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This paper provides a critical review of the Bayesian

perspective of causal inference based on the

potential outcomes framework. We review the

causal estimands, assignment mechanism, the general

structure of Bayesian inference of causal effects

and sensitivity analysis. We highlight issues that are

unique to Bayesian causal inference, including the role

of the propensity score, the definition of identifiability,

the choice of priors in both low- and high-dimensional

regimes. We point out the central role of covariate

overlap and more generally the design stage in

Bayesian causal inference. We extend the discussion

to two complex assignment mechanisms: instrumental

variable and time-varying treatments. We identify the

strengths and weaknesses of the Bayesian approach

to causal inference. Throughout, we illustrate the key

concepts via examples.

This article is part of the theme issue ‘Bayesian

inference: challenges, perspectives, and prospects’.

1. Introduction
Causality has long been central to the human philoso-

phical debate and scientific pursuit. There are many

relevant questions, e.g. the philosophical meaning

of causation or deducing the causes of a given

phenomenon. Among these questions, statistics—which

concerns measurements—arguably can contribute the

most to the question of measuring the effects of

causes. Statistics infers associations between variables.

Even though the research questions in many statistics-

based studies are causal in nature, a first lesson

in elementary statistics is that association does not

imply causation. Distinguishing between causation and

spurious association between various events is a

challenging task in science. Broadly speaking, statistical

causal inference is about building a framework that (i)

2023 The Author(s) Published by the Royal Society. All rights reserved.
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defines causal effects under general scenarios, (ii) specifies assumptions under which one can

identify causation from association and (iii) assesses the sensitivity to the causal assumptions and

finds ways to mitigate.

A mainstream statistical framework for causal inference is the potential outcomes framework

[1–3]. Under this framework, following the dictum ‘no causation without manipulation’ [3], a

cause is a pre-specified treatment or intervention that is at least hypothetically manipulable. A

typical causal question is ‘would an individual have a better outcome had he taken treatment

A versus treatment B?’ Causal effects are defined as comparisons of potential outcomes, also

known as counterfactuals, under different treatment conditions for the same units. The main

hurdle to interpreting the association between the treatment and the outcome as a causal effect

is confounding, i.e. the presence of factors that are associated with both the treatment and the

outcome. For example, patients with worse health conditions may be more likely to obtain a

beneficial medical treatment; then directly comparing the outcomes of the treated and control

patients, without adjusting for the difference in their baseline health conditions, would bias

the causal comparisons and mistakenly conclude that the treatment is harmful. Randomized

experiments, known as A/B testing in industry or randomized controlled trials in medicine, are the

gold standard for casual inference by eliminating confounding via randomization. But modern

causal inference has increasingly relied on observational data. The potential outcomes framework

provides the basis for identifying and estimating causal effects—quantities defined based on

counterfactuals—from the factual data in the presence of confounding, using randomized or

observational data. This framework is applicable to a wide range of problems in many disciplines

and has been increasingly adopted in the area of machine learning. Other frameworks for causal

inference, including the causal diagram [4] and invariant prediction [5], are beyond the scope of

this review.

There are three primary inferential approaches within the potential outcomes framework [6]:

Fisherian randomization test, Neymanian repeated-sampling evaluation and Bayesian inference.

The first two approaches belong to the Frequentist paradigm and have been dominant, with many

popular tools such as propensity scores, matching and weighting. The Bayesian approach has

several established advantages for general statistical analysis, including automatic uncertainty

quantification, coherently incorporating prior knowledge, and offering a rich collection of

advanced models for complex data. As causal studies increasingly involve real-world big data,

there has been a recent surge of research in Bayesian inference of causal effects [7–11], but there

is no comprehensive appraisal of the current state of the research. This paper aims to fill this gap.

Due to the space limit, we do not intend to provide a catalogue of the existing research on this

topic, but rather discuss the big picture of why and how to conduct Bayesian causal inference

in general settings. We emphasize the unique questions, challenges and opportunities that the

Bayesian approach brings to causal inference. We hope this review can stimulate broader and

deeper cross-fertilization between causal inference and Bayesian analysis.

Section 2 introduces the preliminaries of the potential outcomes framework, and briefly

discusses several Frequentist methods to causal inference. Section 3 outlines the general structure

of Bayesian causal inference, focusing on ignorable treatment assignments at one time point.

Section 4 discusses model specification and implications in high-dimensional settings. Section

5 reviews the role and various uses of the propensity score in Bayesian causal inference. Section 6

outlines sensitivity analysis in observational studies. Section 7 describes two complex assignment

mechanisms: instrumental variable and time-varying treatments. Section 8 concludes.

2. Estimands, identification and frequentist estimation
To convey the main ideas, we focus on the case with a binary treatment at one time period, which

can be readily extended to multiple treatments and multiple time points. Consider a sample

of units drawn from a target population, indexed by i ∈ {1, . . . , N}. Each unit can potentially be

assigned to one of two treatment levels z, with z = 1 for the active treatment and z = 0 for the

control. Let Zi(= z) be the binary variable indicating unit i’s observed treatment status. For unit i,
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a vector of p covariates Xi are observed before the treatment, and an outcome Yi is observed after

the treatment. A confounder is a pre-treatment variable that is associated with both the treatment

and the outcome; it can be observed, as a subset of the covariates Xi, or unobserved. Below we use

covariates and confounders interchangeably. We use the A ⊥⊥ B | C notation to denote conditional

independence between two variables A and B given variable C [12]. We also use the bold font to

indicate a vector consisting of the corresponding variables for the N units, e.g. Z = (Z1, . . . , ZN)′.

We maintain the standard stable unit treatment value assumption (SUTVA) [13], namely,

there is (i) no different version of a treatment, and (ii) no interference in the sense that one

unit’s potential outcomes are not affected by other units’ treatment assignment. Under SUTVA,

each unit i has two potential outcomes: Yi(1) and Yi(0). Causal effects are contrasts of potential

outcomes under different treatment conditions for the same set of units. The individual treatment

effect (ITE) for unit i is τi = Yi(1) − Yi(0). Averaging τi over a sample we obtain the sample average

treatment effect (SATE): τ S ≡ N−1 ∑N
i=1 τi. Furthermore, the conditional average treatment effect

(CATE) is the average of the individual treatment effect of all units with the covariate value x:

τ (x) ≡ E{Yi(1) − Yi(0) | Xi = x} = µ1(x) − µ0(x), (2.1)

where µz(x) ≡ E{Yi(z) | Xi = x} for z = 0, 1. Averaging τi or τ (Xi) over a target population gives the

population average treatment effect (PATE):

τ P ≡ E{Yi(1) − Yi(0)} = E{τ (Xi)}. (2.2)

The PATE is a function of the distribution of the potential outcomes in a population, whereas

the SATE is a function of the potential outcomes themselves. The subtle distinction in their

definitions leads to important differences in inferential and computational strategies, as will

be discussed later. Traditionally, the SATE is of interest in randomized experiments where the

target population is the specific sample, whereas the PATE is of interest in observational studies

where the target population is the population from which the sample is drawn. In general, the

choice of a causal estimand is determined by the scientific question in hand rather than statistical

considerations. Note that although both the ITE and CATE are important in characterizing

treatment effect heterogeneity, they are obviously different; however, these two estimands are

sometimes conflated in the literature.

The fundamental problem of causal inference [14] is that, for each unit only the potential

outcome corresponding to the actual treatment, Yobs
i ≡ Yi = Yi(Zi), is observed or factual, and

the other potential outcome, Ymis
i = Yi(1 − Zi), is missing or counterfactual. Therefore, additional

assumptions are necessary to identify the causal effects. The key identifying assumptions concern

the assignment mechanism, i.e. the process that determines which units get what treatment and

hence which potential outcomes are observed or missing [15]. The vast majority of causal studies

assume certain versions of an ignorable assignment mechanism, where the treatment assignment is

independent of the potential outcomes conditional on some observed variables. Specifically, in

the simple setting of a binary treatment at one time, ignorability consists of two sub-assumptions

[15,16].

Assumption 2.1. (Ignorability). (a) Unconfoundedness. Pr{Zi | Yi(0), Yi(1), Xi} = Pr(Zi | Xi), or

equivalently Zi ⊥⊥ {Yi(0), Yi(1)} | Xi. (b) Overlap. 0 < e(Xi) < 1 for all i, where e(x) ≡ Pr(Zi = 1 | Xi = x)

is the propensity score [16].

The unconfoundedness assumption states that there is no unmeasured confounding, and the

overlap assumption states that each unit has non-zero probability of being assigned to each

treatment condition. These two assumptions together ensure that the conditional distribution of

the potential outcomes is identifiable from observed data as

µz(x) ≡ E{Yi(z) | Xi = x} = E(Yi | Zi = z, Xi = x), for all z, x. (2.3)

Therefore, the CATE is identified as τ (x) = µ1(x) − µ0(x), and the PATE is identified as τ P =

E{µ1(Xi) − µ0(Xi)}. This underlines the estimation strategy of outcome modelling: we can specify

a model for the outcome function µz(x), and estimate the CATE by τ̂ (x) = µ̂1(x) − µ̂0(x), and the
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PATE by τ̂ reg = N−1 ∑N
i=1{µ̂1(Xi) − µ̂0(Xi)}, where µ̂z(x) is the estimated outcome model from the

observed data.

In randomized experiments, the treatment assignment is known and controlled by the

experimenters, and ignorability holds by design. In observational studies, the treatment

assignment is unknown and uncontrolled, and ignorability at best holds approximately. A key

concept in causal inference is overlap and balance, which refers to the similarity in the distributions

of the covariates between the comparison groups. In general, as the two groups become

more balanced, the causal estimates become less sensitive to the estimate strategy and model

specification. In the ideal case of a randomized experiment, all—measured and unmeasured—

covariates are balanced in expectation, i.e. they have the same multivariate distribution

in the two treatment arms. Consequently, the simple difference-in-means estimator, τ̂ =

{
∑N

i=1 YiZi/
∑N

i=1 Zi} − {
∑N

i=1 Yi(1 − Zi)/
∑N

i=1(1 − Zi)}, is unbiased for τ S and τ P; furthermore,

even a misspecified linear outcome model leads to a consistent estimate of τ S [17]. On the contrary,

in observational studies, the two groups are often imbalanced in many covariates, e.g. patients

receiving the treatment may be generally sicker and older than those receiving the control. In

such cases, directly comparing the difference in the outcomes between the two groups would

give biased estimates of the causal effects. Moreover, the fit of an outcome model would rely

on extrapolation in the regions where the two groups are poorly overlapped, and consequently

outcome-model-based estimators, such as τ̂ reg, are sensitive to the model specification. Therefore,

a main effort in causal inference with observational data is to ensure overlap and balance to mimic

a randomized experiment as closely as possible. This process does not involve the outcome and

is referred to as the design stage, in contrast to the analysis stage, which utilizes the outcome and

estimates causal effects given the design stage [18]. A causal analysis of an observational study

usually has both design and analysis stages, in parallel with those of a randomized controlled

experiment.

The propensity score plays a central role in causal inference with observational data, owing

to its two special properties [16]. First, the propensity score is a balancing score in the sense that

Zi ⊥⊥ e(Xi) | Xi. This means that balancing the scalar propensity score balances the multivariate

distribution of the covariates. Second, if a treatment assignment is unconfounded given Xi, then

it is unconfounded given e(Xi), that is, Zi ⊥⊥ {Yi(0), Yi(1)} | Xi implies Zi ⊥⊥ {Yi(0), Yi(1)} | e(Xi). In

observational studies, e(Xi) is usually unknown and needs to be estimated, e.g. via a logistic

regression model of the treatment on the covariates.

The propensity score is usually used with matching, weighting, or stratification to achieve

balance and estimate causal effects. Specifically, matching methods use a certain algorithm to

find pairs of units in the two groups with similar covariates according to a distance metric,

e.g. the propensity score or the Mahalanobis distance, and then calculate the difference in

the average observed outcome between the groups in the matched sample [19–21]. Weighting

methods assign a weight to each unit, so that the weighted distribution of the covariates in

the two groups are balanced [22], and then calculate the weighted difference in the outcomes

between the two groups. An important weighting scheme is inverse probability weighting (IPW),

based on the identification formula of the PATE: τ P = E{ZiYi/e(Xi) − (1 − Zi)Yi/(1 − e(Xi))}. A

corresponding IPW estimator [23] is τ̂ ipw = N−1 ∑N
i=1{ZiYi/̂e(Xi) − (1 − Zi)Yi/(1 − ê(Xi))}, where

ê(Xi) denotes the estimated propensity score for unit i. One can further augment the IPW

estimator by an outcome model to obtain a semiparametric efficient estimator [24]: τ̂dr = τ̂ reg +

N−1 ∑N
i=1{ZiRi/̂e(Xi) − (1 − Zi)Ri/(1 − ê(Xi))}, where Ri = Yi − µ̂Zi

(Xi) is the residual from the

outcome model. The IPW estimator τ̂ ipw is consistent for τ if the propensity score model is correct,

and the outcome-model estimator τ̂ reg is consistent if the outcome model is correct. Because the

bias of the estimator τ̂dr is a product of the residual of the propensity score model and that of

the outcome model, τ̂dr is doubly robust in the sense that it is consistent if either the propensity

score or the outcome model, but not necessarily both, is correctly specified [25]. Despite the

seemingly different construction, matching estimators, with proper mathematical formulations,

can be viewed as non-parametric versions of τ̂ ipw, τ̂ reg and τ̂dr based on nearest-neighbour

regressions [26]. These are the main Frequentist estimation strategies for τ P under ignorability.
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When the target estimand is the CATE, the primary estimation strategy is outcome modelling.

We will discuss how to specify the outcome model in §4(a).

3. General structure of Bayesian causal inference

(a) Basic factorization and versions of causal estimands

Because of the unavoidable missing potential outcomes, causal inference under the potential

outcomes framework is inherently a missing data problem [6,15]. The Bayesian paradigm offers

a unified framework for statistical inference with missing data and thus for causal inference [27].

Below we review the general structure of Bayesian causal inference that was first outlined in [15].

Four quantities are associated with each unit i, {Yi(0), Yi(1), Zi, Xi}, where {Zi, Xi, Yi(Zi)} are

observed but Yi(1 − Zi) is missing. Bayesian inference views all these quantities as random

variables and centres around specifying a model for them. Based on the Bayesian model, we can

draw inference on causal estimands—functions of the model parameters, covariates and potential

outcomes—from the posterior predictive distributions of the parameters and the unobserved

potential outcomes. Specifically, we assume the joint distribution of these random variables of

all units is governed by a parameter θ = (θX, θZ, θY), conditional on which the random variables

for each unit are i.i.d.. Then we can factorize the joint density Pr{Yi(0), Yi(1), Zi, Xi | θ} for each unit

i as

Pr{Zi | Yi(0), Yi(1), Xi; θZ} · Pr{Yi(0), Yi(1) | Xi; θY} · Pr(Xi; θX). (3.1)

The three terms in (3.1) represent the model for the assignment mechanism, potential outcomes,

and covariates, respectively. Under ignorability, the assignment mechanism further reduces to the

propensity score model Pr(Zi | Xi; θZ).

Before diving into the technical details, we first clarify the subtle but important difference

between the Bayesian estimation of the PATE and SATE estimands. For the PATE, we rewrite the

outcome-model-based identification formula in §2 as τ P =
∫
{µ1(x; θY) − µ0(x; θY)}F(dx; θX), which

depends only on the unknown parameters θX and θY. Therefore, Bayesian inference for the PATE

requires obtaining posterior distributions of (θX, θY). By contrast, the SATE τ S is a function of

the potential outcomes {Yi(0), Yi(1)}N
i=1, which involves both observed and missing quantities.

Bayesian inference for the SATE requires imputing the missing potential outcomes Ymis
i from

their posterior predictive distributions based on the outcome model, and consequently deriving

the posterior distribution of τ S .

However, in practice, we rarely model the possibly multi-dimensional covariates Xi, and

instead condition on the observed values of the covariates. This is equivalent to replacing F(x; θX)

with F̂X, the empirical distribution of the covariates. Therefore, most Bayesian causal inference

(e.g. [9,28]) in fact focuses on the mixed average treatment effect (MATE) [6]

τ M ≡

∫
τ (x; θY )̂FX(dx) = N−1

N∑

i=1

τ (Xi; θY), (3.2)

where τ (x; θY) = τ (x) highlights the dependence on the parameter θY. The MATE is a convenient

approximation of the PATE and is particularly natural under the Bayesian paradigm. The

difference between the MATE and SATE is subtle: the former equals the average of the CATE

whereas the latter equals the average of the ITEs over the finite sample. Based on the posterior

distributions, the PATE has the largest uncertainty, whereas the SATE has the smallest uncertainty.

The distinction between these estimands is illustrated in the following example.

Example 3.1. [Covariate adjustment in a randomized experiment] Consider a completely

randomized experiment with covariates X. Assume the true model for potential outcomes is
(

Yi(1)

Yi(0)

)
| (Xi, β1, β0, σ 2

1 , σ 2
0 , ρ) ∼N

((
β ′

1Xi

β ′
0Xi

)
,

(
σ 2

1 ρσ1σ0

ρσ1σ0 σ 2
0

))
, i = 1, . . . , N.
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This model implies two univariate normal marginal models: Yi(z) | Xi, βz, σ 2
z ∼N (β ′

zXi, σ
2
z ) for

z = 0, 1. In this example, the CATE is τ (x) = (β1 − β0)′x; the PATE, SATE and MATE are

τ P = (β1 − β0)′E(Xi),

τ S = N−1
N∑

i=1

{Yi(1) − Yi(0)},

τ M = (β1 − β0)′X̄,

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.3)

respectively, where X̄ = N−1 ∑N
i=1 Xi is the sample mean of the covariates.

(b) Posterior inference of causal effects

Regardless of the version of the target estimand, the following assumption is commonly adopted.

Assumption 3.2. (Prior independence). The parameters for the models of assignment mechanism θZ,

outcome θY, and covariates θX are a priori distinct and independent.

Assumption 3.2 imposes independent prior distributions for parameters (θX, θZ, θY). It is

unique to the Bayesian paradigm of causal inference. It is imposed primarily for modelling

and computational convenience and may appear innocuous. However, as elaborated in §4(b),

it may lead to unintended and undesirable implications in high-dimensional problems. Under

assumptions 2.1 and 3.2, the joint posterior distribution of θ = (θX, θZ, θY) and the missing

potential outcomes is proportional to

Pr(θX)
N∏

i=1

Pr(Xi; θX) · Pr(θZ)
N∏

i=1

Pr(Zi | Xi; θZ) · Pr(θY)
N∏

i=1

Pr{Yi(1), Yi(0) | Xi; θY}. (3.4)

From (3.4), the posterior distributions of θX and θY, and consequently of τ P, do not depend on the

second component corresponding to the propensity score. Therefore, the propensity score model

is ignorable in Bayesian inference of τ P . The same ignorability argument applies to other estimands

such as τ S, τ M and τ (x) [6,9,15]. Furthermore, inference of τ M does not depend on the covariate

model Pr(Xi; θX). Because of this, it is essential to specify the outcome model Pr{Yi(1), Yi(0) | Xi; θY}

in Bayesian causal inference.

By definition, τ P = E{Yi(1)} − E{Yi(0)} does not depend on the association between Yi(0) and

Yi(1), denoted by the parameter ρ. Similarly, τ (x) does not depend on ρ, but τ S does. So in

the inference of τ P and τ (x), we usually directly specify the marginal models Pr{Yi(z) | Xi; θY}

or equivalently Pr(Yi | Zi = z, Xi; θY) under ignorability [28]. The observed-data likelihood based

on (3.4) becomes
∏

i:Zi=1 Pr(Yi | Zi = 1, Xi; θY)
∏

i:Zi=0 Pr(Yi | Zi = 0, Xi; θY). Imposing a prior for θY,

we can proceed to infer θY and subsequently τ P, τ M, or τ (x) using the usual Bayesian inferential

procedures.

Bayesian inference of τ S is more complex, because it depends on both Yi(0) and Yi(1) and

thus requires posterior sampling of both θY and Ymis. The most common sampling strategy is

through data augmentation: iteratively simulate θ and Ymis given each other and the observed

data, namely from Pr(θY | Ymis, Yobs, Z, X) and Pr(Ymis | Yobs, Z, X; θY). The former, given the

observed data and the imputed Ymis, can be straightforwardly obtained by a complete-data

analysis based on Pr{θY | Y(1), Y(0), X} ∝ Pr(θY)
∏N

i=1 Pr{Yi(1), Yi(0) | Xi; θY}. The latter requires

more elaboration. Specifically, we can show that Pr(Ymis | Yobs, Z, X; θY) is proportional to∏
i:Zi=1 Pr{Yi(0) | Yi(1), Xi; θY}

∏
i:Zi=0 Pr{Yi(1) | Yi(0), Xi; θY}. This renders that imputing the Ymis

depends crucially on the joint distribution of {Yi(1), Yi(0)}. Because Yi(0) and Yi(1) are never jointly

observed, the data provide no information about their association ρ. Unless the specific marginal

model places constraints on ρ, the posterior distribution of ρ would be the same as its prior.

Consequently, the posterior distribution of τ S would be sensitive to the prior of ρ.

The above discussion prompts us to clarify the notion of identifiability in Bayesian inference.

Under the Frequentist paradigm, a parameter is identifiable if any of its two distinct values
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give two different distributions of the observed data. Under the Bayesian paradigm, there is

no consensus. For example, Lindley [29] argued that all parameters are identifiable in Bayesian

analysis because with proper prior distributions, posterior distributions are always proper. In

this sense, ρ is identifiable. However, due to the fundamental problem of causal inference, there

is no information in the data on ρ and it is reasonable to label it as non-identifiable. This is

distinct from the parameters that the data provide direct information on, e.g. those in the marginal

distributions of the outcomes in each arm, which are reasonable to label as identifiable. Lindley’s

perspective of identifiability blurs such distinction. A more informative perspective is provided

by Gustafson [30], who argued that a parameter is weakly or partially identifiable, if a substantial

region of its posterior distribution is flat, or its posterior distribution depends crucially on its

prior distribution even with large samples, such as ρ. Another example of a partially identifiable

parameter is Pr{Yi(1) > Yi(0)}, which depends on ρ [6,31]. In this perspective, identifiability in

Bayesian inference is no longer all-or-nothing; instead, it is a continuum in between. This issue

motivates the strategy of transparent parameterization, where one separates identifiable and non-

identifiable parameters, and treats the latter as sensitivity parameters in a sensitivity analysis

[32–36]. More discussion will be given in §6(b).

Example 1 revisited We now illustrate the posterior inference of the causal estimands in

example 3.1. Here, the parameters β’s and σ ’s are identifiable, but ρ is not in the Frequentist

sense. We fit a Bayesian linear regression model of Yi on Xi to each observed arm z, with

independent priors on (β1, σ 2
1 ) and (β0, σ 2

0 ). The observed likelihood factorizes into two parts:

the data in treatment group {(Xi, Yi) : Zi = 1} and control group {(Xi, Yi) : Zi = 0} contribute to

the likelihood of (β1, σ 2
1 ) and (β0, σ 2

0 ), respectively. For example, imposing the conventional

conjugate normal-inverse χ2 priors, we can draw from the posterior distribution of β and σ ,

and thus that of the MATE by plugging the posterior draws into the closed-form of τ M in (3.3).

To obtain the PATE, we would have to specify a multivariate model for Pr(X; θ ), and derive the

posterior distribution of θX and then plug it into the closed form of τ P in (3.3). This can also

be implemented, e.g. via a Bayesian bootstrap step without a model, as described in the next

paragraph. To obtain the SATE, we could specify a prior for ρ or fix it to a value. Given ρ and

each draw of (β1, β0, σ 2
1 , σ 2

0 ), we can impute Ymis
i as follows: for treated units, Ymis

i = Yi(0), and we

draw Yi(0) fromN (β ′
0Xi + ρσ0/σ1 · (Yi − β ′

1Xi), σ
2
0 (1 − ρ2)); for control units, Ymis

i = Yi(1), and we

draw Yi(1) from N (β ′
1Xi + ρσ1/σ0 · (Yi − β ′

0Xi), σ
2
1 (1 − ρ2)). Plugging these posterior predictive

draws of Ymis
i and the observed outcomes into the definition of τ S, we obtain its posterior

distribution. We suggest varying the sensitivity parameter ρ from 0 to 1, which corresponds

to conditionally independent potential outcomes and perfectly correlated potential outcomes,

respectively.

An interesting alternative Bayesian strategy is through the Bayesian bootstrap [37], where the

units are re-weighted with weights drawn from a Dirichlet distribution. The Bayesian bootstrap

is a general strategy to simulate the posterior distribution of a parameter under a non-parametric

model, which can be viewed as the limit of the inference under the Dirichlet Process prior

[38]. This renders the Bayesian bootstrap relevant to causal inference in at least two ways.

First, one can generate posterior samples from the distribution of Pr(Xi; θX) without specifying

a parametric model. This is desirable in inferring the population estimands like the PATE and

the CATE [39]. However, how to integrate these samples of X into the inference of the target

causal estimand is case-dependent and generally adds complexity to the analysis compared to the

MATE. Second, the Bayesian bootstrap offers a general recipe for incorporating many standard

Frequentist procedures into Bayesian inference. For example, Taddy et al. [40] used it to quantify

the uncertainty in linear and tree-based methods for estimating the CATE. Chamberlain & Imbens

[41] used it in M-estimation with an application to the setting of instrumental variables (see §7(a)).

However, we view the Bayesian bootstrap approach as peripheral to Bayesian causal inference

because it does not capitalize on arguably the main strength of Bayesian inference, namely, a

unified inferential framework underpinned by the Bayes theorem with versatile choice of priors

and outcome models.
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4. Model specification

(a) Common specification of the outcome model

Section 3 shows that the central component in Bayesian inference of the CATE, PATE, and MATE

is to specify the outcome model µz(x) = E(Yi | Xi = x, Zi = z; θY). We can either model the two

treatment groups jointly with a single function µz(x) = µ(z, x) or model each group separately

with two functions µ1(x) and µ0(x), known as S-learner or T-learner, respectively, in the literature

[42]. The most basic outcome model is a linear regression: µ(z, x) = x + z + xz, with Gaussian

error terms, where the treatment-covariate interaction term xz captures the treatment effect

heterogeneity. This model is equivalent to specifying a linear regression in each group. But the

equivalence does not hold for nonlinear models; in fact, S-learners and T-learners with the same

type of nonlinear models often lead to markedly different causal estimates.

Linear regressions are easy to implement and interpret, but they are often too restricted. In

real-world problems, it is crucial to specify µ(z, x) flexibly enough to approximate the possibly

complex underlying true data generating mechanism. This is particularly desirable as the recent

focus in causal inference has been moving toward heterogeneous treatment effects. Outcome

modelling is the most natural approach in these studies: one can simply specify an outcome

model and derive the CATE as a function of the model parameters. There has been a rapidly

increasing adoption of non-parametric and machine learning models for µ(z, x). One of the most

widely used such models is based on regression trees. At a high level, regression trees partition

the covariate space into non-overlapping regions and the prediction in each region is based solely

on the data that fall in that region. The parameters of a regression tree characterize where to split

the covariate space and how to predict the outcomes in a terminal node [43]. An ensemble of

regression trees—usually referred to as forests—are often combined to improve the prediction.

Within the Bayesian paradigm, the Bayesian Additive Regression Tree (BART) [44] has become

very popular for causal inference. BART places certain priors on the parameters of the regression

trees to control the depth of the tree and the degree of shrinkage of the mean parameters in

terminal nodes. Hill [9] first advocated using BART to specify the outcome model µ(z, x) in an

S-learner. One can also specify a T-learner with a separate BART model for each treatment group

µz(x). However, without any additional structure on the marginal models µz(x), T-learners often

result in large variance of the treatment effects. Hahn et al. [8] proposed the Bayesian Causal Forest

method based on an alternative reparametrization, µ(z, x) = g1(x) + g2(x)z, where g1(x) models

the distribution of Y(0) and g2(x) represents the heterogeneous treatment effect, with a separate

BART prior for g1(x) and g2(x). The BART models have a number of advantages, including fast

computation, good performance of default choice of hyperparameters and available software.

When a study has adequate covariate overlap, BART has been shown to outperform numerous

competing methods, including (the Frequentist) random forests, in many empirical applications,

e.g. [45,46]. Other Bayesian non-parametric models, such as Gaussian process [47], Dirichlet

process [48–51], have also been considered for causal inference. We refer interested readers to

[10] for a more detailed review of these methods.

(b) Challenges in high dimensions

Conducting statistical inference in high dimensions is challenging in general. We differentiate

between two high-dimensional settings: (i) an outcome model with an infinite or a large

number of parameters, regardless of the number of covariates, such as non-parametric and

semiparametric models, and (ii) a large number of covariates. Both settings are increasingly

common in causal inference, particularly in studies targeting the CATE. As discussed earlier,

outcome modelling is the primary method in these settings, and Bayesian non-parametric models

have become a mainstay of the model choice.

A straightforward application of the standard Bayesian non-parametric priors to outcome

modelling is sometimes inadequate for causal inference, even with low dimensional covariates.
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Figure 1. Example 4.1: estimates of means of the potential outcomes (a) and the CATE (b) and corresponding uncertainty band

as a function of the single covariate by linear model, Gaussian Process, BART, respectively. Cross symbols: treated units; circles:

control units. (Online version in colour.)

An important consideration is that a desirable prior should accurately reflect uncertainty

according to the degree of covariate overlap because intuitively the uncertainty of causal

estimates should increase as the degree of overlap decreases. Below, we reproduce a simple

example in [52] (first constructed by Surya Tokdar) with a single covariate to illustrate this point.

Example 4.1. [Choice of priors in estimating the CATE] Consider a study with 250 treated and

250 control units. Each unit has a single covariate X that follows a Gamma distribution with

mean 60 and 35 in the control (Zi = 0) and treatment (Zi = 1) group, respectively, and with s.d. 8

in both groups. To convey the main message, we consider a true outcome model with constant

treatment effects: Yi(z) = 10 + 5z − 0.3Xi + ǫi with ǫi ∼N (0, 1), where the CATE τ (x) = 5 for all x.

The scatterplots in the upper panel of figure 1 show that covariate overlap is good between the

groups in the middle of the range of X (around 40 to 50), but deteriorates towards the tails of X.

To estimate the CATE, we fit an outcome model separately in each group: µ(z, x) = fz(x) + ǫi

with ǫi ∼N (0, σ 2). We choose three priors for fz(x): (i) a linear model fz(x) = αz + βzx with a

Gaussian prior for the coefficients; (ii) a BART prior similar to [9]; (iii) a Gaussian Process

prior [53] with the covariance function specified by a Gaussian kernel with signal-to-noise

ratio parameter ρ and inverse-bandwidth parameter λ: (fz(x1), fz(x2), . . . , fz(xN))′ ∼N (0, Σ) where

Σij = δ2ρ2 exp{−λ2||xi − xj||
2}). Figure 1 shows the posterior means of µz(X) and the CATE,

with corresponding uncertainty band as a function of X. Here, we focus on the uncertainty

quantification. In the region of good overlap, all three models lead to similar points and credible

interval estimates of the CATE, but a marked difference emerges in the region of poor overlap.

The linear model appears overconfident in estimating the CATE. The Gaussian process trades

potential bias with wider credible interval as overlap decreases and produces a more adaptive

uncertainty quantification. BART produces shorter error bars than the Gaussian Process (but

wider than linear models), but the width of the credible interval remains similar regardless of

the degree of overlap and thus is over confident in the presence of poor overlap.
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Example 4.1 illustrates that, even with low dimensional covariates, standard Bayesian

priors can have markedly different operating characteristics when the two groups are poorly

overlapped, and not all priors can adaptively capture the uncertainty according to the degree

of overlap. A primary reason for BART potentially underestimating uncertainty in poor overlap

is its lack of smoothness, in contrast to the Gaussian process. Nonetheless, such a problem can be

mitigated by soft decision trees as in [54].

When there are a large number of covariates, the Bayesian paradigm usually achieves

regularization through sparsity-inducing priors for the outcome model, such as the spike-and-

slab prior [55], the Bayesian LASSO [56], as well as the model averaging techniques [57–59].

The use of these methods in causal inference is surveyed in [10,50]. High-dimensional covariates

pose additional complications to Bayesian causal inference. Robins & Ritov [60] pointed out that

non-parametric estimates often have slow convergence rates in this regime, which translates into

poor finite-sample performance. A central challenge in causal inference is that covariate overlap

is rapidly diminishing as the covariates dimension increases, violating the overlap assumption

that underpins standard causal analysis [61]. Lack of overlap exacerbates the usual inferential

challenges—such as sparsity and slow convergence—in high-dimensional analysis. Even if we

assume linear outcome models, we must carefully specify the priors on the regression coefficients.

For example, Hahn et al. [7] showed that standard Bayesian regularization on the nuisance

parameters may indirectly regularize important causal parameters and thus induce bias, namely

the regularization induced confounding. This issue was rigorously investigated in [62]. Specifically,

Linero [62] defines the selection bias as δz = E(Yi | Zi = z) − E{Yi(z)}, and showed that, under the

seemingly innocuous prior independence assumption 3.2, many Bayesian regularization priors

would a priori induce the selection bias δz to sharply concentrate around zero as the number

of covariates, p, increases, to the extent that no amount of data would overcome such a bias.

This implies that assumption 3.2 effectively acts as a strongly informative prior as p increases.

Such a phenomenon is referred to as prior dogmaticism and is the Bayesian analogue of the

aforementioned problem in Ritov et al. [63]. This line of research highlighted the importance

of incorporating the propensity score in Bayesian causal inference [7,62,64,65], which echos the

insights from the Frequentist double machine learning method [66,67]. Specifically, the regularized

propensity score model or outcome model alone would not be sufficient for valid causal inference,

but combining the two would achieve desirable convergence rate and finite sample performance

in high-dimensional causal analysis.

5. The role of the propensity score
A major debate in Bayesian causal inference is the role of the propensity score, which characterizes

the assignment mechanism. On the one hand, as shown in §3, under assumptions 2.1 and 3.2,

the propensity score drops out from the likelihood and thus its value appears to be irrelevant

in Bayesian causal inference, which seemingly only involves the outcome model and thus the

analysis stage. On the other hand, §2 shows that the propensity score is ubiquitous in the

Frequentist approach to causal inference, e.g. in constructing weighting, matching and doubly-

robust estimators. Regardless of the mode of inference, the propensity score is essential in

ensuring overlap and balance in the design stage of an observational study, which consequently

reduces the sensitivity to the outcome model specification. Such sensitivity reduction is key to

robust Bayesian causal inference, which is primarily based on outcome modelling. The literature

has recognized the importance of incorporating the propensity scores into Bayesian causal

inference, either in the design or the analysis stage, but there is no consensus on how to proceed.

Below we review three existing strategies.

(a) Include the propensity score as a covariate in the outcome model

The propensity score was first proposed to be included as the only covariate in a Bayesian

outcome model under ignorability, which would reduce the model complexity [68]. However,
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as later pointed out by Zigler [59]: Pr{Y(z) | X, e(X)} = Pr{Y(z) | X} �= Pr{Y(z) | e(X)}. So using the

propensity score as the single covariate in the outcome model would not lead to the target

outcome distribution Pr{Y(z) | X}, but using it as an additional covariate, i.e. specifying a model

µ(z, x) = µ(z, x, e(x)), would. This specification is effectively conducting an outcome regression at

each value of the propensity score, and thus can be viewed as a smoothed version of combining

propensity score stratification and outcome modelling. In a sense, this specification provides a

Bayesian analogue of the double robustness [52,69]. On the one hand, when the outcome model

is correctly specified, µ(Zi, Xi, e(Xi)) reduces to µ(Zi, Xi) because e(Xi) is a function of Xi and

thus is redundant regardless of its specification. On the other hand, when the outcome model is

misspecified but the propensity model is correctly specified, the results are robust to the outcome

model specification because the treatment and control groups are approximately balanced in

covariates within each stratum of the propensity score. Various reparametrizations have been

proposed. One example is to specify µ(z, x, e(x)) = g1(x, e(x)) + g2(z, x), with g1(·) being a non-

parametric model and g2(·) being a parametric model. Little [70] adopted a penalized spline

model of e(x) for g1(·). In the aforementioned Bayesian Causal Forest, Hahn et al. [8] imposed a

separate BART model for g1(·) and g2(·), and demonstrated that adding the propensity score as an

additional predictor in g1 significantly improves the empirical estimation of the CATE.

This strategy is usually implemented in two stages: first estimate the propensity score as ê(X)

and then plug it into the Bayesian outcome model µ(Z, X, ê(X)). Such a two-stage procedure

is not dogmatically Bayesian, which generically refers to the procedure of specifying a model

with parameters and prior distributions of these parameters and then use the Bayes theorem to

obtain the posterior distributions of the parameters. A direct consequence is that this procedure

may not properly propagate the uncertainty of estimating the propensity score in the outcome

model [69]. A dogmatic Bayesian approach would jointly model e(X; θZ) and µ(Z, X, e(X); θY) and

draw posterior inference of θZ and θY simultaneously [71]. However, when the outcome model

is misspecified, the joint-modelling approach would introduce a feedback problem, that is, the

fit of the outcome model would inform the estimation of the propensity scores. This violates

the unconfoundedness assumption, distorts the balancing property of the propensity score, and

consequently leads to biased estimate of causal effects. A suggested remedy is to first fit a Bayesian

model for e and then plug the posterior predictive draws of e into the outcome [11]. Such a two-

stage procedure is still not dogmatically Bayesian, but provides more robust posterior inference

to model misspecification empirically.

However, adding the propensity score into the outcome model is controversial conceptually,

because the outcome model reflects the nature of the generating process of the potential outcomes,

which arguably should not depend on how the treatment is assigned [72].

(b) Dependent priors

The Bayesian causal inference outlined in §3 rests on the prior independence assumption 3.2,

without which the propensity score model cannot be ignored from the likelihood. But this

assumption is not always plausible in real applications. Various priors that do not rely on this

assumption have been proposed [47,63–65]. Below we show two simple examples.

The first example is due to [58] and is designed for simultaneous variable selection for the

propensity score and outcome models. Specifically, assume a logistic propensity score model

logit{Pr(Zi = 1 | Xi)} = α′Xi and a linear outcome model Yi | Zi, Xi ∼N (τZi + β ′Xi, σ
2). Assume

each of the jth components of the coefficients, αj, follow the spike-and-slab prior [73]: αj | γ α
j ∼

(1 − γ α
j )I0 + γ α

j N (0, σ 2
α ), where γ α

j is a latent indicator of whether Xj is included in the model

and I0 denotes the point mass at 0. A similar spike-and-slab prior is assumed for the coefficients

of the outcome model with a latent inclusion indicator γ
β

j : βj | γ
β

j ∼ (1 − γ
β

j )I0 + γ
β

j N (0, σ 2
β ).

Then assume the probability of the events {γ α
j = 0} and {γ

β

j = 0} are dependent a priori:

Pr(γ
β

j = 1 | γ α
j = 1)/Pr(γ

β

j = 0 | γ α
j = 1) = ω, where ω ∈ [1, ∞) is a dependence hyperparameter

that controls the prior odds of including Xj into the outcome model when it is included in
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the propensity score model. Larger ω implies stronger prior dependence between the variable

selection in the two models.

The second example is due to [74]. Assume Yi(1) | Xi ∼N (µ1, σ 2
1 e(Xi)) and Yi(0) | Xi ∼

N (µ0, σ 2
0 (1 − e(Xi))), with flat priors on µ1 and µ0. If the propensity scores are known, the

posterior mean of the PATE equals the Hajék version of the IPW estimator:

τ̂hajek =

∑N
i=1 ZiYi/e(Xi)∑N

i=1 Zi/e(Xi)
−

∑N
i=1(1 − Zi)Yi/(1 − e(Xi))∑N

i=1(1 − Zi)/(1 − e(Xi))
.

If the propensity scores are unknown, then the posterior mean of the PATE is closely related to

τ̂hajek averaged over the posterior predictive distribution of the propensity scores. This strategy

simply includes the propensity scores in the outcome model, but somewhat unusually in the

conditional variances, rather than the conditional means of the potential outcomes.

Carefully designed dependent priors often achieve desirable finite sample results and are more

reasonable in real world studies. However, specification of such priors is case-dependent, and

there is no general solution.

(c) Posterior predictive inference

A general, albeit not dogmatically Bayesian, strategy is to specify both a propensity score model

e(Xi; θZ) and an outcome model {µ1(Xi; θY), µ0(Xi; θY)}, and obtain posterior draws of e(Xi; θZ)

and {µ1(Xi; θY), µ0(Xi; θY)} from their respective posterior predictive distributions, and then plug

these posterior draws into the doubly-robust estimator τ̂dr [66,75]. A variance estimator of the

resulting estimator τ̂dr is given in [66]. In the same vein, Ding & Guo [76] incorporated the

propensity score in Bayesian posterior predictive p-value. For the model with the Fisher’s sharp

null hypothesis of no causal effect for any units whatsoever (i.e. Yi(1) = Yi(0) for all i), the

procedure in [76] is equivalent to the Fisher randomization test averaged over the posterior

predictive distribution of the propensity score. Simulations in [76] show the advantages of the

Bayesian p-value compared to the Frequentist analogue. This perspective offers a straightforward

and flexible strategy to integrate Bayesian modelling and common Frequentist procedures for

causal inference and enables proper uncertainty quantification.

Besides the above three strategies, another general approach is through the aforementioned

Bayesian bootstrap, which can be used to simulate the posterior distribution of any parameter that

can be formulated as M-estimation or estimating equation [41,77]. As special cases, because the

IPW estimator τ̂ ipw and the doubly robust estimator τ̂dr—both involving the propensity scores—

are both solutions to estimating equations, they can be naturally combined with the Bayesian

bootstrap to devise a Bayesian version. However, such an approach may be guilty of ‘Bayesian for

the sake of being Bayesian’, and their methodological and practical value compared to competing

methods is unclear.

6. Sensitivity analysis in observational studies
Unconfoundedness is a central assumption for causal inference. It holds by design in

randomized experiments. However, its validity is fundamentally untestable in observational

studies. Therefore, it is of great importance to assess the sensitivity of the results with respect

to unmeasured confounding in any observational study. Such procedures are broadly called

sensitivity analysis. Different classes of sensitivity analysis methods are characterized by the

specific parametrization of confounding. Below we review the two most popular classes.

(a) Parametrization involving distributions with unmeasured confounders

The first parametrization used for sensitivity analysis is motivated by the intuition that a hidden

confounder may completely explain away the association between the treatment and the outcome

even after adjusting for observed covariates. In a historic debate, Fisher [78] hypothesized that
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the strong association between cigarette smoking and lung cancer might be due to a hidden

genetic factor as their ‘common cause’ or confounder. Cornfield et al. [79] derived an inequality

showing that to explain away the observed association, the association between the unmeasured

confounder and cigarette smoking must be larger than or equal to the association between

cigarette smoking and lung cancer. Their work helped to initiate the field of sensitivity analysis.

Let U denote an unmeasured confounder and assume that unconfoundedness holds

conditional on (X, U): Z ⊥⊥ {Y(0), Y(1)} | X, U. The joint distribution of all variables factorizes into

Pr{Y(1), Y(0), Z, X, U} = Pr{Y(1), Y(0) | X, U} · Pr(Z | X, U) · Pr(U | X) · Pr(X). (6.1)

Under the factorization (6.1), sensitivity analysis requires us to specify the models for

Pr{Y(1), Y(0) | X, U}, Pr(Z | X, U) and Pr(U | X). In the special case of a binary Z, a binary Y

and a discrete X (which can be thought as a stratified propensity score), Rosenbaum & Rubin

[80] assumed a logistic model for Y given (Z, X, U), a logistic model for Z given (X, U), and

a Bernoulli distribution for U, and treated the logistic regression coefficients of U and the

probability parameter of U as the sensitivity parameters. They integrated out U in the complete-

data likelihood and obtained the maximum likelihood estimates of τ P over a plausible range of

values of the sensitivity parameters. This method has been extended to more general settings

in the Frequentist fashion in [81,82]. The Bayesian analogue of [80] is straightforward and can

leverage the data augmentation algorithm to impute U to simplify the computation. Dorie et al.

[83] extended this method to impose a Bayesian semiparametric model with a BART component

for Pr{Y(1), Y(0) | X, U} to allow for model flexibility.

As an extension of [79], Ding & VanderWeele [84] treated the treatment-confounder (Z and

U) and outcome-confounder (Y and U) associations as two sensitivity parameters, and derived

analytical thresholds for them in order to explain away the observed treatment-outcome (Z and

Y) association. Based on that theory, VanderWeele & Ding [85] further simplified by assuming

the two associations to be the same and called the resulting threshold the E-value, as a measure

of robustness of the causal conclusions with respect to unmeasured confounding. The E-value

framework is model-free because it avoids modelling assumptions with U; it also avoids repeating

the analysis over a range of sensitivity parameters as in the competing methods and thus is simple

to calculate.

(b) Parametrization involving distributions of potential outcomes

The second parametrization is motivated by an alternative mathematical expression of the

unconfoundedness assumption: Pr{Y(z) | Z = 1, X} = Pr{Y(z) | Z = 0, X} for z = 0, 1, representing

the fact that the units in the two randomized arms are comparable in terms of potential outcomes.

This class of sensitivity analysis is based on sensitivity parameters that directly represent the

difference between the distributions Pr{Y(z) | Z = 1, X} and Pr{Y(z) | Z = 0, X} instead of modelling

the difference with an unobserved U. This is implemented in the context of time-varying

treatments (see §7(b)) and Frequentist semiparametric estimation [86]. Franks et al. [34] pointed

out the importance of distinguishing between model fit and sensitivity to unconfoundedness:

the former involves identifiable parameters (e.g. the parameters in the model of the marginal

distributions of the outcome Pr{Yi(z) | Zi = z, X}) whereas the latter involves unidentifiable

parameters (e.g. the association between Yi(1) and Yi(0)). The merit of this parametrization

is apparent in this perspective because it separates identifiable and unidentifiable parameters.

Franks et al. [34] proceeded under the Bayesian paradigm and used a copula—parameters of

which are the sensitivity parameters—to connect the two identifiable marginal distributions.

A related branch of sensitivity analysis is Rosenbaum’s bounds [87]. His original formulation

takes the association between Z and the potential outcomes conditional on observed X, denoted

by Γ , as the sole sensitivity parameter for quantifying unmeasured confounding. He has also

made connections to the parametrization in §6(a) [88]. Starting with a matched sample to mimic

a randomized matched-pairs experiment, one can then repeat the Fisher randomization test on

the sharp null hypothesis of no treatment effect given a range of Γ values, and find the threshold
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of Γ at which the p-value of the test changes from significant to insignificant. This approach was

later generalized to derive the bounds of a given estimator under different Γ values. Grounded

in Fisherian randomization inference, Rosenbaum’s framework does not have a natural Bayesian

analogue.

Besides the above two classes, there are numerous other approaches to sensitivity analysis

based on alternative parameterization of unmeasured confounding. However, a common

criticism of various approaches to sensitivity analysis is that, in order to assess the consequence

of the untestable unconfoundedness assumption, one has to make even more untestable

assumptions, e.g. specifying models involving U. Moreover, sensitivity analysis, after all, is a

secondary analysis in causal studies, and thus simple implementation and intuitive interpretation

is much desired. The considerations underpin the dominance of the E-value method over other

methods in practice, particularly in medicine and public health.

7. Complex assignment mechanisms
So far, we have discussed the simplest causal setting of an ignorable treatment at one time point.

The basic formulation can be extended to many more complex assignment mechanisms. There are

also many popular quasi-experimental designs that rely on identification strategies alternative

to ignorability, e.g. regression discontinuity designs, difference-in-differences, synthetic controls.

These designs are widely used in socioeconomic applications. Due to the space limit, below we

will only briefly review two important extensions and refer interested readers to [89] for a review

of quasi-experimental designs and related econometric methods.

(a) From instrumental variable to principal stratification

Instrumental variable (IV) is one of the most important techniques for causal inference in

economics and social sciences. IVs are used in settings where dependence of the assignment on

the potential outcomes cannot plausibly be ruled out, even conditional on observed covariates.

An IV is a variable that provides a source of exogenous (or unconfounded) variation that helps

identify causal effects. IV methods are based on a set of assumptions alternative to ignorability.

Specifically, an IV satisfies three conditions: (i) it occurs before a treatment; (ii) it is independent

of the treatment-outcome confounding; and (iii) it affects the outcome only through its (non-zero)

effects on the treatment assignment. Finding a valid IV is challenging in observational studies and

many clever natural experiments have been identified [89]. Given a valid IV, one can extract the

causal effects of the treatment on an outcome by a two-stage least-squares (2SLS) estimator: first,

fit a linear regression of the treatment on the IV; second, fit a linear regression of the outcome on

the fitted value of the treatment from the first stage, the coefficient of which is taken as the causal

effect of the treatment on the outcome. Covariates can be added in both stages.

The IV method has been developed within the structural equation model framework (see

[89] for a review), and the 2SLS IV estimator may not correspond to a causal effect within the

potential outcomes framework except for a few special cases. In a landmark paper, Angrist et al.

[90] connects IV to the potential outcomes framework in the setting of randomized experiments

with binary treatment and all-or-nothing compliance, with the initial random assignment playing

the role of an IV. But many questions remain on the connection between the IV method and the

potential outcomes framework in more general settings. Below we will describe the special setting

of Angrist et al. [90].

We introduce some new notation. For unit i, let Zi be the randomly assigned treatment

(1 for the treatment and 0 for the control), and Wi be the actual treatment status (1 for the

treatment and 0 for the control). When Zi �= Wi, non-compliance arises. Because Wi occurs post-

assignment, it has two potential values, Wi(0) and Wi(1), with Wi = Wi(Zi). As before, the outcome

Yi has two potential outcomes, Yi(0) and Yi(1). Based on their joint potential status of the actual

treatment Ui = (Wi(1), Wi(0)), the units fall into four compliance types: compliers Ui = (1, 0) = co,

never-takers Ui = (0, 0) = nt, always-takers Ui = (1, 1) = at and defiers Ui = (0, 1) = df [90]. A key
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property of Ui is that it is not affected by the treatment assignment, and thus can be regarded as

a pre-treatment characteristic. Therefore, comparisons of Yi(1) and Yi(0) within the stratum of Ui

have standard subgroup causal interpretations: τu = E{Yi(1) − Yi(0) | Ui = u}, for u = nt, co, at, df;

τu are later called principal causal effects. The conventional causal estimand in clinical trials

is the intention-to-treat effect that ignores the compliance information, which is the weighted

average of the four stratum-specific effects: E{Yi(1) − Yi(0)} =
∑

u πuτu, where πu = Pr(Ui = u) is

the proportion of the stratum u. The intention-to-treat effect measures the effect of the assignment

instead of the actual treatment.

Due to the fundamental problem of causal inference, individual compliance stratum

Ui is not observed. So the principal causal effects are non-identifiable without additional

assumptions. Besides randomization of Zi, Angrist et al. [90] make two additional assumptions:

(i) monotonicity: Wi(1) ≥ Wi(0), and (ii) exclusion restriction: Yi(1) = Yi(0) whenever Wi(1) =

Wi(0). Monotonicity rules out defiers, and exclusion restriction imposes that the assignment has

zero effects among never-takers and always-takers. Then the compiler average causal effect is

identified by

τco ≡ E{Y(1) − Y(0) | U = co} =
E(Y | Z = 1) − E(Y | Z = 0)

E(W | Z = 1) − E(W | Z = 0)
,

which is exactly the probability limit of the two-stage least-squares estimator [90]. Because

under monotonicity, only compilers’ actual treatments are affected by the assignment, τco can

be interpreted as the effect of the treatment.

We now describe the Bayesian inference of the IV set-up, first outlined in [91]. Without

additional assumptions, the observed cells of Z and W consist of a mixture of units from more

than one stratum. For example, the units who are assigned to the treatment arm and took

the treatment (Z = 1, W = 1) can be either always-takers or compliers. One must disentangle

the causal effects for different compliance types from observed data. Therefore, model-based

inference here resembles that of a mixture model. In Bayesian analysis, it is natural to impute the

missing label Ui under some model assumptions. Specifically, six quantities are now associated

with each unit, {Yi(1), Yi(0), Wi(1), Wi(0), Xi, Zi}, four of which, {Yobs
i = Yi = Yi(Zi), Wobs

i = Wi =

Wi(Zi), Zi, Xi}, are observed and the remaining two, {Ymis
i = Yi(1 − Zi), Wmis

i = Wi(1 − Zi)}, are

unobserved. Assume the joint distribution of these random variables of all units is governed

by a parameter θ , conditional on which the random variables for each unit are iid. We assume

unconfoundedness Pr{Zi = 1 | Xi, Wi(1), Wi(0), Yi(1), Yi(0)} = Pr(Zi = 1 | Xi), and impose a prior

distribution Pr(θ ). Then the joint posterior distribution of θ and the missing potential outcomes

are proportional to the complete-data likelihood as follows:

Pr(θ )
N∏

i=1

Pr{Yi(0), Yi(1) | Ui, Xi; θY} Pr(Ui | Xi; θU) Pr(Xi | θX). (7.1)

Without covariates, posterior inference of τu is straightforward because it is a function of θY (see

example 7.1 below). With covariates, we can condition on them and focus on a MATE estimand

τ M
u = N−1 ∑N

i=1 E{Yi(1) − Yi(0) | Ui = u, Xi}. The formula (7.1) suggests that we need to specify two

models for inferring τ M
u : (i) the compliance type model, Pr(Ui | Xi; θU), and (ii) the outcome model,

Pr{Yi(0), Yi(1) | Ui, Xi; θY}. For example, we can specify a multinomial logistic regression for Ui and

a generalized linear model for Yi [91,92].

Using the same arguments as in §3, to infer population and mixed estimands, we only need

to specify two marginal outcome models for Yi(1) and Yi(0) instead of a joint model, and do

not need to impute the missing potential outcomes Ymis. But we do need to impute the latent

Ui, or, equivalently, the missing intermediate variable Wmis. We can simulate the joint posterior

distribution Pr(θ , Wmis | Yobs, Wobs, Z, X) by iteratively imputing the missing U from Pr(Wmis |

Yobs, Wobs, Z, X, θ ) and updating the posterior distribution of θ from Pr(θ | Yobs, Wobs, Wmis, Z, X).

Below we illustrate the Bayesian procedure via a simple example of the IV approach.

Example 7.1. [Randomized experiment with one-sided non-compliance] Consider a randomized

experiment with a binary outcome, where control units have no access to the treatment, i.e.
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Wi(0) = 0 for all units. Therefore, we only have two strata: Ui = co with Wi(1) = 1 and Ui = nt with

Wi(1) = 0, respectively, with πco + πnt = 1. Assume Yi(z) | Ui = co ∼ Bern(pco,z) for z = 0, 1, and

Yi(1) = Yi(0) | Ui = nt ∼ Bern(pnt). So τco = pco,1 − pco,0. For simplicity, we impose conjugate priors

on the parameters: πco, pco,1, pco,0, pnt are iid Beta(1/2, 1/2). To sample the posterior distributions,

the key is to impute the missing Ui’s given the observed data. If Zi = 1, then Wi = 1 implies Ui = co

and Wi = 0 implies Ui = nt, respectively. If Zi = 0, then Wi = 0 and Ui is latent. For units with

(Zi = 0, Wi = 0), we can impute Ui = co with probability

πco · pYi

co,0(1 − pco,0)1−Yi

πco · pYi

co,0(1 − pco,0)1−Yi + πnt · pYi
nt(1 − pnt)1−Yi

and Ui = nt with the rest probability. With the imputed Ui’s, we can sample the parameters

from standard Beta posteriors: (i) sample πco from Beta(1/2 +
∑N

i=1 1(Ui = co), 1/2 +
∑N

i=1 1(Ui =

nt)) and obtain πnt = 1 − πco, (ii) sample pco,1 from Beta(1/2 +
∑N

i=1 Zi1(Ui = co)Yi, 1/2 +∑N
i=1 Zi1(Ui = co)(1 − Yi)), (iii) sample pco,0 from Beta(1/2 +

∑N
i=1(1 − Zi)1(Ui = co)Yi, 1/2 +∑N

i=1(1 − Zi)1(Ui = co)(1 − Yi)), and (iv) sample pnt from Beta(1/2 +
∑N

i=1 1(Ui = nt)Yi, 1/2 +∑N
i=1 1(Ui = nt)(1 − Yi)). We iterate until convergence and obtain the posterior distribution of

τco = pco,1 − pco,0. Imbens & Rubin [91] provided more detailed discussions.

Frangakis & Rubin [93] generalized the IV approach to principal stratification, a unified

framework for causal inference with post-treatment confounding. In the simplest scenario, a post-

treatment confounded variable lies in the causal pathway between the treatment and the outcome;

it cannot be adjusted in the same fashion as a pre-treatment covariate in causal inference. A

principal stratification with respect to a post-treatment variable is the classification of units based

on the joint potential values of the post-treatment variable, and the stratum-specific effects are

called principal causal effects, of which τco is a special case. The post-treatment variable setting

includes a wide range of examples. For instance, in the non-compliance setting, the ‘treatment’

is the randomized treatment assignment, the ‘post-treatment’ variable is the actual treatment

received, and the compliance types are the principal strata [91,92,94,95]. Zeng et al. [96] connects

principal stratification to the local IV method with a continuous IV and binary treatment [97].

Other examples include censoring due to death [98], surrogate endpoints [99,100], regression

discontinuity designs [101], time-varying treatments [102], and many more. The choices of target

strata and thus estimands, interpretations, and identifying assumptions depend on specific

applications, details of which are omitted here.

(b) Time-varying treatment and confounding

In real-world situations, subjects often receive treatments sequentially at multiple time points, and

the treatment assignment at each time is affected by both baseline and time-varying confounders

as well as previous treatments [103,104]. Such settings are referred to as time-varying, or

sequential, or longitudinal treatments.

Consider a study where treatments are assigned at T time points. Let Zit denote the treatment

at time t for unit i (i = 1, . . . , N; t = 1, . . . , T). At baseline (t = 0), each unit i has time-invariant

covariates Li0 measured; then after the treatment assignment at time t − 1 and prior to the

assignment at time t, a set of time-varying confounders Li,t−1 are measured, which include the

intermediate measurements of the final outcome and the covariates that are affected by the

previous treatments. For example, in a cancer study, baseline covariates can include sex, age, race

and time-varying confounders can include intermediate cancer progression and other clinical

traits such as blood pressure measured prior to the next treatment. Denote the observed and

hypothetical treatment sequence of length t by Z̄it = (Zi1, . . . , Zit) and z̄t = (z1, . . . , zt), respectively,

and the sequence of time-varying confounders by L̄it = (Li0, Li1, . . . , Lit). For each z̄T, there is a

potential outcome Y(z̄T). The final observed outcome Yi = Yi(Z̄iT), corresponding to the entire

observed treatment sequence, is measured after treatment assigned at T. A common causal
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estimand is the marginal effect comparing two pre-specified treatment sequences, z̄, z̄′ ∈ {0, 1}T:

τz̄T ,z̄′
T
= E{Yi(z̄T) − Yi(z̄

′
T)}. For simplicity, below we drop the subscript i.

The central question to causal inference with sequential treatments is the role of the time-

varying confounders Lt in the assignment mechanism. These variables are affected by the

previous treatments and also affect the future treatment assignment and outcome. Much of the

literature assumes a sequentially ignorable assignment mechanism [103], that is, the treatment at

each time is unconfounded conditional on the observed history, which consists of past treatments

Z̄t−1 and time-varying confounders L̄t−1, as stated below.

Assumption 7.2. (Sequential Ignorability). Pr{Zt | Z̄t−1, L̄t−1, Y(z̄t) for all z̄t} = Pr(Zt | Z̄t−1, L̄t−1)

for t = 1, . . . , T.

A full Bayesian approach to time-varying treatments [105] would specify a joint model for

treatment assignment Zt and time-varying confounders Lt at all time points as well as all the

potential outcomes Y(z̄T), and then derive the posterior predictive distributions of the missing

potential outcomes and thus of the estimands. This procedure is a straightforward extension from

the structure introduced in §3. However, the joint modelling approach is rarely used because it

quickly becomes intractable as the time T and the number of time-varying confounders increases.

Instead, most of the Bayesian methods are grounded in the g-computation. Under sequential

ignorability, the average potential outcome E{Yi(z̄T)} is identified from the observed data via the

g-formula [103]:

E{Yi(z̄T)} =
∑

L0,L1,...,LT−1

E(Y | Z̄T = z̄T, L̄T−1) · Pr(LT−1 | Z̄T−1 = z̄T−1,L̄T−2)

· · · Pr(L1 | Z1 = z1, L0) · Pr(L0). (7.2)

To operationalize the g-formula, we can specify models for all the components of (7.2), including

an outcome model Pr(Y | Z̄T = z̄T, L̄T−1) and a model for the time-varying confounders Lt at each

time t, Pr(Lt | Z̄t = z̄t, L̄t−1). The g-formula is in essence an extension of the outcome regression

approach to time-varying treatments. The Bayesian version of the g-computation would specify a

Bayesian model for each component in the g-formula (7.2) and then combine the posterior draws

of the parameters to obtain the posterior distribution of the estimands. Below we present an

illustrative example of Bayesian g-computation due to [106].

Example 7.3. [Bayesian g-computation with two periods] Consider the simplest possible

scenario with two time periods, binary covariates and a binary outcome. Let L0 be a binary

baseline covariate, Z1 is a binary treatment at time 1, L1 is a binary time-varying covariate

between time 1 and 2, Z2 is a binary treatment, and Y is a binary outcome. To obtain the posterior

distribution of

E{Y(z1, z2)} =
∑

l0=0,1

∑

l1=0,1

Pr(Y = 1 | Z1 = z1, Z2 = z2, L0 = l0, L1 = l1)

· Pr(L1 = l1 | Z1 = z1, L0 = l0) · Pr(L0 = l0), (7.3)

it suffices to obtain the posterior distributions of the probabilities in (7.3). Assuming the standard

Beta(1/2, 1/2) conjugate priors. We can obtain the posterior of the probabilities as follows: (i)

sample Pr(Y = 1 | Z1 = z1, Z2 = z2, L0 = l0, L1 = l1) from Beta(1/2 +
∑N

i=1 1(Zi1 = z1, Zi2 = z2, Li0 =

l0, Li1 = l1)Yi, 1/2 +
∑N

i=1 1(Zi1 = z1, Zi2 = z2, Li0 = l0, Li1 = l1)(1 − Yi)), (ii) sample Pr(L1 = 1 | Z1 =

z1, L0 = l0) from Beta(1/2 +
∑N

i=1 1(Zi1 = z1, Li0 = l0)Li1, 1/2 +
∑N

i=1 1(Zi1 = z1, Li0 = l0)(1 − Li1)),

and (iii) sample Pr(L0 = 1) from Beta(1/2 +
∑N

i=1 Li0, 1/2 +
∑N

i=1(1 − Li0)). With these ingredients

and (7.3), we can obtain the posterior distributions of E{Y(z1, z2)}’s and their contrasts∑
z1,z2

c(z1, z2)E{Y(z1, z2)}.

G-computation quickly becomes complex as the number of time periods T and time-varying

confounders increases, which requires specifying a large number of models. Then it is necessary

to impose more structural restrictions on the data-generating process. However, Robins &
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Wasserman [107] showed that unsaturated models might rule out the null hypothesis of zero

causal effect a priori, a phenomenon termed the ‘g-null paradox’.

A popular alternative strategy is the marginal structural model [104], which generalizes IPW to

time-varying treatments. Saarela et al. [108] devised a Bayesian version of the marginal structural

model via the Bayesian bootstrap. Because the marginal structural model relies on IPW, a key

component in its implementation is to estimate the propensity scores and ensure overlap at each

time point. However, overlap between different treatment paths usually becomes limited as the

number of time periods increases, rendering the marginal structural model sensitive to extreme

weights.

The above discussion focuses on static treatment sequences. Another important class of time-

varying treatment is the dynamic treatment regime, which consists of a sequence of decision

rules, one per time point of intervention, that determines how to individualize treatments to

units based on evolving treatment and covariate history. Inferring optimal dynamic treatment

regimes requires combining causal inference and decision theory techniques and is closely related

to reinforcement learning. See [109] for a review. Due to the space limit, we omit the discussion

of the closely related topics of Bayesian multi-armed bandit [110] and Bayesian reinforcement

learning [111].

8. Discussion
This paper reviews the Bayesian approach to causal inference under the potential outcomes

framework. We discussed the causal estimands, identification strategies, the general structure

of Bayesian inference of causal effects, and sensitivity analysis. We highlight issues that are

unique to Bayesian causal inference, including the role of the propensity score, definition of

identifiability, the choice of priors in both low- and high-dimensional regimes. In particular, under

ignorability and prior independence, the propensity score is seemingly irrelevant for the posterior

distributions of the causal parameters. However, we pointed out that even in this setting, the

propensity score and more generally the design stage plays a central role in obtaining robust

Bayesian causal inference. Regardless of the mode of inference, a critical step in causal inference

with observational data is to ensure adequate covariate overlap and balance in the design or

analysis stages. In high dimensions, such a task is particularly challenging and what is the optimal

practice remains an open question.

The Bayesian approach offers several advantages for causal inference. First and most

importantly, by enabling imputation of all missing potential outcomes, the Bayesian paradigm

provides a unified inferential framework for any causal estimand. This is particularly appealing

for inferring complex estimands such as the conditional average treatment effects or individual

treatment effects as well as partially identifiable causal estimands such as the principal strata

causal effects. In contrast, the Frequentist approach to these problems needs to be customized for

each scenario, and the inference usually relies on bounds or asymptotic arguments, which are

often either non-informative or questionable in cases like individual treatment effects. Second,

the automatic uncertainty quantification of any estimand renders it straightforward to combine

causal inference and decision theory for dynamic decision-making, e.g. in personalized medicine.

Third, the Bayeian approach naturally incorporates prior knowledge into a causal analysis, e.g.

in evaluating spatially correlated treatments and/or outcomes. Fourth, there is rich collection

of Bayesian models for complex data with limited Frequentist counterparts. A few examples

are (i) spatial or temporal data, (ii) functional data, and (iii) interference, i.e. when the SUTVA

assumption is violated. In these settings, special care must be taken on issues key to causal

inference such as defining relevant estimands and ensuring overlap. Moreover, it is important

to ensure that the Bayesian models are coherent to the model-free identification assumptions

such as ignorability. For example, adding spatial random effects into an outcome model may

inadvertently bias the coefficient of the treatment variable as the estimate of a causal effect [112].

Research on Bayesian analysis of these topics has been rapidly increasing [10,112–115] and is

expected to continue to grow.
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Despite the above advantages, the theory and practice in causal inference has long been

dominated by non-Bayesian methods. One reason is that many popular Frequentist techniques,

such as matching and weighting, as well as Fisherian randomization test, do not require

specifying outcome models and prior distribution of parameters, and thus offer a perception

of ‘model-free’ or ‘objective’. This is appealing to many applied researchers. Another reason

is that the Bayesian approach requires more advanced computing and programming, which

may not be readily available to many practitioners. The Stan programming language [116]

mitigates some of these issues, but Bayesian computation remains inaccessible to most domain

scientists. To popularize Bayesian causal inference in practice, it is crucial to provide (i) more

examples of successful Bayesian applications with clear advantages over other inferential modes,

e.g. [45], (ii) accessible tutorials, ideally with generalizable computer code and illustrations

of important scientific problems and (iii) developing and disseminating user-friendly, general

purpose software packages.

We have occasionally commented on whether a method is dogmatically Bayesian in the

discussion. However, we do not regard the conceptual purity of being dogmatically Bayesian,

per se, as advantageous, nor should it be the motivating goal in real applications. When a

quasi-Bayesian method outperforms its dogmatically Bayesian counterpart (if available) with

methodological footing and empirical evidence, as the example of adding estimated propensity

score in an outcome model in §5(a), we would endorse the former over the latter. We also

doubt the value of devising a Bayesian version of an established Frequentist method without

clear theoretical or practical advantages. As a general view, we believe whether to choose a

Bayesian approach should be dictated by its practical utility in a specific context rather than an

unconditional commitment to the Bayesian doctrine. For causal inference and perhaps everything

in statistics, being Bayesian should be a tool, not a goal.
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