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Abstract—The black-box nature of machine learning models is
the main reason impeding their full adoption in decision-making
processes. In order to reduce models’ opacity and overpass this
challenge, major efforts that aim to increase stakeholders’ trust
and ensure the fairness of decisions are being made by the data
mining community under the Explainable Artificial Intelligence
(XAI) paradigm. The two main categories of solutions are 1)
developing fully transparent algorithms and 2) providing post
hoc explanations. However, the literature is rather scarce when
it comes to time series data, and even more so in the context
of multivariate time series. In this work, we aim to exploit the
discriminative power of shapelets and temporal rules in time
series mining and capitalize on their inherent interpretability to
develop a model-agnostic, temporal rule counterfactual explainer
(TeRCE) for multivariate time series datasets. Counterfactual
explanations indicate how should the input change such that
the decision output changes too. Thus, they can highly increase
the interpretability of black-box models. We test TeRCE on five
benchmark datasets from the UEA archive and prove that it
produces high-quality counterfactuals. Moreover, we show that
in addition to being visually and conceptually interpretable, our
approach performs better than the state-of-the-art algorithms in
terms of proximity, sparsity, and second in terms of plausibility.

Index Terms—counterfactual explanations, multivariate time
series, shapelets, temporal association rules

I. INTRODUCTION

Fueled by the data explosion and the tremendous develop-
ment of storage and processing capabilities, machine learning
systems have indisputably become the first choice for predic-
tive tasks. In many cases, they are capable to perform even
better than physics-based models, whilst being less expensive
and faster to run. However, their full integration into decision-
making processes requires improvements at the level of their
explainability and interpretability. Indeed, besides a few algo-
rithms such as linear regression and decision trees, machine
learning algorithms are of a black-box nature: their inner
workings are hard to comprehend by humans. In particular,
the high complexity of deep neural network-based methods
—which have achieved breakthroughs in domains such as
computer vision and natural language processing— raises
concerns regarding their fairness and trustworthiness. In this
context, in response to several initiatives that aim to reduce the
opacity of machine learning models and to provide fair and
trustworthy explanations to end users [1], [2], EXplainable
Artificial Intelligence (XAI) received a lot of attention from
the research and industry communities alike. XAl is concerned

with providing intrinsic explanations by developing inter-
pretable models with simple, human-understandable logic and
transparent inference processes. Such models include decision
trees, naive bayes, and linear regression. However, because of
the imposed simplicity and interpretability constraints, these
models are not able to achieve high performance in more
complex problems. Therefore, another major focus of XAl is
to develop post hoc explanation algorithms. Such algorithms
can be used on top of the highly complex black-box models
to generate human understandable explanations. For example,
feature attribution methods assess the contribution of each
input feature to the model decision, while counterfactual
explanation methods indicate the change to the input needed
in order to result in a different model decision output. In
recent years, post hoc explanation methods have achieved
important success on tabular, image, and text datasets [3]-
[6]. In addition, a few methods have also been developed
for univariate time series data [7]-[9]. However, multivari-
ate time series methods have been very sparse because of
their challenging high-dimensional nature. In this work, we
exploit the discriminative power of shapelets and temporal
rules in time series mining and capitalize on their inherent
interpretability to develop a model-agnostic, temporal rule
counterfactual explainer (TeRCE) for multivariate time series
data. We evaluate the performance of our approach on five
benchmark datasets from the University of East Anglia (UEA)
archive [10], and compare it to state-of-the-art counterfactual
generation methods. The rest of this paper is organized as
follows. Section II contains a brief description of state-of-
the-art post hoc explanation methods. Section III introduces
the counterfactual generation problem, describes the proposed
algorithm, and discusses evaluation measures. Section IV de-
scribes the experimental setup. Section V presents the results.
And finally, Section V concludes with a summary.

II. RELATED WORKS

Feature attribution methods were the first to generate post
hoc explanations. For example, LIME [6] works by slightly
perturbing the original instance and examining the effect of
the perturbations on a surrogate linear model, while SHAP
[4] derives the additive Shapley values of all features in
order to compute their importance. In 2018, instance-based
counterfactual explanation methods have seen the light with
the work of Wachter et al. [11]. This algorithm aims to
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generate explanations by optimizing a loss function contain-
ing a prediction term and a distance term. Then, several
optimization-based algorithms that add new terms to the loss
function to improve the quality of the counterfactuals and
to speed up the search were proposed as an extension [3],
[12], [13]. Since none of the methods mentioned so far has
been designed for time series data, efforts to adapt them to
the time series context through an apriori data segmentation
or some other techniques have yielded poor results [5], [9],
[14]. Therefore, new algorithms specifically developed for
time series have been recently proposed. [7] extract shapelets
from the dataset and use them to build a decision tree. The
tree is then used to generate explanation rules. Delaney et al.
[9] developed native guide (NG), an algorithm that extracts
the nearest-unlike-neighbor (nun) of the original instance and
uses it to introduce perturbations at the level of the most
important contiguous time interval, selected based on the
class activation mapping (CAM) of the black-box model. In
case CAM cannot be applied to the machine learning model
at hand, NG defaults to perturbations using dynamic time
warping barycenter averaging (DBA). In 2021, CoMTE, the
first counterfactual explanation algorithm for multivariate time
series was developed by [14]. COMTE perturbs the original
instance by replacing entire feature dimensions extracted from
its nun.

III. METHODOLOGY
A. Problem Definition

We describe the multivariate time series counterfactual
explanation problem as follows. Consider a multivariate time
series dataset D = {MTS1, MTS,, ..., MTS,}, where each
instance MT'S; is assigned to a class C; € {C1,Cs,...,CL}
and represented by a d dimensional list of time series vectors
TS, of T time steps: MTS; = (T'S1,TSs,...,TS4) and
TS; = (T'Sj1,TSj2,.. TSjr). [ is the prediction function
of a black-box classification model trained on D. Given the
class prediction f(MTS;) = C, the goal is to generate a
counterfactual instance MT'S.y by introducing a perturbation
to MTS; such that f(MTS.s) # C;.

B. Shapelet Transform

Several shapelet-based classification algorithms have been
recently introduced in the literature [15]-[18]. However,
shapelet transform (ST) [19]-[21] has been pointed out among
the most powerful time series classification algorithms [22], in
addition to being fully transparent and interpretable. Thus, we
adopt it in this work to extract shapelets as the first step in
our algorithm.

A shapelet is defined as a phase-independent, discriminative
time series interval that occurs frequently in a dataset. In
ST, shapelets are mined by first iterating through all possible
candidate shapelets S; of predefined lengths in a time series
dataset. Then, the distance separating each S; from each
dataset sample 7'S; is recorded as the minimum distance
between S; and each subsequence of T'S; of the same length.
Based on these distances, the information gains of shapelets

TABLE I: Allen’s Interval relationships
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are computed and the ones with the highest values are retained.
Since ST was initially developed for univariate time series, it
can be adapted to multivariate datasets by extracting shapelets
from each dimension separately.

C. TeRCE

In this section, we present TeRCE, a model-agnostic, tem-
poral rule counterfactual explainer for multivariate time series
data.

1) Model Fitting:

a) Temporal Rule Mining: A temporal rule A — B
defines a relationship between an antecedent time interval A
and a subsequent time interval B. In its most basic form,
the relationship is a precedes operator, indicating that A
occurs before B. We mine temporal rules from a multivariate
time series dataset D by considering all possible temporal
relationships between the shapelets extracted using ST. The
set of possible relationships defined in Allen’s Interval Algebra
[23] is shown in Table I. Since the 13 relationships in Table I
are symmetric, we only consider 7 of them, namely: precedes,
meets, overlaps, finishes, contains, starts, and equals.
Then, we record the occurrence of each rule in a binary vector
R = (r1,79,...,7y,) where r; = 0 if the rule happens in MT'S;
and r; = 1 if it does not happen in MT'S,. Figure 2. shows
two example rules extracted from the Libras dataset.

b) Class-Rules Extraction: We compute the fisher scores
[24], [25] of the occurrence vectors of the rules extracted
in the previous step and retain the most discriminative rules,
i.e. those with the highest scoring occurrence vectors. Then,
we select class-rules —rules that occur under one class la-
bel only— and discard the others. Next, we compute the
occurrence distribution of each class-rule as the average of
all the occurrence indices of its antecedent shapelet and
the average of all the occurrence indices of its subsequent
shapelet. The motivation behind using these temporal rules
is that, in addition to their discriminative power, they are
highly interpretable. Moreover, they add a notion of phase
dependence to the phase-independent shapelets by relating
them across different dimensions.

2) Counterfactual Generation: For a dataset sample
MTS,ig of class f(MTSorig) = Corig, a counterfactual
explanation MT'Sc; such that f(MTS.s) = Ciarger Where
Ctrarget 7 Corig 1s generated as follows. First, a k-Nearest-
Neighbor model with & = 1 is trained on the dataset intances
of class Cigrger and is used to find M7T'S,,y, the nearest-
unlike-neighbor of MT'S,.;,. Then, step a and step b are
performed until a valid counterfactual MT'S.; is found as
shown in Figure 1.
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Fig. 1: TeRCE counterfactual generation. First, the two original class-rules (ApB and AdB) are replaced from the nun.
Then, the two target class-rules (AeB and AoB) are introduced.

a) Original Class-Rule Removal: First, the original in-
stance MT'S,.;4 is searched for the presence of original class-
rules. Then, each detected original class-rule is replaced —in
descending order of Fisher score— by the values of MT'S,,.,,
at the same time steps, after scaling to the original range of
magnitudes using min-max scaling. This step aims to discard
the rules that characterize class Cy;y and that play a role in
the original model prediction.

b) Target Class-Rule Introduction: The Cigrger class-
rules are sorted in descending order of Fisher score and
introduced to M7T'S,,;, according to their occurrence distri-
bution intervals, after scaling to MT'S,,;,’s original range of
magnitudes using min-max scaling. If none of them leads to a
valid counterfactual, perturbations made of two or more class-
rules are introduced until f(MTS.r) = Ciarget-

D. Evaluation Measures

Introducing perturbations at the level of the rules allows
TeRCE to generate highly meaningful counterfactual expla-
nations. Visualizing the generated counterfactuals and high-
lighting the perturbations such as in Figure 4 increases the

interpretability of the explanations and helps understand the
process. In addition, considering the discriminative power of
the temporal rules in a classification problem context will po-
tentially increase the stakeholders’ trust in TeRCE. However,
comparing our algorithm to other counterfactual generation ap-
proaches requires performing a quantitative evaluation. In this
section, we present three counterfactual evaluation measures
that have been repeatedly used in the literature and describe
their use in this paper.

1) Proximity: (or closeness, distance). Ideally, the gener-
ated counterfactual explanation should be as close as possible
to the original instance. However, since other measures have
to be considered, the proximity measure ensures that the
perturbation remains of small magnitude. Similar to [9], we
use the Ly — norm (or Manhattan distance), the Ly — norm
(or Euclidian distance), and the L;,y — norm as measures
of proximity, as described in equations (1), (2), and (3)
respectively. The first two measures compute the distance
between MT'S,.;q and MTS.; and the third measure gets
the magnitude of the highest perturbation time step.
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2) Sparsity: The perturbation introduced to generate a
counterfactual explanation should affect the fewest number of
features possible, and time steps in the case of time series
data, to generate more informative explanations [13]. The more
dimensions and time steps are changed, the harder it is to
understand by stakeholders and the less likely it is to be feasi-
ble. Moreover, time series perturbations should be constrained
to short, contiguous intervals for the counterfactuals to be
meaningful [8], [9].

3) Plausibility: (or interpretability). Counterfactual expla-

nations must be realistic and easily interpretable by hu-
mans, which is not guaranteed by the proximity and sparsity
measures. Therefore, plausibility is considered as the third
criterion. It can be measured by considering whether the
counterfactual belongs to the training data manifold by using
novelty detection techniques or other approaches [9], [26],
[27].
Following the work of Van Looveren and Klaise [3], we use
the IM measure to compute the plausibility of counterfactual
MTS.;. First, we train autoencoder AF on the entire dataset
and autoencoder AFE;4,4¢¢ 0n instances of class Ciqrger. Then,
we compute IM2 as the distance between the reconstructions
of MTS.y using AE and AFEq,get, scaled by the Ly —norm
of MT'S.¢ to allow comparisons across all classes as shown in
equation (5). A lower value of IM is desirable, as it indicates
that the distribution of Cy,rget instances describes MT'S.f as
well as the distribution of the entire dataset, i.e. MT'S.y is as
close to the data manifold of Cj,ge¢ instances as it is close
to the date manifold of all dataset classes.

||AEtarget(MTScf) - AE(MTScf) ” |%

IM(MTS,.;) =
(MTSer) IMTS. T T e

“4)
IV. EXPERIMENTAL SETUP
A. Datasets

We evaluate our approach on the five classification datasets
from the University of East Anglia (UEA) MTS archive
[10]. BasicMotions and Epilepsy contain accelerometer and
gyroscope data describing four activities, collected by a
smartwatch. FingerMovements contains Electroencephalogram
(EEG) data recorded while pressing a keyboard using the
index and pinky fingers only and labeled as left or right hand.
Libras contains the trajectories of hand movements from the

TABLE II: Datasets Characteristics

Dataset Train size | Test size | Dimensions | TS length | Classes
BasicMotions 40 40 6 100 4
Epilepsy 137 138 3 206 4
FingerMovements 316 100 28 50 2
Libras 180 180 2 45 15
RacketSports 151 152 6 30 4

Brazilian sign language projected on a 2D coordinate space.
And RacketSports contains smartwatch data recorded while
playing one of the two strokes of badminton and squash. The
characteristics of each dataset are described in Table II.

B. Implementation Details

We used the sktime [28] implementation of ST, and
modified it to extract the indices of the occurrences of
each shapelet along with their distances to be able to
mine rules. Since the multivariate time series datasets are
high-dimensional, we ran the contracted shapelet transform
implementation. Instead of going through all possible
subsequences, this approach randomly selects shapelets for
a user-defined amount of time. It has been shown that it
does not significantly affect the performance of ST [29]. We
limited the time contract to 30 minutes per dataset. To the
perturbation sparse, we restricted the length of the shapelets
to a maximum of 25% of the length of the time series. In
this work, we adopt a one-vs-all approach for generating
counterfactual explanations for multi-class datasets. However,
TeRCE is also able to generate a counterfactual for each
target class separately. We provide free access to our code
and the solar-flare dataset in the GitHub repository .

C. Compared Methods

1) Alibi: [3] This algorithm was originally developed for
image and tabular data. It is a model agnostic, optimization-
based counterfactual generation approach. The main novelty
of Alibi is the introduction of a prototype term to the loss
function, in addition to the prediction, proximity, and au-
toencoder (plausibility) term. This allows for speeding up the
optimization process and increases the interpretability of the
generated counterfactual explanations.

2) NG: [9] The model agnostic version we use in this
paper extracts the nearest-unlike-neighbor of the instance to be
perturbed from the target class and used in conjunction with
dynamic time warping barycenter averaging (DBA) to guide
the perturbations. NG was initially proposed for univariate
time series datasets. In order to adapt it to multivariate data,
we reshape the datasets so that all dimensions form a single
1-D feature vector.

3) CoMTE: [14] CoMTE was originally designed for
multivariate time series. It extracts the nun of the original
instance using the KD-tree of the target class and uses it
to replace a set of entire time series dimensions. A heuristic
search based on hill climbing and a post hoc trimming step are
employed to find a minimal set of dimensions to be perturbed.
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TABLE III: Proximity Comparison: L;-norm, Ly-norm and L, ¢-norm

BasicMotions Epilepsy FingerMovements Libras RacketSports Average Rank
Ll L2 Linf L2 Linf L1 L2 Linf L1 L2 Linf L1 L2 Linf L1 L2 | Linf
Alibi 846.62 61.18 15.21 191.68 12.26 | 2.00 7523 284 28.62 2.17 049 | 0.19 | 351.95 51.79 19.76 | 22 | 24 2.0
NG 947.18 59.25 13.59 | 175.64 9.77 1.49 7774 305 34.06 3.87 0.56 | 0.15 | 374.72 49.30 18.78 | 2.8 | 2.0 14
CoMTE 1917.83 116.28 | 21.45 | 489.18 | 24.66 | 3.06 | 55735 1900 | 15.81 1597 | 2.05 | 048 | 869.33 100.74 | 31.18 | 4.0 | 4.0 34
TeRCE 345.91 53.76 16.26 | 84.92 11.34 | 2.95 318 76 3422 | 136 | 0.42 | 0.20 | 306.82 | 66.41 2558 | 1.0 | 1.6 | 32
TABLE IV: Sparsity Comparison
"Tremble" class-rule "Face-up Curve" class-rule
140 — xaxis 100 - BasicMotions | Epilepsy [ FingerMovements | Libras | RacketSports | Average Rank
Shapelet A [ A Alibi 597.75 607.86 1300 88.83 179.89 22
120 - g:*‘sl . \/ /7 - NG 580.11 563.37 1145 82.64 165.88 2.0
- apeie _® ‘ CoMTE 598.88 615.14 1395 89.73 179.00 338
S0 g | TeRCE 60.62 91.84 26 17.10 3132 1.0
§ 80 = é 60 ‘
y-axis oy eq .
o 40 == ShapeletA TABLE V: Plausibility Comparison: IM
40 20 SR BasicMotions | Epilepsy | FingerMovements | Libras | RacketSports | Average Rank
0 5 10 15 EY £ 0 10 2 30 40 Alibi 0.027 0.017 0.00207 0.0107 0.0405 1.6
time time NG 0.035 0.022 0.00201 0.0100 0.0462 26
b CoMTE 0.032 0.019 0.00523 0.0129 0.0506 3.6
(a) (b) TeRCE 0.031 0.009 0.00200 0.0115 0.0409 22
Fig. 2: Class-rules in their original locations (Libras dataset)
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Fig. 3: Counterfactual generation using target class-rule
introduction

If this approach fails to generate a valid counterfactual, a
greedy search is performed.

V. RESULTS

We evaluate TeRCE on the five datasets described in Section
IV.A and discuss the results in this section. TeRCE is model
agnostic, meaning that it can generate explanations for any
machine learning model, regardless of its architecture or
transparency. Since ROCKET [30] was the highest ranked and
fastest classifier in [31], we used is as the black-box model.

Counterfactual Explanation
gyroscope (x-axis)
gyroscope (x-axis)

/ //’ \ i Rule introduced
5 — VA S A \,/ﬂ

§ o \ S N[/ -
7 / L/
g -5

-10 \ y X

-15

-20

0 5 10 15 20 25 30

time

Fig. 4: Counterfactual explanation generated by introducing
an ApB Rule (RacketSports Dataset)

A. Qualitative Evaluation

Not only do the class-rules mined by TeRCE represent
the building blocks of the counterfactual generation process,
they also contain important information when considered
separately. Indeed, they can be used for classification pur-
poses where each rule occurrence vector represents a dataset
feature. In addition, visualizing the temporal rules can help
stakeholders achieve a better understanding of the explanation
process and even assist domain experts in acquiring significant
insights from the dataset. In Figure 2, we show two class-rules
extracted from the Libras dataset. The first rule characterizes
“tremble” hand movements and the second rule is character-
istic of “face-up curve” hand movements. In Figure 3, we
illustrate how the first rule from Figure 2.a was used by TeRCE
to generate a counterfactual explanation of class ’tremble”, by
simply introducing it to a dataset instance from the “vertical
zigzag” class. In addition, a counterfactual explanation created
from the RacketSports dataset using TeRCE is shown in
Figure 4. For visualization purposes, the explanations we chose
require the removal or introduction of one rule only.

B. Quantitative Evaluation

In this section, we evaluate the proximity, sparsity, and plau-
sibility of the TeRCE counterfactual explanations generated
from the five benchmark datasets, and compare the results to
baseline algorithms discussed in section IV.C.

1) Proximity: Table III shows that the counterfactuals
generated by TeRCE are significantly closer to the original
instances. However, the perturbations might include some
high-magnitude spikes, as suggested by the 3.2 L;, average
rank. Given that Alibi and NG are based on loss optimization
and DBA respectively, the perturbations they introduced are
of consistently lower magnitudes; however, this indicates that
their sparsity is high.

2) Sparsity: We computed sparsity as the total number of
perturbed time steps throughout all time series dimensions.
Again, Table IV proves that the perturbations introduced by
TeRCE are significantly more contiguous than those of Alibi,
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NG, and CoMTE. The latter produced the least desirable
counterfactuals in terms of sparsity since it replaces entire
feature dimensions.

3) Plausibility: When it comes to plausibility, Table V
shows that Alibi performed the best compared to the other al-
gorithms, while TeRCE ranked second. However, as discussed
in the previous sections, TeRCE has the advantage of being
visually and conceptually interpretable.

VI. CONCLUSION

In this work, we proposed TeRCE, a model-agnostic
MTS counterfactual explanation algorithm. By capitalizing
on the inherent interpretability of shapelets and temporal
rules, TeRCE ensures the meaningfulness of the introduced
perturbations and the high interpretability of the resulting
counterfactual explanations. Moreover, using temporal rules
makes the algorithm visually interpretable and easily under-
standable by end-users. By visualizing the counterfactuals and
considering the perturbations, the rules with the most influence
on the classification process can be determined. In addition,
plotting the temporal rules can help domain experts learn
new insights from the dataset. We evaluated TeRCE on five
datasets from the UEA archive and compared the generated
explanations to three state-of-the-art counterfactual generation
algorithms.
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