
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

To Adjust or not to Adjust? Estimating the Average
Treatment Effect in Randomized Experiments with
Missing Covariates

Anqi Zhao & Peng Ding

To cite this article: Anqi Zhao & Peng Ding (2022): To Adjust or not to Adjust? Estimating the
Average Treatment Effect in Randomized Experiments with Missing Covariates, Journal of the
American Statistical Association, DOI: 10.1080/01621459.2022.2123814

To link to this article:  https://doi.org/10.1080/01621459.2022.2123814

View supplementary material 

Published online: 17 Oct 2022.

Submit your article to this journal 

Article views: 1007

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2022.2123814
https://doi.org/10.1080/01621459.2022.2123814
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2022.2123814
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2022.2123814
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2022.2123814
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2022.2123814
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2022.2123814&domain=pdf&date_stamp=2022-10-17
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2022.2123814&domain=pdf&date_stamp=2022-10-17


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2022, VOL. 00, NO. 0, 1–11: Theory and Methods
https://doi.org/10.1080/01621459.2022.2123814

To Adjust or not to Adjust? Estimating the Average Treatment Effect in Randomized
Experiments with Missing Covariates

Anqi Zhaoa and Peng Dingb

aDepartment of Statistics and Data Science, National University of Singapore, Singapore; bDepartment of Statistics, University of California, Berkeley, CA

ABSTRACT
Randomized experiments allow for consistent estimation of the average treatment effect based on the
difference in mean outcomes without strong modeling assumptions. Appropriate use of pretreatment
covariates can further improve the estimation efficiency. Missingness in covariates is nevertheless common
in practice, and raises an important question: should we adjust for covariates subject to missingness, and if
so, how? The unadjusted difference in means is always unbiased. The complete-covariate analysis adjusts
for all completely observed covariates, and is asymptotically more efficient than the difference in means
if at least one completely observed covariate is predictive of the outcome. Then what is the additional
gain of adjusting for covariates subject to missingness? To reconcile the conflicting recommendations
in the literature, we analyze and compare five strategies for handling missing covariates in randomized
experiments under the design-based framework, and recommend the missingness-indicator method, as
a known but not so popular strategy in the literature, due to its multiple advantages. First, it removes
the dependence of the regression-adjusted estimators on the imputed values for the missing covariates.
Second, it does not require modeling the missingness mechanism, and yields consistent estimators even
when the missingness mechanism is related to the missing covariates and unobservable potential out-
comes. Third, it ensures large-sample efficiency over the complete-covariate analysis and the analysis
based on only the imputed covariates. Lastly, it is easy to implement via least squares. We also propose
modifications to it based on asymptotic and finite sample considerations. Importantly, our theory views
randomization as the basis for inference, and does not impose any modeling assumptions on the data-
generating process or missingness mechanism. Supplementary materials for this article are available
online.
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1. Introduction

Randomized experiments are the gold standard for estimating
treatment effects, and justify simple comparisons of mean out-
comes across treatment groups (Neyman 1923). Appropriate
adjustment for pretreatment covariates further promises addi-
tional gains in estimation efficiency (Fisher 1935; Lin 2013). In
particular, Lin (2013) showed that the coefficient of the treat-
ment from the ordinary least squares (ols) fit of the outcome
on the treatment, centered covariates, and their interactions is a
consistent and asymptotically efficient estimator for the average
treatment effect, and established the associated Eicker–Huber–
White robust standard error as a convenient approximation to
the true standard error. His theory holds even when the linear
model is misspecified.

Missingness in covariates is ubiquitous in experiments in
biomedical and social sciences, and imposes a dilemma on sub-
sequent inference. We can simply ignore the covariates and pro-
ceed with the unadjusted difference in means, which is unbiased
and consistent under complete randomization. An immediate
improvement is the complete-covariate analysis, which adjusts
for only the covariates that are observed for all units. It is
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asymptotically more efficient than the unadjusted estimator if
at least one completely observed covariate is prognostic to the
outcome. Alert to the waste of information under complete-
covariate analysis by discarding all information in the incom-
plete covariates, alternative approaches like maximum likeli-
hood methods, Bayesian methods, and multiple imputation
make use of all available covariates and are likely to further
improve efficiency (Rubin 1987; Little 1992; Ibrahim et al. 2005;
Little and Rubin 2019). These more sophisticated methods nev-
ertheless rely on additional assumptions on the outcome model
or missingness mechanism, and do not strictly dominate the
simpler unadjusted difference in means and complete-covariate
analysis when the models are misspecified (White and Carlin
2010). Then a natural question arises: should we adjust for the
missing covariates or not?

Our answer to the above question is yes. We propose to
impute the missing covariates with zeros, augment the imputed
covariates with the missingness indicators, and then apply
Lin’s (2013) procedure for regression adjustment. This method
becomes intuitive if the missingness is not affected by the
treatment such that we can view the missingness indicators as
a set of fully observed pretreatment covariates. The resulting

© 2022 American Statistical Association

https://doi.org/10.1080/01621459.2022.2123814
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2022.2123814&domain=pdf&date_stamp=2022-10-17
http://orcid.org/0000-0002-2704-2353
mailto:pengdingpku@berkeley.edu
http://www.tandfonline.com/r/JASA


2 A. ZHAO AND P. DING

missingness-indicator method has multiple advantages. First, it
is invariant to the imputed values for the missing covariates,
and allows for the convenient choice of imputing by zeros with
no loss of generality. Second, it does not require modeling of
the missingness mechanism, and remains consistent for the
average treatment effect even when the missingness mechanism
depends on the missing covariates and unobservable poten-
tial outcomes, a scenario analogous to missing not at random
under the superpopulation framework (Rubin 1976; Little and
Rubin 2019). Third, it is asymptotically more efficient than
the complete-covariate analysis and single imputation. Lastly,
it can be easily implemented via standard software packages
for ols.

This missingness-indicator method has been used before.
Cohen and Cohen (1975, chap. 7) proposed to use it in
regression analysis. Rosenbaum and Rubin (1984, Appendix
B) suggested it in matching for causal inference with observa-
tional studies. Gerber and Green (2012, sec. 7.7) recommended
it for covariate adjustment in randomized experiments. See
D’Agostino and Rubin (2000), Mattei (2009), Rosenbaum (2010,
secs. 9.4 and 13.4), Fogarty et al. (2016), and Chong et al.
(2016) for applications of this method to obtain observational
studies and randomized experiments. See Anderson, Basilevsky,
and Hum (1983) and Groenwold et al. (2012) for a review.
In contrast, Greenland and Finkle (1995) and Donders et al.
(2006) criticized this method and argued against its use for
observational studies. Specifically, Greenland and Finkle (1995)
evaluated this method in the context of logistic regression for
observational studies and reported severe bias even when the
data are missing completely at random; Donders et al. (2006)
offered a similar discussion. Miettinen (1985) acknowledged its
ease of use, but also pointed out its limitation of representing
only partial control when applied to confounders.

Our recommendation does not contradict these criticisms in
the literature. The fundamental difference between randomized
experiments and observational studies explains the seemingly
contradictory recommendations. In particular, randomization
balances the pretreatment covariates along with missingness
indicators on average across treatment groups. Using them in
Lin (2013)’s procedure ensures consistent estimation of the aver-
age treatment effect regardless of the missingness mechanism.
Our results echo White and Thompson (2005) and Carpen-
ter and Kenward (2007) without assuming that the covariates
and outcomes are jointly normal. Rather, we evaluate different
methods under the design-based framework, also known as the
randomization-based framework, free of any modeling assump-
tions (Neyman 1923; Imbens and Rubin 2015). The above the-
oretical guarantees of the missingness-indicator method thus
hold even when the regression models are misspecified. This is a
key distinction between our results and those for correctly speci-
fied regression models with missing covariates (Rubin 1987; Lit-
tle 1992; Robins, Rotnitzky, and Zhao 1994; Jones 1996; Ibrahim
et al. 2005). In contrast, causal inference is fundamentally more
challenging in observational studies with missing covariates.
Rosenbaum and Rubin (1984) showed the identifiability of the
average treatment effect under the unconfoundedness assump-
tion given the observed covariates and missingness pattern.
Under this assumption, the missingness-indicator method can
be used to estimate the average treatment effect if the linear

model is correct. As pointed out by Yang, Wang, and Ding
(2019), however, this assumption is scientifically implausible by
requiring the set of confounders to depend on the missingness
pattern. Without this assumption, the average treatment effect
is not identifiable. See Ding and Geng (2014) and Yang, Wang,
and Ding (2019) for alternative strategies.

Moreover, we propose a modification to the missingness-
indicator method that captures additional efficiency in large
samples. Specifically, the missingness-pattern method stratifies
the data based on the missingness patterns, and applies Lin
(2013)’s approach based on the available covariates within each
stratum. It is closely related to post-stratification (Miratrix,
Sekhon, and Yu 2013) if we view the type of missingness pattern
as a discrete covariate, and can be seen as an extension of the
available-covariate analysis proposed by Wilks (1932), Matthai
(1951), Glasser (1964), and Haitovsky (1968). The resulting
estimator allows for heterogeneous adjustments across different
missingness patterns, and thereby promises additional asymp-
totic efficiency over the missingness-indicator method if the
covariates and missingness patterns affect the treatment effects
in nonadditive ways. We recommend this method if the sample
sizes within all missingness patterns are large enough to justify
the application of Lin (2013)’s estimator.

We use the following notation. For a finite population
{(ui, vi) : i ∈ I}, let ū = |I|−1 ∑

i∈I ui, v̄ = |I|−1 ∑
i∈I vi,

and Suv = (|I| − 1)−1 ∑
i∈I(ui − ū)(vi − v̄)T denote the finite

population means and covariance, respectively. We specify the
composition of I in the context. In the case of ui = vi, we also
occasionally write Suu as S2

u. For ui ∈ R and vi ∈ R
p, let ui ∼ vi

denote the ols fit of ui on vi over i ∈ I . Importantly, we do
not invoke the stochastic assumptions for the underlying linear
models, but evaluate the sampling properties of the numeric
outputs of ols from the design-based perspective. We focus on
the robust standard errors from ols because the classic standard
errors do not have the desired design-based properties even in
simpler cases (Freedman 2008; Lin 2013).

2. Setting

2.1. Regression Estimators when all Covariates are
Observed

Consider an intervention of two levels, z = 0, 1, and a finite
population of N units, i = 1, . . . , N. Let Yi(z) be the poten-
tial outcome of unit i under treatment level z. The individual
treatment effect is τi = Yi(1) − Yi(0), and the finite population
average treatment effect is τ = N−1 ∑N

i=1 τi = Ȳ(1) − Ȳ(0),
where Ȳ(z) = N−1 ∑N

i=1 Yi(z).
We focus on complete randomization, which assigns com-

pletely at random Nz units to treatment level z with N0 + N1 =
N. Let ez = Nz/N for z = 0, 1. Let Zi ∈ {0, 1} denote the
treatment assignment of unit i. The observed outcome is Yi =
ZiYi(1) + (1 − Zi)Yi(0).

Let Ŷ(z) = N−1
z

∑
i:Zi=z Yi be the average observed outcome

under treatment level z. The difference in means τ̂n = Ŷ(1) −
Ŷ(0) is unbiased for τ , and equals the coefficient of Zi from
the ols fit of the unadjusted regression Yi ∼ 1 + Zi over i =
1, . . . , N. We use the subscript “n” to signify Neyman (1923).
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The presence of covariates promises the opportunity to
improve estimation efficiency. Let xi = (xi1, . . . , xiJ)T be the J-
dimensional covariate vector for unit i. Fisher (1935) suggested
an estimator τ̂f for τ , which equals the coefficient of Zi from
the ols fit of the additive regression Yi ∼ 1 + Zi + xi over
i = 1, . . . , N. Lin (2013) recommended an improved estimator,
τ̂l, as the coefficient of Zi from the ols fit of the fully interacted
regression Yi ∼ 1 + Zi + (xi − x̄)+ Zi(xi − x̄) over i = 1, . . . , N
with centered covariates and treatment-covariates interactions,
and showed its asymptotic efficiency over τ̂n and τ̂f. We summa-
rize the results in Lemma 1 below, with the subscripts n, f, and
l signifying quantities associated with the unadjusted, additive,
and fully interacted regressions, respectively. We adopt the finite
population design-based framework, which conditions on the
potential outcomes and covariates and views (Zi)

N
i=1 as the sole

source of randomness when evaluating estimators.
Let γl,z = (S2

x)
−1SxY(z) denote the coefficient vector of xi

from the ols fit of Yi(z) ∼ 1 + xi over i = 1, . . . , N, where S2
x is

the finite population covariance of the xis, and SxY(z) is the finite
population covariance of the xis and Yi(z)s, respectively. Let
γf = e0γl,0+e1γl,1, and let S2

z,∗ be the finite population variance
of {Y∗,i(z)}N

i=1 for z = 0, 1 and ∗ = n, f, l, with Yn,i(z) =
Yi(z), Yf,i(z) = Yi(z) − xT

i γf, and Yl,i(z) = Yi(z) − xT
i γl,z.

Let S2
τ ,∗ be the finite population variance of (τ∗,i)

N
i=1, where

τ∗,i = Y∗,i(1)−Y∗,i(0). To simplify the presentation, we relegate
the regularity conditions to Condition S4 in the supplementary
materials. In particular, Condition S4 ensures that ez, S2

z,∗, and
S2
τ ,∗ have finite limits for all z = 0, 1 and ∗ = n, f, l. We will also

use the same symbols to denote their respective limits when no
confusion would arise.

Lemma 1. Assume complete randomization and Condition S4.
Then

√
N (̂τ∗ − τ) � N (0, v∗) for ∗ = n, f, l with v∗ =

e−1
0 S2

0,∗ + e−1
1 S2

1,∗ − S2
τ ,∗ and vl ≤ vn, vf. Further let ŝe∗ be the

robust standard error of τ̂∗ from the corresponding ols fit. Then
N ŝe2∗ − v∗ = S2

τ ,∗ + op(1) with S2
τ ,∗ ≥ 0.

Lemma 1 reviews the classic results from Neyman (1923),
Freedman (2008), and Lin (2013). The unadjusted, additive, and
fully interacted regressions yield consistent and asymptotically
normal estimators for τ , with the corresponding robust standard
errors being asymptotically conservative for estimating the true
standard errors. This justifies the large-sample Wald-type infer-
ence based on (̂τ∗, ŝe∗) for ∗ = n, f, l. Asymptotically, τ̂l is the
most efficient, whereas τ̂f may be more efficient or less efficient
than the difference in means. In particular, Lin (2013) showed
that vf = vl if e0 = e1. This ensures that τ̂f is asymptotically as
efficient as τ̂l when the treatment groups are of equal sizes.

Remark 1. Let τ̂x = x̂(1) − x̂(0) denote the difference in
covariate means, with x̂(z) = N−1

z
∑

i:Zi=z xi. Li and Ding
(2020) showed that vl = vn(1 − R2), where R2 is the squared
multiple correlation between τ̂n and τ̂x. Including more covari-
ates in Lin (2013)’s specification can thus never harm the asymp-
totic efficiency. We give a more general result in Lemma S6
in the supplementary materials. An important caveat is that
increased model complexity can increase variance of the estima-
tor in finite samples. Including more covariates in Lin (2013)’s
specification thus ensures asymptotic efficiency at the cost of

finite sample performance. The same argument extends to the
choice between additive and fully interacted specifications for
regression adjustment. The inclusion of interactions effectively
doubles the model complexity, such that the asymptotically less
efficient τ̂f can have better performance in finite samples.

Remark 2. The asymptotic conservativeness of ŝel is specific
to finite population inference (Neyman 1923; Lin 2013; Imbens
and Rubin 2015; Li and Ding 2020), where we condition on
the covariates for all analyses. Superpopulation inference, in
contrast, assumes that xi’s are independent and identically dis-
tributed samples from some superpopulation. The resulting τ̂l
will have extra variability due to the centering of the covariates;
see Berk et al. (2013), Negi and Wooldridge (2021), Zhao and
Ding (2021), and Ye et al. (2022).

2.2. Missing Data and Running Examples

The construction of τ̂∗ (∗ = f, l) assumes that the covariates
are fully observed for all N units. A key question is how to adapt
when some covariates are only partially available.

Let Mi = (Mi1, . . . , MiJ)T ∈ {0, 1}J be the missingness
indicators for unit i with Mij = 1 if xij is missing and Mij =
0 if otherwise. The possible values of Mi define 2J possible
missingness patterns, indexed by m = (m1, . . . , mJ)T ∈ {0, 1}J .
Not all 2J missingness patterns need to be present in any given
dataset. Let N(m) = N(m1,...,mJ) = ∑N

i=1 1(Mi = m) be the
number of units with missingness pattern m = (m1, . . . , mJ)T,
and let M = {m : N(m) > 0} be the set of missingness patterns
that are present in the dataset. We use the following examples to
illustrate these notation.

Example 1. Consider the case with J = 1 covariate, xi = xi1, for
i = 1, . . . , N. The missingness indicators are Mi = Mi1 ∈ {0, 1},
and suggest two possible missingness patterns, m ∈ {0, 1}, with
N(0) = ∑N

i=1 1(Mi = 0) and N(1) = ∑N
i=1 1(Mi = 1):

Missingness pattern (Mi) xi Number of units

0 observed N(0)

1 missing N(1)

Example 2. Consider the case with J = 2 covariates, xi =
(xi1, xi2)T, for i = 1, . . . , N. The missingness indicators are
Mi = (Mi1, Mi2)T ∈ {0, 1}2, and suggest 22 = 4 possible
missingness patterns, m = (m1, m2)T ∈ {0, 1}2, with N(m) =∑N

i=1 1(Mi1 = m1, Mi2 = m2):

Missingness Number of
pattern (Mi) xi1 xi2 units

(0, 0)T observed observed N(0,0)

(0, 1)T observed missing N(0,1)

(1, 0)T missing observed N(1,0)

(1, 1)T missing missing N(1,1)

Depending on the specific application under consideration,
the missingness may or may not depend on the treatment
assignment. To simplify the presentation, we focus on the case
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Figure 1. A direct acyclic graph illustrating Condition 1. White nodes represent the
treatment assignment Zi , missingness indicators Mi , and outcome Yi that are fully
observed. The light gray node represents the covariate vector xi with missing values.
The dark node represents the unmeasured covariate Ui .

where missingness is unaffected by the treatment assignment in
the main paper, and discuss the case of assignment-dependent
missingness in the supplementary materials. Let Mi(z) =
(Mi1(z), . . . , MiJ(z))T be the potential value of Mi if unit i were
assigned to treatment level z. Condition 1 formalizes the notion
of treatment-independent missingness in terms of Mi(z)’s.

Condition 1. Mi(0) = Mi(1) = Mi for all i = 1, . . . , N.

Condition 1 ensures that the missingness is unaffected by
the treatment assignment such that the Mi’s are effectively a
set of fully observed pretreatment covariates. If the missingness
happens before the treatment assignment, it cannot be affected
by the treatment and Condition 1 holds automatically. If the
covariates are collected retrospectively after the experiment, the
missingness may be affected by the treatment and Condition 1
may be violated. The former case is arguably more common
in randomized experiments (White and Thompson 2005; Car-
penter and Kenward 2007; Sullivan et al. 2018). This suggests
the mildness of Condition 1. Figure 1 is a graphical model,
illustrating the generality of Condition 1. Assume that Ui is an
unmeasured covariate for i = 1, . . . , N. Graphically, there is
no link between Zi and Mi, encoding Condition 1. Condition 1
allows for unmeasured common causes of xi, Mi, and Yi, such
that the missingness can depend on both the missing covariates
and unobserved potential outcomes.

3. Five Strategies for Handling Missing Covariates

We outline in this section five strategies for handling missing
covariates. The simplest options are the complete-case analysis
that uses only units with all covariates observed and the
complete-covariate analysis that uses only covariates that are
completely observed for all units. Single imputation instead
first fills in the missing covariates with some values and
then proceeds with the standard complete-data analysis with
the imputed data. When the missingness indicators act as
pretreatment covariates, it is also natural to include them
directly in ols, motivating the missingness-indicator method.
The missingness-pattern method stratifies the data based on the
missingness patterns, and performs one separate analysis for
each missingness pattern.

3.1. Complete-Case Analysis

Most standard software routines adopt the complete-case anal-
ysis as default by dropping all units with any missingness in

covariates. Let Ci = 1(Mi = 0J) be the complete-case indicator
for unit i, with Ci = 1 if and only if xi is fully observed. The
complete-case analysis proceeds with only the Ncc = ∑N

i=1 Ci
complete cases, {i : Ci = 1}, and fits

Yi ∼ 1 + Zi + xi, (1)
Yi ∼ 1 + Zi + (xi − x̄cc) + Zi(xi − x̄cc) (2)

over {i : Ci = 1} under the additive and fully interacted
specifications, respectively, where x̄cc = (Ncc)−1 ∑

i:Ci=1 xi.
We can then use the coefficients of Zi, denoted by τ̂ cc

f and τ̂ cc
l ,

respectively, to estimate τ .
In Example 1 with J = 1 covariate, we have Ci = 1−Mi, and

the complete-case analysis uses only the units with Mi = 0. In
Example 2 with J = 2 covariates, we have Ci = (1 − Mi1)(1 −
Mi2), and the complete-case analysis uses only the units with
Mi1 = Mi2 = 0.

3.2. Complete-Covariate Analysis

The complete-covariate analysis omits any covariates that are not
completely observed for all units. Denote by J = {j : Mij =
0 for all i = 1, . . . , N} the set of complete covariates, and let
xccov

i = (xij)j∈J be the subvector of xi corresponding to the
covariates in J . The complete-covariate analysis fits

Yi ∼ 1 + Zi + xccov
i , (3)

Yi ∼ 1 + Zi + (xccov
i − x̄ccov) + Zi(xccov

i − x̄ccov) (4)

over i = 1, . . . , N under the additive and fully interacted speci-
fications, respectively, and uses the coefficients of Zi, denoted by
τ̂ ccov

f and τ̂ ccov
l , respectively, to estimate τ . In the case of J = ∅,

both (3) and (4) reduce to Yi ∼ 1 + Zi with τ̂ ccov
f = τ̂ ccov

l = τ̂n.

3.3. Single Imputation

Single imputation fills in the missing covariates based on the
observed data, and analyzes the resulting completed dataset by
standard methods. It includes all cases and covariates in the
analysis, making full use of the observed data.

Consider a covariate-wise imputation that imputes all miss-
ing xij’s along the jth dimension by some cj that may depend
on the observed data. Common choices include cj = 0
and the covariate-wise observed average cj = x̂obs

j =∑N
i=1(1 − Mij)xij/

∑N
i=1(1 − Mij). Denote by

ximp
i (c) = (ximp

i1 (c1), . . . , ximp
iJ (cJ))

T

the resulting imputed covariate vector with c = (cj)
J
j=1 and

ximp
ij (cj) = (1 − Mij)xij + Mijcj. We can proceed with fitting

Yi ∼ 1 + Zi + ximp
i (c), (5)

Yi ∼ 1 + Zi + {ximp
i (c) − x̄imp(c)} + Zi{ximp

i (c) − x̄imp(c)}
(6)

over i = 1, . . . , N, respectively, and estimate τ by the coefficients
of Zi, denoted by τ̂

imp
f (c) and τ̂

imp
l (c), respectively.

The covariate-wise imputation fills in identical value for
all missing values along the same covariate, and can appear
quite restrictive. Other common choices for single imputation
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include the treatment-specific sample means of the observed
covariates (Schemper and Smith 1990) and other conditional
sample means of the observed covariates based on either only
the observed covariates or both the observed covariates and
outcomes (Little 1992). We will nevertheless focus on the simple
covariate-wise imputation given its sufficiency for randomized
experiments; see Sullivan et al. (2018), Kayembe et al. (2020),
and Kamat and Reiter (2021) for numerical evidence on
the insensitivity of standard analyses to imputation methods in
randomized experiments. In addition, imputing with treatment-
specific sample means is asymptotically equivalent to imputing
with cj = x̂obs

j under Condition 1. We leave the theory of more
complicated single imputation methods to future work. A key
caveat is that imputation based on outcomes may be subject to
bias due to adjustment for variables that have been affected by
the treatment.

Moreover, we will show that the robust standard errors from
ols are convenient approximations to the true standard errors of
the τ̂

imp
∗ (c)’s. It is thus unnecessary to resort to multiple impu-

tation, which is a tool to assess uncertainty in general missing
data problems (Rubin 1987). We omit it from the following
discussion.

3.4. Missingness-Indicator Method

The missingness-indicator method augments (5) and (6) under
single imputation by also including Mi as additional regressors
to account for the missingness information. Specifically, we first
impute the missing xij’s by the covariate-specific cj’s, and then fit

Yi ∼ 1 + Zi + ximp
i (c) + Mi, (7)

Yi ∼ 1 + Zi + {ximp
i (c) − x̄imp(c)} + (Mi − M̄)

+ Zi{ximp
i (c) − x̄imp(c)} + Zi(Mi − M̄) (8)

over i = 1, . . . , N to construct the regression estimators as the
coefficients of Zi, denoted by τ̂mim

f (c) and τ̂mim
l (c), respectively.

This is equivalent to fitting the additive and fully interacted
regressions based on the augmented covariate vector xmim

i (c) =
(ximp

i (c)T, MT
i )T.

Recall that J denotes the set of complete covariates. Strictly
speaking, Mij = 0 for all i = 1, . . . , N for j ∈ J such that
we need to include only the subvector of Mi that corresponds
to the incomplete covariates. In addition, in case Mij = Mij′ for
all i = 1, . . . , N for some j 
= j′ outside J , we need to include
only one of them to avoid collinearity. Acknowledging the need
to adjust for these complications on a case-by-case basis, we will
use Mi to represent the vector of missingness indicators added to
the regressions after appropriate adjustment for notational sim-
plicity. This causes little confusion because standard software
packages for ols automatically drop redundant regressors.

As it turns out, τ̂mim∗ (c) (∗ = f, l) and their associated robust
standard errors ŝemim∗ (c) (∗ = f, l) are all invariant to the
choice of the imputation vector c. This is a numeric merit due
to the inclusion of the missingness indicators, and allows us to
construct τ̂mim∗ (c) by simply imputing all missing covariates as
0. We formalize the intuition in Theorem 1 below.

Theorem 1. τ̂mim∗ (c) and ŝemim∗ (c) are invariant to the choice of
c ∈ R

J for ∗ = f, l.

Cohen and Cohen (1975) hinted at the invariance of τ̂mim
f (c)

to the choice of c. Theorem 1 formalizes the results for both
τ̂mim

f (c) and τ̂mim
l (c), as well as the corresponding robust stan-

dard errors. We will use τ̂mim∗ and ŝemim∗ to denote the common
values of τ̂mim∗ (c) and ŝemim∗ (c) across all c. As it turns out, aug-
menting ximp

i (c) by Mi is not only sufficient but also necessary
to ensure the invariance of the resulting regression estimators
to the imputed values. We formalize the result in Theorem S1 of
the supplementary materials.

3.5. Missingness-Pattern Method

The missingness-indicator method factors in information in
missingness by including Mi as additional regressors in ols.
We propose the missingness-pattern method that goes one step
further, and fits one separate regression for each missingness
pattern based on all available covariates. Let ρ(m) = N(m)/N
denote the proportion of units with missingness pattern m ∈
{0, 1}J . We use Examples 1 and 2 (continued) below to illustrate
the basic idea with J = 1 and J = 2, respectively, and then
formalize the method for general J.

Example 1 (continued). Consider the case of J = 1 covariate,
xi ∈ R, and two missingness patterns, m ∈ M = {0, 1}. We can
fit one additive regression for each missingness pattern to obtain
the coefficients of Zi as follows:

1. regress Yi on (1, Zi, xi) over {i : Mi = 0} with xi observed
to obtain τ̂f,(0);

2. regress Yi on (1, Zi) over {i : Mi = 1} with xi missing to
obtain τ̂f,(1) = τ̂n,(1).

The weighted average τ̂
mp
f = ρ(0)τ̂f,(0) + ρ(1)τ̂f,(1) gives an

estimator for τ . Analogously, we can construct τ̂
mp
l by fitting

one fully interacted regression for each missingness pattern.

Example 2 (continued). Consider the case of J = 2 covariates,
xi = (xi1, xi2)T, and four missingness patterns, m ∈ M =
{0, 1}2. We can fit one additive regression for each missingness
pattern to obtain the coefficients of Zi as follows:

1. regress Yi on (1, Zi, xi1, xi2) over {i : Mi = (0, 0)T} with
both covariates observed to obtain τ̂f,(0,0);

2. regress Yi on (1, Zi, xi1) over {i : Mi = (0, 1)T} with only
covariate 1 observed to obtain τ̂f,(0,1);

3. regress Yi on (1, Zi, xi2) over {i : Mi = (1, 0)T} with only
covariate 2 observed to obtain τ̂f,(1,0);

4. regress Yi on (1, Zi) over {i : Mi = (1, 1)T} with both
covariates missing to obtain τ̂f,(1,1) = τ̂n,(1,1).

The weighted average τ̂
mp
f = ρ(0,0)τ̂f,(0,0) + ρ(0,1)τ̂f,(0,1) +

ρ(1,0)τ̂f,(1,0) + ρ(1,1)τ̂f,(1,1) gives an estimator of τ . Analogously,
we can construct τ̂

mp
l by fitting one fully interacted regression

for each missingness pattern.

Extensions to general J are immediate. Let xmp
i = (xij)j:Mij=0

be the vector of available covariates for unit i. In the above
Example 2 (continued), we have (i) xmp

i = xi = (xi1, xi2)T

for units with Mi = (0, 0)T; (ii) xmp
i = xi1 for units with

Mi = (0, 1)T; (iii) xmp
i = xi2 for units with Mi = (1, 0)T;

and (iv) xmp
i = ∅ for units with Mi = (1, 1)T. For units with
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missingness pattern m ∈ M, the missingness-pattern method
fits

Yi ∼ 1 + Zi + xmp
i , (9)

Yi ∼ 1 + Zi + (xmp
i − x̄mp

(m)) + Zi(xmp
i − x̄mp

(m)) (10)

over {i : Mi = m} under the additive and fully interacted
specifications, respectively, where x̄mp

(m) = N−1
(m)

∑
i:Mi=m xmp

i .
Let τ̂f,(m) and τ̂l,(m) be the coefficients of Zi from (9) and (10),
respectively. The weighted averages

τ̂
mp
∗ =

∑
m∈M

ρ(m)τ̂∗,(m) (∗ = f, l) (11)

give two covariate-adjusted estimators of τ .
The missingness-pattern method differentiates between

all |M| missingness patterns like the missingness-indicator
method, yet does so by fitting |M| missingness-pattern-specific
ols. It can be seen as a hybrid of the complete-case and
complete-covariate analyses, factoring in all available covariates
without the need of imputation or augmentation. With τ̂∗,(0J)

coinciding with τ̂ cc∗ from the complete-case analysis, it can also
be seen as an ensemble variant of τ̂ cc∗ , averaging over estimators
based on not only the complete cases but also other missingness
patterns present in the dataset.

The idea of missingness-pattern-specific analysis dates back
to Wilks (1932), Matthai (1951), and Rosenbaum and Rubin
(1984, Appendix B), and is reminiscent of the pattern-mixture
model approach to handling missingness that formulates dis-
tinct models within each missingness pattern (Little 1993).
Yet its use for analyzing experiments with missing covariates
remains mostly unexploited to the best of our knowledge. A key
intuition is that the missingness pattern acts as a discrete pre-
treatment covariate, and thus allows for post-stratified estima-
tors by averaging over estimators within missingness patterns.
Miratrix, Sekhon, and Yu (2013) demonstrated the asymp-
totic efficiency gain of post-stratification based on the sim-
ple stratum-specific differences in means without adjusting for
additional covariates. The τ̂

mp
l in (11) averages over regression-

adjusted estimators within missingness patterns, and promises
additional large-sample efficiency over the missingness indi-
cator method by allowing heterogeneous adjustments across
different missingness patterns. We quantify the intuition in Sec-
tion 4. Importantly, unlike the pattern-mixture model approach
that models the joint distribution of the missing covariates with

the observed covariates and outcome within each missingness
pattern, the missingness-pattern method in (9) and (10) bases
inference on the available covariates within each stratum, and
makes no assumption on the distribution of either the covariates
or outcome.

3.6. Summary of the Regression-Adjusted Estimators

Sections 3.1–3.5 present in total ten regression-adjusted estima-
tors, τ̂ †∗ , as the combinations of five missing-data strategies, † ∈
{cc, ccov, imp, mim, mp}, and two model specifications, ∗ =
F, L. Table 1 summarizes them. Of interest is their respective
validity and efficiency for inferring τ . A key observation is that
∅ ⊆ xccov

i ⊆ ximp
i (c) ⊆ xmim

i (c) for arbitrary c ∈ R
J . By

Remark 1, this elucidates the asymptotic efficiency of τ̂mim
l over

τ̂
imp
l (c), τ̂ ccov

l , and τ̂n if the x†
i ’s act as standard covariates. We

formalize the intuition in Section 4.

4. Design-based Theory

We quantify in this section the design-based properties of the
estimators in Table 1. In particular, regression adjustment deliv-
ers not only point estimators but also their associated robust
standard errors, denoted by ŝe†∗. We focus on the validity of
(̂τ †∗ , ŝe†∗) for large-sample Wald-type inference, which concerns
the point and interval estimation of τ based on not only the
consistency and asymptotic normality of τ̂ †∗ but also the asymp-
totic conservativeness of ŝe†∗ for estimating the true standard
error. In brief, we do not recommend τ̂ cc∗ (∗ = f, l) due to
their inconsistency without a strong additional assumption. We
recommend τ̂mim

l in general due to its simplicity, invariance to
c, and asymptotic efficiency over {̂τn, τ̂mim

f , τ̂ ccov∗ , τ̂ imp
∗ (c) : ∗ =

f, l}. When the missingness-pattern-specific sample sizes per-
mit, we recommend τ̂

mp
l due to its additional gain in asymptotic

efficiency. Echoing Remark 1, a key caveat is that the asymptotic
efficiency of τ̂mim

l and τ̂
mp
l may come at the cost of finite sample

performance. Importantly, despite τ̂ †∗ and ŝe†∗ are originally
motivated by regression models, our theory is design-based and
holds even when the regression models are misspecified.

With a slight redundancy of notation, let Aij = 1 − Mij
indicate the availability of xij with Ai = (Ai1, . . . , AiJ)T =
1J − Mi and Ai ◦ xi = (Ai1xi1, . . . , AiJxiJ)T = ximp

i (0J). We
need the following regularity conditions for asymptotics under

Table 1. Ten regression-adjusted estimators τ̂ †∗ with † ∈ {cc, ccov, imp, mim, mp} and ∗ = F, L.

τ̂ †∗ Missing-covariate strategy Covariates for regressions Consistency

τ̂ cc∗ use complete cases and all covariates xi No
τ̂ ccov∗ use all units and complete covariates xccov

i = (xij)j∈J Yes
τ̂

imp∗ (c) impute the missing xij ’s with cj ; ximp
i (c) = (ximp

i1 (c1), . . . , ximp
iJ (cJ))

T Yes
run ols with all covariates with ximp

ij (cj) = (1 − Mij)xij + Mijcj

τ̂mim∗ impute the missing xij ’s with 0; xmim
i (0J) = (ximp

i (0J)
T, MT

i )
T Yes

augment the covariates with Mij ’s
τ̂

mp∗ run missingness-pattern-specific OLS xmp
i = (xij)j:Mij=0 Yes

NOTE: The complete-case analysis uses units with Ci = 1, whereas the other four strategies use all units. Under suitable regularity conditions, τ̂ cc∗ (∗ = F, L) can be
inconsistent, whereas the other eight estimators are consistent. Among the eight consistent estimators, (i) τ̂ †

L is asymptotically more efficient than τ̂ †
F and τ̂N for all

† ∈ {ccov, imp, mim, mp}; (ii) τ̂mim
L is asymptotically the most efficient among {̂τN, τ̂ ccov∗ , τ̂ imp∗ (c), τ̂mim∗ : ∗ = F, L}; (iii) τ̂mp

L is asymptotically more efficient than τ̂mim
L ,

but can have large variability in finite samples.
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the complete-case, complete-covariate, single imputation, and
missingness-indicator strategies.

Condition 2. Assume Condition 1. As N → ∞, (i) ez has a limit
in (0, 1) for z = 0, 1, (ii) J has a limit, (iii) the first two finite
population moments of {Yi(z), xi, Mi, Ci, CiYi(z), Cixi, Ai ◦ xi :
z = 0, 1}N

i=1 have finite limits; the limit of C̄ = N−1 ∑N
i=1 Ci is in

(0, 1], and (iv) N−1 ∑N
i=1 ‖xi‖4

4 = O(1) and N−1 ∑N
i=1 Y4

i (z) =
O(1) for z = 0, 1.

Condition 2 gives the union of the regularity conditions
required by individual strategies to facilitate comparison and
avoid repetition. The conditions on Ci are required by only the
complete-case analysis. The condition on J is required by only
the complete-covariate analysis. The conditions on Mi and Ai◦xi
are required by only the single imputation and missingness-
indicator method.

4.1. Complete-Case Analysis

We derive in this section the design-based properties of
(̂τ cc∗ , ŝecc∗ ) (∗ = f, l) from (1) and (2). In brief, τ̂ cc∗ is in general
not consistent for τ unless the average treatment effect of the
complete cases equals that of the incomplete cases asymptot-
ically. This is a strong assumption, and can be problematic
whenever missingness is correlated with the potential outcomes.
A common example in randomized clinical trials is that the
more severely ill patients are often more likely to have missing
pretreatment covariates. We therefore do not recommend the
complete-case analysis. We present the technical details below.

Recall that {i : Ci = 1} denotes the set of the Ncc complete
cases. Let τ cc = (Ncc)−1 ∑

i:Ci=1 τi denote the corresponding
average treatment effect, which is nonstochastic and has a finite
limit under Condition 2. Let Scc

xx be the finite population covari-
ance of (xi)i:Ci=1, which has a finite limit under Condition 2. Let
vcc∗ and Scc

ττ ,∗ be the analogs of v∗ and S2
τ ,∗ in Lemma 1 defined

over {Yi(0), Yi(1), xi}i:Ci=1 for ∗ = f, l.

Proposition 1. Assume complete randomization, Condition 2,
and the limit of Scc

xx is nonsingular. Then
√

Ncc(̂τ cc∗ − τ cc) �
N (0, vcc∗ ) with vcc

l ≤ vcc
f . In addition, Ncc(ŝecc∗ )2 −vcc∗ = Scc

ττ ,∗ +
op(1), where Scc

ττ ,∗ ≥ 0.

Proposition 1 justifies the use of (̂τ cc∗ , ŝecc∗ ) for the large-
sample Wald-type inference of τ cc. The complete-case analysis
is consistent for τ if and only if τ cc − τ = o(1). This imposes
a strong restriction on the missingness mechanism, which in
general does not hold.

4.2. Complete-Covariate Analysis

Recall that xccov
i = (xij)j∈J denotes the vector of complete

covariates used by the complete-covariate analysis. The finite
population covariance of (xccov

i )N
i=1, denoted by Sccov

xx , has a finite
limit under Condition 2. Let vccov∗ and Sccov

ττ ,∗ be the analogs of
v∗ and S2

τ ,∗ in Lemma 1 defined over {Yi(0), Yi(1), xccov
i }N

i=1 for
∗ = f, l.

Proposition 2. Assume complete randomization, Condition 2,
and the limit of Sccov

xx is nonsingular. Then
√

N (̂τ ccov∗ − τ) �
N (0, vccov∗ ) with vccov

l ≤ vccov
f and vccov

l ≤ vn. In addition,
N(ŝeccov∗ )2 − vccov∗ = Sccov

ττ ,∗ + op(1), where Sccov
ττ ,∗ ≥ 0.

Proposition 2 justifies the large-sample Wald-type inference
based on (̂τ ccov∗ , ŝeccov∗ ) regardless of whether τ cc = τ or not,
and ensures the asymptotic efficiency of τ̂ ccov

l over τ̂ ccov
f and

the unadjusted τ̂n. This illustrates the advantage of including all
units in the analysis even at the cost of discarding all information
in the incomplete covariates. Importantly, all theoretical guar-
antees hold even when the missingness is related to the miss-
ing covariates and unobserved potential outcomes, a scenario
analogous to missing not at random under the superpopulation
framework (Rubin 1976).

Schemper and Smith (1990) referred to the complete-
covariate analysis as “an even less justifiable method” than the
complete-case analysis. Whereas their comment could be valid
for observational studies when incomplete covariates include
some key confounders, we give the opposite recommenda-
tion for randomized experiments. Intuitively, randomization
precludes the possibility of confounding by enforcing inde-
pendence between the treatment assignment and pretreatment
covariates, ensuring valid simple comparisons even without
covariate adjustment. The exclusion of incomplete covariates
thus does not affect the validity of the complete-covariate analy-
sis while allowing for additional asymptotic efficiency over τ̂n as
long as one complete covariate is prognostic. We consider this as
the baseline strategy for benchmarking the alternative strategies.

4.3. Single Imputation

Under single imputation, we allow the imputation vector c =
(cj)

J
j=1 to be dependent on (Zi)

N
i=1, and hence stochastic from

the design-based perspective. An example is cj = ∑
i:Zi=1(1 −

Mij)xij/
∑

i:Zi=1(1 − Mij), as the sample means of the observed
covariates under treatment level 1. We focus on c’s that have
finite probability limits under complete randomization:

C = {c ∈ R
J : plim c = c∞ < ∞ under complete
randomization and Condition 2}.

The constant imputation with cj = 0 for j = 1, . . . , J is a
special case with c∞ = c = 0J . The unconditional sample mean
imputation with cj = x̂obs

j is a special case with c∞ = (cj,∞)
J
j=1,

where cj,∞ = plim cj = limN→∞
∑N

i=1 Aijxij/
∑N

i=1 Aij.
Let Simp

xx (c) be the finite population covariance of
{ximp

i (c)}N
i=1. Condition 2 ensures that Simp

xx (c) has a finite
limit for all c ∈ C. Let vimp

∗ (c∞) and Simp
ττ ,∗(c∞) be the analogs of

v∗ and S2
τ ,∗ in Lemma 1 defined over {Yi(0), Yi(1), ximp

i (c∞)}N
i=1

for ∗ = f, l.

Proposition 3. Assume complete randomization, Condition 2,
and c ∈ C with the limit of Simp

xx (c) being nonsingular. Then√
N {̂τ imp

∗ (c) − τ } � N {0, vimp
∗ (c∞)} with vimp

l (c∞) ≤
vimp

f (c∞) and vimp
l (c∞) ≤ vccov

l ≤ vn. In addition,
N{ŝeimp

∗ (c)}2 − vimp
∗ (c∞) = Simp

ττ ,∗(c∞) + op(1), where
Simp
ττ ,∗(c∞) ≥ 0.
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Echoing the comments after Proposition 2, Proposition 3
justifies the large-sample Wald-type inference based on
{̂τ imp

∗ (c), ŝeimp
∗ (c)} for ∗ = f, l without any restrictions on

the relation between Mi’s and {Yi(0), Yi(1), xi}N
i=1 beyond

Condition 2. Let ximp
i (c∞) denote the counterpart of ximp

i (c)
if we impute by the finite probability limit of c. The regularity
conditions in Proposition 3 guarantee that the ximp

i (c∞)’s act as
standard covariates, and ensure that τ̂

imp
∗ (c∞) is asymptotically

normal with mean τ and variance vimp
∗ (c∞) by Lemma 1,

with vimp
l (c∞) ≤ vimp

f (c∞). The proof of Proposition 3 in the
supplementary materials further ensures that τ̂

imp
∗ (c) has the

same limiting distribution as that of τ̂
imp
∗ (c∞). This explains

the somehow surprising result that the possible randomness
in c, if any, does not increase the asymptotic variances of
τ̂

imp
∗ (c)’s, and ensures the consistency of τ̂

imp
∗ (c)’s along with

the efficiency of τ̂
imp
l (c) over τ̂

imp
f (c). The efficiency of τ̂

imp
l (c)

over τ̂ ccov∗ (∗ = f, l) and τ̂n then follows from Remark 1 with
ximp

i (c) ⊇ xccov
i ⊇ ∅. This suggests the advantage of including

all covariates in the analysis even with some basic imputation.
Observe that the true and estimated variances both depend

on the choice of c. We can minimize them over c to obtain the
optimal imputation. However, we do not go into details of this
route because the imputation method is strictly dominated by
the missingness-indicator method, as shown in the next section.

4.4. Missingness-Indicator Method

Recall that xmim
i (0J) = (ximp

i (0J)T, MT
i )T denotes the covariates

for forming (7) and (8) under the missingness-indicator method
with all missing covariates imputed by 0. Let Smim

xx be the finite
population covariance of {xmim

i (0J)}N
i=1. It has a finite limit

under Condition 2. Let vmim∗ and Smim
ττ ,∗ be the analogs of v∗

and S2
τ ,∗ in Lemma 1 defined over {Yi(0), Yi(1), xmim

i (0J)}N
i=1 for

∗ = f, l. Recall that τ̂mim∗ and ŝemim∗ denote the common values
of τ̂mim∗ (c) and ŝemim∗ (c) across all c ∈ R

J by Theorem 1.

Proposition 4. Assume complete randomization, Condition 2,
and the limit of Smim

xx is nonsingular. Then
√

N (̂τmim∗ − τ) �
N (0, vmim∗ ) with vmim

l ≤ vmim
f and vmim

l ≤ vimp
l (c∞) ≤ vccov

l ≤
vn for all c ∈ C. In addition, N(ŝemim∗ )2 − vmim∗ = Smim

ττ ,∗ + op(1),
where Smim

ττ ,∗ ≥ 0.

Similar to Propositions 2 and 3, Proposition 4 ensures
the validity of the large-sample Wald-type inference based on
(̂τmim∗ , ŝemim∗ ) (∗ = f, l) without any restrictions on the relation
between Mi’s and {Yi(0), Yi(1), xi}N

i=1 beyond Condition 2. Intu-
itively, randomization balances both covariates and missingness
indicators across treatment groups, and thereby ensures consis-
tency of the regression adjustments based on them regardless of
the missingness mechanism. The asymptotic efficiency of τ̂mim

l
over τ̂mim

f , τ̂
imp
l (c), τ̂ ccov

l , and τ̂n then follows from Lemma 1
and Remark 1 with xmim

i (c) ⊇ ximp
i (c) ⊇ xccov

i ⊇ ∅.
This highlights a second advantage of including the missing-
ness indicators in addition to the invariance to imputed values.
Importantly, observe that the missingness indicator method
essentially doubles the number of covariates relative to single

imputation, whereas the fully interacted specification doubles
model complexity relative to the additive specification. The
asymptotic efficiency of τ̂mim

l may thus come at the price of high
variance in finite samples, echoing Remark 1. We illustrate this
point using simulation in the supplementary materials.

Remark 3. Jones (1996) assumed that the outcome follows the
Gauss–Markov model Yi = μ + Ziβ + xiγ + εi, with xi being
a univariate covariate that is possibly missing and β being the
constant treatment effect that gives the model-based analog of τ .
He showed that τ̂mim

f is unbiased for β if the sample covariance
of Zi and xi for those units with missing xi equals zero. Complete
randomization ensures that this sample covariance converges
to zero in probability, and guarantees the consistency of τ̂mim

f .
Importantly, Jones’s (1996) theory is model-based, whereas ours
is design-based.

4.5. Missingness-Pattern Method

4.5.1. Conditional Properties under Post-Stratification
Recall that M = {m : N(m) > 0} denotes the set of missingness
patterns present in the study population, with ρ(m) = N(m)/N as
the proportion of units with missingness pattern m. Let ŝe∗,(m)

be the robust standard error associated with τ̂∗,(m) from the
pattern-specific ols fit under missingness pattern m ∈ M. The
weighted average

(ŝemp
∗ )2 =

∑
m∈M

ρ2
(m)ŝe2

∗,(m) (12)

gives an intuitive estimator of the sampling variance of τ̂mp
∗ from

(11) for ∗ = f, l.
Denote by N(m),z the number of units with missingness pat-

tern m that receive treatment level z ∈ {0, 1}. Conditioning on
D = {N(m),z : m ∈ M, z = 0, 1} with N(m),z > 0 for all m ∈ M
and z = 0, 1, we have |M| independent completely randomized
experiments, one within each missingness pattern (Miratrix,
Sekhon, and Yu 2013). Under regularity conditions within each
missingness pattern, Lemma 1 ensures the asymptotic normality
of τ̂∗,(m) (∗ = f, l), the asymptotic efficiency of τ̂l,(m) over τ̂f,(m),
and the asymptotic conservativeness of ŝe∗,(m) for estimating
the true standard error of τ̂∗,(m) for m ∈ M. Consequently,
τ̂

mp
∗ is asymptotically normal for ∗ = f, l, with τ̂

mp
l being

asymptotically more efficient than τ̂
mp
f and the ŝemp

∗ ’s being
asymptotically conservative for estimating their respective true
standard errors.

The above conditional theory for the missingness-pattern
method is straightforward and elegant. A fair comparison with
other methods, however, requires quantification of its asymp-
totic behaviors without conditioning on D. We address this in
Section 4.5.2 below.

4.5.2. Unconditional Properties via Aggregate Regression
The unconditional theory would be intuitive if we can express
(̂τ

mp
∗ , ŝemp

∗ ) as outputs from one aggregate regression. As it turns
out, regression adjustment with ximp

i (c), Mi1, . . . , MiJ , and all
their interactions recovers (̂τ

mp
f , ŝemp

f ) and (̂τ
mp
l , ŝemp

l ) via one
aggregate ols fit each. We formalize below the intuition for
(̂τ

mp
l , ŝemp

l ), and relegate the analogous results for (̂τ
mp
f , ŝemp

f )

to the supplementary materials.
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Let ump
i (c) be the covariate vector that includes ximp

i (c),
Mi1, . . . , MiJ , and all their interactions up to some adjustment
for collinearity. We give the explicit forms of ump

i (c) for J =
1, 2 in Examples 1 and 2 (continued) below, and then state its
utility for recovering (̂τ

mp
l , ŝemp

l ) via one aggregate regression
in Theorem 2.

Example 1 (continued). For J = 1 with Mi = Mi1 and ximp
i (c) =

(1 − Mi)xi + Mic, we have

ump
i (c) = {ximp

i (c), Mi, ximp
i (c)Mi} = {ximp

i (c), Mi},

where the last equality follows from that ximp
i (c)Mi = Mic is

collinear with Mi. This ensures ump
i (c) = xmim

i (c).

Example 2 (continued). For J = 2 with Mi = (Mi1, Mi2)T and
ximp

i (c) = (ximp
i1 (c1), ximp

i2 (c2))
T, where ximp

ij (cj) = (1−Mij)xij+
Mijcj (j = 1, 2), we have

ump
i (c) = {ximp

i (c), Mi1, Mi2, Mi1Mi2, ximp
i (c)Mi1,

ximp
i (c)Mi2, ximp

i (c)Mi1Mi2}
= {ximp

i (c), Mi1, Mi2, Mi1Mi2, ximp
i1 (c1)Mi2, ximp

i2 (c2)Mi1}.

The last equality follows from that ximp
ij (cj)Mij = Mijcj

is collinear with Mij for j = 1, 2, and ximp
i (c)Mi1Mi2 =

(c1, c2)
TMi1Mi2 is collinear with Mi1Mi2.

Theorem 2. The fully interacted missingness-pattern estimators
τ̂

mp
l and ŝemp

l from (11) and (12) equal the coefficient of Zi and
its associated robust standard error from

Yi ∼ 1+Zi +{ump
i (c)− ūmp(c)}+Zi{ump

i (c)− ūmp(c)} (13)

over i = 1, . . . , N, respectively. The result holds for arbitrary
c ∈ R

J .

Refer to (13) as the fully interacted aggregate specification
for the missingness-pattern method. Theorem 2 ensures that
(̂τ

mp
l , ŝemp

l ) are direct outputs of its ols fit, with ump
i (c) as the

effective covariate vector analogous to the xccov
i , ximp

i (c), and
xmim

i (c) in (4), (6), and (8), respectively. This ensures the equiv-
alence of τ̂

mp
l and τ̂mim

l when J = 1 by Example 1 (continued)
above, and allows us to quantify the unconditional asymptotic
properties of τ̂

mp
l for general J.

Corollary 1. ump
i (c) = xmim

i (c) and τ̂
mp
l = τ̂mim

l for J = 1.

Let vmp
l and Smp

ττ ,l be the analogs of vl and S2
τ ,l in Lemma 1

defined over {Yi(0), Yi(1), ump
i (0J)}N

i=1.

Proposition 5. Assume complete randomization and Condi-
tion S4 for {Yi(0), Yi(1), ump

i (0J)}N
i=1. Then

√
N (̂τ

mp
l − τ) �

N (0, vmp
l ), with N(ŝemp

l )2 −vmp
l = Smp

ττ ,l +op(1), where Smp
ττ ,l ≥

0.

Proposition 5 is a direct consequence of Lemma 1 and Theo-
rem 2, and justifies the large-sample Wald-type inference based
on (̂τ

mp
l , ŝemp

l ) irrespective of the missingness mechanism. The

asymptotic efficiency of saturated model over its restricted vari-
ants further ensures the asymptotic efficiency of τ̂

mp
l over τ̂

mp
f ;

see Theorem S2 in the supplementary materials.
Theorem 3 summarizes the relative efficiency between τ̂ †

l ’s
for the four consistent strategies, † ∈ {ccov, imp, mim, mp}.
This, together with the efficiency of τ̂ †

l over τ̂ †
f for each indi-

vidual strategy, ensures the asymptotic efficiency of τ̂
mp
l among

all eight consistent estimators in Table 1.

Theorem 3. vmp
l ≤ vmim

l ≤ vimp
l (c∞) ≤ vccov

l ≤ vn.

Compare the definition of ump
i (c) with xmim

i (c) to see
that ump

i (c) includes interaction terms like ximp
i (c)Mij,

ximp
i (c)MijMij′ that are not in xmim

i (c). This suggests the
advantage of τ̂

mp
l over τ̂mim

l when the covariates interact with
the missingness pattern in affecting the treatment effect.

Despite the desired gain in large-sample efficiency, the
missingness-pattern method can be demanding on the
missingness-pattern-specific sample sizes in finite samples
even with a moderate J. Denote by J(m) = ∑J

j=1(1 − mj) the
number of available covariates under missingness pattern m.
The pattern-specific additive estimator τ̂f,(m) is well defined only
if N(m) ≥ J(m)+2; the pattern-specific fully interacted estimator
τ̂l,(m) is well defined only if min{N(m),0, N(m),1} ≥ J(m) + 1.
When some τ̂∗,(m)’s are not well defined due to these sample
size constraints, we recommend going back to the missingness-
indicator method to ensure finite sample feasibility.

5. Numerical Studies

5.1. Simulation

We use simulation to illustrate the finite sample properties
of the proposed methods. The results are coherent with the
asymptotic theory in Section 4, showing (i) the inconsistency
of τ̂ cc∗ (∗ = f, l) when τ cc 
= τ ; (ii) the efficiency of τ̂mim

l
over {̂τmim

f , τ̂ imp
∗ (c), τ̂ ccov∗ : ∗ = f, l} when missingness is

correlated with the potential outcomes; (iii) the efficiency of
τ̂

mp
l over τ̂mim

l in large samples when the potential outcomes
depend on interactions between {Mi1, . . . , MiJ , xi}, and (iv) the
robustness of the proposed methods to model misspecification.
We relegate the details to the supplementary materials due to
space limitations.

5.2. Application

Angrist, Lang, and Oropoulos (2009) conducted a randomized
field experiment in a Canadian university to evaluate the effect
of academic services and incentives on academic performance.
A random sample of 400 out of 1656 eligible first-year students
was selected to receive the opportunity to win fellowships for
meeting a target grade point average. One question of interest is
how such fellowship opportunities affect the average grades in
the fall semester.

Let Yi and Zi be the average fall grade and indicator of
access to the fellowship opportunity for student i. A total of
1404 students have available fall grades, among which 338 were
offered the fellowship opportunity and 1066 were not. We use
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Table 2. Reanalysis of the data from Angrist, Lang, and Oropoulos (2009).

τ̂ †
F τ̂ †

L

Strategy Estimate Robust s.e. p-value Estimate Robust s.e. p-value

cc 2.152 0.704 0.002 2.114 0.702 0.003
ccov 1.866 0.686 0.007 1.895 0.677 0.005
imp 1.906 0.686 0.006 1.876 0.680 0.006
mim 1.935 0.683 0.005 1.924 0.674 0.004
mp 1.998 0.681 0.003 1.926 0.675 0.004

NOTE: The outcome is the average fall grade, and the treatment is access to the
fellowship opportunity. For comparison, τ̂N = 2.013 and ŝeN = 0.703 with p-
value = 0.004.

them as the study population, and follow Angrist, Lang, and
Oropoulos (2009) to control for sex, mother tongue, high school
grade quartile, number of credits enrolled, and responses to
survey questions on procrastination and parents’ education in
the regression analysis. A total of 1278 students have all covari-
ates observed, accounting for 91% of the study population. All
incomplete cases are due to missing responses to all survey ques-
tions. This results in two missingness patterns, corresponding to
the respondents and nonrespondents, respectively.

Table 2 summarizes the results from our reanalysis of the
data. All five strategies yield coherent results about a signifi-
cant effect of the fellowship opportunities on fall grades. The
complete-case analysis yields the largest point estimates, 2.152
and 2.114, overall. The missingness-pattern-specific analysis
of the incomplete cases, on the other hand, yields point esti-
mates of 0.435 and 0.014 under the additive and fully inter-
acted specifications, respectively. This suggests a high possibility
of systematic differences between the respondents and non-
respondents, subjecting the complete-case analysis to possibly
large biases.

Importantly, the reduction in the robust standard error of
τ̂mim

l in Table 2 can be an artifact of adding more covariates,
and may not reflect the true variability in finite samples. To
empirically investigate whether the differences in precision are
coherent with the asymptotic theory, we simulate data based on
Angrist, Lang, and Oropoulos (2009) to verify the finite sample
efficiency of τ̂mim

l in this example. We relegate the details to the
supplementary materials.

6. Conclusion

We established the validity of the complete-covariate analysis,
single imputation, the missingness-indicator method, and the
missingness-pattern method for large-sample Wald-type infer-
ence regardless of (i) the relation between missingness, poten-
tial outcomes, and covariates, (ii) the correctness of the linear
models, and (iii) the choice of the imputed values if any. Consis-
tency is hence a rather basic criterion for evaluating regression-
adjusted estimators, rendering the possible inconsistency of the
complete-case analysis all the more undesirable.

Based on theory and simulation, we recommended using the
missingness-indicator method along with Lin (2013)’s specifi-
cation to adjust for missing covariates in randomized exper-
iments. When the treatment does not affect the missingness
indicators, the resulting estimator is consistent for the average
treatment effect, and asymptotically more efficient than the
unadjusted estimator and the estimators based on complete or

imputed covariates alone. We also proposed the missingness-
pattern method as a modification to reap additional asymptotic
efficiency.

Due to space limitations, we relegate extensions to alternative
regression specifications, cluster and stratified randomizations,
the Fisher randomization test, rerandomization with missing
covariates, and possible violations of Condition 1 to the supple-
mentary materials.

Supplementary Materials

The supplementary materials contain additional results and technical
details.

Acknowledgments

We thank Fan Li, Tianyu Guo, Georgia Papadogeorgous, and Zhi Geng for
helpful discussions, and two Associate Editors and three referees for most
constructive comments.

Funding

Zhao was funded by the Start-Up grant R-155-000-216-133 from the
National University of Singapore. Ding was partially funded by the U.S.
National Science Foundation # 1945136.

ORCID

Peng Ding http://orcid.org/0000-0002-2704-2353

References

Anderson, A. B., Basilevsky, A., and Hum, D. P. J. (1983), Missing Data: A
Review of the Literature, volume 1 of Handbook of Survey Research, pp.
415–492, New York: Academic Press. [2]

Angrist, J., Lang, D., and Oropoulos, P. (2009), “Incentives and Services
for College Achievement: Evidence from a Randomized Trial,” American
Economic Journal: Applied Economics, 1, 136–163. [9,10]

Berk, R., Pitkin, E., Brown, L., Buja, A., George, E., and Zhao, L. (2013),
“Covariance Adjustments for the Analysis of Randomized Field Experi-
ments,” Evaluation Review, 37, 170–196. [3]

Carpenter, J. R., and Kenward, M. G. (2007), Missing Data in Ran-
domised Controlled Trials: A Practical Guide. UK National Health Ser-
vice, National Coordinating Centre for Research on Methodology. [2,4]

Chong, A., Cohen, I., Field, E., Nakasone, E., and Torero, M. (2016), “Iron
Deficiency and Schooling Attainment in Peru,” American Economic
Journal: Applied Economics, 8, 222–255. [2]

Cohen, J., and Cohen, P. (1975), Applied Multiple Regression/Correlation
Analysis for the Behavioral Sciences, New York: Lawrence Erlbaum Asso-
ciates. [2,5]

D’Agostino, R. B., and Rubin, D. B. (2000), “Estimating and using Propensity
Scores with Partially Missing Data,” Journal of the American Statistical
Association, 95, 749–759. [2]

Ding, P., and Geng, Z. (2014), “Identifiability of subgroup causal effects in
randomized experiments with nonignorable missing covariates,” Statis-
tics in Medicine, 33, 1121–1133. [2]

Donders, A. R. T., van der Heijden, G. J., Stijnen, T., and Moons, K. G. M.
(2006), “Review: A Gentle Introduction to Imputation of Missing Val-
ues,” Journal of Clinical Epidemiology, 59, 1087–1091. [2]

Fisher, R. A. (1935), The Design of Experiments (1st ed.), Edinburgh, Lon-
don: Oliver and Boyd. [1,3]

Fogarty, C. B., Mikkelsen, M. E., Gaieski, D. F., and Small, D. S. (2016), “Dis-
crete Optimization for Interpretable Study Populations and Random-
ization Inference in an Observational Study of Severe Sepsis Mortality,”
Journal of the American Statistical Association, 111, 447–458. [2]

http://orcid.org/0000-0002-2704-2353


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 11

Freedman, D. A. (2008), “On Regression Adjustments to Experimental
Data,” Advances in Applied Mathematics, 40, 180–193. [2,3]

Gerber, A. S., and Green, D. P. (2012), Field Experiments: Design, Analysis,
and Interpretation, New York: W. W. Norton and Company. [2]

Glasser, M. (1964), “Linear Regression Analysis with Missing Observations
among the Independent Variables,” Journal of the American Statistical
Association, 59, 834–844. [2]

Greenland, S., and Finkle, W. D. (1995), “A Critical Look at Methods for
Handling Missing Covariates in Epidemiologic Regression Analyses,”
American Journal of Epidemiology, 142, 1255–1264. [2]

Groenwold, R. H., White, I. R., Donders, A. R., Carpenter, J. R., Altman,
D. G., and Moons, K. G. (2012), “Missing Covariate Data in Clinical
Research: When and when not to Use the Missing-Indicator Method
for Analysis,” Canadian Medical Association Journal, 184, 1265–1269.
[2]

Haitovsky, Y. (1968), “Missing Data in Regression Analysis,” Journal of the
Royal Statistical Society, Series B, 30, 67–82. [2]

Ibrahim, J. G., Chen, M.-H., Lipsitz, S. R., and Herring, A. H. (2005),
“Missing-Data Methods for Generalized Linear Models: A Comparative
Review,” Journal of the American Statistical Association, 100, 332–346.
[1,2]

Imbens, G. W., and Rubin, D. B. (2015), Causal Inference for Statistics,
Social, and Biomedical Sciences: An Introduction, Cambridge: Cambridge
University Press. [2,3]

Jones, M. P. (1996), “Indicator and Stratification Methods for Missing
Explanatory Variables in Multiple Linear Regression,” Journal of the
American Statistical Association, 91, 222–230. [2,8]

Kamat, G., and Reiter, J. P. (2021), “Leveraging Random Assignment to
Impute Missing Covariates in Causal Studies,” Journal of Statistical Com-
putation and Simulation, 91, 1275–1305. [5]

Kayembe, M. T., Jolani, S., Tan, F. E. S., and van Breukelen, G. J. P. (2020),
“Imputation of Missing Covariate in Randomized Controlled Trials with
a Continuous Outcome: Scoping Review and New Results,” Pharmaceu-
tical Statistics, 19, 840–860. [5]

Li, X., and Ding, P. (2020), “Rerandomization and Regression Adjustment,”
Journal of the Royal Statistical Society, Series B, 82, 241–268. [3]

Lin, W. (2013), “Agnostic Notes on Regression Adjustments to Experimen-
tal Data: Reexamining Freedman’s Critique,” Annals of Applied Statistics,
7, 295–318. [1,2,3,10]

Little, R. J. A. (1992), “Regression with Missing x’s: A Review,” Journal of the
American Statistical Association, 87, 1227–1237. [1,2,5]

(1993), “Pattern-Mixture Models for Multivariate Incomplete
Data,” Journal of the American Statistical Association, 88, 125–134.
[6]

Little, R. J. A., and Rubin, D. B. (2019), Statistical Analysis with Missing Data
(3rd ed.), New York: Wiley. [1,2]

Mattei, A. (2009), “Estimating and using Propensity Score in Presence
of Missing Background Data: An Application to Assess the Impact of
Childbearing on Wellbeing,” Statistical Methods and Applications, 18,
257–273. [2]

Matthai, A. (1951), “Estimation of Parameters from Incomplete Data with
Application to Design of Sample Surveys,” Sankhya, 11, 145–152. [2,6]

Miettinen, O. S. (1985), Theoretical Epidemiology: Principles of Occurrence
Research in Medicine, New York: Wiley. [2]

Miratrix, L. W., Sekhon, J. S., and Yu, B. (2013), “Adjusting Treatment Effect
Estimates by Post-Stratification in Randomized Experiments,” Journal of
the Royal Statistical Society, Series B, 75, 369–396. [2,6,8]

Negi, A., and Wooldridge, J. M. (2021), “Revisiting Regression Adjustment
in Experiments with Heterogeneous Treatment Effects,” Econometric
Reviews, 40, 504–534. [3]

Neyman, J. (1923), “On the Application of Probability Theory to Agricul-
tural Experiments,” (with Discussion), Statistical Science, 5, 465–472.
[1,2,3]

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994), “Estimation of Regres-
sion Coefficients when some Regressors are not Always Observed,”
Journal of the American Statistical Association, 89, 846–866. [2]

Rosenbaum, P. R. (2010), Design of Observational Studies, New York:
Springer. [2]

Rosenbaum, P. R., and Rubin, D. B. (1984), “Reducing Bias in Observational
Studies using Subclassification on the Propensity Score,” Journal of the
American Statistical Association, 79, 516–524. [2,6]

Rubin, D. B. (1976), “Inference and Missing Data,” Biometrika, 63, 581–592.
[2,7]

(1987), Multiple Imputation for Nonresponse in Surveys, New York:
Wiley. [1,2,5]

Schemper, M., and Smith, T. L. (1990), “Efficient Evaluation of Treat-
ment Effects in the Presence of Missing Covariate Values,” Statistics in
Medicine, 9, 777–784. [5,7]

Sullivan, T. R., White, I. R., Salter, A. B., Ryan, P., and Lee, K. J. (2018),
“Should Multiple Imputation be the Method of Choice for Handling
Missing Data in Randomized Trials?” Statistical Methods in Medical
Research, 27, 2610–2626. [4,5]

White, I. R., and Carlin, J. B. (2010), “Bias and Efficiency of Multiple Impu-
tation Compared with Complete-Case Analysis for Missing Covariate
Values,” Statistics in Medicine, 29, 2920–2931. [1]

White, I. R., and Thompson, S. G. (2005), “Adjusting for Partially Missing
Baseline Measurements in Randomized Trials,” Statistics in Medicine, 24,
993–1007. [2,4]

Wilks, S. S. (1932), “Moments and Distributions of Estimates of Population
Parameters from Fragmentary Samples,” Annals of Mathematical Statis-
tics, 3, 163–195. [2,6]

Yang, S., Wang, L., and Ding, P. (2019), “Causal Inference with Confounders
Missing not at Random,” Biometrika, 106, 875–888. [2]

Ye, T., Shao, J., Yi, Y. Y., and Zhao, Q. Y. (2022), “Toward Better
Practice of Covariate Adjustment in Analyzing Randomized
Clinical Trials,” Journal of the American Statistical Association,
DOI:10.1080/01621459.2022.2049278. [3]

Zhao, A., and Ding, P. (2021), “Covariate-Adjusted Fisher Randomization
Tests for the Average Treatment Effect,” Journal of Econometrics, 225,
278–294. [3]


	Abstract
	1.  Introduction
	2.  Setting
	2.1.  Regression Estimators when all Covariates are Observed
	2.2.  Missing Data and Running Examples

	3.  Five Strategies for Handling Missing Covariates
	3.1.  Complete-Case Analysis
	3.2.  Complete-Covariate Analysis
	3.3.  Single Imputation
	3.4.  Missingness-Indicator Method
	3.5.  Missingness-Pattern Method
	3.6.  Summary of the Regression-Adjusted Estimators

	4.  Design-based Theory
	4.1.  Complete-Case Analysis
	4.2.  Complete-Covariate Analysis
	4.3.  Single Imputation
	4.4.  Missingness-Indicator Method
	4.5.  Missingness-Pattern Method
	4.5.1.  Conditional Properties under Post-Stratification
	4.5.2.  Unconditional Properties via Aggregate Regression


	5.  Numerical Studies
	5.1.  Simulation
	5.2.  Application

	6.  Conclusion
	Supplementary Materials
	Acknowledgments
	Funding
	ORCID
	References


