshapelet) (2)

L = Lpred + LL1 + Lshapelet (3)

B. Shapelet-Guided Counterfactual Explanation Algorithm

The general architecture of our proposed counterfactual
model is illustrated in Figure 2. For the sake of discussion,
in this example, we assume a binary class classification and
a deep learning model as the prediction function f . Shapelet-
guided Counterfactual Explanation starts by training a classi-
fier f using the training dataset D, then the label of each query
instance in the test dataset is predicted using the pre-trained
model f . The newly predicted dataset is then split based on the
number of classes that exist in D. In this example, the newly
predicted dataset results in two splits: predicted positive class
(+) and predicted negative class (-). The next step consists
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Fig. 2: Shapelet-guided Counterfactual Explanation

of generating the most prominent shapelets from the training
dataset D for the two sets that will be later used during the
counterfactual perturbation. Figure 4-(a) and Figure 4-(b) show
the two shapelet-representative samples we generated for the
Arabica and Robusta classes in the Coffee dataset.

To generate an explanation of a query time series X ,
the SG-CF optimizer takes the query instance and the most
representative shapelet of the opposite predicted class of
x. In the example in Figure 2, the predicted input query
belongs to the negative class (red class); therefore, the shapelet
representative sample of the positive class (green class) is fed
to the optimizer. In the first iteration step (i=0), the shapelet
existing part (purple part in Fig. 2) is chosen as the best
candidate for perturbation. Random noise is then injected into
the best candidate segment whose shape is optimized following
the desired CF properties encoded in the new proposed loss
(refer to Equation 3). At the end of the learning iteration,
the optimized counterfactual is evaluated to assess its validity
using the pre-trained model f . Fig 4c and Fig 4d in Fig 4
show the generated counterfactual explanations for the Coffee
dataset of the Arabica and Robusta classes.

.

V. EXPERIMENTAL RESULTS

In this section, we outline our experimental design and
discuss our findings. We conducted our experiments on the
publicly-available univariate time series data sets from the
University of California at Riverside (UCR) Time Series
Classification Archive [27]. We tested our model on nine
real-life datasets from various domains (image, Spectro, ECG,
motion, sensor, and simulated). We conduct our experiments
on both binary class and multiple class datasets. The length of
the time series in these datasets varies between 82 and 637.
Table I shows the details of the nine datasets we used in our
experiments.

A. Baseline Methods

We evaluated our proposed SG-CF model with the other
two baselines, Alibi and Native guide counterfactual.
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TABLE I: UCR Datasets Metadata

ID Dataset Name Label TS length Type
0 Coffee 2 286 SPECTRO
1 BirdChicken 2 512 IMAGE
2 BeetleFly 2 470 IMAGE
3 GunPoint 2 150 MOTION
4 ECG200 2 96 ECG
5 Lightning2 2 637 SENSOR
6 TwoLeadECG 2 82 ECG
7 FaceFour 4 350 SENSOR
8 CBF 3 128 SIMULATED

• Alibi Counterfactual (Alibi): Alibi exposes four meth-
ods for finding counterfactuals: counterfactual instances
(CFI), contrastive explanations (CEM), counterfactuals
guided by prototypes (CFP), and counterfactuals with
reinforcement learning (CFRL). These four methods are
proposed to provide interpretability for the tabular and
image data. In our experiment, we fit the first method CFI
to our time series datasets. CFI loosely follows the work
of Wachter et al. [20], which constructs counterfactual
instances from a query instance by running gradient
descent on a new instance to minimize the prediction loss
Lpred and the L1 distance loss LL1

.
• Native guide counterfactual (NG-CF): NG-CF is the

latest time series counterfactual method that uses the
explanation weight vector (from the class activation
mapping) and the in-sample counterfactual (the nearest
unlike neighbor from another class) to generate a new
counterfactual solution. Although the method is model
agnostic, the method reaches its full potential when class
activation weights are available.

The source code of our model is available on the SG-CF
project website 1.

B. Prediction Model Details

For fairness purposes, we evaluated all the aforementioned
counterfactual baselines on the same prediction model f .
Following the lead of NG-CF, we used a fully convolutional
neural network (FCN) originally proposed by Wang et al. [28]
for time series classification, closely following the implemen-
tation by Fawaz et al. [9].

C. Evaluation metrics

The goal of our experiments is to assess the performance of
the baseline methods with respect to all the desired properties
of an ideal counterfactual method. To evaluate our proposed
method, we compare our method with the other two base-
lines in terms of several metrics: the target class probability
(validity), L1 distance (proximity), sparsity, and the number of
independent perturbed segments (contiguity). Fig. 3 shows the
results of different datasets. The validity, proximity, sparsity,
and contiguity of each dataset that are shown in Fig. 3 is the
mean value over the set.

1https://sites.google.com/view/sg-couterfactual/

We define the validity metric by comparing the target class
probability for the prediction of the counterfactual explanation
result. The closer the target class probability is to 1, the better.

We use L1 distance to demonstrate the proximity, which
measures the closeness between the counterfactuals and the
original input instance, a smaller L1 distance is preferred.

The third evaluation metric that we used is the sparsity level
(Equations 4-5) of the baseline models, which is defined by
[14]. The highest sparsity is an indicator that the time series
perturbations made in x to achieve xcf are minimal. Therefore,
a higher sparsity level is desirable.

Sparsity = 1−
∑len(x)

i=0 g(xcf
i, xi)

len(x)
(4)

g(x, y) =

{
1, if x ̸= y
0, otherwise (5)

Finally, we investigate the number of independent non-
contiguous segments that were used by each baseline to per-
turb to achieve a counterfactual explanation, which is related
to the contiguity property. The lower the contiguity metric
value the better.

D. Evaluation results

Fig. 3 shows the evaluation results on the CF desired
properties assessed using the aforementioned metrics. Fig.
3a shows the comparison of the validity (target probability)
and proximity (L1 distance) properties for the generated CF
among all counterfactual explanation models. For BirdChicken
(ID 1), ECG200 (ID 4), and FaceFour (ID 7) datasets, we
note that Alibi achieves the lowest L1 distance (proximity),
which is highly desirable. However, Alibi minimizes proximity
in the cost of validity. Alibi achieves the lower target class
probability (validity), which entails that the method generates
CF explanations that are relatively less valid. For the CBF
dataset(ID 8), NG-CF achieves the lowest L1 distance but also
results in the lowest target probability. Our proposed SG-CF
achieves competitive L1 distance while resulting in the highest
target probability in general. In sum, compared with ALIBI
and NG-CF, SG-CF shows a good balance without maximizing
one property and compromising the other in terms of proximity
and validity.

Fig. 3b shows the comparison of the contiguity (number
of segments) and sparsity (sparsity level) properties for the
generated CF among all counterfactual explanation models.
Given the constraint on the size of the perturbation range that
is used in SG-CF and NG-CF methods, the sparsity levels and
the number of independent segments of NG-CF and SG-CF
are similar. However, ALIBI results in the lowest sparsity level
and the highest number of independent perturbed segments
compared to NG-CF and SG-CF.

E. Case Study for Coffee dataset

Food spectrographs are used in chemometrics to classify
food types, a task that has obvious applications in food safety
and quality assurance [29]. The coffee data set is a two-
class problem to distinguish between Robusta and Arabica
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(a) Target probability (the higher the better);
L1 distance (the lower the better)

(b) Number of independent segments (the lower the better);
sparsity level (the higher the better)

Fig. 3: The evaluation result of the CF explanations generated by ALIBI, NG-CF, and SG-CF. (All of the reported
results are the average value over the counterfactual set)

coffee beans. In this section, we consider a coffee beans
classification task and demonstrate a user-case example from
the Coffee spectrogram dataset. Fig. 4a and 4b show the two
representative samples that we extracted from Robusta and
Arabica classes respectively. The red lines shown in Fig. 4a
and 4b are the representative shapelets that are used to guide
the counterfactual explanations. Giving two query instances
(see the magenta lines in Fig. 4c and Fig. 4d) from Robusta and
Arabica classes respectively, we generate the counterfactual
explanations (see the green lines in Fig. 4c and Fig. 4d)
for each class by applying the objective function that shows
in equation 3. The perturbation parts are shown between
two blue parallel dashed lines in Fig. 4c and Fig. 4d, the
perturbation parts are limited in shapelet existing range, which
contributes to getting contiguous and sparsity counterfactual
explanations. The small distances between the query instance
and the counterfactual instance that we can see from Fig.
4c and Fig. 4d) also verify the proximity property of our
generated counterfactual explanations.

VI. CONCLUSION

In this paper, we propose a novel model SG-CF that gen-
erates interpretable, intuitive post-hoc counterfactual explana-
tions for time series classification. Existing work of providing
counterfactual explanations for time series data suffer from
the problem of maximizing one desirable property at the cost
of others. We address these challenges by proposing SG-
CF, an optimization-based model that produces high-quality
counterfactual explanations that are close to the original
input instance, contiguous, and sparse. The shapelet-guided
counterfactual explanation method includes a new shapelet-
guided loss that guides the perturbations on the query time
series resulting in significantly sparse and more contiguous
explanations. As a future step, we would like to extend
the scope of this work to multivariate time series data by

applying Allen’s interval algebra to connect the shapelets from
different dimensions to generate high-quality counterfactual
explanations.
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