
Journal of Functional Analysis 284 (2023) 109775

Contents lists available at ScienceDirect

Journal of Functional Analysis

journal homepage: www.elsevier.com/locate/jfa

Full Length Article

Spaces of Besov-Sobolev type and a problem on 

nonlinear approximation

Óscar Domínguez a,b, Andreas Seeger c,∗, Brian Street c, 
Jean Van Schaftingen d, Po-Lam Yung e

a Université Lyon 1, Institut Camille Jordan, 43 Blvd du 11 novembre 1918, 
F-69622 Villeurbanne cedex, France
b Departamento de Análisis Matemático y Matemática Aplicada, Faculdad de 
Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 
Madrid, Spain
c Department of Mathematics, University of Wisconsin, Madison, 480 Lincoln 
Drive, Madison, WI, 53706, USA
d Université catholique de Louvain, Institut de Recherche en Mathématique et 
Physique, Chemin du Cyclotron 2 bte L7.01.01, 1348 Louvain-la-Neuve, Belgium
e Mathematical Sciences Institute, Australian National University, Canberra ACT 
2601, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 December 2021
Accepted 2 November 2022
Available online 23 November 2022
Communicated by P. Auscher

MSC:
46E35
26A33
26D10
35J05
35K05
39B22
42B35
46B70
46E30

We study fractional variants of the quasi-norms introduced by 
Brezis, Van Schaftingen, and Yung in the study of the Sobolev 
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1. Introduction and statements of results

For d ≥ 1, b ∈ R and a locally integrable function f ∈ L1
loc(Rd) consider the difference 

quotient

Dbf(x, y) =
f(x) − f(y)

|x − y|b
, (x, y) ∈ R

d × R
d = R

2d. (1.1)

Haïm Brezis and two of the authors [8] discovered that for f ∈ C∞
c (Rd) and 1 ≤ p <

∞, the Marcinkiewicz quasi-norm [D1+d/pf ]Lp,∞(R2d) is comparable to the Gagliardo-
seminorm ‖∇f‖Lp(Rd) (see also [46], [10] for related results). Using this equivalence, 
they considered in [9] certain borderline Gagliardo-Nirenberg interpolation inequalities 
that fail, and proved substitutes such as [Ds+d/pf ]Lp,∞(R2d) � ‖f‖1−s

L∞(Rd)‖∇f‖s
L1(Rd)

for s = 1/p and 1 < p < ∞, raising the natural question of what can be said about 
the class of functions for which [Ds+d/pf ]Lp,∞(R2d) is finite for 0 < s < 1. This class 
was also considered in the papers by Poliakovsky [48] who asked about a more specific 

relation to Besov spaces, and in the work by Domínguez and Milman [23] who considered 

abstract versions of [8]. As a special case of our main results we show that the above 

fractional variant arises as a real interpolation space of a family of homogeneous Sobolev-
Slobodeckĭı spaces Ẇ s,p. Henceforth, for 0 < s < 1 and 1 < p < ∞, the space Ẇ s,p

consists of all equivalent classes of measurable, finite a.e. functions f (modulo equality 

a.e. and additive constants) for which Ds+d/pf ∈ Lp(R2d), with semi-norm ‖f‖Ẇ s,p =
‖Ds+d/pf‖Lp(R2d); this space can be naturally identified the diagonal Besov space Ḃs

p,p

(see e.g. the case r = p in Theorem 1.3 below). We will show that for p0, p1 ∈ (1, ∞)
such that p0 < p < p1 and 0 < s + d

p − d
pi

< 1 the norm on the interpolation space 

[Ẇ s+ d
p − d

p0
,p0 , Ẇ s+ d

p − d
p1

,p1 ]θ,∞ is equivalent with the quasi-norm ‖Ds+ d
p
f
∥∥

Lp,∞(R2d).

The class of functions for which ‖Ds+d/pf‖Lp,∞(R2d) is finite was labeled BSY s
p in [23]. 

Here we shall denote it by Ḃs
p(d, ∞) as it will arise as a member of a natural and more 

general scale of spaces Ḃs
p(γ, r). We begin by giving a Fourier analytic definition of the 

spaces Ḃs
p(γ, r), which extends the classical definition of the homogeneous Besov space 

Ḃs
p,p; in fact Ḃs

p(γ, r) all coincide with Ḃs
p,p when r = p (regardless of the value of γ). We 

have learned in the final stage of preparation of this paper that V.L. Krepkogorskĭı had 

already introduced the inhomogeneous variants of these classes in a little noticed paper 
[36] in 1994 and proved that they occur as interpolation spaces for Sobolev and other 
spaces; see Remark 1.2 and the comments before Theorem 1.14 below.
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Variants of Besov-Sobolev spaces

We let ϕ ∈ C∞
c (Rd) be a radial function with

supp(ϕ) ⊂ {ξ : 3/4 < |ξ| < 7/4}, (1.2a)

ϕ(ξ) = 1 for 7/8 ≤ |ξ| ≤ 9/8, (1.2b)
∑

k∈Z

ϕ(2−kξ) = 1 for all ξ 	= 0. (1.2c)

It is easy to check that the three requirements can be achieved. For a tempered distri-
bution f we define the frequency localizations Lkf via the Fourier transform by

L̂kf(ξ) = ϕ(2−kξ)f̂(ξ).

We recall the definition of the diagonal homogeneous Besov spaces Ḃs
p,p. Consider the 

space S∞(Rd) of Schwartz functions whose Fourier transforms vanish to infinite order at 
0; this space carries the natural Fréchet topology inherited from the space of Schwartz 

functions. We let S ′
∞(Rd) denote the dual space; it can be identified with the space of 

tempered distributions modulo polynomials. The space Ḃs
p,p is defined as the subspace 

of f ∈ S ′
∞(Rd) for which

‖f‖Ḃs
p,p

:=
(∑

k∈Z

ˆ

Rd

∣∣2ksLkf(x)
∣∣p dx

)1/p

is finite.
We will now define various Lorentz versions of these spaces where a Lorentz norm is 

taken on the space Rd × Z. Recall that if (Ω, μ) is a measure space and 0 < p, r < ∞, 
the Lorentz space Lp,r(Ω, μ) is defined as the space of measurable functions g on Ω for 
which

[g]Lp,r(Ω,μ) =
(

r

∞̂

0

λrμ({x ∈ Ω : |g(x)| > λ})r/p dλ

λ

)1/r

is finite. For r = ∞ we set [g]Lp,∞(Ω,μ) = supλ>0 λμ({|g| > λ})1/p. The space Lp,r is 
normable when 1 < p < ∞, 1 ≤ r ≤ ∞, and for simplicity we will only consider these 

parameter ranges. The precise expression for the norm is not important for this paper; 
a suitable choice ([33]) is

‖g‖Lp,r =
( ∞̂

0

[t1/pg∗∗(t)]r
dt

t

)1/p
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where g∗∗(t) = t−1
´ t

0 g∗(s) ds and g∗ denotes the nonincreasing rearrangement of g. We 

now give a differentiation of the spaces Ḃs
p(γ, r) for all s ∈ R, which matches the usual 

definition in, say [4,56] for the case p = r. Following the definition we will then formu-
late characterizations for positive s which link the general definition to the expressions 
involving the generalized difference quotients in (1.1).

Definition 1.1. Let γ ∈ R.
(i) For a measurable subset E of Rd × Z let 1E be the indicator function of E and

μγ(E) =
∑

k∈Z

2−kγ

ˆ

Rd

1E(x, k) dx.

(ii) For b ∈ R define P bf : R
d × Z → C by

P bf(x, k) = 2kbLkf(x).

(iii) For s ∈ R, 1 < p < ∞, 1 ≤ r ≤ ∞, let Ḃs
p(γ, r) be the space of f ∈ S ′

∞(Rd) such 

that the function P s+ γ
p f belongs to the Lorentz space Lp,r(Rd × Z; μγ) and let

‖f‖Ḃs
p(γ,r) =

∥∥P s+ γ
p f
∥∥

Lp,r(μγ). (1.3)

Unraveling the definition, with meas A denoting the Lebesgue measure of A ⊂ R
d, if 

1 ≤ r < ∞ we get the following equivalence

‖f‖Ḃs
p(γ,r) ≈

(
r

∞̂

0

λr
[∑

k∈Z

2−kγmeas
{

x ∈ R
d : |Lkf(x)| > λ2−k(s+ γ

p )}]r/p dλ

λ

)1/r

(1.4)

whereas

‖f‖Ḃs
p(γ,∞) ≈ sup

λ>0
λ
[∑

k∈Z

2−kγmeas
{

x ∈ R
d : |Lkf(x)| > λ2−k(s+ γ

p )}]1/p

. (1.5)

It is easy to check that we always have S∞(Rd) ⊆ Ḃs
p(γ, r). Note that a simple Fubini-

type argument gives

Ḃs
p(γ, p) = Ḃs

p,p, for all γ ∈ R. (1.6)

In contrast, for r 	= p the spaces Ḃs
p(γ, r) depend on γ (see Theorem 1.5 (ii) below).

Remark 1.2 (Inhomogeneous versions). We may also consider inhomogeneous versions of 
the above spaces. Define
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Łk = Lk for k > 0, Ł0 := Id −
∑

k>0

Łk. (1.7)

For E ⊂ R
d×N0 let μ̃γ(E) =

∑∞
k=0 2−kγ

´

1E(x, k) dx. Define Πbf(x, k) = 2kbŁkf(x) for 
k = 0, 1, 2, . . . We may then define Bs

p(γ, r) to be the space of all tempered distributions 
f ∈ S ′(Rd) such that

‖f‖Bs
p(γ,r) := ‖Πs+γ/pf‖Lp,r(Rd×N0,μ̃γ) (1.8)

is finite. These spaces have already been defined by Krepkogorskĭı [36], who used the 

notation BLs,k
p,q . The space Bs

p(γ, r) corresponds to BLs,−γ
p,r in the notation of [36].

Characterizations via difference operators

In order to explore the relation to the characterization of Sobolev spaces via weak-
type quasinorms for difference operators used in [8,10] we seek equivalent definitions of 
the spaces Ḃs

p(γ, r) to spaces defined via difference operators, at least for s > 0. Let

Δhf(x) = f(x + h) − f(x),

and define for M ≥ 2 inductively ΔM
h = ΔhΔM−1

h . These operations extend to tempered 

distributions. We define a measure νγ on Lebesgue measurable subsets of Rd ×(Rd \{0})
by

νγ(E) =
¨

E

dx
dh

|h|d−γ
.

Also define, for any Lebesgue measurable f and h 	= 0,

QM,bf(x, h) =
ΔM

h f(x)
|h|b

.

We denote by T the space of tempered functions; here g ∈ S ′ is a tempered function if 
g ∈ L1

loc(Rd) and if there exists an N < ∞ such that

ˆ

Rd

|g(x)|(1 + |x|)−N dx < ∞. (1.9)

Let PM−1 denote the set of polynomials of degree less than M . We wish to characterize 

Ḃs
p(γ, r) in terms of the operators QM,b which annihilate PM−1. As Ḃs

p(γ, r) ⊂ S ′
∞, every 

element f ∈ Ḃs
p(γ, r) is actually an equivalent class [f ] of tempered distributions modulo 

all polynomials. Using the following theorem, if 0 < s < M and M ∈ N, we determine, 
for each f ∈ Ḃs

p(γ, r), a subset of [f ], so that all elements of this subset differ by a 
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polynomial in PM−1. Each element of this subset will be called a representative of f

modulo PM−1. This is often useful in practice, because then it makes sense to define, for 
example, any derivative of f of order ≥ M , and to define the convolution of f with any 

Schwartz function that has M vanishing moments. For the classical Besov and Triebel-
Lizorkin spaces (in particular Ḃs

p,p) this is already addressed in Bourdaud’s theory of 
realized spaces [7], in fact for Ḃs

p(γ, p) ≡ Ḃs
p,p one part of the theorem is subsumed in [7].

Theorem 1.3. Let 0 < s < M , 1 < p < ∞, 1 ≤ r ≤ ∞ and γ ∈ R. There exist positive 

constants C1, C2 so that the following holds.

(i) Let f ∈ Ḃs
p(γ, r). Then there exists a tempered function f◦ such that

〈f, φ〉 =
ˆ

Rd

f◦(x)φ(x) dx for all φ ∈ S∞ (1.10)

and

‖QM,s+ γ
p
f◦‖Lp,r(νγ) ≤ C1‖f‖Ḃs

p(γ,r). (1.11)

The a.e. equivalent class of the function f◦ is unique modulo PM−1; we refer to the 

function f◦ as a representative of f modulo PM−1.

(ii) Suppose f : R
d → C is a measurable1 function satisfying

QM,s+ γ
p
f ∈ Lp,r(νγ).

Then f is a tempered function, and under the natural identification in S ′
∞, we have 

f ∈ Ḃs
p(γ, r) with

‖f‖Ḃs
p(γ,r) ≤ C2‖QM,s+ γ

p
f‖Lp,r(νγ).

Theorem 1.3 will be proved in §3, where a more abstract equivalent statement is also 

given (Theorem 3.2).

Embeddings and non-embeddings

We establish various embedding relations which sharpen previous results. We re-
late our classes to standard homogeneous Besov and Triebel-Lizorkin spaces and their 
Lorentz-space counterparts Ḃs

q [Lp,r] and Ḟ s
q [Lp,r]. These are defined as the subspaces of 

f ∈ S ′
∞(Rd) for which

1 A main novelty of Theorem 1.3 is that f is merely assumed to be measurable in (ii). In previous works 
on homogeneous Besov spaces there is the additional a priori assumption f ∈ L1

loc. One way in which our 
result differs is that we show this assumption is superfluous: the function f in Theorem 1.3 (ii) is a priori 
only assumed to be measurable and we conclude that it is locally integrable.
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‖f‖Ḃs
q [Lp,r ] =

(∑

k∈Z

2ksq‖Lkf‖q
Lp,r(Rd)

)1/q

(1.12)

‖f‖Ḟ s
q [Lp,r ] =

∥∥∥
(∑

k∈Z

2ksq|Lkf |q
)1/q∥∥∥

Lp,r
(1.13)

are finite, respectively. The inhomogeneous analogues Bs
q [Lp,r], F s

q [Lp,r] are defined anal-
ogously using the frequency localizations Łk, k ≥ 0 in (1.7).

For the standard Besov and Triebel-Lizorkin spaces one works with the underlying 

Lp metric, i.e. they are recovered by setting r = p and we have Ḃs
p,q = Ḃs

q [Lp], and 

Ḟ s
p,q = Ḟ s

q [Lp]. For embedding relations among them one may consult [52] (however some 

care is needed since the results in [52] are formulated for the inhomogeneous versions 
Bs

q [Lp,r], F s
q [Lp,r]).

Theorem 1.4. The following statements hold for all s ∈ R, p ∈ [1, ∞).
(i) For all γ ∈ R,

Ḃs
p(γ, r) ↪→ Ḃs

r [Lp,r], p ≤ r ≤ ∞,

Ḃs
r [Lp,r] ↪→ Ḃs

p(γ, r), 1 ≤ r ≤ p.

(ii) Let γ 	= 0. Then,

Ḟ s
p,r ↪→ Ḃs

p(γ, r), p ≤ r ≤ ∞,

Ḃs
p(γ, r) ↪→ Ḟ s

p,r, 1 ≤ r ≤ p.

This will be proved in §4. The statements can be extended by combining them with 

the three trivial embeddings for q1 ≤ q2, r1 ≤ r2, namely Ḃs
p(γ, r1) ↪→ Ḃs

p(γ, r2), 
Ḃs

q1
[Lp,r1 ] ↪→ Ḃs

q2
[Lp,r2 ] and Ḟ s

q1
[Lp,r1 ] ↪→ Ḟ s

q2
[Lp,r2 ]. Part (ii) of the theorem is an 

improvement and generalization over Theorem 1.3 in [30] which (in conjunction with 

our Theorem 1.3) yields that Ḟ s
p,2 ↪→ Ḃs

p(d, ∞) for 0 < s < 1. Part (ii) also covers 
the embedding Ċs

p ↪→ BSY s
p ≡ Ḃs

p(d, ∞) for the homogeneous Calderón-Campanato 

(or DeVore-Sharpley) spaces in [19], [11] which was obtained in [23, Theorem 4.1] for 
0 < s < 1; indeed from [51] we know that Ċs

p = Ḟ s
p,∞ for 0 < s < 1. For every 

p ∈ (1, ∞) Theorem 1.4 also recovers the known embeddings Ḟ s
p,r ↪→ Ḃs

r [Lp,r] if p ≤ r, 
and Ḃs

r [Lp,r] ↪→ Ḟ s
p,r if r ≤ p; cf. [52, Theorem 1.2(iv), Theorem 1.1(iv)].

In view of the case r = ∞ of the embedding in part (ii) of Theorem 1.4 it is natural 
to ask whether in the embedding Ḟ s

p,∞ ↪→ Ḃs
p(γ, ∞) the Triebel-Lizorkin space Ḟ s

p,∞ can 

be replaced by the larger Besov space Ḃs
p,∞; this was implicitly suggested in [48]. Part 

(i) of the following theorem implies a negative answer, and in fact a stronger result.

Theorem 1.5. Let s ∈ R, 1 < p < r ≤ ∞. Then the following hold.

(i) For all γ ∈ R,

Ḃs
p,r \ Ḃs

p(γ, ∞) 	= ∅.
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(ii) For all β, γ ∈ R with β 	= γ,

Ḃs
p(β, r) \ Ḃs

p(γ, ∞) 	= ∅.

This will be proved in §5, along with corresponding versions for the inhomogeneous 
spaces.

Since Ḃs
p(γ, p) = Ḃs

p,p for all γ ∈ R (see (1.6)) it is clear that the assumption r > p is 
necessary in Theorem 1.5. We also address the case γ = 0 in part (ii) of Theorem 1.4; 
the following result shows that the condition γ 	= 0 is necessary for those statements.

Theorem 1.6. Let s ∈ R and 1 < p < ∞. For the case γ = 0 the following hold.

(i) For all r > p

Ḟ s
p,r \ Ḃs

p(0, ∞) 	= ∅.

(ii) For all r < p

Ḃs
p(0, 1) \ Ḟ s

p,r 	= ∅.

Remark 1.7. By part (ii) of Theorem 1.5 we know that for 0 < s < M and γ1 	= γ2 the 

seminorms ‖QM,s+γi/pf‖Lp,∞(νγi
), i = 1, 2 are not equivalent on the space of Schwartz 

functions. This is in striking contrast with the limiting result for D1+γ/p, by Brezis 
and three of the authors [10], where it is shown that for 1 < p < ∞, and all γ 	= 0
the semi-norms ‖D1+γ/pf‖Lp,∞(νγ) are equivalent with the Gagliardo semi-norm ‖∇f‖p. 
Moreover, for p = 1 one has ‖f‖ ˙BV ≈ ‖D1+γf‖L1,∞(νγ) provided that γ ∈ R \ [−1, 0]
(and this additional assumption is necessary). These equivalences hold under the a-priori 
assumption that f is locally integrable.

An embedding result involving ˙BV

Denote by V ∞ = V ∞(Rd) the quotient space of L∞ by additive constants, with norm

‖f‖V ∞ = inf
c∈C

‖f − c‖∞.

Denote by [·, ·]θ,r the real interpolation spaces for the Peetre Kθ,r method [4, Section 

3.1]. The following embedding result involves a real interpolation space between ˙BV and 

V ∞. It will be used below to study solutions of harmonic and caloric functions on Rd+1
+ .

Theorem 1.8. Let γ ∈ R \ [−1, 0] and 1 < p < ∞. Then

[V ∞, ˙BV ] 1
p ,1 ↪→ Ḃ1/p

p (γ, ∞).

The case γ = d of Theorem 1.8 has its roots in [9, Theorem 1.4]. Its full generality 

is based on an estimate in [10]. It complements interpolation results in [15, Theorem 
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1.4], and extends an embedding theorem by Greco and Schiattarella [28] for functions of 
bounded variation on the unit circle.

Harmonic and caloric functions in the upper half space

We now formulate some consequences of the embedding in Theorem 1.8. The original 
motivation of the space Ḃ

1/2
2 (1, ∞), defined in terms of difference operators, came from 

the study of harmonic extension of functions of bounded variation in [28] (see also an 

earlier result by Iwaniec-Martin-Sbordone [34] for circle homeomorphisms). For a func-
tion such that 

´

Rd |f(x)|(1 + |x|)−d−1 dx < ∞, the harmonic extension to the upper half 
space Rd+1

+ through the Poisson kernel is given by

Pf(x, t) =
Γ(d+1

2 )

π
d+1

2

ˆ

Rd

t

(|x − y|2 + t2)
d+1

2

f(y) dy.

In order to state our result let

Kbf(x, t) = t1−b∇Pf(x, t) (1.14)

where ∇P denotes the (x, t)-gradient, for t > 0, i.e.

∇Pf(x, t) =
Γ(d+1

2 )

π
d+1

2

ˆ

Rd

((d + 1)t(x − y), |x − y|2 − dt2)

(|x − y|2 + t2)
d+3

2

(f(y) − f(x)) dy.

This last expression makes sense for f ∈ V ∞ + ˙BV . Define the measure λγ on Lebesgue 

measurable sets of Rd+1
+ by

λγ(E) =
¨

E

dx
dt

t1−γ
. (1.15)

Corollary 1.9. Let 1 < p < ∞, γ ∈ R \ [−1, 0]. Then

K
γ+1

p : [V ∞, ˙BV ] 1
p ,1 → Lp,∞(λγ)

is bounded. In particular

∇P : [V ∞, ˙BV ] 1
2 ,1 → L2,∞( dx dt)

is bounded.

Remark 1.10. When d = 1 we have ˙BV (R) ↪→ V ∞(R) and thus we recover the upper 
half plane analogue of Theorem 4.2 of [28], saying that ∇Pf ∈ L2,∞(R2

+) for f ∈ ˙BV (R).
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Another corollary is about solutions u(x, t) = Uf(x, t) = etΔf(x) of the initial value 

problem for the heat equation in the upper half space,

∂u

∂t
= Δu, u|t=0 = f. (1.16)

For b ∈ R, t > 0, define Hb = (Hb
1, . . . , Hb

d+1) by

Hb
jf(x, t) = t

1
2 −b ∂

∂xj
Uf(x, t), j = 1, . . . , d

Hb
d+1f(x, t) = t1−b ∂

∂t
Uf(x, t).

Corollary 1.11. Let β ∈ R \ [−1
2 , 0], and 1 < p < ∞. Then

(i) H
2β+1

2p : [V ∞, ˙BV ] 1
p ,1 → Lp,∞(λβ) is bounded.

(ii) Let u = Uf solve the problem (1.16) for t > 0. Then

f ∈ [V ∞, ˙BV ] 2
3 ,1 =⇒

∂u

∂t
= Δxu ∈ L

3
2 ,∞(Rd+1

+ , dx dt),

f ∈ [V ∞, ˙BV ] 1
3 ,1 =⇒ ∇xu ∈ L3,∞(Rd+1

+ , dx dt).

When d = 1 we obtain a caloric analogue of the result in [28], for boundary values in 
˙BV (R).

Corollary 1.12. Let f ∈ ˙BV (R) and let u solve the initial value problem ∂u
∂t = ∂2u

∂x2 , 

u(x, 0) = f(x). Then ∂u
∂t ∈ L

3
2 ,∞(R2

+) and ∂u
∂x ∈ L3,∞(R2

+).

Remark 1.13. It would be interesting to upgrade the results of Theorem 1.8 and/or the 

corollaries to other interpolation spaces of V ∞ and ˙BV . A related question in dimension 

d = 1 is whether such inequalities can be proved for functions in the Wiener spaces 
V p of bounded p-variation. Note that V 1 = ˙BV and that for 1 < p < ∞ we have 

[V ∞, V 1] 1
p ,p ⊂ V p, see [5]. If V p,∞ denotes the space of f for which the numbers N(f, α)

of α-jumps satisfy supα>0 αN(f, α)1/p < ∞ then, by [43], V p ⊂ V p,∞ = [V ∞, V 1]1/p,∞. 
See also [13] for a related result on the K-functional for the couple (V ∞, V 1).

Interpolation

We review the problem of interpolation of Besov spaces. Recall the definition of the 

homogeneous Besov space Ḃs
p,q ≡ Ḃs

q(Lp) as the subspace of f ∈ S ′
∞(Rd) for which 

‖f‖Ḃs
p,q

:= (
∑

k∈Z
‖2ksLkf‖q

p)1/q is finite. Regarding real interpolation, the case for 
fixed p and varying s is well known. Suppose s0, s1 ∈ R with s0 	= s1. If 1 ≤ p, r ≤ ∞, 
one has [4, Theorem 6.4.5(i)] [Ḃs0

p,p, Ḃs1
p,p]θ,r = Ḃs

p,r if s = (1 − θ)s0 + θs1, θ ∈ (0, 1); see 

also [21]. For the case p0 	= p1 the spaces Ḃs
p(γ, r) arise as interpolation spaces for the 
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Kθ,r-method. The following theorem and corollary were already known to Krepkogorskĭı 
[36] who considered the inhomogeneous variants. For an extension to the quasi-Banach 

range see [37]. For a description of the interpolation spaces via wavelet coefficients see 

also the recent work by Besoy, Haroske, and Triebel [6].

Theorem 1.14. Let 1 ≤ p0, p1, r ≤ ∞, p0 	= p1, s0, s1 ∈ R. Let

γ = −
s0 − s1
1

p0
− 1

p1

, (1.17)

let 0 < θ < 1 and

( 1
p , s) = (1 − θ)( 1

p0
, s0) + θ( 1

p1
, s1). (1.18)

Then

[Ḃs0
p0,p0

, Ḃs1
p1,p1

]θ,r = Ḃs
p(γ, r), (1.19)

with equivalence of (quasi-)norms. �

Corollary 1.15. Let 1 < p0, p1 < ∞, p0 	= p1, s0, s1 ∈ R, 1 ≤ q0, q1, r0, r1 ≤ ∞ and 

1 ≤ r ≤ ∞. Suppose that (1.17) and (1.18) hold with 0 < θ < 1. Then

[Ḃs0
p0

(γ, r0), Ḃs1
p1

(γ, r1)]θ,r = Ḃs
p(γ, r). (1.20a)

Moreover, if s0 	= s1,

[Ḟ s0
p0,q0

, Ḟ s1
p1,q1

]θ,r = Ḃs
p(γ, r). (1.20b)

Note that for s ∈ N ∪{0} and 1 < p < ∞, the space Ḟ s
p,2 is identified with the Sobolev 

space Ẇ s,p. Thus, if s0, s1 are non-negative integers, s0 	= s1, and 1 < p0, p1 < ∞ with 

p0 	= p1, then for 0 < θ < 1 and 1 ≤ r ≤ ∞ we get in particular

[Ẇ s0,p0 , Ẇ s1,p1 ]θ,r = Ḃs
p(γ, r)

where ( 1
p , s) and γ are given by (1.18) and (1.17).

For completeness we shall sketch in §8 the standard proofs based on the Fourier 
analytic definition which are very much analogous to [36]. More interestingly, for M = 1
and s0, s1 ∈ (0, 1), an alternative approach to the interpolation result (1.19) will be given 

in §9, based directly on the characterization via first order differences.
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Nonlinear wavelet approximation

Our results can be obtained to prove new results on best approximation via n terms 
in a wavelet basis, relating it to suitable regularity properties of the given function.

To fix ideas we first recall basic notation in wavelet theory. Let u ∈ N, φ ∈ Cu(R)
be a univariate scaling function associated with the univariate wavelet ψ ∈ Cu(R). Let 
ψ0 := φ and ψ1 := ψ. If E denote the set of the 2d − 1 non-zero vertices of [0, 1]d, given 

e = (e1, . . . , ed) ∈ E, we define the d-variate wavelets ψe(x) =
∏d

i=1 ψei(xi). As in [40]
(cf. also [24,25]) we assume certain decay and nonvanishing moment conditions on the 

ψe, namely

sup
x∈Rd

(1 + |x|)M |Dαψe(x)| < ∞, |α| ≤ u, e ∈ E, (1.21a)

and

ˆ

Rd

xαψe(x) dx = 0, |α| < u, e ∈ E, (1.21b)

for u, M satisfying

u > |s|, M > d + u. (1.21c)

If one works with Lp-based Besov spaces and allows the parameter range to be p > 0, 
then one needs to require u > max{ d

min{1,p} − d − s, s}, M > max{ d
min{1,p} , d + u}.

Let, for j ∈ Z and m ∈ Z
d,

ψe
j,m(x) := 2

jd
2 ψe(2jx − m). (1.22)

We assume that the system

Ψ = {ψe
j,m : j ∈ Z, m ∈ Z

d, e ∈ E} (1.23)

forms an orthonormal basis in L2(Rd), see e.g. [16] for an introduction to wavelet theory.
Let 1 < q < ∞. Consider now the best n-term approximation of f ∈ Lq(Rd), with 

respect to Ψ, measured in the Lq(Rd) norm; i.e.,

σn(f)q = inf
{∥∥∥f −

∑

ψν ∈Λ⊂Ψ

cνψν

∥∥∥
Lq(Rd)

: #(Λ) ≤ n, cν ∈ C

}
.

Let α > 0 and 0 < r ≤ ∞. The related approximation space Aα
r (Lq, Ψ) is defined as the 

set of functions f ∈ Lq(Rd) for which



Ó. Domínguez et al. / Journal of Functional Analysis 284 (2023) 109775 13

‖f‖Aα
r (Lq,Ψ) =

⎧
⎨
⎩

(∑∞
n=1

[
nασn(f)q

]r 1
n

) 1
r

if r < ∞

supn nασn(f)q if r = ∞

is finite.
It is well known that Aα

r (Lq(Rd), Ψ) can be characterized in terms of a certain interpo-
lation space between Lq(Rd) and Besov spaces. Specifically, let 1 < q < ∞, 0 < r ≤ ∞, 
and 0 < s < σ. Then

As/d
r (Lq, Ψ) = [Lq, Ḃσ

u,u]θ,r if θ =
s

σ
and

1
u

=
1
q

+
σ

d
; (1.24)

see DeVore’s survey [17, (7.41)] and also [47, page 223] for related results on spline 

approximation with d = 1. We specialize (1.20b) with s0 = 0, p0 = q, q0 = 2, q1 = p1 = u, 
s1 = σ, hence γ = − s1−s0

p−1
1 −p−1

0

= −d. We thus see that for θ, u as in (1.24) the space 

[Lq, Ḃσ
u,u]θ,r coincides with Ḃs

p(−d, r) if 1
p = 1

q + s
d . Combining this with (1.24), we have 

verified

Theorem 1.16. Let 1 < q < ∞, 0 < s < d(1 − 1
q ), and let 1

p = 1
q + s

d . Then, for 1 ≤ r ≤ ∞,

As/d
r (Lq, Ψ) = Ḃs

p(−d, r).

For r = p, 0 < s < d(1 − 1
q ) we recover As/d

p (Lq, Ψ) = Ḃs
p,p for 1

p = 1
q + s

d , which 

is a result proved by DeVore, Jawerth and Popov [18]. Together with our characteriza-
tion in Theorem 1.3 we achieve a new interpretation via difference operators of some 

results in [17,20,29,35] where the spaces Aα
r (Lq, Ψ) are characterized in terms of wavelet 

coefficients.
For r = ∞ the spaces A

s/d
∞ (Lq, Ψ) are of special interest in applications, see for 

example [32,14,31]. In the statistics literature these spaces are sometimes referred to 

as ‘weak-Besov spaces’ (see [3,50] and the references within). In view of Theorem 1.16, 
these weak-Besov spaces coincide with Ḃs

p(−d, ∞), with s = d(1/p − 1/q), i.e. p = dq
d+sq . 

Putting α = s/d and combining Theorem 1.3 and Theorem 1.16 we obtain

Corollary 1.17. Let 1 < q < ∞, 0 < α < 1 − 1
q . Then, for M > αd,

sup
n≥1

nασn(f)q ≈ sup
λ>0

λ
( ˆ

meas
({

x : |h|
d
q |ΔM

h f(x)| > λ
}) dh

|h|2d

) 1
q +α

.

Remark. There are suitable extensions of the definitions of this paper, and many of the 

results, to certain parameter ranges in the quasi-Banach setting (that is, to the cases 
r < 1 and p ≤ 1); we intend to pursue these elsewhere. In particular it is interesting to 

extend Theorem 1.16 to values of s ≥ d(1 − 1/q) and r > 0; this requires consideration 

of the spaces Ḃs
p(−d, r) in the range p ≤ 1.
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Notation

We denote by Ld(E) the Lebesgue measure of a Lebesgue measurable set in Rd, and 

also write meas E for Ld(E) when the dimension is clear from the context. A measurable 

function f : R
d → C will always be assumed to be defined almost everywhere. We 

use f̂(ξ) =
´

f(y)e−i〈y,ξ〉 dy as definition of the Fourier transform. For a function m

on R̂
d we define m(D) to be the convolution operator with Fourier multiplier m, i.e. 

it is given by m̂(D)f(ξ) = m(ξ)f̂(ξ). We let C∞
c be the space of compactly supported 

C∞-functions, S be the space of Schwartz functions, and SM be the subspace of S

consisting of those Schwartz functions whose moments up to order M − 1 vanish. Also 

let S∞ =
⋂

M∈N
SM . We denote by S ′ the space of tempered distributions and by S ′

M , 
S ′

∞ the dual spaces of SM and S∞, respectively. We let, for k ∈ Z, Lk = ϕ(2−kD) and 

L̃k = ϕ̃(2−kD) be operators in frequency localizing Littlewood-Paley decompositions, 
satisfying L̃kLk = Lk. The functions ϕ, ϕ̃ are radial and the relevant properties are 

defined in (1.2) and (2.2), respectively. For a set E with positive measure, the slashed 

integral 
ffl

E
f is used to denote the average of f over E.

Structure of the paper

In §2 we prove a rudimentary form of the characterization in Theorem 1.3 just for 
S∞ functions. The full proof of Theorem 1.3 will be given in §3. The embedding results 
in Theorem 1.4 are proved in §4. Various counterexamples establishing Theorem 1.5
are discussed in §5. In §6 we give the proof of Theorem 1.8 and in §7 the proof of 
Corollaries 1.9 and 1.11. In §8 we include a proof of Theorem 1.14 based only on the 

Fourier analytic definition of Ḃs
p(γ, r). A different proof of the interpolation result, just 

for parameters si ∈ (0, 1) and based on a retraction argument using first order differences 
is given in §9.
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2. Norm equivalences for S∞-functions

Before giving the full proof of Theorem 1.3 we give a proof of the norm equivalence 

for functions in the class S∞(Rd). Note that for f ∈ S∞(Rd) we have f =
∑

k∈Z
Lkf

with convergence in the topology of S(Rd).

Proposition 2.1. Let M ∈ N, 1 < p < ∞, 1 ≤ r ≤ ∞, γ ∈ R and 0 < s < M . For 

f ∈ S∞(Rd),

‖f‖Ḃs
p(γ,r) ≈ ‖QM,s+γ/pf‖Lp,r(νγ). (2.1)

Let ϕ̃ ∈ C∞
c (Rd) be such that

supp(ϕ̃) ⊂ {ξ : 1/2 < |ξ| < 2} and ϕ̃(ξ) = 1 for 3/4 ≤ |ξ| ≤ 7/4. (2.2)

This implies ϕ̃ϕ = ϕ. Let L̃k = ϕ̃(2−kD) so that Lk = L̃kLk = LkL̃k.
To bound ‖QM,s+γ/pf‖Lp,r(νγ) in terms of ‖f‖Ḃs

p(γ,r), we use the following lemma.

Lemma 2.2. Let M ∈ N, 1 < p < ∞, 1 ≤ r ≤ ∞, b, γ ∈ R with 0 < b − γ
p < M . Then 

the operator

Tbg(x, h) :=
∑

k∈Z

ΔM
h L̃kg(x, k)
(2k|h|)b

, (x, h) ∈ R
d × (Rd \ {0})

defines a bounded linear map from Lp,r(μγ) to Lp,r(νγ).

Proof. By real interpolation it suffices to consider the case r = p. From the elementary 

inequality

‖ΔM
h L̃k‖Lp→Lp � min{1, (2k|h|)M },

we obtain

‖Tbg‖Lp(νγ) �
(ˆ [∑

k∈Z

‖ΔM
h L̃kg(·, k)‖Lp( dx)

(2k|h|)b

]p dh

|h|d−γ

)1/p

�
(ˆ [∑

k∈Z

min{(2k|h|)−(b− γ
p ), (2k|h|)M−(b− γ

p )}2−k γ
p ‖g(·, k)‖p

]p dh

|h|d

)1/p

�
(∑

j∈Z

[∑

k∈Z

min{(2k−j)−(b− γ
p ), (2k−j)M−(b− γ

p )}2−k γ
p ‖g(·, k)‖p

]p)1/p

and the desired conclusion follows since if α, β > 0 then the convolution on Z with the 

sequence {min{2−kα, 2kβ}}k∈Z ∈ �1(Z) is bounded on �p(Z). �
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To apply the lemma note that under the hypotheses of Proposition 2.1 we have

f(x) =
∑

k∈Z

2−k(s+ γ
p )L̃kP s+ γ

p f(x, k) (2.3)

with the convergence in S∞(Rd) (in particular pointwise for every x ∈ R
d). Hence for 

every (x, h) ∈ R
d × (Rd \ {0}) we have

ΔM
h f(x)

|h|s+ γ
p

= Ts+ γ
p
P s+ γ

p f(x, h).

Lemma 2.2 with b := s + γ
p (which satisfies 0 < b − γ

p < M) and g := P s+ γ
p f yields the 

inequality

∥∥∥
{ΔM

h f(x)

|h|s+ γ
p

}∥∥∥
Lp,r(νγ)

� ‖P s+ γ
p f‖Lp,r(μγ) (2.4)

and thus the following corollary.

Corollary 2.3. Let M ∈ N, 1 < p < ∞, 1 ≤ r ≤ ∞, γ ∈ R and 0 < s < M . Then for 

f ∈ S∞(Rd)

∥∥∥
{ΔM

h f(x)

|h|s+ γ
p

}∥∥∥
Lp,r(νγ)

� ‖f‖Ḃs
p(γ,r).

For the converse inequality we like to consider an operator acting on F (x, h) =
|h|−bΔM

h f , for b = s + γ/p, and then we are faced with the task of “dividing out” 

the difference operator. To achieve this we work with the partition of unity of the an-
nulus {ξ ∈ R

d : 1/2 < |ξ| < 2}. Alternative Fourier arguments can be found e.g. in [45, 
5.2.1].

Let ε < (10M)−1. We use a finite partition {χκ}N
κ=1 of unity on the support of ϕ, so 

that χκ ∈ C∞
c is supported on the ball Bd(uκ, ε). Let wκ = πuκ

2|uκ|2 and then we have, for 
ξ ∈ supp(χκ) and |w − wκ| ≤ ε,

|〈ξ, w〉 −
π

2
| ≤ |〈ξ, w − wκ〉| + |〈ξ − uκ, wκ〉| + |〈uκ, wκ〉 − π

2 | ≤ 2ε + 2ε + 0.

We may then write

ϕ(ξ) =
N∑

κ=1

mκ(ξ)
ˆ

|h−wκ|≤ε

(ei〈ξ,h〉 − 1)M dh (2.5a)

where
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mκ(ξ) = ϕ(ξ)
χκ(ξ)

´

|h−wκ|≤ε
(ei〈ξ,h〉 − 1)M dh

. (2.5b)

Since the denominator is bounded away from 0 on the support of χκ we get |∂αmκ(ξ)| ≤
Cα for all multiindices α, and thus the L1 norms of the Fourier inverse transforms of the 

mκ are finite. We then get

Ljf =
N∑

κ=1

mκ(2−jD)
ˆ

|h−2−jwκ|≤ε2−j

ΔM
h f

dh

2−jd
. (2.6)

Lemma 2.4. Let m be the Fourier transform of a bounded Borel measure, with L1 → L1

multiplier norm ‖m‖M1
. Let w ∈ R

d such that 1/2 ≤ |w| ≤ 2 and ε ∈ (0, 12 ). For b, γ ∈ R, 

1 < p < ∞, 1 ≤ r ≤ ∞, and F ∈ Lp,r(Rd × (Rd \ {0}), νγ) define V b
m,w,εF by

V b
m,w,εF (·, k) ≡ V b,k

m,w,εF = m(2−kD)
ˆ

|h−2−kw|≤ε2−k

(2k|h|)bF (·, h)
dh

2−kd
. (2.7)

Then V b
m,w,ε maps Lp,r(νγ) to Lp,r(μγ) and we have

‖V b
m,w,εF‖Lp,r(μγ) ≤ C‖m‖M1‖F‖Lp,r(νγ) (2.8)

where C only depends on p, r, b, γ.

Proof. Since (F, m) �→ V b
m,w,εF is bilinear we may normalize and assume that ‖m‖M1

=
1. Again by real interpolation it suffices to prove the theorem for p = r, 1 ≤ p ≤ ∞. 
Since ‖m(2−kD)‖Lp→Lp ≤ 1 for 1 ≤ p ≤ ∞ we obtain

‖V b
m,w,εF‖Lp(μγ) �

(∑

k∈Z

2−kγ
∥∥∥

ˆ

|h−2−kw|≤ε2−k

(2k|h|)bF (·, h)
dh

2−kd

∥∥∥
p

p

)1/p

�
(∑

k∈Z

2−kγ
∥∥∥

ˆ

2−k−1≤|h|≤2−k+1

|F (·, h)|
dh

|h|d

∥∥∥
p

p

)1/p

�
( ˆ

Rd

‖F (·, h)‖p
p

dh

|h|d−γ

)1/p

= ‖F‖Lp(νγ)

which completes the proof of the lemma. �

To apply the lemma it is beneficial to express P bf(·, k) = 2kbLkf as

P bf(x, k) =
N∑

κ=1

mκ(2−kD)
ˆ

|h−2−kwκ|≤ε2−k

(2k|h|)b ΔM
h f(x)
|h|b

dh

2−kd
(2.9a)
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and thus we get

P bf =
N∑

κ=1

V b
mκ,wκ,εF, with F (x, h) =

ΔM
h f(x)
|h|b

. (2.9b)

Now, setting b = s + γ/p, Lemma 2.4 yields

Corollary 2.5. Let M ∈ N, 1 < p < ∞, 1 ≤ r ≤ ∞, s, γ ∈ R. For f ∈ S∞(Rd),

‖f‖Ḃs
p(γ,r) � ‖QM,s+ γ

p
f‖Lp,r(νγ).

Proposition 2.1 is just the combination of Corollaries 2.3 and 2.5.

3. Norm equivalences for all measurable functions

We give the proof of Theorem 1.3. We begin by rephrasing it in a more abstract 
way which allows us to keep in mind the distinction between equivalence classes modulo 

all polynomials and modulo polynomials of degree < M . Let M denote the space of 
(Lebesgue almost everywhere equivalence classes of) measurable functions on Rd and let 
PM denote the space of (almost everywhere equivalence classes of) functions which are 

almost everywhere equal to a polynomial of degree at most M . Let MM := M/PM−1

and let πM : M → MM denote the projection map. Since the operators QM,s+γ/p

annihilate polynomials of degree ≤ M − 1 we can make the following definition.

Definition 3.1. For M ∈ N, s ∈ R, 1 < p < ∞, and 1 ≤ r ≤ ∞, we define an extended 

norm2 on MM by

‖πM f‖BM,s,p(γ,r) := ‖QM,s+ γ
p
f‖Lp,r(νγ)

and let BM,s,p(γ, r) be the subspace of MM for which ‖πM f‖BM,s,p(γ,r) is finite.

Recall that T ⊆ M denotes the space of (Lebesgue almost everywhere equivalence 

classes of) tempered functions on Rd, and let TM := T /PM−1. πM : M → MM restricts 
to a map πM : T → TM . We let ιM denote the natural map TM → S ′

∞(Rd) which assigns 
to πM (f) (with f ∈ T ) the linear functional ιM (πM (f)) : φ �→

´

Rd f(x)φ(x) dx. We 

rephrase Theorem 1.3 in the following, equivalent, form:

Theorem 3.2. Fix M ∈ N, M ≥ 1. For 0 < s < M , p ∈ (1, ∞), r ∈ [1, ∞], γ ∈ R, we 

have

2 A priori, ‖ · ‖BM,s,p(γ,r) is merely an extended semi-norm. Lemma 3.6 below shows that 
‖πM f‖BM,s,p(γ,r) = 0 ⇔ πM f = 0.
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(i) BM,s,p(γ, r) ⊆ TM ;

(ii) Ḃs
p(γ, r) = ιM (BM,s,p(γ, r));

(iii) The map

ιM

∣∣
BM,s,p(γ,r) : BM,s,p(γ, r) → Ḃs

p(γ, r)

is an isomorphism of normed vector spaces; i.e., it is a bounded, bijective linear 

map with bounded inverse.

The rest of this section is devoted to the proof of Theorem 3.2. In what follows we 

denote, for M ∈ N, by SM (Rd) the closed subspace of S(Rd) which consists of all 
f ∈ S(Rd) with 

´

p(x)f(x) dx = 0 for all polynomials of degree ≤ M − 1. Then clearly 

S∞ =
⋂

M∈N
SM (and S∞ ≡ Z in the notation of [56]). We denote by S ′

M the dual space 

of SM . To prove the theorem, we introduce two maps: Ḃs
p(γ, r) ↔ BM,s,p(γ, r), which will 

turn out to be inverses to each other. We begin with the map Ḃs
p(γ, r) → BM,s,p(γ, r). 

The following proposition is similar to results of Bourdaud [7] and Moussai [44] for the 

so-called realized Besov spaces, and, in fact, could be deduced from their results by 

interpolation arguments.

Proposition 3.3. Fix M ∈ N, M ≥ 1. For 0 < s < M , 1 < p < ∞, γ ∈ R, and 

1 ≤ r ≤ ∞, there is a bounded linear map

EM : Ḃs
p(γ, r) → BM,s,p(γ, r)

such that EM (Ḃs
p(γ, r)) ⊆ TM and ιM is a left inverse to EM ; i.e., ιMEM is the identity 

map Ḃs
p(γ, r) → Ḃs

p(γ, r).

We need a lemma about the Littlewood-Paley decomposition for f ∈ Ḃs
p(γ, ∞) ⊆

S ′
∞(Rd), for p ∈ (1, ∞). Note that Lkf is a convolution of an element of S ′

∞(Rd) and 

an element of S∞(Rd), and thus a C∞-function. By the definition of Ḃs
p(γ, ∞), Lkf ∈

Lp,∞(Rd) with ‖2ksLkf‖Lp,∞(Rd) � ‖f‖Ḃs
p(γ,∞) uniformly in k ∈ Z.

By Young’s convolution inequality

‖L̃k‖Lp,∞→L∞ = O(2kd/p)

and from L̃kLk = Lk we obtain ‖Lkf‖∞ � 2kd/p‖Lkf‖Lp,∞ . We use this to establish 

convergence of the Littlewood-Paley decomposition in SM , under the additional condition 

M > s − d/p.

Lemma 3.4. Let M be a nonnegative integer, 1 < p < ∞, N ∈ N. Then the following 

holds.

(i) For f ∈ Ḃs
p(γ, ∞) and ψ ∈ SM ,

|〈Ljf, ψ〉| ≤ CN,M,ψ2j( d
p −s) min{2−jN , 2jM }‖f‖Ḃs

p(γ,∞).
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(ii) Let M > s − d/p, and f ∈ Ḃs
p(γ, r). Then 

∑
j∈Z

Ljf converges in S ′
M .

Proof. Since ψ ∈ S we get ‖L̃jψ‖1 � CN,ψ2−jN for j ≥ 0. Using the M − 1 vanishing 

moment conditions we get ‖L̃jψ‖1 � 2jM for j ≤ 0.
We have

|〈Ljf, ψ〉| = |〈L̃jLjf, L̃jψ〉| ≤ ‖L̃jLjf‖∞‖L̃jψ‖1

� 2j d
p ‖Ljf‖Lp,∞ min{2−jN , 2jM }

� ‖f‖Ḃs
p(γ,∞)2

j( d
p −s) min{2−jN , 2jM }

where the implicit constants depend on M, N, ψ. Choosing N large enough we see that ∑
j>0 |〈Ljf, ψ〉| < ∞. Moreover 

∑
j≤0 |〈Ljf, ψ〉| < ∞ if M > s −d/p and thus 

∑
j∈Z

Ljf

converges in S ′
M . �

Proof of Proposition 3.3. As already mentioned this could be skipped by citing [7,44], 
which proves more, but in order to be self-contained we include a direct proof of this 
somewhat easier result. We first define the map

IM : TM ↪→ S ′
M (Rd)

as taking πM u (with u ∈ T ) to the distribution IM πM u defined by

〈IM πM u, φ〉 =
ˆ

Rd

uφ

and observe that IM is injective. Also let f ∈ ∪r∈[1,∞]Ḃ
s
p(γ, r) = Ḃs

p(γ, ∞). By Lemma 3.4∑
k∈Z

IM πM Lkf converges in S ′
M (Rd) to some U ∈ S̃ ′

M (Rd).
We claim U ∈ IM (TM ). To see this, decompose

U = Uhigh + Ulow :=
∑

k≥0

IM πM Lkf +
∑

k<0

IM πM Lkf,

where the above sums converge in S ′
M(Rd). Since f ∈ Ḃs

p(γ, ∞), we have ‖Lkf‖Lp,∞ �

2−ks, and since s > 0 we see that 
∑

k≥0 Lkf converges in Lp,∞(Rd) and

Uhigh =
∑

k≥0

IM πM Lkf = IM πM

[∑

k≥0

Lkf
]

∈ IM (TM ).

Since Ulow ∈ S ′
M (Rd), we can use the Hahn-Banach Theorem to establish the existence 

of an extension U ext
low ∈ S ′(Rd) such that

〈U ext
low, ψ〉 = 〈Ulow, ψ〉, ∀ψ ∈ SM (Rd).
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In particular, by the definition of Ulow, we see that the Fourier transform of U ext
low is 

supported in {|ξ| ≤ 2}. Schwartz’s Paley-Wiener Theorem implies there exists G ∈ T

with 〈U ext
low, ψ〉 =

´

Rd Gψ, for all ψ ∈ S(Rd). It follows that Ulow = U ext
low

∣∣
SM

= IM πM G ∈

IM (TM ). This completes the proof that U ∈ IM (TM ).
We now can define EM f ; because by injectivity of IM we have

U = IM (EM f),

for a unique EM f ∈ TM . The map EM : f �→ EM f is then clearly linear. Also U
∣∣
S∞(Rd) =

f and therefore ιMEM f = IMEM f
∣∣
S∞(Rd) = U

∣∣
S∞(Rd) = f ; that is, ιMEM is the identity.

We still need to establish the estimate

‖EM f‖BM,s,p(γ,r) � ‖f‖Ḃs
p(γ,r); (3.1)

this is done using the arguments in §2. Define g(x, k) := 2k(s+ γ
p )
EM Lkf(x) so that 

f =
∑

k∈Z
IM 2−k(s+ γ

p )L̃kg(·, k) with convergence in S ′
M . By definition of Ḃs

p(γ, r) we 

have g ∈ Lp,r(μγ). For all h and a.e. x,

ΔM
h EM f(x)

|h|s+ γ
p

= Ts+ γ
p
g(x, h)

where Ts+ γ
p

is as in Lemma 2.2. Then we get (3.1) from Lemma 2.2. �

We turn to the map BM,s,p(γ, r) → Ḃs
p(γ, r).

Proposition 3.5. For M ∈ N, s ∈ R, p ∈ (1, ∞), r ∈ [1, ∞], γ ∈ R, there is an injective 

bounded linear map

JM : BM,s,p(γ, r) → Ḃs
p(γ, r)

such that

JM

∣∣
BM,s,p(γ,r)∩TM

= ιM

∣∣
BM,s,p(γ,r)∩TM

. (3.2)

The main difficulty we must contend with in Proposition 3.5 is that elements of 
BM,s,p(γ, r) are a priori only equivalence classes of measurable functions (not necessarily 

locally integrable), and so we cannot directly use any tools from distribution theory to 

study them. The following lemma appears to be well-known but we include a proof since 

we have not been able to locate a precise reference.

Lemma 3.6. Let M ≥ 1, and f : R
d → C be measurable with ΔM

h f(x) = 0 for L2d-

almost every (h, x) ∈ R
2d. Then there is a polynomial P of degree at most M − 1 such 

that f(x) = P (x) almost everywhere.
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Before proving the lemma we recall some basic facts from the theory of functional 
equations [39] which are needed in the proof. First, we need a formula about iterated 

differences, attributed to Kemperman in [39, Theorem 15.1.2], see also Djoković [22] for 
related results. Namely, for all dimensions d, for all N ∈ N, if v(1), ..., v(N) are vectors 
in Rd then

Δv(1) . . . Δv(N)f(x) =
∑

(ε1,...,εN )∈{0,1}N

(−1)ε1+...εN ΔM
h(ε)f(x + h̃(ε)),

where h(ε) = −
N∑

j=1

j−1εjv(j), h̃(ε) =
N∑

j=1

εjv(j).

(3.3)

Next we recall that a Ld-measurable function f : R
d → C is called almost polynomial 

of order M − 1 if ΔM
h f(x) = 0 for L2d-a.e. (x, h) ∈ R

2d. It is a result of Ger [27], which 

we use in its form presented in [39, Theorem 17.7.2], that there exists a measurable 

function P : R
d → C such that f(x) = P (x) for Ld-a.e. x and P is a function satisfying 

ΔM
h P (x) = 0, for all (h, x) ∈ R

d × R
d; such functions are called “polynomial functions” 

in [27], [39].
We also use a result by Ciesielski [12] (see also [39, Theorem 15.5.2]) which states 

that if a measurable function g : R → C satisfies ΔM
h g(x) ≥ 0 for all x ∈ R and all 

h ∈ R then g is continuous; by an argument using weak derivatives this implies that a 

polynomial function of order M − 1 on the real line is actually a polynomial of degree 

at most M − 1. In proving Lemma 3.6 we could have used a d-dimensional version of 
this fact which could be derived from an abstract result by Kuczma [38, Theorem 3]. 
However we prefer to give a more direct argument based on induction on d.

Proof of Lemma 3.6. For d = 1 Lemma 3.6 is an immediate consequence of the above 

mentioned theorems by Ciesielski and Ger. Let d ≥ 2 and as induction hypothesis, 
assume Lemma 3.6 in dimension d − 1. We split variables as x = (x′, xd).

Let f : R
d → C be almost polynomial of order M − 1. By Ger’s theorem there is a 

measurable function g : R
d �→ C such that f = g Ld-a.e. and g is a polynomial function 

of order M − 1. We therefore get ΔM
sed

g(x) = 0 for all x ∈ R
d and all s ∈ R. Thus, for all 

x′ ∈ R
d−1 we get from Ciesielski’s theorem that the function t �→ g(x′, t) is a polynomial 

of degree at most M − 1, i.e. we have

g(x′, xd) =
M−1∑

j=0

aj(x′)xj
d

for all x′ ∈ R
d−1 and every xd ∈ R. The coefficient functions can be expressed via 

divided differences in the xd-variables (alternatively via derivatives) and thus it is easily 

seen that each aj is Ld−1-measurable. Since ΔM
h g(x) = 0 for all (x, h) we also have by 

(3.3) that ΔM−k
(u,0) Δk

sed
g(x) = 0, for all x ∈ R

d, u ∈ R
d−1 and s ∈ R. Letting s → 0 (and 

using that xd �→ g(x′, xd) is polynomial) this implies that for k = 0, . . . , M ,
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0 = ΔM−k
(u,0)

( ∂

∂xd
)kg(x′, xd) =

M−1∑

j=k

ΔM−k
u aj(x′)cj,kxj−k

d ,

with cj,k =
∏k

i=1(j − i + 1). This in turn implies ΔM−k
u ak(x′) = 0 for k = 0, . . . , M , and 

all u ∈ R
d−1. Thus, by the induction hypothesis ak(x′) is almost everywhere equal to a 

polynomial of degree at most M − k − 1, and we deduce that g and thus f is Ld-a.e. 
equal to a polynomial of degree at most M − 1. �

Lemma 3.7. Fix γ ∈ R, p ∈ (1, ∞), r ∈ [1, ∞]. Then, if K, L ∈ N are sufficiently large, 

we have

¨

|F (x, h)| min{|h|K , |h|−K}(1 + |x|)−L dx dh � ‖F‖Lp,r(νγ),

for all F ∈ Lp,r(νγ).

Proof. By interpolation it suffices to show this for r = p (possibly, after increasing K). 
The desired bound follows if we can show K1, L ∈ N sufficiently large, that

min{|h|K1 , |h|−K1}(1 + |x|)−L ∈ Lp′

(νγ),

where p′ = p
p−1 . This however is elementary. �

Before we define the operator JM from Proposition 3.5, we introduce some auxiliary 

operators. Let j ∈ Z, m ∈ C∞
0 (Rd \ {0}), w ∈ R

d \ {0}, and ε > 0 be such that 
Bd(w, ε) ⊂ {ξ : 1/2 < |ξ| < 2}. For ψ ∈ S∞(Rd), define Γj

m,w,εψ(x, h) by

[
Γj

m,w,εψ
]∧

(ξ, h) := 2jdm(−2−jξ)ψ̂(ξ) 1Bd(2−jw,2−jε)(h), (3.4)

where ∧ denotes the Fourier transform in the x → ξ variable.

Lemma 3.8. Let Ω ⊂ S∞(Rd) be a bounded set. Then for all K, L ∈ N and α ∈ N
d, there 

exists CK,L,α,Ω ≥ 0, which may depend on the fixed j, m, w and ε, such that

|∂α
x Γj

m,w,εψ(x, h)| ≤ CK,L,α,Ω2−|j| min{|h|K , |h|−K}(1 + |x|)−L

for all ψ ∈ Ω.

Proof. Equivalently, we wish to show that the set

{
max{|h|K , |h|−K}2|j|Γj

m,w,εψ(·, h) : h ∈ R
d \ {0}, ψ ∈ Ω

}

is bounded in S(Rd). Since Γj
m,w,εψ(x, h) = 0 unless |h| ≈ 2−j , it suffices to show that



24 Ó. Domínguez et al. / Journal of Functional Analysis 284 (2023) 109775

{
2|j|(K+1)Γj

m,w,εψ(·, h) : ψ ∈ Ω, h ∈ R
d \ {0}

}

is bounded in S(Rd). Taking the Fourier transform, this follows if we show that

{
2|j|(K+1)2jdm(−2−jξ)ψ̂(ξ) : ψ ∈ Ω

}

is bounded in S(Rd). Using that supp{m(2−j ·)} ⊂ {|ξ| ≈ 2j}, for m ∈ C∞
0 (Rd \ {0}), 

and Ω ⊂ S∞(Rd) is a bounded set, this follows, completing the proof. �

For b ∈ R, p ∈ (1, ∞), r ∈ [1, ∞], γ ∈ R, F ∈ Lp,r(νγ), and ψ ∈ S∞(Rd), set

〈U b,j
m,w,εF, ψ〉 :=

¨

|h|bF (x, h) Γj
m,w,εψ(x, h) dx dh (3.5a)

〈U b
m,w,εF, ψ〉 :=

∑

j∈Z

〈U b,j
m,w,εF, ψ〉. (3.5b)

Lemma 3.9. For F ∈ Lp,r(νγ), the sums and integrals in (3.5) converge absolutely and 

(3.5b) defines U b
m,w,εF ∈ S ′

∞(Rd).

Proof. By Lemmas 3.8 and 3.7, we have for any K, L ∈ N sufficiently large,

∑

j∈Z

¨

|h|b|F (x, h)||Γj
m,w,εψ(x, h)| dx dh

�K,L

∑

j∈Z

2−|j|

¨

|F (x, h)| min{|h|K , |h|−K}(1 + |x|)−L dx dh

�
∑

j∈Z

2−|j|‖F‖Lp,r(νγ) � ‖F‖Lp,r(νγ).

This shows the absolute convergence and defines U b
m,w,εF in the algebraic dual of 

S∞(Rd).
To see that U b

m,w,εF ∈ S ′
∞(Rd), let ψk ∈ S∞(Rd) be such that ψk → ψ in S∞(Rd). 

In particular, {ψk : k ∈ N} is a bounded set in S∞(Rd) and therefore by Lemma 3.8,

|h|b
∣∣Γj

m,w,εψk(x, h)
∣∣ � 2−|j| min

{
|h|K , |h|−K

}
(1 + |x|)−L

,

with implicit constant independent of k. Combining this with Lemma 3.7, the dominated 

convergence theorem shows 〈U b
m,w,εF, ψk〉 → 〈U b

m,w,εF, ψ〉, completing the proof. �

Lemma 3.10. For b, γ ∈ R, p ∈ (1, ∞), r ∈ [1, ∞],

U b
m,w,ε : Lp,r(νγ) → Ḃb−γ/p

p (γ, r)

is a bounded linear transformation.
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Proof. This is an application of Lemma 2.4. From the definitions (3.4) and (3.5a) we get

LkU b,j
m,w,εF (x) = 2−jb

ˆ

|h−2−jw|≤ε2−j

(2j |h|)bϕ(2−kD)m(2−jD)[F (·, h)](x)
dh

2−jd

and thus LkU b,j
m,w,ε = 0 when |k − j| ≥ 2. Then with V b,j

m,w,ε as in (2.7), we get for 
n = −1, 0, 1,

LkU b,k+n
m,w,ε F = 2−(k+n)bV b,k+n

m̃n,w,εF, with m̃n = ϕ(2n·)m, (3.6)

and

P bU b
m,w,εF (·, k) = 2kbLkU b

m,w,εF =
1∑

n=−1

2−nbV b,k+n
m̃n,w,εF.

Hence

‖U b
m,w,εF‖

Ḃ
b−γ/p
p (γ,r) ≤

1∑

n=−1

2−nb‖V b
m̃n,w,εF (·, · + n)‖Lp,r(μγ)

�b,γ

1∑

n=−1

‖V b
m̃n,w,εF‖Lp,r(μγ)

and since by Lemma 2.4 we have ‖V b
m̃n,w,εF‖Lp,r(μγ) � ‖F‖Lp,r(νγ) the proof is com-

plete. �

The following lemma has a dual version of formula (2.6) and an extension to tempered 

functions.

Lemma 3.11. Let ψ ∈ S∞(Rd). Then

N∑

κ=1

ˆ

ΔM
−hΓj

mκ,wκ,εψ(x, h) dh = Ljψ(x). (3.7)

Moreover, for f ∈ T and ψ ∈ S∞(Rd),

N∑

κ=1

∑

j∈Z

¨

ΔM
h f(x) Γj

mκ,wκ,εψ(x, h) dh dx =
ˆ

f(x)ψ(x) dx. (3.8)

Proof. We first check (3.7), which, after taking the Fourier transform, is equivalent with

N∑

κ=1

ˆ

(ei〈ξ,−h〉 − 1)M
[
Γj

mκ,wκ,εψ
]∧

(ξ, h) dh = ϕ(2−jξ)ψ̂(ξ). (3.9)
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Using (3.4) and (2.5a) we have

N∑

κ=1

ˆ (
ei〈ξ,−h〉 − 1

)M [
Γj

mκ,wκ,εψ
]∧

(ξ, h) dh

=
N∑

κ=1

2jd

ˆ

|h−2−jwκ|<2−jε

(ei〈−ξ,h〉 − 1)M mκ(−2−jξ)ψ̂(ξ) dh

= ϕ(−2−jξ)ψ̂(ξ) = ϕ(2−jξ)ψ̂(ξ),

here we used that ϕ is radial. This establishes (3.9) and thus (3.7).
We now prove (3.8). In the argument that follows all integrals and sums converge 

absolutely by Lemmas 3.7 and 3.8. Using (3.7) we have

N∑

κ=1

∑

j∈Z

¨

ΔM
h f(x) Γj

mκ,wκ,εψ(x, h) dh dx

=
N∑

κ=1

∑

j∈Z

ˆ

f(x)
ˆ

ΔM
−hΓj

mκ,wκ,εψ(x, h) dh dx

=
∑

j∈Z

ˆ

f(x) Ljψ(x) dx =
ˆ

f(x)ψ(x) dx,

where the final equality uses f ∈ T and that 
∑

j∈Z
Ljψ = ψ, with convergence in 

S∞(Rd), since ψ ∈ S∞(Rd). �

We are prepared to define JM . For f ∈ M with πM f ∈ BM,s,p(γ, r) we set

〈JM (πM f), ψ〉 :=
N∑

κ=1

∑

j∈Z

¨

ΔM
h f(x)Γj

mκ,wκ,εψ(x, h) dx dh (3.10a)

=
N∑

κ=1

〈U b
mκ,wκ,εFb, ψ〉 with Fb(x, h) =

ΔM
h f(x)
|h|b

(3.10b)

where by Lemma 3.9 the sums and integrals in (3.10a) converge absolutely. Note that 
the definition of JM depends on M , but not on s, γ, p, r, and that (3.10b) holds for all 
b ∈ R. We shall later use this formula with b = s +γ/p. When f ∈ T , Lemma 3.11 shows 
that 〈JM (πM f), ψ〉 is the standard pairing of f ∈ T with a Schwartz function in S∞, i.e.

〈JM (πM f), ψ〉 =
ˆ

f(x)ψ(x) dx, ∀f ∈ T . (3.11)

We need to show that JM is injective on BM,s,p(γ, r). For this, we will need the 

following auxiliary lemma.
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Lemma 3.12. Let p ∈ (1, ∞), r ∈ [1, ∞], and γ ∈ R. Suppose that F ∈ Lp,r(νγ) and 

η ∈ C∞
c (Rd \ {0}) are such that

x �→ Q(x) :=
ˆ

F (x, h)η(h) dh

is almost everywhere equal to a polynomial. Then Q(x) = 0 almost everywhere.

Proof. Let φ ∈ C∞
c (Rd) be nonnegative and 

´

φ = 1. We claim that, for all G ∈ Lp,r(νγ),

lim
|a|→∞

¨

G(x, h)η(h)φ(x − a) dh dx = 0 (3.12)

Observe that (3.12) follows by standard estimates whenever G ∈ Lq(νγ) for any q ∈

(1, ∞). It then also holds for G ∈ Lp,r(νγ) since Lp,r(νγ) ⊂ Lp1(νγ) + Lp2(νγ), with 

p1 < p < p2.
By (3.12) we have

0 = lim
|a|→∞

∣∣∣
¨

F (x, h)η(h)φ(x − a) dh dx
∣∣∣ = lim

|a|→∞

∣∣∣
ˆ

Q(x)φ(x − a) dx
∣∣∣

and the last expression is equal to |c| if Q(x) = c almost everywhere, and equal to ∞ if 
Q is almost everywhere equal to a nonconstant polynomial. We conclude that Q(x) = 0
almost everywhere. �

Lemma 3.13. For M ∈ N, s, γ ∈ R, p ∈ (1, ∞), and r ∈ [1, ∞], JM is injective on 

BM,s,p(γ, r).

Proof. Suppose f ∈ M is such that πM f ∈ BM,s,p(γ, r) and JM πM f = 0 as an element 
of S ′

∞(Rd). We wish to show f(x) = P (x), almost everywhere, for some polynomial 
P (x) of degree ≤ M − 1. In this proof, all sums and integrals converge absolutely by 

Lemmas 3.7 and 3.8.
Take ψ ∈ S∞(Rd) and η ∈ C∞

c (Rd \ {0}). Then,

ˆ

η(h′)ΔM
h′ ψ(x) dh′ ∈ S∞(Rd).

Thus, we have, using (3.10a) and the definition of the translation invariant operator 
Γj

mκ,wκ,ε (see (3.4)),
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0 =
〈
JM πM f,

ˆ

η(h′) ΔM
−h′ψ dh′

〉

=
N∑

κ=1

∑

j∈Z

˚

ΔM
h f(x) η(h′) ΔM

−h′Γj
mκ,wκ,εψ(x, h) dx dh dh′

=
∑

j∈Z

¨

ΔM
h′ f(x)η(h′)

N∑

κ=1

ˆ

ΔM
−hΓj

mκ,wκ,εψ(x, h) dh dx dh′

=
∑

j∈Z

¨

ΔM
h′ f(x)η(h′) dh′ Ljψ(x) dx,

where the last equality uses (3.7). It follows from Lemma 3.7 and the fact that η ∈

C∞
c (Rd \ {0}) that 

´

ΔM
h′ f(·)η(h′) dh′ ∈ T . Since ψ ∈ S∞(Rd), we have 

∑
j∈Z

Ljψ = ψ

with convergence in S∞(Rd). Thus,

0 =
∑

j∈Z

¨

ΔM
h′ f(x)η(h′) dh′Ljψ(x) dx

=
¨

ΔM
h′ f(x) η(h′) dh′ψ(x) dx,

(3.13)

for arbitrary ψ ∈ S∞(Rd) and we can conclude that

ˆ

ΔM
h′ f(x)η(h′) dh′ = Q(x), a.e.

for some polynomial Q. By Lemma 3.12 it follows that Q = 0, hence
ˆ

ΔM
h′ f(x)η(h′) dh′ = 0, a.e.

Since η ∈ C∞
0 (Rd \{0}) was arbitrary, this implies ΔM

h f(x) = 0 for almost every (x, h) ∈
R

2d. Lemma 3.6 shows f(x) = P (x), almost everywhere, for some polynomial P (x) of 
degree ≤ M − 1, completing the proof. �

Proof of Proposition 3.5. It follows immediately from the definitions that
⎧
⎨
⎩

πM f �→
(

(x, h) �→ ΔM
h f(x)

|h|s+γ/p

)

BM,s,p(γ, r) → Lp,r(νγ)

is bounded. Lemma 3.10 shows that Us+γ/p
mκ,wκ,ε : Lp,r(νγ) → Ḃs

p(γ, r) is bounded. Com-
posing these maps and using (3.10b) shows that

JM : BM,s,p(γ, r) → Ḃs
p(γ, r)

is bounded. JM is injective by Lemma 3.13. Finally, (3.2) follows from (3.11). �



Ó. Domínguez et al. / Journal of Functional Analysis 284 (2023) 109775 29

Proof of Theorem 3.2, conclusion. By Proposition 3.3,

EM (Ḃs
p(γ, r)) ⊆ TM ∩ BM,s,p(γ, r),

and so by (3.2), JM

∣∣
EM (Ḃs

p(γ,r)) = ιM

∣∣
EM (Ḃs

p(γ,r)). By Proposition 3.3, ιM is a left in-

verse to EM , and we conclude JMEM is the identity map on Ḃs
p(γ, r). In particular, 

JM

∣∣
TM ∩BM,s,p(γ,r) : TM ∩ BM,s,p(γ, r) → Ḃs

p(γ, r) is surjective. Proposition 3.5 shows 

JM : BM,s,p(γ, r) → Ḃs
p(γ, r) is injective. We conclude

TM ∩ BM,s,p(γ, r) = BM,s,p(γ, r), (3.14)

establishing part (i) of the theorem, and moreover that JM : BM,s,p(γ, r) → Ḃs
p(γ, r) is 

bijective with two-sided inverse EM . From (3.14) and (3.2) we see that

JM : BM,s,p(γ, r) → Ḃs
p(γ, r)

agrees with ιM on all of BM,s,p(γ, r). Thus,

ιM

∣∣
BM,s,p(γ,r) : BM,s,p(γ, r) → Ḃs

p(γ, r)

is a bounded bijective map with bounded inverse EM . This establishes parts (ii) and (iii) 
of the theorem, completing the proof. �

4. Embeddings

The proof of the embeddings in Theorem 1.4 is reduced to inequalities for the operator 
Ta defined on functions F : R

d × Z → C by

TaF (x, j) = 2jaFj(x), (4.1)

with the parameters a = ±γ/p.

Lemma 4.1. The following hold for all γ ∈ R, 1 < p < ∞.

(i) For p ≤ r ≤ ∞,

‖T−γ/pG‖�r(Lp,r) � ‖G‖Lp,r(μγ).

(ii) For 1 ≤ r ≤ p

‖Tγ/pF‖Lp,r(μγ ) � ‖F‖�r(Lp,r).

Proof. Part (i) follows from the definitions of Lorentz spaces via the distribution func-
tion. We use a change of variable with subsequent interchange of sum and integral to 

write
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‖T−γ/pG‖�r(Lp,r) �
(∑

j

∞̂

0

λr
[
meas{x : 2−j γ

p |G(x, j)| > λ}
]r/p dλ

λ

)1/r

=
( ∞̂

0

βr
∑

j

[
2−jγmeas{x : |G(x, j)| > β}

]r/p dβ

β

)1/r

and since r ≥ p we estimate an �r/p-norm by an �1-norm and see that the last displayed 

expression is dominated by

( ∞̂

0

βr
[∑

j

2−jγmeas{x : |G(x, j)| > β}
]r/p dβ

β

)1/r

=
( ∞̂

0

βr
[
μγ{(x, j) : |G(x, j)| > β}

]r/p dβ

β

) 1
r

� ‖G‖Lp,r(μγ).

For part (ii) we use that (Lp,r(μγ))∗ = Lp′,r′

(μγ), ([33]) and (�r(Lp,r))∗ = �r′

(Lp′,r′

). 
Observe that for 1 ≤ r ≤ p

∣∣∣
ˆ ∑

j

Tγ/pF (x, j)G(x, j)
dx

2jγ

∣∣∣ =
∣∣∣
∑

j

ˆ

F (x, j)2−jγ/p′

G(x, j) dx
∣∣∣

� ‖F‖�r(Lp,r)‖T−γ/p′G‖�r′ (Lp′,r′ ) � ‖F‖�r(Lp,r)‖G‖Lp′,r′ (μγ)

where we have used part (i) for the exponents p′ ≤ r′. The proof is completed by taking 

the supremum over all G with ‖G‖Lp′,r′ (μγ) ≤ 1. �

Lemma 4.2. Let 1 < p < ∞, γ 	= 0.

(i) For p ≤ r ≤ ∞,

‖Tγ/pF‖Lp,r(μγ ) � ‖F‖Lp(�r).

(ii) For 1 ≤ r ≤ p,

‖T−γ/pG‖Lp(�r) � ‖G‖Lp,r(μγ)

Proof. The argument for part (i) has been used in proofs for endpoint multiplier the-
orems, our proof is essential the one from [41, Lemma 2.4] (see also [41] for further 
references).

Let 0 ≤ θ ≤ 1 and 1/r = (1 − θ)/p. We use the complex interpolation formulas

[Lp(�p), Lp(�∞)]θ = Lp(�r), [Lp(μγ), Lp,∞(μγ)]θ = Lp,r(μγ).
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These imply that it suffices to prove the assertion for r = p and r = ∞. For r = p we 

have ‖Tγ/pF‖Lp(μγ) = ‖F‖Lp(�p).
For r = ∞ the conclusion Tγ/p : Lp(�∞) → Lp,∞(μγ) follows from

μγ{(x, j) : |Tγ/pF (x, j)| > λ} =
ˆ

Rd

∑

j:
2jγ/p|Fj(x)|>λ

2−jγ dx

≤

ˆ

Rd

∑

j:
2−jγ/p<λ−1 supk |Fk(x)|

2−jγ dx �

ˆ

Rd

(supk |Fk(x)|)p

λp
dx;

here we used γ 	= 0.
For part (ii) we use that (Lp,r(μγ))∗ = Lp′,r′

(μγ), see [33] and (Lp(�r))∗ = Lp′

(�r′

). 
Observe that for F ∈ Lp′

(�r′

)

ˆ ∑

j

2−jγ/pGj(x)Fj(x) dx =
ˆ ∑

j

Gj(x) Tγ/p′F (x, j)2−jγ dx

� ‖G‖Lp,r(μγ)‖Tγ/p′F‖Lp′,r′ (μγ) � ‖G‖Lp,r(μγ)‖F‖Lp′ (�r′ )

where we have used part (i). Now part (ii) follows by taking the sup over all F with 

‖F‖Lp′ (�r′ ) ≤ 1. �

Proof of Theorem 1.4. Apply Lemma 4.1 and Lemma 4.2 with F (x, j) = 2jsLjf(x) and 

G(x, j) = 2j(s+ γ
p )Ljf(x). �

5. Non-embeddings

We prove Theorem 1.5. Proposition 5.1 covers part (i) and (ii) of the theorem, in 

the range γ ≥ −d, and Proposition 5.2 covers the same parts for the range γ < −d. 
Proposition 5.3 covers part (iii) of Theorem 1.5. We begin with some definitions to build 

the examples.
If γ ≥ −d and k > 0, or if γ < −d and k < 0, define

Nγ(k) := �2k(d+γ)�.

Let {ni,k} be a double indexed set in Z, with 1 ≤ i ≤ Nγ(k), which is separated in the 

sense that for every k

i1 	= i2 =⇒ |ni1,k − ni2,k| ≥ 210|k|.

Let η ∈ S such that

|η(x)| ≈ 1 for |x| ≤ 1. (5.1a)
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supp(η̂) ⊂
{

ξ ∈ R̂
d :

15
16

≤ |ξ| ≤
17
16

}
(5.1b)

and let

ηi,k(x) = η(2k(x − ni,ke1)). (5.2)

By (1.2) we have

ηi,k = Lkηi,k (5.3a)

and

L�ηi,k = 0 if � 	= k. (5.3b)

Define for k ∈ Z

fγ,k(x) = 2−kγ/p

Nγ (k)∑

i=1

ηi,k. (5.4)

Proposition 5.1. Let fγ,k be as in (5.4). Let s ∈ R. Assume γ ≥ −d, and define3

Fγ,N (x) =
2N∑

k=N+1

2−ksfγ,k(x). (5.5)

(i) Then 1 < p ≤ r ≤ ∞

‖Fγ,N ‖Ḃs
p(γ,∞) = ‖Fγ,N ‖Bs

p(γ,∞) � N1/p (5.6)

‖Fγ,N ‖Ḃs
p(β,r) = ‖Fγ,N ‖Bs

p(β,r) � N1/r, for β 	= γ, (5.7)

‖Fγ,N ‖Ḃs
p,r

= ‖Fγ,N ‖Bs
p,r

� N1/r (5.8)

(ii) If p < ∞ then Fγ =
∑

�≥1 �2−�/pFγ,2� belongs to 
⋂

r>p Ḃs
p,r and to 

⋂
r>p
β �=γ

Ḃs
p(β, r), 

but not to Ḃs
p(γ, ∞).

Also Fγ belongs to 
⋂

r>p Bs
p,r and to 

⋂
r>p
β �=γ

Bs
p(β, r), but not to Bs

p(γ, ∞).

Proof. Let r ≥ p. We begin with the upper bound for the Ḃs
p(β, r) quasi-norm of Fγ,N

for β 	= γ. Let

3 The definitions in (5.5), (5.14) depend on s but we do not include the subscript s to keep the notation 
as simple as possible.



Ó. Domínguez et al. / Journal of Functional Analysis 284 (2023) 109775 33

Eγ,β,k(λ) =
{

x ∈ R
d :
∣∣∣
Nγ(k)∑

i=1

ηi,k(x)
∣∣∣
p

> λp2k(γ−β)
}

.

Note that from (5.3a) we get

‖Fγ,N ‖Ḃs
p(β,r) =

(
r

∞̂

0

[ 2N∑

k=N+1

λp2−kβmeas Eγ,β,k(λ)
]r/p dλ

λ

)1/p

.

In what follows we will use, for M > d + |γ|, the estimate

|η(x)| ≤ CM (1 + |x|)−M . (5.9)

Split ηi,k = ϑi,k + εi,k where

ϑi,k = ηi,k1{|x−ni,ke1|≤2k}, εi,k = ηi,k − ϑi,k.

Note for later reference ‖εi,k‖p �M 2−k d
p 22k( d

p −M) and therefore

∥∥∥
Nγ(k)∑

i=1

εi,k

∥∥∥
p
� 2k(d+γ)2−k d

p 22k( d
p −M). (5.10)

Let

E
(1)
γ,β,k(λ) =

{
x ∈ R

d :
∣∣∣
Nγ(k)∑

i=1

ϑi,k(x)
∣∣∣
p

> (
λ

2
)p2k(γ−β)

}

E
(2)
γ,β,k(λ) =

{
x ∈ R

d :
∣∣∣
Nγ(k)∑

i=1

εi,k(x)
∣∣∣
p

> (
λ

2
)p2k(γ−β)

}
.

Then

Eγ,β,k(λ) ⊂ E
(1)
γ,β,k(λ) ∪ E

(2)
γ,β,k(λ). (5.11)

Finally set, for i = 1, . . . , Nγ(k),

E
(1,i)
γ,β,k(λ) = {x ∈ R

d : |ϑi,k(x)|p > (
λ

2
)p2k(γ−β)}.

Observe that for fixed k the sets supp(ϑi,k) are disjoint and therefore the sets E(1)
γ,β,k(λ)

are the disjoint union of the sets E(1,i)
γ,β,k(λ), i = 1, . . . , Nγ(k). Now from (5.9) we get

E
(1,i)
γ,β,k(λ) ⊂

{
x : |x − ni,ke1| ≤ 2−k

( 2pCp
M

λp2k(γ−β)

) 1
Mp
}
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and therefore we get for the Lebesgue measure

meas E
(1)
γ,β,k(λ) ≤ cdNγ(k)2−kd

( 2pCp
M

λp2k(γ−β)

) d
Mp

.

Hence, using the definition of Nγ(k)

λp2−kβmeas E
(1)
γ,β,k(λ) ≤ cd(2CM )

d
M (λp2k(γ−β))1− d

Mp

Using (5.9) we also see that for k = N + 1, . . . , 2N

E
(1)
γ,β,k(λ) = ∅ for (λ/2)p2k(γ−β) > 2Cp

M .

Hence we get, for γ > β and r < ∞,

( ∞̂

0

[ ∑

N+1≤k≤2N

λp2k(γ−β)≤2Cp
M

λp2−kβmeas E
(1)
γ,β,k(λ)

]r/p dλ

λ

)1/r

≤ I + II

where

I =
( CM (2−2N(γ−β))1/p

ˆ

0

[ ∑

N+1≤k≤2N

C̃M (λp2k(γ−β))1− d
Mp

]r/p dλ

λ

)1/r

II =
( 2CM (2−N(γ−β))1/p

ˆ

CM (2−2N(γ−β))1/p

[ ∑

N+1≤k≤2N

λp2k(γ−β)≤2pCp
M

C̃M (λp2k(γ−β))1− d
Mp

]r/p dλ

λ

)1/r

.

We estimate

I �
( CM (2−2N(γ−β))1/p

ˆ

0

(λp22N(γ−β))(1− d
Mp ) r

p
dλ

λ

)1/r

� 1

II �
( 2CM (2−N(γ−β))1/p

ˆ

CM (2−2N(γ−β))1/p

dλ

λ

)1/r

� N1/r

and it follows that ‖FN,γ‖Ḃs
p(β,r) � N1/r provided that β < γ.

The calculation for γ < β is very similar, except the integration is over λ ∈

[0, CM (21+2N(β−γ))1/p] and the corresponding integrals for the parts I and II are ex-
tended from 0 to CM (2N(β−γ))1/p and from CM (2N(β−γ))1/p to CM (21+2N(β−γ))1/p, 
respectively. Again the first term gives an O(1) contribution and the second one an 

O(N1/r) contribution. Summarizing we get
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( ∞̂

0

[ ∑

N<k≤2N

λp2−kβmeas E
(1)
γ,β,k(λ)

]r/p dλ

λ

)1/r

� N1/r. (5.12)

A similar (and easier) calculation shows that one has the corresponding bound when 

r = ∞ as long as β 	= γ. We now estimate the error term; we show in fact the stronger 
inequality

( ∞̂

0

[ ∑

N<k≤2N

λp2−kβmeas E
(2)
γ,β,k(λ)

]r/p dλ

λ

)1/r

� 2−N (5.13)

for r ≥ p. We discretize the integral in λ, use the embedding �p ↪→ �r, then the change 

of variables σ = λ2k(γ−β)/p and then the formula for the Lp-norm via the distribution 

function to estimate the left hand side of (5.13) by

�
( ∑

N<k≤2N

∞̂

0

λp2−kβmeas E
(2)
γ,β,k(λ)

dλ

λ

)1/p

�
( ∑

N<k≤2N

∞̂

0

2−kγσpmeas
{

x : |

Nγ(k)∑

i=1

εi,k(x)| > σ
} dσ

σ

)1/p

�
( ∑

N<k≤2N

2−kγ
∥∥∥

Nγ(k)∑

i=1

εi,k

∥∥∥
p

p

)1/p

� 2−N ,

here we used (5.10) with M large. This finishes the proof of ‖Fγ,N ‖Ḃs
p(γ,r) � N1/r and 

since the Fourier transform of Fγ,N is supported where |ξ| � 1 we may replace Ḃs
p(β, r)

with Bs
p(γ, r). Thus (5.7) is now proved, and this inequality also yields ‖Fγ‖Ḃs

p(β,r) � 1.
We now give the proof of (5.8). The proof is similar to the above but simpler. We use 

(5.3a) to write

‖Fγ,N ‖Ḃs
p,r

=
( 2N∑

k=N+1

‖fγ,k‖r
p

)1/r

= I1 + II1

where

I1 =
( 2N∑

k=N+1

∥∥∥2−kγ/p

Nγ(k)∑

i=1

ϑi,k

∥∥∥
r

p

)1/r

II1 �
( 2N∑

k=N+1

∥∥∥2−kγ/p

Nγ(k)∑

i=1

εi,k

∥∥∥
r

p

)1/r

Using the disjointness of support property of the ϑi,k we have
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‖2−kγ/p

Nγ(k)∑

i=1

ϑi,k‖p ≈ 1, N < k ≤ 2N

and hence I1 ≈ N1/r (with the obvious modification if r = ∞). For II1 we use (5.10) for 
sufficiently large M and see that |II1| � 2−N , and (5.8) follows. We also have ‖Fγ‖Ḃs

p,r
�

1.
We conclude by proving the lower bound (5.6). We have for λ � 1

‖Fγ,N ‖p

Ḃs
p(γ,∞)

≥
∑

N<k≤2N

λp2−kγmeas
{

x :
∣∣
Nγ(k)∑

i=1

ηi,k(x)
∣∣ > λ

}
≥ Ip

2 − IIp
2

where

Ip
2 = λp

∑

N<k≤2N

2−kγmeas
{

x :
∣∣
Nγ(k)∑

i=1

ϑi,k(x)
∣∣ > 2λ

}

IIp
2 = λp

∑

N<k≤2N

2−kγmeas
{

x :
∣∣
Nγ(k)∑

i=1

εi,k(x)
∣∣ > λ

}
.

By the support properties of the ϑi,k and by (5.1a) we have for sufficiently small λ

meas
{

x :
∣∣
Nγ(k)∑

i=1

ϑi,k(x)
∣∣ > 2λ

}
� Nγ(k)2−kd ≈ 2kγ

and hence I2 � N1/p. By (5.10) and Chebyshev’s inequality

IIp
2 �

∑

N<k≤2N

2−kγ
∥∥∥

Nγ(k)∑

i=1

εi,k

∥∥∥
p

p
� 2−N

and combining the two estimates we get for sufficiently large N the desired lower bound 

‖Fγ,N ‖Ḃs
p(γ,∞) ≥ cN1/p.

Finally

‖Fγ‖Ḃs
p(γ,∞) � sup

λ>0
λ
(∑

�≥1

∑

2�<k≤2�+1

2−kγmeas
{

�2−�/p
∣∣
Nγ(k)∑

i=1

ηi,k

∣∣ > λ
})1/p

≥ sup
�≥1

�2−�/p sup
σ>0

σ
( ∑

2�<k≤2�+1

2−kγmeas
{∣∣

Nγ(k)∑

i=1

ηi,k

∣∣ > σ
})1/p

� sup
�≥1

�2−�/pσ0(2�)1/p = ∞

for sufficiently small σ0 � 1, and we see that Fγ /∈ Ḃs
p(γ, ∞). �
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The counterpart of Proposition 5.1 in the range γ < −d is as follows.

Proposition 5.2. Let fγ,k be as in (5.4). Let s ∈ R. Assume γ < −d and define

Fγ,N (x) =
∑

−2N<k≤−N

2−ksfγ,k(x) (5.14a)

and

Gγ,N (x) = 23N( d
p −s)Fγ,N (23N x). (5.14b)

(i) Then for 1 < p ≤ r ≤ ∞,

‖Gγ,N ‖Bs
p(γ,∞) = ‖Fγ,N ‖Ḃs

p(γ,∞) � N1/p,

‖Gγ,N ‖Bs
p(β,r) = ‖Fγ,N ‖Ḃs

p(β,r) ≈ N1/r, for β 	= γ,

‖Gγ,N ‖Bs
p,r

= ‖Fγ,N ‖Ḃs
p,r

≈ N1/r.

(ii) If p < ∞, then F =
∑

�≥1 �2−�/pFγ,2� belongs to 
⋂

r>p Ḃs
p,r and to 

⋂
r>p
β �=γ

Ḃs
p(β, r)

but not to Ḃs
p(γ, ∞).

(iii) If p < ∞, then Gγ =
∑

�≥1 �2−�/pGγ,2� belongs to 
⋂

r>p Bs
p,r and to 

⋂
r>p
β �=γ

Bs
p(β, r)

but not to Bs
p(γ, ∞).

Sketch of proof. The proof of the bounds for Fγ,N is exactly analogous to the correspond-
ing arguments in Proposition 5.1. Observe that the parameter k now varies between −2N

and −N and since γ < −d we now have Nγ(k) = �2k(d+γ)� = �2|k||d+γ|� ≥ 1. Also notice 

that the Fourier transform of Gγ,N is supported on large frequencies and therefore the 

homogeneous and inhomogeneous Besov type norms for Gγ,N coincide.
To pass from estimates for Fγ,N to estimates for Gγ,N we just use the dilation formulas

2n( d
p −s)‖f(2n·)‖Ḃs

p(γ,r) = ‖f‖Ḃs
p(γ,r),

2n( d
p −s)‖f(2n·)‖Ḃs

p,r
= ‖f‖Ḃs

p,r
. �

The following two lemmas show that the assumption γ 	= 0 in part (ii) of Theorem 1.4
cannot be removed. A combination of these lemmas gives a proof of Theorem 1.6.

Lemma 5.3. Let s ∈ R, and 1 < p < ∞. There exists f ∈
⋂

r>p Ḟ s
p,r which does not 

belong to Ḃs
p(0, ∞).

Proof. Let η◦ be a Schwartz function such that η◦(x) > 1 for |x| < 1 and η̂◦ is supported 

in {ξ : |ξ| ≤ 2−5}. For k > 2 let
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fk(x) = η◦(x)ei2kx1
log k

k1/p

and f(x) =
∑

k>2 2−ksfk(x). Then Lkf = 2−ksfk and thus

(∑

k>2

2ksr|Lkf(x)|r
)1/r

=
(∑

k>2

|fk(x)|r
)1/r

� |η◦(x)|
(∑

k>2

k−r/p| log k|r
)1/r

� C(p, r)|η◦(x)|

with C(p, r) < ∞ for r > p. Hence f ∈ Ḟ s
p,r for all r > p.

For λ � 1 we have

λμ0{(x, k) : |P sf(x, k)| > λ}1/p

≥ λ
( ∑

k>2
k−1/p log k>λ

meas{x : |x| < 1/4}
)1/p

≥ cλ
( ∑

2<k<c( log λ−1

λ )p

1
)1/p

≥ c log λ−1

so that f does not belong to Ḃs
p(0, ∞). �

Lemma 5.4. Let s ∈ R, and 1 < p < ∞. There exists g ∈ Ḃs
p(0, 1) which does not belong 

to 
⋃

r<p Ḟ s
p,r.

Proof. As in the proof of Lemma 5.3 let η◦ be a Schwartz function such that η◦(x) > 1
for |x| < 1 and η̂◦ is supported in {ξ : |ξ| ≤ 2−5}. For k > 2 let

gk(x) =
η◦(x)ei2kx1

k1/p[log k]2

and g(x) =
∑

k>2 2−ksgk(x). Then Lkg = 2−ksgk and thus

( ∑

2<k≤2N

2ksr|Lkg(x)|r
)1/r

=
( ∑

2<k≤2N

|gk(x)|r
)1/r

≥ |η◦(x)|
( ∑

N≤k≤2N

k−r/p| log k|−2r
)1/r

≥ C(p, r)N1−r/p(log N)−2|η◦(x)|

with C(p, r) > 0 and 1 − r
p > 0 for r < p. Integrating its p-th power over {x : |x| ≤ 1/2}

and letting N → ∞ we see that f /∈ Ḟ s
p,r for all r < p.
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Now let,

E�,m = {(x, k) : 2�−1 ≤ |x| < 2�, 2m−1 ≤ k < 2m}, for (�, m) ∈ N
2,

E0,m = {(x, k) : |x| < 1, 2m−1 ≤ k < 2m}, for m ∈ N.

Then μ0(E�,m) ≈ 2m+�d and

|gk(x)| �N 2−m/pm−22−�N if (x, k) ∈ E�,m,

for any (�, m) ∈ (N ∪ {0}) × N. Therefore

|P sg(x, k)| = |gk(x)| �N

∞∑

�=0

∞∑

m=1

2−�(N−d/p)m−2 1E�,m
(x, k)

μ0(E�,m)1/p
.

Choosing N > d/p we see that P sg ∈ Lp,1(μ0) and since ĝ(ξ) = 0 for |ξ| ≤ 1 we obtain 

g ∈ Ḃs
p(0, 1). �

6. Proof of Theorem 1.8

We use a result in [10], namely for γ ∈ R \ [−1, 0]

[Q1,1+γf ]L1,∞(νγ) � ‖f‖ ˙BV (Rd). (6.1)

Since |Q1,(1+γ)/pf |p ≤ |Q1,1+γf | (2‖f‖V ∞)p−1, we have

‖f‖
Ḃ

1/p
p (γ,∞) � [Q1, 1+γ

p
f ]Lp,∞(νγ) � ‖f‖

1− 1
p

V ∞ [Q1,1+γf ]
1
p

L1,∞(νγ),

which combined with (6.1) gives

‖f‖
Ḃ

1/p
p (γ,∞) � ‖f‖

1− 1
p

V ∞ ‖f‖
1
p

˙BV
(6.2)

for every γ ∈ R \ [−1, 0] and 1 < p < ∞.
We can interpret inequality (6.2) as an imbedding result for the real interpolation 

space [V ∞, ˙BV ]θ,1 with θ = 1
p , and get,

‖f‖
Ḃ

1/p
p (γ,∞) � ‖f‖[V ∞, ˙BV ] 1

p
,1

. (6.3)

For this argument, see [4, p. 49] (specifically a combination of formula (1) and Theorem 

3.5.2 (b)). �

Remark. Concerning Remark 1.13, by the reiteration theorem ([4, Theorem 3.5.3]) we 

have 
[
[V ∞, ˙BV ] 1

p0
,1, [V ∞, ˙BV ] 1

p1
,1

]
θ,∞

= [V ∞, ˙BV ] 1
p ,∞, provided that 1 < p0 < p <
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p1 < ∞ and 1
p = 1−θ

p0
+ θ

p1
. Hence [V ∞, ˙BV ] 1

p ,∞ embeds only into [Ḃ1/p0
p0 (γ, ∞), Ḃ1/p1

p1 (γ,

∞)]θ,∞ (a weaker conclusion than embedding into Ḃ
1/p
p (γ, ∞)).

7. Harmonic and caloric extensions

In what follows let ψ be a sufficiently well behaved integrable function with 
´

ψ(x) dx = 0, specifically we will take ψ as one of ψ(1), ψ(2,j), ψ(3), ψ(4,j) where

ψ̂(1)(ξ) = |ξ|e−|ξ|, ψ̂(2,j)(ξ) = iξje−|ξ|,

ψ̂(3)(ξ) = −|ξ|2e−|ξ|2

, ψ̂(4,j)(ξ) = iξje−|ξ|2

,
(7.1)

or we could also take ψ = ψ(5) = ∂
∂s [s−dφ(s−1·)]|s=1 for any φ ∈ S(Rd). Let ψt =

t−dψ(t−1·). Classical results on characterizations of Besov spaces ([55], [53, Chapter V.5, 
Proposition 7’], [57, Chapter 1.8]) yield the inequality

¨

R2
+

t−sp|ψt ∗ f(x)|p dx
dt

t
� ‖f‖p

Ẇ s,p (7.2)

for f ∈ Ẇ s,p, 1 ≤ p < ∞ and 0 < s < 1.
With ψ, ψt as above, define, for f ∈ Ḃs

p(γ, r) with 0 < s < 1,

Kbf(x, t) = t−bψt ∗ f◦(x)

where f◦ is any representative of f modulo constants. Recall from (1.15) that dλγ(x, t) =
tγ−1 dt dx.

Proposition 7.1. Let 0 < s < 1, 1 < p, r < ∞ and γ ∈ R. The operator Ks+ γ
p is bounded 

from Ḃs
p(γ, r) to Lp,r(λγ).

Proof. We take (s0, p0), (s1, p1) and θ such that (1.17) and (1.18) holds, and 0 < s0 < 1, 
0 < s1 < 1, 1 < p0 < ∞ and 1 < p1 < ∞. Recall s + γ

p = si + γ
pi

, and observe that for 

f ∈ Ḃsi
pi,pi

,

¨

R2
+

|Ks+ γ
p f(x, t)|pi

t1−γ
dx dt =

¨

R2
+

t−sipi |ψt ∗ f◦(x)|pi dx
dt

t
,

where f◦ ∈ Ẇ si,pi is a representative of f modulo constants. It follows from (7.2) that 
Ks+ γ

p is bounded from Ḃsi
pi,pi

to Lpi(λγ). The conclusion then follows by interpolation, 
in view of Theorem 1.14 and of the classical characterization of Lorentz spaces as inter-
polation spaces. �
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Corollary 7.2. Let 1 < p < ∞, γ ∈ R \ [−1, 0]. Then

K
γ+1

p : [V ∞, ˙BV ] 1
p ,1 → Lp,∞(λγ)

is bounded.

Proof. Combine Proposition 7.1 for s = 1/p with Theorem 1.8. �

7.1. Harmonic extensions: proof of Corollary 1.9

From [54, Lemma 1.17] we recall that P̂f(ξ, t) = e−t|ξ|f̂(ξ) and therefore we are led 

to use the function ψ(1) and ψ(2,ν) for ν = 1, . . . , d in (7.1), for formulas for t ∂
∂tPf and 

t ∂
∂xν

Pf , respectively. We let Kbf(x, t) = t1−b∇Pf(x, t) and apply Corollary 7.2 to obtain

‖K
γ+1

p f‖Lp,∞(λγ) � ‖f‖[V ∞, ˙BV ] 1
p

,1

and the proof of the first inequality in Corollary 1.9 is complete. For the proof of the 

second inequality choose γ = 1 and p = 2, which is the unique choice of p, γ where K
γ+1

p

becomes ∇P and λγ becomes Lebesgue measure on Rd+1
+ . �

7.2. Caloric extensions: proof of Corollary 1.11

Note that r ∂
∂r [Ûf(ξ, r2)] equals 2|rξ|2e−|rξ|2

f̂(ξ), and taking ψ = ψ(3) in the definition 

of Kb ≡ Kb
d+1, we get

2Kb
d+1f(x, r) = r1−b ∂

∂r
[Uf(x, r2)] = 2t1− b

2
∂

∂t
Uf(x, t)

∣∣∣
t=r2

= 2Hb/2
d+1f(x, r2).

We apply Corollary 7.2 with γ = 2β and observe that

λ2β({(x, r) : |K
2β+1

p

d+1 f(x, r)| > α}) =
1
2

λβ({(x, t) : H
2β+1

2p

d+1 f(x, t) > α}).

For 2β /∈ [−1, 0] the operator K
2β+1

p maps [V ∞, ˙BV ]1/p,1 to Lp,∞(λ2β), and hence H
2β+1

2p

d+1

maps [V ∞, ˙BV ]1/p,1 to Lp,∞(λβ).
For j = 1, . . . , d we argue similar, taking ψ = ψ(4,j) in the definition of Kb ≡ Kb

j . We 

then have Kb
jf(x, r) = r1−b ∂

∂xj
Uf(x, r2) and again apply Corollary 7.2 with γ = 2β. 

Now for j = 1, . . . , d,

Kb
jf(x, r) = t

1−b
2

∂

∂xj
Uf(x, t)

∣∣∣
t=r2

= H
b/2
j f(x, r2),

and again we see that H
2β+1

2p

j maps [V ∞, ˙BV ]1/p,1 to Lp,∞(λβ). This finishes the proof 
of part (i) of the corollary. For part (ii) we need dλβ = dx dt so that we put β = 1. We 
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then apply part (i), for the operator ∂U
∂t with p = 3/2 (so that 2β+1

2p = 1), and for the 

operators ∂U
∂xj

with p = 3 (so that 2β+1
2p = 1

2 ). �

8. Interpolation: proof of Theorem 1.14

We use the standard retraction-coretraction argument (see [4, §6.4]). Recall that if 
X = (X0, X1) and Y = (Y0, Y1) are couples of compatible normed spaces then P : X → Y

is a morphism of couples if P is a linear operator mapping X0 +X1 to Y0 +Y1, such that 
P : Xν → Yν is a bounded linear operator for ν = 0 and ν = 1.

If P : X → Y , R : Y → X are morphisms of couples such that R ◦ P : X → X = Id, 
the identity operator on X then X is called a retract of Y ; R is a retraction and P is a 

co-retraction.

Y

X X

RP

id

Lemma 8.1. [4] Let X = (X0, X1), Y = (Y0, Y1) be couples of compatible normed spaces 

such that X is a retract of Y with co-retraction P : X → Y and retraction R then

[X0, X1]θ,r = {f ∈ X0 + X1 : Pf ∈ [Y0, Y1]θ,r}

and we have the equivalence of norms, ‖f‖[X0,X1]θ,r
≈ ‖Pf‖[Y0,Y1]θ,r

.

Lemma 8.2. Suppose 1 ≤ p0 < p1 ≤ ∞, and γ, b ∈ R. Then there are bounded morphisms 

of couples

P b : (Ḃ
b− γ

p0
p0,p0 , Ḃ

b− γ
p1

p1,p1 ) → (Lp0(μγ), Lp1(μγ))

Rb : (Lp0(μγ), Lp1(μγ)) → (Ḃ
b− γ

p0
p0,p0 , Ḃ

b− γ
p1

p1,p1 )

Proof. The definitions of P b, Rb will be independent of p0, p1 and thus one can reduce 

to checking the boundedness of

P b : Ḃ
b− γ

p
p,p → Lp(μγ) (8.1)

Rb : Lp(μγ) → Ḃ
b− γ

p
p,p (8.2)

for 1 ≤ p ≤ ∞.
Recall Lk = ϕ(2−kD), L̃k = ϕ̃(2−kD) with ϕ as in (1.2) and ϕ̃ as in (2.2), satisfying 

L̃k = L̃kLk = LkL̃k. Let P b be as in Definition (1.1). For F ∈ Lp,r(μγ) define Fk(x) :=
F (x, k) and RbF (x) =

∑∞
k=0 2−kbL̃kFk(x).
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Note that P b : Ḃ
b−γ/p
p,p → Lp(μγ) is an isometric embedding, for 1 ≤ p ≤ ∞; moreover 

RbP b is the identity on Ḃ
b− γ

p
p,p . It remains to show that Rb maps Lp(μγ) boundedly to 

Ḃ
b− γ

p
p,p . Indeed we have LkL̃k+j = 0 for |j| > 2 and thus

2kbLkRbF (x) = 2kb
1∑

j=−1

2−(k+j)bLkL̃k+jFk+j(x)

and, defining TjF (x, k) = LkL̃k+jFk+j(x) for j = −1, 0, 1, we see that

‖RbF‖
Ḃ

b−
γ
p

p,p

�

1∑

j=−1

‖TjF‖Lp(μγ),

and the boundedness of Rb follows from

‖TjF‖Lq(μγ) =
(∑

k∈Z

‖LkL̃k+jFk+j‖q
Lq 2−kγ

)1/q

�
(∑

k∈Z

‖Fk+j‖q
Lq 2−(k+j)γ

)1/q

� ‖F‖Lq(μγ), j = −1, 0, 1. �

Proof of Theorem 1.14, conclusion. Our choice of γ allows us to define

b := s0 +
γ

p0
= s1 +

γ

p1
.

We apply Lemma 8.1 with Xν = Ḃ
b−γ/pν
pν ,pν , Yν = Lpν ,r(μγ), ν = 0, 1 and P = P b, R = Rb, 

as in Lemma 8.2. We then use the standard interpolation formula [Lp0 , Lp1 ]θ,r = Lp,r

for (1 − θ)/p0 + θ/p1 = 1/p, see [4], and the definition Ḃs
p(γ, r) via the operator Pb. �

Proof of Corollary 1.15. (1.20a) follows from Theorem 1.14 by the reiteration theorem 

for the real method. (1.20b) for general q0, q1 follows since for 1 ≤ ri ≤ ∞ and γ 	= 0
given by (1.17) we have by part (ii) of Theorem 1.4

Ḃsi
pi

(γ, 1) ↪→ Ḟ si
pi,1 ↪→ Ḟ si

pi,ri
↪→ Ḟ si

pi,∞ ↪→ Ḃsi
pi

(γ, ∞). �

Remark. Asekritova and Kruglyak [2] obtained real interpolation results for triples of 
the Besov spaces (Bs0

p0,p0
, Bs1

p1,p1
, Bs2

p2,p2
)�θ,r, with 

∑2
i=0 θi = 1 (or more generally (� + 1)-

tuples of such spaces with � ≥ 2). Under the crucial additional assumption that the three 

points ( 1
pi

, si), i = 0, 1, 2 do not lie on a line the interpolation spaces is identified with 

the Besov-Lorentz space Bs
r(Lp,r) where ( 1

p , s) =
∑2

i=0 θi( 1
pi

, si). The result for triples 
does not seem to have an implication on the interpolation of couples of Besov spaces (see 

also [1]).
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Remark. One could also use more directly results on real interpolation of weighted 

spaces, namely the identification of [Lp0(w0), Lp1(w1)]θ,q in work by Freitag [26] and by 

Lizorkin [42].

9. Interpolating Besov spaces through differences

In this section we provide a direct proof of (1.19) in the case M = 1, which is directly 

based on the characterization using first differences. Suppose 0 < s < 1, 1 < p < ∞, 
1 ≤ r ≤ ∞, for p0 < p < p1 so that si := s + γ( 1

p − 1
pi

) satisfy 0 < si < 1 for i = 0, 1, 

and θ ∈ (0, 1) such that 1−θ
p0

+ θ
p1

= 1
p . We will prove that for all functions f : R

d → C

in Ẇ s0,p0 + Ẇ s1,p1 ,

‖Q1,s+ γ
p
f‖Lp,r(νγ) ≈ ‖f‖[Ẇ s0,p0 ,Ẇ s1,p1 ]θ,r

(9.1)

The alternative proof goes by a retraction argument based on differences. One uses 
Lemma 8.1 once the following proposition is established.

Proposition 9.1. Let b ∈ R with 0 < b − γ/p < 1. There is a bounded operator Ab :
Lp(νγ) → Ẇ b− γ

p ,p such that AbQ1,b is the identity on Ẇ b− γ
p ,p.

That is, we have the following retract diagram

Lp(νγ)

Ẇ b− γ
p ,p Ẇ b− γ

p ,p

AbQ1,b

id

The proof of the proposition is inspired by the metric characterization of sums Ẇ s0,p0 +
Ẇ s1,p1 due to Rodiac and the fourth named author [49].

Fix γ ∈ R and 1 ≤ p < ∞. Fix φ ∈ C∞
c (Rd) with 

´

φ = 1 and support inside B1/2(0)
and let

ψ(y) := −φ(y)d − 〈y, ∇φ(y)〉.

Integration by parts shows that 
´

ψ(y) dy = 0. For t > 0 define φt(y) := 1
td φ(y

t ) and 

ψt(y) := 1
td ψ(y

t ); one verifies that for all t > 0

ψt(y) = t
d

dt
φt(y). (9.2)

In what follows we set

ϑt(z, y) := φt(z)ψt(y). (9.3)



Ó. Domínguez et al. / Journal of Functional Analysis 284 (2023) 109775 45

Suppose that F ∈ Lp(νγ) is compactly supported in Rd × (Rd \ {0}). We then define

Ab,εF (x) =

1/ε
ˆ

ε

ˆ

Rd

ˆ

Rd

F (y, h)|h|bϑt(x − y − h, x − y) dh dy
dt

t
. (9.4)

Since ϑ is supported in B1/2(0) × B1/2(0) it is clear that for ε > 0 and for F with the 

above support property the integral in (9.4) converges absolutely, and defines Ab,εF as 
a smooth function. Under the additional restriction 0 < b − γ

p < 1 the following result 
extends Ab,ε to all of Lp(νγ) and establishes the existence of the limit Ab = limε→0 Ab,ε

in the strong operator topology.

Lemma 9.2. Let b ∈ R with 0 < b − γ
p < 1. Then the following holds.

(i) For ε > 0, the maps Ab,ε extend to bounded operators

Ab,ε : Lp(νγ) → Ẇ b− γ
p ,p,

with operator norm uniformly bounded in ε.

(ii) The operators Ab,ε converge to a bounded operator

Ab : Lp(νγ) → Ẇ b− γ
p ,p,

in the sense that limε→0 ‖Ab,εF − AbF‖
Ẇ

b−
γ
p

,p = 0 for all F ∈ Lp(νγ).

Proof. Let F ∈ Lp(νγ) and assume in addition that assume that F ∈ Lp(νγ) is compactly 

supported in Rd × (Rd \ {0}). Set

Δh,hϑt(u, v) = ϑt(u + h, v + h) − ϑt(u, v).

Then

ΔhAb,εF (x) =

1/ε
ˆ

ε

¨

R2d

F (y, z)|z|bΔh,hϑt(x − y − z, x − y) dz dy
dt

t

and we estimate

|ΔhAb,εF (x)| ≤ I(x, h) + II(x, h) + III(x, h)

where

I(x, h) :=

∞̂

|h|

¨

R2d

|F (y, z)||z|b|Δh,hϑt(x − y − z, x − y)| dz dy
dt

t
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II(x, h) :=

|h|
ˆ

0

¨

R2d

|F (y, z)||z|b|ϑt(x + h − y − z, x + h − y)| dz dy
dt

t

III(x, h) :=

|h|
ˆ

0

¨

R2d

|F (y, z)||z|b|ϑt(x − y − z, x − y)| dz dy
dt

t
.

Setting

Jp(t) =
( 1

td

ˆ

Rd

ˆ

|z|≤t

|F (y, z)|p|z|bp dz dy
)1/p

(9.5)

we estimate, using Minkowski’s inequality,

‖I(·,h)‖p ≤

∞̂

|h|

|h|

t2

∥∥∥ 1
t2d

ˆ

|x+h−y|≤2t

ˆ

|z|≤t

|F (y, z)||z|b dz dy
∥∥∥

Lp( dx)
dt

≤

∞̂

|h|

|h|

t2

∥∥∥
( 1

t2d

ˆ

|x+h−y|≤2t

ˆ

|z|≤t

|F (y, z)|p|z|bp dz dy
)1/p∥∥∥

Lp( dx)
dt

�

∞̂

|h|

|h|

t2 Jp(t) dt.

Similarly we get

‖II(·, h)‖p + ‖III(·, h)‖p �

|h|
ˆ

0

1
t
Jp(t) dt.

We then have, uniformly in ε ∈ (0, 1),

‖Ab,εF‖
Ẇ

b−
γ
p

,p = ‖Q1,bAb,εF‖Lp(νγ)

≤
( ˆ [

|h|−b

∞̂

|h|

|h|

t2 Jp(t) dt + |h|−b

|h|
ˆ

0

1
t
Jp(t) dt

]p dh

|h|d−γ

)1/p

which we estimate (using Hardy’s inequalities) by

( ∞̂

0

( ∞̂

r

Jp(t)
t2 dt

)p dr

r1+(b− γ
p −1)p

) 1
p

+
( ∞̂

0

( r
ˆ

0

Jp(t)
t

dt
)p dr

r1+(b− γ
p )p

) 1
p



Ó. Domínguez et al. / Journal of Functional Analysis 284 (2023) 109775 47

�
( ∞̂

0

(Jp(t)
t2

)p

tp dt

t1+(b− γ
p −1)p

) 1
p

+
( ∞̂

0

(
Jp(t)

t

)p

tp dt

t1+(b− γ
p )p

) 1
p

�

⎛
⎝

∞̂

0

Jp(t)p dt

t1+(b− γ
p )p

⎞
⎠

1
p

=

⎛
⎜⎝
ˆ

Rd

ˆ

Rd

|F (y, z)|p|z|bp

∞̂

|z|

dt

t1+(b− γ
p )p+d

dz dy

⎞
⎟⎠

1
p

� ‖F‖Lp(νγ).

This establishes part (i) of the lemma, first for F compactly supported in Rd ×(Rd \{0})
and then, by a density argument, for general F ∈ Lp(νγ). The above argument also shows 
that ‖Ab,ε1

F − Ab,ε2
F‖

Ẇ
b−

γ
p

,p → 0 as ε1, ε2 → 0 and thus Ab,εF converges in Ẇ b− γ
p ,p

to a limit Ab,0F ; moreover Ab defines a bounded operator Lp(νγ) → Ẇ b− γ
p ,p. �

The proof of Proposition 9.1 is now completed by the following lemma.

Lemma 9.3. Let b ∈ R with 0 < b − γ
p < 1. Then AbQ1,bf = f , for all f ∈ Ẇ b− γ

p ,p.

Proof. Note that Q1,b : Ẇ b− γ
p ,p → Lp(νγ) is an isometry. As Ab : Lp(νγ) → Ẇ b− γ

p ,p is 
bounded, by Lemma 9.2, and since C∞

c (Rd) is dense in Ẇ b−γ/p,p, it suffices to prove 

AbQ1,bf = f , for all f ∈ C∞
c (Rd).

By (9.2) and (9.3) we get for each x ∈ R
d

Ab,εQ1,bf(x) = A0,εQ1,0f(x)

=

1/ε
ˆ

ε

ˆ

Rd

ˆ

Rd

(f(y + h) − f(y))φt(x − y − h)
d

dt
[φt(x − y)] dh dy dt

=

1/ε
ˆ

ε

ˆ

Rd

ˆ

Rd

(f(z) − f(y))φt(x − z)
d

dt
[φt(x − y)] dz dy dt

= 0 −

1/ε
ˆ

ε

ˆ

Rd

ˆ

Rd

ˆ

Rd

f(y)φt(x − z)
d

dt
[φt(x − y)] dz dy dt

where we used 
´

Rd
d
dt [φt(x − y)] dy = d

dt

´

Rd φt(x − y) dy = 0 to integrate the term 

involving f(z). We may now integrate in z and t in the last display, using that 
´

φt = 1
to obtain for f ∈ C∞

c (Rd)

Ab,εQ1,bf(x) =
ˆ

Rd

f(y)
(
φε(x − y) − φ1/ε(x − y)

)
dy .
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Letting ε → 0 we obtain AbQ1,bf = f for f ∈ C∞
c (Rd). �

Data availability
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[37] V.L. Krepkogorskĭı, Interpolation and embedding theorems for quasinormed Besov spaces (Russian), 

Izv. Vysš. Učebn. Zaved., Mat. 43 (7) (1999) 23–29, translation in Russian Math. (Iz. VUZ) 43 (7) 
(1999) 21–26.

[38] Marek Kuczma, On measurable functions with vanishing differences, Ann. Math. Sil. 6 (1992) 42–60.
[39] Marek Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s 

Equation and Jensen’s Inequality, Edited and with a preface by Attila Gilányi, second edition, 
Birkhäuser Verlag, Basel, 2009, xiv+595 pp.

[40] G. Kyriazis, Decomposition systems for function spaces, Stud. Math. 157 (2) (2003) 133–169.
[41] Sanghyuk Lee, Keith M. Rogers, Andreas Seeger, Square functions and maximal operators associated 

with radial Fourier multipliers, in: Advances in Analysis: the Legacy of Elias M. Stein, in: Princeton 
Math. Ser., vol. 50, Princeton Univ. Press, Princeton, NJ, 2014, pp. 273–302.

[42] P.I. Lizorkin, Interpolation of Lp-spaces with a weight, Tr. Mat. Inst. Steklova 140 (1976) 201–211 
(in Russian); English transl.: Proc. Steklov Inst. Math. 140 (1979) 221–232.

[43] Mariusz Mirek, Elias M. Stein, Pavel Zorin-Kranich, Jump inequalities via real interpolation, Math. 
Ann. 376 (1–2) (2020) 797–819.

[44] Madani Moussai, Characterizations of realized homogeneous Besov and Triebel-Lizorkin spaces via 
differences, Appl. Math. J. Chin. Univ. 33 (2) (2018) 188–208.
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