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Abstract—Solar physicists frequently use solar magnetic field
parameters for analyzing and predicting solar events. Temporal
observation of magnetic field p arameters, i.e., m ultivariate time
series (MVTS) representation facilitates finding r elationships of
magnetic field s tates t o t he o ccurrence o f e xtreme s olar events
(e.g., solar flares). F eature s election o f M VTS-represented solar
magnetic field parameters (features) can select the most relevant
parameters that give high prediction accuracy. In this paper,
we propose a deep learning-based feature selection method,
more specifically, an L STM-based i ncremental f eature selection
method, as an end-to-end solution for feature selection in MVTS
data. We performed LSTM-based feature selection for multi-
variate time series data in two steps. Firstly, each MVTS feature
is evaluated individually by an LSTM-based univariate sequence
classifier, and secondly, the top-performing features are combined
to produce input for a downstream LSTM-based multivariate
sequence classifier. W e ¢ ompared t he p roposed M VTS feature
selection method with three other baseline feature selection
methods on an MVTS-based solar flare p rediction d ataset and
demonstrated that our method selects more discriminatory fea-
tures compared to other methods.

Index Terms—Feature selection; LSTM; Deep Learning; Mul-
tivariate time series, Solar Physics, Solar Magnetic Field Param-
eters

I. INTRODUCTION

Photospheric magnetic field parameter values such as helic-
ity, flux, Lorentz force, currents, and shear angles are used to
characterize solar events such as flares, coronal mass ejection
(CME), and eruption of solar energetic particles (SEP) [1],
[2]. Among these events, solar flares are caused by a sudden
burst of magnetic flux from the c orona. T he X -ray radiation
of extreme solar flares c an h ave d evastating e ffects o n life
and infrastructure on earth and space such as GPS and radio
communication disruption, radiation exposure-based health
risks to the astronauts, and damage to electronic devices.
The infrastructure damage after extreme solar events can cost
trillions of dollars [3]. Accurate prediction of solar flares
given a predefined t ime w indow h as b ecome a n important
challenge in the heliophysics community. Since the theoretical
relationship between magnetic field influx and the occurrence
of flaring activities in the solar active regions (AR) is not
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Fig. 1: X2.0-class solar flare in the lower right side of the Sun
on Oct. 27, 2014, 10:47 a.m. EDT. Image Credit: NASA/SDO

yet established, space weather researchers depend on the data
science-based approaches for predicting solar events.

The primary data source used in these efforts is the images
captured by the Helioseismic Magnetic Imager (HMI) located
in the Solar Dynamics Observatory (SDO). HMI images
(captured in near-continuous time) contain spatiotemporal
magnetic field data of the solar active regions. For performing
temporal window-based flare prediction of an AR instance, the
magnetic field data of that region is mapped into a multivariate
time series (MVTS) instance [1]. MVTS instances, collected
with a uniform sampling rate throughout a preset observation
period, are labeled with multiple flare classes (e.g., flare-quiet,
A, B, C, M, and X), and machine learning-based classifiers
are trained with labeled MVTS instances to predict the occur-
rences of the events within a preset prediction window. Fig. 1
shows an X-class flare recorded by NASA’s Solar Dynamics
Observatory (SDO).

Although multiple research efforts [4]-[7] addressed
MVTS-based solar event prediction, in this work, we propose
a two-step deep learning framework for the feature selection
from MVTS-represented solar flare data. In the first step,
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we apply a univariate sequence learning using individual
parameters to get their validation accuracy (importance score).
An importance score for each parameter is calculated using
Long Short Term Memory(LSTM) classifier. In the second
step, we sort the parameter’s importance scores from the first
step. Then we utilize them to find the cumulative validation
accuracy of the top parameters list to get the optimal param-
eters set (features) to be used when we test the data. The key
contributions of this study are:

o We propose a two-step deep learning LSTM-based frame-
work for the MVTS feature selection.

e We can train our framework with various downstream
classifiers like LSTM, SVM, etc. to perform MVTS
classification

o The experimental results of our model conducted a vali-
dation accuracy of 69% on the solar flare MVTS dataset
when using SVM as a downstream classifier. Which
outperformed the traditional feature selection models(the
baselines) by more than 10%.

II. RELATED WORK

In space weather research, solar events are studied for under-
standing their influences on the nature of geomagnetic fields
and how they can interact with the electromagnetic systems
of the Earth. Extreme solar events, e.g., major solar flares can
affect the radiation environment outside the Earth’s magne-
tosphere which is explored by many space missions. These
events can cause an extreme radiation exposure-based threat
to astronauts on space missions [8], [9]. Recent research efforts
on solar flare prediction mostly are based on data science (e.g.,
machine learning). Data-driven extreme solar event prediction
models stem from linear and nonlinear statistics. Datasets
used in the statistical models were collected from line-of-sight
magnetogram and vector magnetogram data. Line-of-sight
magnetogram contains only the line-of-sight component of the
magnetic field, while vector magnetogram contains the full
disk magnetic field data [10]. NASA launched Solar Dynamics
Observatory (SDO) in 2010. Since then, SDO’s instrument
Helioseismic and Magnetic Imager (HMI) has been mapping
the full-disk vector magnetic field every 12 minutes [2]. Most
of the recent prediction models use the near-continuous stream
of vector magnetogram data found from SDO [11]. Magnetic
field parameters (e.g., helicity, flux, etc) were developed to
find the relationships between the phosphoric magnetic field
states and the following solar activities.

Feature selection plays an important role in dataset pre-
processing and performance boosting of ML models, espe-
cially in the presence of high-dimensional data. For solar
flare data, each example of a flaring or non-flaring AR is
characterized by a feature vector of magnetic field param-
eters. High dimensionality in this vector-based dataset may
result in low performances for the classifiers. Dimensional-
ity reduction by selecting the most discriminatory features
can increase the classification performance by reducing the
overfitting tendency [2]. Han et. al [12] proposed a filter-
based method for feature selection from multivariate time
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series with the trace-based class separability criterion. The
model is called class separability feature selection (CSFS), and
uses the Mutual Information (MI) matrix of the multivariate
time series (MVTS) items as the features for classification
and ranks the variables according to the class separability.
Ircio et. al [13] proposed a feature subset selection method
in MVTS classification using mutual information. Gu et. al
[14] proposed a network pruning feature selection approach
(NFS), an end-to-end feature selection framework for MVTS
data. This is a neural network model based on decomposed
convolution, in which a temporal convolutional neural network
(CNN) processes each feature stream within MVTS input
independently, and an aggregating CNN combines all the
streams to extract channel-wise information. Deep learning
sequence models such as recurrent neural networks (RNN)
use sequential data or time series data. They have been used
for temporal or ordinal problems such as machine translation
[15]and text summarization [16]. They are indicated by their
memory as they take information from prior inputs to influence
the current input and output. The output of recurrent neural
networks depends on the prior features within the sequence.
Long short-term memory (LSTM) is a popular RNN archi-
tecture that addresses the problem of long-term dependencies
[17]. They provide a powerful solution for various sequence
learning tasks. Since the multivariate time series are high-
dimensional sequence data, in our study, we propose two-step
deep learning framework for the MVTS feature selection. In
the first step, we apply a univariate sequence learning method
using LSTM for feature selection. In the second step, we apply
LSTM-based MVTS feature selection.

III. METHODOLOGY

A. Notations

The solar event instance 7 is represented by an MVTS
instance muts;. The MVTS instance muvts; € RT*V is
a collection of individual time series of N magnetic field
parameters, where each time series contains periodic observa-
tion values of the corresponding parameter for an observation
period T'. In the MVTS instance muts; = {vt,, Vty, -5 vy -, Uty |
where vy, € RN represents a timestamp vector.

B. Data Preprocessing

Suppose that M number of MVTS instances each with NV
parameters and 7' time points are represented as muvts; €
RT*N where 1 < i < M. Each column P; of muts; is an
univariate time series P; € R”, where 1 < j < N. we perform
z-normalization for each column P; as the following.
) ij — ,uj

X’ (D

oJ
Here, X kj is the is the k-th value of the time series P; where
1<k LT, plis the the mean of time series P; and o7 is
the standard deviation of the time series P; .
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Top k features
Top-2 feature with maximum
Feature 2 LSTMZ* validation | —| validation
Rank | L_accuracy | accuracy
features ks Top-3 feature
Feature 3 —* LSTM3* ™ validation
accuracy
Testing of top-k
Top-N feature features with
Feature N | -+ | LSTMJ' t» validation downstream
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muts; — | - — “
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Step 1: LSTM-Based UVTS Feature Selection Step 2: LSTM-Based MVTS Feature Selection
Fig. 2: Deep Learning MVTS Feature Selection Framework
C. LSTM-based MVTS Feature Selection Framework Algorithm 2 LSTM-Based MVTS Feature Selection

Input: univariate_importance € RY, Xirain, Yirains
Xval’ Yvala Nepochs
Input: Training set X_train € R"rein*NXT " training la-  Qutput: Feature set producing best validation accuracy.
bels Y_train € R™rainXC validation set X_val € 1: Sort the parameters in descending order according to
R7watXNXT  yalidation labels Y _wval € R™va € and univariate_importance
number of training epochs nepochs. Here, C'is the number 2: for sorted parameters j = 1 to NV do
of classes, N¢rqin and n,q; is the number of examples in 3 topK = list(1 : j)
the train and validation sets, and the labels are in one-hot  4:  Initialize weight and bias of LST M
representation. 5 for number of training epochs e = 1 to n¢pocns do
Qutput: Validation accuracy of each individual parameter. 6: for MVTS instance ¢ = 1 to n4yqin, do
7
8
9

Algorithm 1 LSTM-Based UVTS Feature Selection

1: for parameters j = 1 to N do train_muts = X_trainli, :, :]
2: Initialize weight and bias of LSTMJU‘ train_muvts_topK = train_mvts[topK, :]

3:  for number of training epochs e = 1 t0 Nepocns do : target =Y _train]i]

4 for MVTS instance i = 1 t0 Nypqipn dO 10: scores = LSTM }”(train_mvts_topK )

5 train_muts = X_trainli, :, :] 11: loss = negative_log_likelihood(scores, target)
6: train_uvts = train_muts(j, ] 12: loss.backward()

7 target =Y _trainli] 13: end for

8 scores = LST M ;‘(train_uvts) 14 for MVTS instance ¢ = 1 to 1,4 do

9: loss = negative_log_likelihood(scores, target)  15: val_muts = X _valli,:, ]

10: loss.backward|() 16: val_muts_topK = val_muts[topK, ]

11 end for 17: val_label =Y _valli]

12: numCorrect_val = 0 18: val_class_scores = LSTM }”(val_mvts_topK )
13: for MVTS instance i = 1 t0 14, do 19: val_prediction = argmax(val_class_scores)
14: val_muts = X _valli,:, ] 20: if (val_prediction == val_label) then

15: val_uvts = val_muvts[j, ;| 21: numCorrect_val = numCorrect_val + 1

16: val_label =Y _valli] 22: end if

17: val_class_scores = LST M} (val_uvts) 23: val_accuracy = (numCorrect_val /nV al)

18: val_prediction = argmaz(val_class_scores) 24: multivariate_importance[j] = val_accuracy
19: if (val_prediction == val_label) then 25: topK _features[j] = topK
20: numCorrect_val = numCorrect_val + 1 26: end for
21: end if 27:  end for
22: val_accuracy = (numCorrect_val /Nyq;) 28: end for

23: univariate_importance[j| = val_accuracy 29: return topK _features[argmax(multivariate_importance)]
24: end for

25:  end for

26: end for First, we divide the dataset into training, validation, and test
27: return univariate_importance sets. Then we apply a two-step deep learning-based feature
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selection approach (Fig. 2). The first step uses sequence
classification from the univariate time series (UVTS) of the
individual parameters. After training N univariate LSTM
classifiers (LSTM™) with each parameter individually, we
calculate the validation accuracy of each parameter to get an
importance score for each parameter. In the second step, we
rank the parameters according to their individual validation
accuracy (importance score) from highest to lowest. Then,
we incrementally select top-k performing parameters with
high validation accuracy and train LSTM-based multivariate
sequence classifiers (LSTM™) with multiple selected param-
eters. The parameter set that produced maximum validation
accuracy is selected for testing on the test set using a down-
stream classifier (e.g., LSTM, SVM, etc). Algorithm 1 and
2 explain our two-step MVTS feature selection method from
MVTS data.

TABLE I: Active Region Magnetic Field Parameter Names
and Description

Parameter Description
TOTPOT Total photospheric magnetic free energy density
MEANJZD Mean vertical current density
MEANGBZ Mean gradient of vertical field
MEANGBH Mean gradient of horizontal field
AREA_ACR Area of strong field pixels in the active region
USFLUX Total unsigned flux
SHRGT45 Fraction of Area with Shear > 45°
MEANPOT Mean photospheric magnetic free energy
MEANGBT Mean gradient of total field
MEANSHER Mean shear angle
RyALUE Sum of flux near polarity inversion line
ESPX Sum of x-component of normalized Lorentz force
TOTFZ Sum of z-component of Lorentz force
MEANGAM Mean angle of field from radial
EPSZ Sum of z-component of normalized Lorentz force
MEANIJZH Mean current helicity (B, contribution)
TOTUSJZ Total unsigned vertical current
MEANALP Mean characteristic twist parameter,o
TOTEFX Sum of x-component of Lorentz force
TOTFY Sum of y-component of Lorentz force
ESPY Sum of y-component of normalized Lorentz force
ABSNIJZH Absolute value of the net current helicity
SAVNCPP Sum of the modulus of the net current per polarity
TOTBSQ Total magnitude of Lorentz force
TOTUSJH Total unsigned current helicity

IV. EXPERIMENTS

In this section, we demonstrate our experimental methods
and results. We compared our LSTM-based feature selection
model with three baseline methods(Fisher Score , Mutual In-
formation, and minimal Redundancy Maximal Relevance) for
selecting the best discriminatory features on a MVTS-based
flare prediction dataset. First, we extract important features
from the training and validation datasets using each method,
and then we used the selected features for classifying the test
instances using a downstream classifier. We reported the best-
selected features found by each method and the corresponding
test accuracy of the downstream classifier. We applied random
sampling for train/validation/test splitting, where we used
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the stratified splitting method (70 % for training, 10 % for
validation, and 20 % for test) with six different random seeds,
and reported the mean test and validation accuracy along
with standard deviation. Train, validation, and test datasets
are z-normalized since magnetic field parameter values appear
on different scales. For LSTM feature selection and LSTM
downstream classifier, we use the number of hidden layer
units as 128, the number of training epochs as 20, and the
learning rate in stochastic gradient descent as 0.01. For SVM
downstream classifier we use the regularization parameter C
as 1.0, the kernel as radial basis function(RBF), and gamma
as scale. The source code of our model and the experimental
dataset are available on our GitHub repository .

A. Dataset Description

As the benchmark dataset of our experiments, we used
the MVTS-based solar flare prediction dataset published by
Angryk et. al [1]. Each MVTS instance in the dataset is
made up of 25 time series of active region magnetic field
parameters (a full list can be found in Table 1). The time
series instances are recorded at 12 minutes intervals for a
total duration of 12 hours (60-time steps). The dataset has
the number of observation points 7' = 60, and the number
of parameters N = 25. Our experimental dataset consists of
1,540 MVTS instances that are evenly distributed across four
flare classes (X, M, BC, and Q), where Q represents flare-quiet
events, and BC represents a mix of B and C class events.

B. Baselines methods

For baselines, we used Fisher Score(FS), Mutual In-
formation(MI), and minimal Redundancy Maximal Rele-
vance(mRMR) feature selection algorithms.

Fisher score (FS) applies importance scores on each feature
independently in accordance with their class labels.

Mutual information (MI) is a measure of the mutual depen-
dence between the two variables, and quantifies the entropy
obtained about one random variable (features) by observing
the other random variable (labels).

Minimal Redundancy Maximal Relevance - (mRMR) is a
multivariate feature scoring method, where at each iteration
it selects the features that have the maximum relevance with
the target variable and minimum redundancy with the features
that have been selected at previous iterations.

For applying the baseline methods on the MVTS dataset,
we used mean reduction, where for each MVTS instance
muots; we calculate the mean for each column(feature or
parameter) to get a vector-based dataset(muvts; to uvts;). Then
we performed feature scoring, where we found Fisher, MI,
and mRMR scores for each parameter. Finally, we applied
incremental feature selection based on those scores on the
validation dataset to find the best candidate parameters for
testing them with a downstream classifier. We used LSTM
and SVM as downstream classifiers.

Uhttps://github.com/Kalshammari/MVTSFeatureSelection
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TABLE II: Top Parameters of LSTM, Fisher Score, MI and mRMR, and Classifiers Test Accuracy

LSTM Fisher Score MI mRMR
Top TOTPOT TOTPOT TOTPO TOTPO
parameters MEANIJZD AREA_ACR AREA_ACR AREA_ACR
names MEANGBZ TOTFZ MEANGBH MEANGBH
MEANGBH | MEANGAM MEANJZD TOTFZ
AREA_ACR | MEANSHER USFLUX MEANJZD
USFLUX MEANGBH TOTFZ MEANGAM
SHRGT45 MEANJZD MEANSHER | MEANSHER
Number of selected parameters 7 7 7 7
LSTM Classifier 0.597 0.564 0.581 0.564
Highest Validation Accuracy
LSTM Classifier 0.578 0.560 0.558 0.560
Highest Test Accuracy
SVM Classifier 0.692 0.455 0.455 0.455
Highest Validation Accuracy
SVM Classifier 0.677 0.446 0.455 0.456
Highest Test Accuracy
A FS+LSTM 4 MILSTM % MRMR+LSTM @ LSTM+LSTM A FS+LSTM & MILSTM % MRMR+LSTM @ LSTM+LSTM
08 0.6
0.6
E z i :3 e . ¢ $I 0.4
g g
& 04 3
5 <
E E 0.2
S o2
0.0 00
12 3 4 85 6 7 8 9 101112 13141516 17 18 19 20 21 22 23 24 25 123 4 5 6 7 8 91011121314 151617 1819 20 21 22 23 24 25
Top K Parameter Top K Parameter
(a) LSTM Classifier Validation Accuracy Results (b) LSTM Classifier Test Accuracy Results.
A FS+SVM @ MISVM  * MRMR+SVM @ LSTM+SVM A FS+SUMy @ MHSUM % MRMR+SVM @ LSTM+SVM
08 08
0.6 0.6
2
g o
8 g
< 04 Z 04
5 b
5 i
E =
> 02 02
0.0 0.0

12 3 4 5 6 7 8 91011 121314151617 18 19 20 21 22 23 24 25
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(c) SVM Classifier Validation Accuracy Results.

12 3 4 5 6 7 8 91011 121314151617 18 19 20 21 22 23 24 25

Top K Parameter

(d) SVM Classifier Test Accuracy Results.

Fig. 3: Validation and test accuracy of downstream LSTM and SVM classifiers after applying incremental feature selection

using all discussed methods
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C. Comparison of LSTM-based MVTS Feature Selection with
other Baselines

We apply LSTM-based MVTS feature selection on the solar
flare MVTS dataset. Then, we apply the baseline methods(FS,
MI, and mRMR) on the same dataset. Our experimental results
showed that the LSTM-based MVTS feature selection method
outperformed the baseline approaches by more than 10%.
We found out that our method gives the highest validation
accuracy with the top seven parameters(TOTPOT, MEAN-
JZD, MEANGBZ, MEANGBH, AREA_ACR, USFLUX, and
SHRGT45) with SVM. Table II shows the top parameters of
LSTM, Fisher Score, MI, and mRMR, and their LSTM and
SVM classifiers validation and test accuracy. Figures 3a and 3b
show the validation and test accuracy results using the LSTM
classifier with LSTM-based MVTS feature selection, FS, MI,
and mRMR for feature selection. Figure 3a shows that the
LSTM classifier achieves its best validation accuracy(0.597)
with the top six parameters when using LSTM-based MVTS
feature selection. Figure 3b shows that the LSTM classifier
achieves its best test accuracy(0.578) with the top four pa-
rameters when using LSTM-based MVTS feature selection.
Figures 3c and 3d show the validation and test accuracy
results using the SVM classifier with LSTM-based MVTS
feature selection, FS, MI, and mRMR for feature selection.
Figure 3c shows that the SVM classifier achieves its best
validation accuracy(0.692) with the top seven parameters when
using LSTM-based MVTS feature selection. Figure 3d shows
that the SVM classifier achieves its best test accuracy(0.677)
with the top five parameters when using LSTM-based MVTS
feature selection.

V. CONCLUSION

In this work, we presented a two-step deep learning-based
framework for feature selection from multivariate time series
data, and applied the method on a benchmark solar flare
prediction dataset for finding discriminatory magnetic field
parameters. In the first step, feature importance score of each
individual parameter is approximated by an application of
LSTM-based univariate sequence classifier. Finally, the best
feature set that can jointly discriminate examples are extracted
by applying LSTM-based multivariate sequence classifier. The
discrimination ability of the selected feature set is assessed
by testing with a downstream classifier. On the solar flare
prediction dataset, our two-step LSTM-based feature selection
model followed by a downstream SVM classifier outperformed
the baseline feature selection approaches by more than 10%.

In the future, we plan to work on graph-based feature
selection from MVTS data. MVTS data represented by graphs,
aka networks, can encode higher order relationships between
the variables [18], [19]. We are interested in the application of
graph neural networks on MVTS-graphs to extract graph-level
discriminatory feature set represented by sub-graphs, paths,
cycles, and so on. We also look forward to applying our feature
selection method on other MVTS datasets, such as brain region
time course data extracted by functional magnetic resonance
imaging (fMRI) [20].
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