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Abstract—Solar flare prediction has become essential in space
weather research due to its potential adverse space-weather
ramifications. Over recent years, a set of machine learning models
on solar flare prediction have been proposed and significant
improvement has been made over the previous state of the art.
However, most existing research work focuses on the prediction
task and ignores the interpretability behind the prediction task.
In this paper, we provide a post-hoc explanation method based
on solar flare prediction, FAST-CF. In particular, we incorporate
the nearest unlike neighbor for guiding the counterfactual search,
which is fast to search for the optimal result. In addition, FAST-
CF encapsulates the desirable properties of a counterfactual
explanation for solar flare prediction. We use different evaluation
metrics to compare the performance of FAST-CF with the other
two baselines and verify the superiority of our method to existing
state-of-the-art.

Index Terms—Solar flare prediction, Multivariate Time Series,
EXplainable Artificial Intelligence (XAI), Counterfactual Expla-
nation

I. INTRODUCTION

A solar flare is an intense burst of radiation coming from
the release of magnetic energy associated with sunspots [1].
X-rays and UV radiation emitted by solar flares can cause elec-
tromagnetic disturbances on the earth, as with radio frequency
communications and power line transmissions [2].

In recent years, the success of supervised machine learning
(ML) methods especially deep neural networks on solar flare
prediction have been verified by experts in the space weather
domain [3]–[7]. However, the interpretability of the decision-
making process behind solar flare prediction can not be guar-
anteed. Some ML models exhibit high performance but they
are opaque in terms of explainability. Some AI researchers ar-
gue that the explanation is not essential for all AI applications,
since it is too difficult to achieve, and unnecessary in certain
applications [8]. However, for critical applications in the space
weather domain such as solar flare prediction, it is vital for
human beings to understand, trust and apply these AI systems
to deal with corresponding problems. Therefore, the insight of
interpretability is of crucial importance in predicting a solar
flare event involving the potentially hazardous impacts of the
solar flares [1].

X- and M-classes of solar flares are most often targeted
in intense classes in solar flare prediction. As most flares
occur in the Active Regions of the Sun, flare prediction can be
modeled as a supervised learning problem of machine learning,
specifically the binary classification between flaring and non-
flaring Active Regions (AR), where flaring Active Regions are

Fig. 1. NASA’s Solar Dynamics Observatory captured this image of an X2.0-
class solar flare bursting off the lower right side of the sun on Oct. 27, 2014.
The image shows a blend of extreme ultraviolet light with wavelengths of
131 and 171 Angstroms. Image Credit: NASA/SDO

considered to be in a positive class and non-flaring Active
Regions are considered to be in the negative class [2]. In
this work, as positive class examples, we consider the Active
Regions that have one or more M-class or X-class flares during
their crossing of the observable solar disk. The Active Regions
that have never flared during the disk crossing (not even C-
class flares) are considered negative class examples. In terms
of binary classification between flaring and non-flaring Active
Regions, we provide the post-hoc counterfactual explanations
for the solar flare prediction. In particular, a counterfactual
instance is defined as a synthetic instance for which a trained
machine learning model predicts the desired output which
is different from the prediction made on the query instance
[9]. In the case of solar flare prediction, if a given solar
flare is predicted by a classifier as a flaring Active Region,
what changes can be made from that solar flare to obtain a
different prediction, non-flaring Active Region? In addition,
we define the given solar flare as the query instance, the
instance that has been changed to obtain a different prediction
as the counterfactual instance, the label of the query instance
as the query label and the label of the counterfactual instance
as the desired label. To generate the counterfactual instance
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for each query instance, we find the nearest unlike neighbor
(nearest neighbor of the desired label from the training dataset)
firstly. Then we try to find the most important top k dimensions
by comparing the distance between the query instance and
its nearest unlike neighbor. Finally, we substitute the top k
dimensions from the original query instance such that the
classification label changes to the class of desired.

Our paper contributions are summarized below:
1) We propose a method that encapsulates the desirable

properties of a counterfactual explanation for solar flare
prediction.

2) Our new method does not require the use of class acti-
vation maps to search for the counterfactual explanation,
which makes it model-agnostic.

3) We incorporate the nearest unlike neighbor for guiding
the counterfactual search, which speeds up the search
for a counterfactual explanation.

4) We conduct experiments on the publicly available solar
flare dataset and show the superiority of our methods
compared with other baselines.

To the best of our knowledge, this is the first effort to
focus on a small set of dimension substitution while generating
a counterfactual explanation for solar flare prediction. The
rest of this paper is organized as follows: in section II, we
lay the ground for our research by introducing the related
works. Section III introduces the preliminary concepts. Section
IV describes our proposed method in detail. We present the
experimental results and evaluations in comparison to other
baselines in section V. Finally, we conclude our work in
section VI.

II. RELATED WORK

In the post-hoc interpretability paradigm, various ap-
proaches have been proposed in the literature for text, image,
and tabular data, such as LIME [10], LORE [11], SHAP [12],
GeCo [13] and wCF [14]. LIME is a feature-based approach
that shows that explanations are useful for a variety of models
in trust-related tasks for text data and image data. LORE is
an extension work based on LIME, which is a local black
box model-agnostic explanation approach based on logic rules,
but LORE explanation works mainly on tabular data. SHAP
is a unified framework that operates by calculating feature
importance values using model parameters. While wCF aims
at minimizing a loss function and using adaptive Nelder-Mead
optimization to encourage the counterfactual to change the
decision outcome and keep the minimum Manhattan distance
from the query input instance. Similarly, GeCo has been
proposed as another method that is used to deal with the
plausibility and feasibility issues of the generated counter-
factual explanation has been proposed. The model achieves
the desirable counterfactual properties by introducing a new
plausibility-feasibility language (PLAF) [13]. Both GeCo and
wCF focus on structured tabular datasets. However, experi-
ments have indicated that techniques designed for tabular data
often failed to produce meaningful explanations in the time
series domain [15].

In the computer vision domain, visualization techniques
have been widely applied to provide interpretability for dif-
ferent applications successfully, such as highlighting the most
important parts of images to class activation maps (CAM) in
convolutional neural networks [16]. Huang et al [3] applied
the Convolution Neural Network to the flare forecasting using
patches of ARs of solar line-of-sight magnetograms. The
authors extract CNN feature maps from the interior layers
in the model that show their models pay attention to the
area of the PIL. However, the feature map, which is just
a result of the calculation between the input image and
CNN kernels, does not indicate important areas of the input
image for prediction results. Later on, [17] presents a visual
explanation of a deep-learning solar flare forecast model. In
particular, the authors interpret the model using two CNN
attribution methods (guided backpropagation and Gradient-
weighted Class Activation Mapping [Grad-CAM]) that provide
quantitative information on explaining the model. They show
that the polarity inversion line is an important feature of the
deep learning flare forecasting model.

Recently, an instance-based counterfactual explanation for
time series classification has been proposed [15]. The instance-
based counterfactual explanation uses the explanation weight
vector (from the Class Activation Mapping) and the in-sample
counterfactual (NUN) to generate counterfactual explanations
for time series classifiers. The instance-based technique adapts
existing counterfactual instances in the case base by highlight-
ing and modifying discriminative areas of the time series that
underlie the classification. The success of this method has been
verified by comparative tests on diverse datasets from the UCR
archive.

Finally, a counterfactual solution for multivariate time series
data called CoMTE has been proposed by Etes et al. [18],
which focuses on selecting time series from the training set and
substituting them in the sample under investigation to obtain
different classification results. Since the method is observing
the effect of turning off one variable at a time, it takes a
long time to generate counterfactual instances with the high-
dimension nature of the multivariate time series.

III. PRELIMINARY

A. Notation

We assume an univariate time series x = {x1, x2, ..., xm} is
an ordered set of real values, where m is the length. In the case
of multivariate time series, the time series is a list of vectors
over d dimension and m observations, X = [x1, x2, ..., xd].

Then we can define a multivariate time series dataset D =
{X0,X1, ...,Xn} as a collection of n multivariate time series
where each multivariate time series has mapped to a mutually
exclusive set of classes C = {c1, c2, ..., cl}. We split the dataset
D into a training set and a test set. The training set aims to
train a time series classifier f . For each query instance in
the test set which is associated with a class f(Xj) = cj , a
counterfactual explanation model M generates a perturbed
sample with the minimal perturbation that lead to f(X′

j) = c′j
such that cj ̸= c′j .
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B. Desirable properties of a counterfactual instance

According to [19], to provide a useful, plausible alternative
for the query instance, a counterfactual instance should obey
the following initial desirable properties:

1) Validity: The prediction of the to-be-explained model f
on the counterfactual instance X′ needs to be different
from the prediction of the to-be-explained model f on
the query instance X (i.e., if f(X) = ci and f(X′) = cj ,
then ci ̸= cj).

2) Proximity: The to-be-explained query needs to be close
to the generated counterfactual instance, which means
the distance between X′ and X should be minimal.

3) Sparsity: The perturbation δ changing the query in-
stance X into X′ = X+δ should be sparse, which means
fewer number of data points that needs to be changed
to get the counterfactual explanation is preferred.

4) Contiguity: The counterfactual instance X′ = X + δ
needs to be perturbed in a single contiguous segment
which makes the solution semantically meaningful.

5) Interpretability: The counterfactual X′ needs to be in-
distribution. We consider an instance X′ interpretable if
it lies close to the model’s training data distribution. The
X′ should be an inlier with respect to the training dataset
and an inlier to the counterfactual class.

6) Model-agnosticism: The counterfactual explanation
model should produce a solution independent of the clas-
sification model f , high-quality counterfactuals without
prior knowledge of the gradient values derived from
optimization-based classification models should be gen-
erated.

In our experimental evaluation part, we will take these proper-
ties into consideration to verify the superiority of our method
to existing state-of-the-art explainability methods.

IV. FAST COUNTERFACTUAL EXPLANATION (FAST-CF)
FOR SOLAR FLARE PREDICTION

In this section, we describe our proposed fast counterfactual
explanation method for solar flare prediction in detail. In
particular, the method includes two main steps: 1. Retrieve the
nearest unlike neighbor 2. Adapt the nearest unlike neighbor
to generate counterfactual instances. The process of FAST-CF
generation is shown in Figure 2. The algorithm is shown in
Algorithm 1.

A. Retrieve the nearest unlike neighbor

Given a query instance X, find a counterfactual instance
candidate Xc that exists in the training dataset. An example of
one such instance is the query’s nearest unlike neighbor. This
nearest unlike neighbor is from the training dataset, the label
of it is our desired label, which guarantees the explanation’s
interpretability property as it is, by definition, within the distri-
bution. However, such instances are not guaranteed to satisfy
the proximity, sparsity, and contiguity properties. Therefore, an
adaptation step is necessary to satisfy the remaining properties.

B. Adapt the nearest unlike neighbor to generate counterfac-
tual instance

To generate the counterfactual instance that satisfies validity,
proximity, sparsity, and contiguity properties, we try to find the
most important top k dimensions by comparing the distance
per dimension between the query instance and its nearest
unlike neighbor. If the distance between the query instance
and its nearest unlike neighbor is relatively large for specific
dimension data, we will consider this dimension as the impor-
tant dimension that we want to focus on. Then we substitute
the top k dimensions from the nearest unlike neighbor such
that the classification label changes to the class of desired. To
guarantee the proximity and the validity property at the same
time, we set the k as a parameter and k will be determined
as the minimum value that can make sure the counterfactual
instance is classified to the class of desired.

In addition, substituting the top k dimensions from the
nearest unlike neighbor guarantees the counterfactual instance
we generate is perturbed in several contiguous segments and
sparse, instead of changing the whole time series, as follows

X =< x1, x2, x3, x4, x5, ..., xd > s.t. f(X) = c (1)

X′ =< x′1, x2, x′3, x4, x′5, ..., xd > s.t. f(X′) = c′ (2)

Algorithm 1 Fast Counterfactual Explanation for Solar Flare
Prediction
Input: Training set T, query set samples, prediction model
for solar flare time series data f , the number of dimension of
query instance d
Output: CF, counterfactual instances for query instances

1: CF = ∅
2: for X ← samples do
3: Xc = nearest unlike neighbor from T
4: Dists = []
5: for dimension i from 1 to d do
6: Dist = np.sum (X[i, :] - Xc[i, :])
7: Dists.append(Dist)
8: k = 0, X ′ = X ▷ k is initialized to 0 and the

counterfactual instance is initialized as X
9: while f(X ′) ̸= c′ do

10: k = k+1
11: idx = np.argpartition(Dists, -k)[-k:]
12: indices = idx[np.argsort((-np.array(Dists))[idx])] ▷

Find the top k dimensions where there are top k
maximum distances

13: for index ← indices do
14: X′[index, :] = Xc[index, :] ▷ replace the top k

dimensions
15: CF.add(X′)
16: return CF
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Fig. 2. The process of FAST-CF generation

V. EXPERIMENTAL SETTING

A. Data sets description

In our experiments, we use a solar flare prediction dataset
that was published by the Data Mining Lab of Georgia State
University [1]. Each sample in this dataset is a multivariate
time series, each of them has 60 values representing an obser-
vation taken at 12-minute intervals. The first value in the array
is the sample observation taken at the furthest point in time
from the prediction period and the last value in the array is
the sample observation taken at the closest point in time to the
prediction period. The period of observations represented by
each labeled time series is a 12-hour window of observations
sliced from a longer time series. In particular, each multivariate
time series includes 33 solar magnetic field parameters. The
dataset consists of 5 classes, namely X, M, C, B, and Q,
where Q represents the flare-quiet regions where no flare has
been detected within the observation period. In particular, to
conduct a binary case of counterfactual explanation, the X-
and M-classes of solar flares are considered to be positive
class to represent the flaring active regions, the C-, B-, and
Q-classes of solar flares are considered to be negative class
to represent the non-flaring regions. The class distribution of
the original dataset is imbalanced. To address the imbalance
issue of the dataset, we use the undersampling technique to
generate a balanced dataset.

B. Baseline methods

We evaluated our proposed method with the other two
baselines, Alibi [20] and Native guide counterfactual [15].

• Alibi Counterfactual (Alibi): The Alibi generates
counterfactual explanations by optimizing an objective
function,

L = Lpred + λLdist, (3)

where the first loss term Lpred guides the search towards
points X′ which would change the model prediction and
the second term Ldist ensures that X′ is close to X. This
form of loss has a single hyperparameter λ weighing the
contributions of the two competing terms.

• Native guide counterfactual (NG-CF): NG-CF is
another baseline that we used to compare our proposed
FAST-CF methods. NG-CF uses Dynamic Barycenter
(DBA) averaging of the query time series x and the
nearest unlike neighbor from another class to generate
the counterfactual example [15].

C. Prediction Model Details

For fairness purposes, we evaluated all the aforementioned
counterfactual baselines on the same predictive model f . In
particular, we used a convolutional neural network model that
consists of two convolution layers with respectively 128 and
64 one-dimensional filters and ReLU activations. Each con-
volutional layer is followed by a max-pooling layer. Dropout
with a fraction of 30% is applied during training. The output
of the second pooling layer is flattened and fed into a fully
connected layer of size 256 with ReLU activation and 50%
dropout. This dense layer is followed by a softmax output
layer over the number of classes. The model is trained using
an Adam optimizer with batch size 32.

D. Experimental result

In this section, we utilize different evaluation metrics to
compare FAST-CF with the other two baselines with respect to
the desirable properties of counterfactual instances discussed
in Section III-B. Since the data we use in our experiments is
multivariate time series, for better understanding, we flatten the
multivariate time series data into one dimension data and then
apply the evaluation metrics on the flattened data. In addition,
for each evaluation metric, the result we show is the average
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value among the whole dataset. The details of each evaluation
metric are shown below.

L1 distance, which measures the distance between the
counterfactual instance and the query instance, a smaller L1
distance is desired. Table I shows that our proposed FAST-CF
method achieves the minimum L1 distance when compared
with the other two baselines.

Sparsity level, which indicates the level of time series
perturbations. A high sparsity level that is approaching 100%
is desirable, which means the time series perturbations made
in X to achieve X ′ is minimal. We computed the sparsity
level using the Equations 4-5. From the blue dash line plot in
Figure 3, we can notice that our proposed FAST-CF performs
best in terms of sparsity level compared with the other two
baselines.

sparsity = 1−
∑len(X)

i=0 g(X ′
i, Xi)

len(X)
(4)

g(x, y) =

{
1, if x ̸= y
0, otherwise (5)

The number of independent non-contiguous segments is also
investigated to show the contiguity. The lower the number of
independent non-contiguous segments the better. From the red
bar plot in Figure 3, we can see that our proposed FAST-CF
method results in the minimum number of independent non-
contiguous segments.

In addition, we define the validity metric by comparing the
target class probability for the prediction of the counterfactual
explanation result. The closer the target class probability is to
1, the better. From Table I, we can see that FAST-CF achieves
1.0 target class probability, which is much larger than the target
class probability generated by ALIBI.

Fig. 3. Comparing the performances of NG-CF, Alibi, and FAST-CF models
in terms of Sparsity and the number of independent segments

We also apply an embedding model to visualize the solar
flare prediction training data and their associated counter-
factual explanations in 2D space which can demonstrate the
within distribution property of our generated counterfactual
instances. To achieve this purpose, we use the first two eigen-
vectors of the Principal component analysis (PCA) [21] and
visualize the transformed time series vector representations.
For better comparison, we show the transformed time series

TABLE I
COMPARING THE PERFORMANCES OF NG-CF, ALIBI, AND FAST-CF

MODELS IN TERMS OF L1 DISTANCE AND THE TARGET PROBABILITY (THE
WINNER IS BOLDED).

Method L1 distance Target probability
Mean Std Mean Std

NG-CF 1.68e+12 3.22e+13 1.0 0
ALIBI 495.16 376.69 0.56 0.11

FAST-CF 69.03 69.79 1.0 0

vector representations of the original query set in Figure 4
and show the transformed time series vector representations
of the original query set and the generated counterfactual
explanations using FAST-CF in Figure 5. In Figure 5, the
red stars show the generated counterfactual instances’ two-
dimensional embedding, while the circle markers show the
original query set data points. By comparing the two figures,
we can see that the original query set data points and the gen-
erated counterfactual instances are highly overlapped, which
means that our generated counterfactual instances from FAST-
CF are within the distribution of the original query set.

Fig. 4. PCA for solar flare training data

Finally, we visualize an example of the generated coun-
terfactual instance using FAST-CF and compared it with the
original query instance in Figure 6. For better visualization, we
flattened the 33-dimensions query instance and the generated
counterfactual instance into 1-dimension. From Figure 6, we
can see that there are 4 top important dimensions (4 contiguous
segments) that have been substituted from the original query
instance (original instance) to make sure the counterfactual
instance (CF) is classified to the class of desired.

VI. CONCLUSION

In this paper, we propose a novel model that generates
intuitive, interpretable post-hoc counterfactual explanations for
solar flare prediction. In the case of solar flare prediction, we
are dealing with multivariate time series data. Due to the high-
dimensional nature of multivariate time series data, existing
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Fig. 5. 2-D PCA projection of the original query set (training data) and
the counterfactual explanations. The red stars represent the counterfactual
instances generated by FAST-CF.

Fig. 6. An example of original query instance and its counterfactual instance
(flattened to one dimension)

work that focuses on generating counterfactual explanations
for tabular data can not be applied to multivariate time series
data directly. We address the high-dimension challenge by
proposing FAST-CF, which incorporates the nearest unlike
neighbor for guiding the counterfactual search. By focusing
on a small set of important dimension substitutions, the FAST-
CF method guides the perturbations on the query solar flare
prediction data resulting in significantly sparse and more
contiguous explanations than other baseline methods. To the
best of our knowledge, this is the first effort to focus on a
small set of dimension substitutions while generating coun-
terfactual explanations for multivariate TSC. There are spaces
for extensions of our work with counterfactual explanations
for solar flare prediction with high dimensions. As a future
direction of this work, we would like to leverage our method
to fit into multivariate time series data in other domains with
different dimension complexity.
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