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1. Introduction and statements of results

For d > 1, b € R and a locally integrable function f € LL (R?) consider the difference
quotient

f(z) = fy)

, ,y) € R4 x RY = R?, 1.1
— (z,5) (1.1)

‘Dbf(x’ y) =

Haim Brezis and two of the authors [8] discovered that for f € C®°(R?) and 1 < p <
oo, the Marcinkiewicz quasi-norm [D1 4/ f]pr.c(r24y is comparable to the Gagliardo-
seminorm ||V f||.»ra) (see also [46], [10] for related results). Using this equivalence,
they considered in [9] certain borderline Gagliardo-Nirenberg interpolation inequalities
that fail, and proved substitutes such as [Dyiq/pf]reee®2e) S ||f||1L;S(Rd)HVf||‘21(Rd)
for s = 1/p and 1 < p < oo, raising the natural question of what can be said about
the class of functions for which [D 4/, f]Lr.o(r24) is finite for 0 < s < 1. This class
was also considered in the papers by Poliakovsky [48] who asked about a more specific
relation to Besov spaces, and in the work by Dominguez and Milman [23] who considered
abstract versions of [8]. As a special case of our main results we show that the above
fractional variant arises as a real interpolation space of a family of homogeneous Sobolev-
Slobodeckii spaces W*?. Henceforth, for 0 < s < 1 and 1 < p < oo, the space W*?
consists of all equivalent classes of measurable, finite a.e. functions f (modulo equality
a.e. and additive constants) for which Dy q/,f € LP(R??), with semi-norm || f||y., =
Dsta/pfllLe(ree); this space can be naturally identified the diagonal Besov space Bj
(see e.g. the case r = p in Theorem 1.3 below). We will show that for pg,p; € (1,00)

such that pg < p < p; and 0 < s+ % — I% < 1 the norm on the interpolation space

[WS'F%_%WO, WSJF%_%’M]&OO is equivalent with the quasi-norm ||Ds+gf||vaoc(R2d).
The class of functions for which || D1 q/p f || r.cc (r24) is finite was labeled BSY; in [23].
Here we shall denote it by B;(d, 00) as it will arise as a member of a natural and more
general scale of spaces B;('y, r). We begin by giving a Fourier analytic definition of the
spaces B;('y, r), which extends the classical definition of the homogeneous Besov space
By s

have learned in the final stage of preparation of this paper that V.L. Krepkogorskii had

in fact B;(~,7) all coincide with B  when r = p (regardless of the value of ). We

already introduced the inhomogeneous variants of these classes in a little noticed paper
[36] in 1994 and proved that they occur as interpolation spaces for Sobolev and other
spaces; see Remark 1.2 and the comments before Theorem 1.14 below.
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Variants of Besov-Sobolev spaces

We let p € C°(RY) be a radial function with

supp(p) C {§:3/4 < [¢| < 7/4}, (1.2a)
o(€) = 1 for 7/8 < €] < 9/8, (1.2b)
Z ©(27F¢) =1 for all £ # 0. (1.2¢)
keZ

It is easy to check that the three requirements can be achieved. For a tempered distri-
bution f we define the frequency localizations Li f via the Fourier transform by

o~

Lif(€) = o(27F6) F(£).

We recall the definition of the diagonal homogeneous Besov spaces B;’p. Consider the
space So (R?) of Schwartz functions whose Fourier transforms vanish to infinite order at
0; this space carries the natural Fréchet topology inherited from the space of Schwartz
functions. We let S’_(R?) denote the dual space; it can be identified with the space of
tempered distributions modulo polynomials. The space B;p is defined as the subspace
of f € S (RY) for which

_ (Z/|2“ka ]”da:) v

k€Zpa

is finite.

We will now define various Lorentz versions of these spaces where a Lorentz norm is
taken on the space R? x Z. Recall that if (2, 1) is a measure space and 0 < p,r < 00,
the Lorentz space LP"(2, 1) is defined as the space of measurable functions g on 2 for
which

Gusrion = (1 [ Vtle € sl > )"
0

is finite. For r = oo we set [g]1ro (0, = suprso A({lg] > A})!/P. The space LP" is
normable when 1 < p < 00, 1 < r < 00, and for simplicity we will only consider these
parameter ranges. The precise expression for the norm is not important for this paper;
a suitable choice ([33]) is

p
||9HLP=T = /tl/p ** >
0
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where ¢**(t) =t~ ! fo s)ds and g* denotes the nonincreasing rearrangement of g. We
now give a dlfferentlatlon of the spaces B; (v,7) for all s € R, which matches the usual
definition in, say [4,56] for the case p = r. Following the definition we will then formu-
late characterizations for positive s which link the general definition to the expressions
involving the generalized difference quotients in (1.1).

Definition 1.1. Let v € R.
(i) For a measurable subset E of R? x Z let 1 be the indicator function of E and

22_’”/ (z,k)dz.

keZ Re
(ii) For b € R define P’f : R? x Z — C by
PP f(x,k) = 2K L. f(x).

(iii) For se R, 1 < p < 00, 1 < r < o0, let B;(’y,r) be the space of f € S’ (R?) such
that the function P*T7 f belongs to the Lorentz space LPT(RY X Z; piy) and let

11

By = 1P o, (1.3)

Unraveling the definition, with meas A denoting the Lebesgue measure of A C R?, if
1 <r < oo we get the following equivalence
T /p A\
5 r/p r
B (y,r) <T/)\T { Z 2 " meas{z € R?: |Lyf(z)| > )\27“3*5)}} T)
0 kEZ

171

(1.4)

whereas

vy 11/P
||f||55(7 ) B sup)\{z 2 M meas{z € R?: |Lyf(z)| > )\Q*k(”E)}} . (1.5)
A0 Tpez,

It is easy to check that we always have S, (RY) C B;(’y, r). Note that a simple Fubini-
type argument gives

B;(v,p) = B, ,, for all v € R. (1.6)
In contrast, for r # p the spaces B;(% r) depend on v (see Theorem 1.5 (ii) below).

Remark 1.2 (Inhomogeneous versions). We may also consider inhomogeneous versions of
the above spaces. Define
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Lp=Lyfor k>0, Loi=Id—> Ly (1.7)
k>0

For E C R¥xNy let fiy(E) = Y32, 27% [1p(z, k) dx. Define II° f (2, k) = 2*°Ly, f(2) for
k=0,1,2,... We may then define B;(v,7) to be the space of all tempered distributions
f € 8'(RY) such that

171

B(vr) = TP fl| Lo (R N i) (1.8)

is finite. These spaces have already been defined by Krepkogorskii [36], who used the
notation BL3*. The space Bj(7,r) corresponds to BL3"7 in the notation of [36].

Characterizations via difference operators

In order to explore the relation to the characterization of Sobolev spaces via weak-
type quasinorms for difference operators used in [8,10] we seek equivalent definitions of
the spaces B;;(*y, r) to spaces defined via difference operators, at least for s > 0. Let

Anf(x) = f(z+h) - f(2),

and define for M > 2 inductively AM = AhAy ~1. These operations extend to tempered
distributions. We define a measure v, on Lebesgue measurable subsets of R? x (R?\ {0})

by
dh
E

Also define, for any Lebesgue measurable f and h # 0,

AM f(z
Qmpf(z,h) = #b()
||
We denote by T the space of tempered functions; here g € S’ is a tempered function if
g € Ll _(R?) and if there exists an N < oo such that

/\g(x)|(1 + |x\)7Ndx < 0. (1.9)
Rd

Let Pps—1 denote the set of polynomials of degree less than M. We wish to characterize
B’;('y, r) in terms of the operators Qs which annihilate Pas_q. As BZ(’)/, r) C S, every
element f € By (,7) is actually an equivalent class [f] of tempered distributions modulo
all polynomials. Using the following theorem, if 0 < s < M and M € N, we determine,
for each f € Bf,(%r), a subset of [f], so that all elements of this subset differ by a



6 O. Dominguez et al. / Journal of Functional Analysis 284 (2023) 109775

polynomial in Pp;_1. Each element of this subset will be called a representative of f
modulo Pp;_1. This is often useful in practice, because then it makes sense to define, for
example, any derivative of f of order > M, and to define the convolution of f with any
Schwartz function that has M vanishing moments. For the classical Besov and Triebel-
Lizorkin spaces (in particular Bg,p) this is already addressed in Bourdaud’s theory of
realized spaces [7], in fact for B, (v,p) = B, , one part of the theorem is subsumed in [7].

Theorem 1.3. Let 0 < s < M, 1 <p<oo,1 <r <ooandy €R. There exist positive
constants Cy, Cy so that the following holds.

(i) Let f € B’;(% r). Then there exists a tempered function f, such that

(f,0) = /fo(x)(b(a:) dx for all ¢ € S (1.10)

Rd

and

”Q]VI,er%fO”LP’T(V’Y) < Ol||f| B;(%r)- (1~11)

The a.e. equivalent class of the function f, is unique modulo Py;_1; we refer to the
function f, as a representative of f modulo Pn;_1.
(ii) Suppose f:R% — C is a measurable' function satisfying

Qurasz f € LPT(v,).

!

., we have

Then f is a tempered function, and under the natural identification in S
fe B’f,(%r) with

1150y < Coll@arir 2 Fllirrer -

Theorem 1.3 will be proved in §3, where a more abstract equivalent statement is also
given (Theorem 3.2).

Embeddings and non-embeddings

We establish various embedding relations which sharpen previous results. We re-
late our classes to standard homogeneous Besov and Triebel-Lizorkin spaces and their
Lorentz-space counterparts ng [LP"] and Fqs [LP"]. These are defined as the subspaces of
f € 8. (R?) for which

L A main novelty of Theorem 1.3 is that f is merely assumed to be measurable in (ii). In previous works
on homogeneous Besov spaces there is the additional a priori assumption f € Llloc' One way in which our
result differs is that we show this assumption is superfluous: the function f in Theorem 1.3 (ii) is a priori

only assumed to be measurable and we conclude that it is locally integrable.
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135100 = (30 2L ) (1.12)
keZ
ksq q 1/a
1 ggame = | (D 25912019) (1.13)
keZ

are finite, respectively. The inhomogeneous analogues BS[LP"], F/[LP""] are defined anal-
ogously using the frequency localizations Y., £ > 0 in (1.7).

For the standard Besov and Triebel-Lizorkin spaces one works with the underlying
LP metric, i.e. they are recovered by setting r = p and we have B;,q = Bg [LP], and
F; , = F;[LP]. For embedding relations among them one may consult [52] (however some

care is needed since the results in [52] are formulated for the inhomogeneous versions
B[Lrm), FRILP]).

Theorem 1.4. The following statements hold for all s € R, p € [1,00).
(i) For all v € R,

By (y,r) = B[LP"], p<r<oo,
BiLPT] <= By(v,r), 1<r<p.

(ii) Let v # 0. Then,

F;7r‘—>8.;(’y,7’)7 p <71 <00,
Bi(v,r) = Fs,, 1<r<p.

This will be proved in §4. The statements can be extended by combining them with
the three trivial embeddings for ¢; < ¢, 1 < 73, namely 5’;(7,1“1) s ij('y,rg),
B [LP™] — Bg [LP™2] and Fj [LP™] < Fg [LP™2]. Part (ii) of the theorem is an
improvement and generalization over Theorem 1.3 in [30] which (in conjunction with
our Theorem 1.3) yields that F;Q — B;(d, o0) for 0 < s < 1. Part (ii) also covers
the embedding C; — BSY; = Bj(d,00) for the homogeneous Calderén-Campanato
(or DeVore-Sharpley) spaces in [19], [11] which was obtained in [23, Theorem 4.1] for
0 < s < 1; indeed from [51] we know that C’; = Fpspo for 0 < s < 1. For every
p € (1,00) Theorem 1.4 also recovers the known embeddings F;, — B;[LP"] if p < r,
and BE[LP"] — F9 if r < p; ¢f. [52, Theorem 1.2(iv), Theorem 1.1(iv)].

In view of the case r = co of the embedding in part (ii) of Theorem 1.4 it is natural
to ask whether in the embedding F; < BS (7, 00) the Triebel-Lizorkin space F s
be replaced by the larger Besov space B __; this was implicitly suggested in [48] Part

.00

,T

(i) of the following theorem implies a negative answer, and in fact a stronger result.

Theorem 1.5. Let s € R, 1 < p < r < oco. Then the following hold.
(i) For all v € R,

B\ By(y.00) # 0.
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(ii) For all B,y € R with 8 # 7,

B(B.7) \ B3, 00) # 0.

This will be proved in §5, along with corresponding versions for the inhomogeneous
spaces.

Since B;(%p) = B;p for all v € R (see (1.6)) it is clear that the assumption r > p is
necessary in Theorem 1.5. We also address the case v = 0 in part (ii) of Theorem 1.4;
the following result shows that the condition 7 # 0 is necessary for those statements.

Theorem 1.6. Let s € R and 1 < p < co. For the case v = 0 the following hold.
(i) For allT > p

F;r \ B;(O, o0) # 0.
(ii) For allT < p
Bs(0,1)\ E5 . # 0.

Remark 1.7. By part (ii) of Theorem 1.5 we know that for 0 < s < M and ~y; # 7y, the
seminorms |\QM7S+Wi/pf|\Lp7m(ywi), 1 = 1,2 are not equivalent on the space of Schwartz
functions. This is in striking contrast with the limiting result for D, /,, by Brezis
and three of the authors [10], where it is shown that for 1 < p < oo, and all v # 0
the semi-norms (D14, f|[Lr. (v, ) are equivalent with the Gagliardo semi-norm ||V f{|,,.
Moreover, for p = 1 one has [|f||gy & || D14~ f[/L1.00(r.) Provided that v € R\ [~1,0]
(and this additional assumption is necessary). These equivalences hold under the a-priori
assumption that f is locally integrable.

An embedding result involving BV
Denote by V> = V>°(R%) the quotient space of L> by additive constants, with norm

[fllvee = inf ||f — |-
ceC

Denote by [+, -]g,» the real interpolation spaces for the Peetre Ky, method [4, Section
3.1]. The following embedding result involves a real interpolation space between BV and
V. It will be used below to study solutions of harmonic and caloric functions on Ri“.

Theorem 1.8. Let v € R\ [—1,0] and 1 < p < oo. Then
Ve, B.V];’l — B;/p(% 00).

The case v = d of Theorem 1.8 has its roots in [9, Theorem 1.4]. Its full generality
is based on an estimate in [10]. It complements interpolation results in [15, Theorem
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1.4], and extends an embedding theorem by Greco and Schiattarella [28] for functions of
bounded variation on the unit circle.

Harmonic and caloric functions in the upper half space

We now formulate some consequences of the embedding in Theorem 1.8. The original
motivation of the space Bé/ 2(1, 00), defined in terms of difference operators, came from
the study of harmonic extension of functions of bounded variation in [28] (see also an
earlier result by Iwaniec-Martin-Sbordone [34] for circle homeomorphisms). For a func-
tion such that [p.[f(2)[(1+|z|)~9"! da < oo, the harmonic extension to the upper half
R

space through the Poisson kernel is given by

In order to state our result let
KO f(x,t) = 'OV Pf (x, 1) (1.14)

where VP denotes the (z,t)-gradient, for ¢ > 0, i.e.

d42r1 d+3 — f(x))dy.
e = R LY

T 2

v?ﬂﬂwrdﬂ>/ww+w>< y).le =yl = de?)
]Rd

This last expression makes sense for f € V°° 4+ BV. Define the measure Ay on Lebesgue

measurable sets of Rf‘l by

Corollary 1.9. Let 1 <p < oo, v € R\ [-1,0]. Then
y+1 -
X* [V°°7BV]%71 — LP°(\y)
is bounded. In particular
VP [V, BV]y — L*®(dedt)
is bounded.

Remark 1.10. When d = 1 we have BV(R) < V>(R) and thus we recover the upper
half plane analogue of Theorem 4.2 of [28], saying that VPf € L#*°(R2%) for f € B.V(]R).
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Another corollary is about solutions u(x,t) = U f(z,t) = e*® f(x) of the initial value
problem for the heat equation in the upper half space,

ou

E = A’LL, U|t:0 = f (116)

For b € R, t > 0, define H® = (HY, ..., HY, ) by

1, 0
b = E_b— ) —
Hif(z,t) =t aijf(x,t), j=1,....d

0
Hasrf (@, 1) = 170 Uf (@,1).

Corollary 1.11. Let f € R\ [~3,0], and 1 < p < co. Then

2841

(i) H 2> [VOO,B'V];J — LP*>°(\g) is bounded.
(ii) Let u=Uf solve the problem (1.16) for t > 0. Then

% — Aue LP®(RMY, drdt),

feV®,BV]:, = Vyue L¥*REY, dedt).

feVe,BV]:, =

When d = 1 we obtain a caloric analogue of the result in [28], for boundary values in
BV (R).

Corollary 1.12. Let f € BV(R) and let u solve the initial value problem % = ‘3273,
u(x,0) = f(x). Then 9% € L3>°(R2) and 3% € L3>°(R2).

Remark 1.13. It would be interesting to upgrade the results of Theorem 1.8 and/or the
corollaries to other interpolation spaces of V°° and BV. A related question in dimension
d = 1 is whether such inequalities can be proved for functions in the Wiener spaces
VP of bounded p-variation. Note that V! = BV and that for 1 < p < co we have
[Vee, Vl]%’p C VP, see [5]. If VP> denotes the space of f for which the numbers D(f, o)
of a-jumps satisfy sup,~,aM(f,a)/? < oo then, by [43], VP C VP> = [V V1], .
See also [13] for a related result on the K-functional for the couple (V°°,V'1).

Interpolation

We review the problem of interpolation of Besov spaces. Recall the definition of the

homogeneous Besov space B;q = B;(L”) as the subspace of f € S (R?) for which

Ifllzs = Qpez HQkSkaHZ)l/q is finite. Regarding real interpolation, the case for
fixed p and varying s is well known. Suppose sg,s1 € R with sg # s1. If 1 < p,r < o0,
one has [4, Theorem 6.4.5(1)] [B;9,, ByLle.r =By, ifs= (1 —6)so+0s1, 0 € (0,1); see
also [21]. For the case po # p1 the spaces B,(7,r) arise as interpolation spaces for the



O. Dominguez et al. / Journal of Functional Analysis 284 (2023) 109775 11

Ky -method. The following theorem and corollary were already known to Krepkogorskit
[36] who considered the inhomogeneous variants. For an extension to the quasi-Banach
range see [37]. For a description of the interpolation spaces via wavelet coefficients see
also the recent work by Besoy, Haroske, and Triebel [6].

Theorem 1.14. Let 1 < pg,p1,7 < 00, po # P1, So,S1 € R. Let

So — S1
=TT _1- (1.17)
Po D1
let0< <1 and
(5:5) = (1= 0)(55,50) + (5, 51)- (1.18)
Then
B30 pos Byt pilor = By (7, 7), (1.19)

with equivalence of (quasi-)norms. O

Corollary 1.15. Let 1 < pg,p1 < 00, pg # P1, S0,81 € R, 1 < qo,q1,79,71 < 00 and
1 <r < oo. Suppose that (1.17) and (1.18) hold with 0 < § < 1. Then

B33 (75 70)s By (v, m1)]o, = By (7, 7)- (1.20a)
Moreover, if so # s1,
[Fo a0 Fotarlor = By, 7).- (1.20D)

Note that for s € NU{0} and 1 < p < o0, the space F;Q is identified with the Sobolev
space WP, Thus, if s, s1 are non-negative integers, sg # $1, and 1 < pg,p; < oo with
po # p1, then for 0 < 6 < 1 and 1 < r < oo we get in particular

[Wso,po’ Wsl»pl]e,r — B;(% r)

where (%, s) and «y are given by (1.18) and (1.17).

For completeness we shall sketch in §8 the standard proofs based on the Fourier
analytic definition which are very much analogous to [36]. More interestingly, for M =1
and sg, s1 € (0,1), an alternative approach to the interpolation result (1.19) will be given
in §9, based directly on the characterization via first order differences.
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Nonlinear wavelet approximation

Our results can be obtained to prove new results on best approximation via n terms
in a wavelet basis, relating it to suitable regularity properties of the given function.

To fix ideas we first recall basic notation in wavelet theory. Let u € N, ¢ € C*(R)
be a univariate scaling function associated with the univariate wavelet ¥ € C*(R). Let
Y0 := ¢ and ! := 1. If E denote the set of the 2¢ — 1 non-zero vertices of [0, 1]¢, given
e = (e1,...,eq) € E, we define the d-variate wavelets ¢¢(z) = H?:l Y& (x;). As in [40]
(cf. also [24,25]) we assume certain decay and nonvanishing moment conditions on the
1€, namely

sup (1 + |z))M| Dy (x)| < oo, la] < u, e€F, (1.21a)
z€R
and
/mo‘we(x) dz =0, la] < u, e€eE, (1.21b)
Ra

for u, M satisfying
u>|s|, M>d+u. (1.21c¢)

If one works with LP-based Besov spaces and allows the parameter range to be p > 0,

then one needs to require u > max{m —d—s,8}, M > max{m, d+ u}.
Let, for j € Z and m € Z¢,

id

2

¢ m(@) =22 9%z —m). (1.22)

We assume that the system
U={y$,:jEL mel’ ecE} (1.23)
forms an orthonormal basis in L?(R?), see e.g. [16] for an introduction to wavelet theory.

Let 1 < ¢ < oo. Consider now the best n-term approzimation of f € LI(RY), with
respect to W, measured in the L4(R%) norm; i.e.,

ou(Pe =it {[[f= D en #(8) <n, e, eC}.

Gy EACT La(R)

Let a > 0 and 0 < r < co. The related approzimation space A% (L4, V) is defined as the
set of functions f € L4(R?) for which
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(Zflozl [naon(f)qy%)% if r < oo

sup,, %o (f)q ifr=o00

| fll 4o (za,w) =

is finite.

It is well known that A%(L(R?), ¥) can be characterized in terms of a certain interpo-
lation space between L4(R?) and Besov spaces. Specifically, let 1 < ¢ < 00, 0 < r < 00,
and 0 < s < ¢. Then

AL, W) = [L9, BT Jo, if 0= 2 and 1_

g u

(1.24)

Q| =
alq

see DeVore’s survey [17, (7.41)] and also [47, page 223] for related results on spline
approximation with d = 1. We specialize (1.20b) with so =0, pg = ¢, 90 = 2, ¢1 = p1 = u,
s1 = o, hence v = —% = —d. We thus see that for 0, u as in (1.24) the space
[L9, Bg)u]Q,T coincides with B;(—d, r) if % = % + 5. Combining this with (1.24), we have
verified

Theorem 1.16. Let1 < ¢ < 00,0 < s < d(1— ) andletlzé 5+ Then, for1 < r < oo,

AL, W) = Bi(—d, ).

Forr =p,0<s <d(l-— %) we recover .A;/d(Lq,\I/) = B;yp for % = % + %, which
is a result proved by DeVore, Jawerth and Popov [18]. Together with our characteriza-
tion in Theorem 1.3 we achieve a new interpretation via difference operators of some
results in [17,20,29,35] where the spaces A% (L4, ¥) are characterized in terms of wavelet
coefficients.

For r = oo the spaces f,éd(Lq,\Il) are of special interest in applications, see for
example [32,14,31]. In the statistics literature these spaces are sometimes referred to

as ‘weak-Besov spaces’ (see [3,50] and the references within). In view of Theorem 1.16,

these weak-Besov spaces coincide with B;(—d, o0), with s =d(1/p—1/q), i.e. p= d+qsq

Putting o = s/d and combining Theorem 1.3 and Theorem 1.16 we obtain

Corollary 1.17. Let 1 < g < o0, O<a<1—— Then, for M > ad,
dh \gte
supn®o,(f)g ~ sup/\ meab x: \h|g|A£/[f(gg)| > A})ﬁ) q
n>1 A>0 |h

Remark. There are suitable extensions of the definitions of this paper, and many of the
results, to certain parameter ranges in the quasi-Banach setting (that is, to the cases
r < 1 and p < 1); we intend to pursue these elsewhere. In particular it is interesting to
extend Theorem 1.16 to values of s > d(1 — 1/¢) and r > 0; this requires consideration
of the spaces B;(—d, ) in the range p < 1.
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Notation

We denote by £4(E) the Lebesgue measure of a Lebesgue measurable set in R, and
also write meas F for £¢(E) when the dimension is clear from the context. A measurable
function f : R — C will always be assumed to be defined almost everywhere. We
use f(é) = ff(y)e_“y’£> dy as definition of the Fourier transform. For a function m
on R? we define m(D) to be the convolution operator with Fourier multiplier m, i.e.
it is given by @f({) = m(E)]?(f) We let C° be the space of compactly supported
C*°-functions, S be the space of Schwartz functions, and Sjp; be the subspace of S
consisting of those Schwartz functions whose moments up to order M — 1 vanish. Also
let Soo = Npreny Sm- We denote by S the space of tempered distributions and by Sj,,
S’ the dual spaces of Sy and S.., respectively. We let, for k € Z, Ly, = ¢(27*D) and
Zk = 3(27%D) be operators in frequency localizing Littlewood-Paley decompositions,
satisfying ZkLk = Li. The functions ¢, ¢ are radial and the relevant properties are
defined in (1.2) and (2.2), respectively. For a set E with positive measure, the slashed

integral fE f is used to denote the average of f over E.

Structure of the paper

In §2 we prove a rudimentary form of the characterization in Theorem 1.3 just for
Soo functions. The full proof of Theorem 1.3 will be given in §3. The embedding results
in Theorem 1.4 are proved in §4. Various counterexamples establishing Theorem 1.5
are discussed in §5. In §6 we give the proof of Theorem 1.8 and in §7 the proof of
Corollaries 1.9 and 1.11. In §8 we include a proof of Theorem 1.14 based only on the
Fourier analytic definition of B;(’y, r). A different proof of the interpolation result, just
for parameters s; € (0,1) and based on a retraction argument using first order differences

is given in §9.
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2. Norm equivalences for S.-functions

Before giving the full proof of Theorem 1.3 we give a proof of the norm equivalence
for functions in the class Soo(R?). Note that for f € Soo(RY) we have f = Y, 7 Lif
with convergence in the topology of S(R?).

Proposition 2.1. Let M € N, 1 <p<oo,1 <r<oo,vy€ R and0 < s < M. For
f € Sw(RY),

£

B;(’Y,r) ~ ”QM,erv/prLP”‘(V.Y)' (2'1)
Let ¢ € C2°(R%) be such that
supp() C {€: 1/2 < [¢] < 2} and ¢(£) = 1 for 3/4 < [¢] < 7/4. (2.2)

This implies @ = ¢. Let Ly = @(27%D) so that Ly = LiyLy = Ly L.
To bound || Qs 4y /pflLrr(v,) in terms of || f]

Bs(v,r)> We use the following lemma.
5 (7,

Lemma 2.2. Let M e N, 1 <p<oo,1 <r<oo, b,yeR with0<b—% < M. Then
the operator

My T
Tigla.h) = 3 %ﬁf)bk) (2, ) € R x (R*\ {0})
keZ

defines a bounded linear map from LP7 (uy) to L7 (vy).

Proof. By real interpolation it suffices to consider the case r = p. From the elementary

inequality
|AM Ellgssro S min{1, (2°]h])M},
we obtain
R o
bGlLP(vy) 2k [h|)P [
keZ
. —(b—2 (b= 2) ek p dh\1/p
s(/ [me{@’wm) O, @MY g R )
keZ
1/
~ (30 [ min{(2) 0B, @)Dy g, )
jE€Z keZ

and the desired conclusion follows since if «, 3 > 0 then the convolution on Z with the
sequence {min{2~*« 2811, 7 € (1(Z) is bounded on (P(Z). O
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To apply the lemma note that under the hypotheses of Proposition 2.1 we have

= 2L P f(a, k) (2.3)

keZ

with the convergence in S, (R?) (in particular pointwise for every z € R¢). Hence for
every (x,h) € R? x (R?\ {0}) we have

AN f(x)

W Tory P77 f, ).

Lemma 2.2 with b:= s+ % (which satisfies 0 < b — % < M) and g = PH%f yields the
inequality

< |\P*t7 £l o 2.4
UM(W)NII oo, (2.4)

M
{5

and thus the following corollary.

Corollary 2.3. Let M e N, 1 <p< oo, 1 <r<oo,y€R and 0 < s < M. Then for
f € Sx(RY)

AMf(x
H{ |h|*ts H Lrr(vy)

For the converse inequality we like to consider an operator acting on F(x,h) =
|h|"PAM £ for b = s + ~/p, and then we are faced with the task of “dividing out”
the difference operator. To achieve this we work with the partition of unity of the an-
nulus {£€ € R : 1/2 < |¢| < 2}. Alternative Fourier arguments can be found e.g. in [45,
5.2.1).

Let € < (10M)~!. We use a finite partition {x,}2Y_; of unity on the support of ¢, so
that y,. € C2° is supported on the ball B4(u,,¢). Let w, = zru"jQ and then we have, for
£ € supp(xx) and |w — w,| < e,

€10y = 21 < I(6 w = we)| + {6 = e, we)| + [{u, we) — | < 26 + 22 +0.

We may then write
PO =m0 [ (@ Man (2.50)

where
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R T (25b)

Since the denominator is bounded away from 0 on the support of x,, we get |0%m(§)| <
C,, for all multiindices «, and thus the L' norms of the Fourier inverse transforms of the
m,, are finite. We then get

al , dh
Lif =) mu(277D) / AN'f 5 d (2.6)

|h—2=dw, |<e2~3

Lemma 2.4. Let m be the Fourier transform of a bounded Borel measure, with L' — L*
multiplier norm ||m/||ar, . Let w € R® such that 1/2 < |w| < 2 ande € (0,3). Forb,y € R,
l<p<oo, 1<r<oo, and F e LP"(R? x (RY\ {0}),v,) define Vy;, ,, . F by

dh

VPR = Vik, P =m D) [ @PC S @)
|[h—2"Fw|<e27*
Then V)5, ., . maps LP" (1) to LP" (p,) and we have
|| mwsFHLl""(/w) < C”mHMlHF”LP”'(My) (28)

where C' only depends on p, r, b, .

Proof. Since (F,m) > V!

m,w,e

1. Again by real interpolation it suffices to prove the theorem for p =7, 1 < p < oc.

F is bilinear we may normalize and assume that ||m| s, =

Since |m(27*D)||zr—rr <1 for 1 < p < co we obtain
_ dh
Vel S (20 [ @mprem Sy

keZ |h—2"Fw|<e2™F

s(22 /‘ F G th)Up

keZ 2-k—1<|p[<2-k+1
» 1/p
/ IFCRIE ) = 1Pl

which completes the proof of the lemma. 0O

)1/p

To apply the lemma it is beneficial to express PP f(-,k) = 2*°L;. f as

a AM f(z) dh
Pret =Y me o) [ emp SRS @)
r=1 [h—2—Fw, | <e2—F
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and thus we get

AN [ (@)

= (2.9b)

N
PPf=> "V} . oF with F(z,h) =
k=1

Now, setting b = s + v/p, Lemma 2.4 yields

Corollary 2.5. Let M € N, 1 < p< oo, 1 <r <00, s,7€R. For f € Soo(RY),

11

Bg('y,r) S ||QM,S+%f||LP’T(V—y)'

Proposition 2.1 is just the combination of Corollaries 2.3 and 2.5.
3. Norm equivalences for all measurable functions

We give the proof of Theorem 1.3. We begin by rephrasing it in a more abstract
way which allows us to keep in mind the distinction between equivalence classes modulo
all polynomials and modulo polynomials of degree < M. Let M denote the space of
(Lebesgue almost everywhere equivalence classes of) measurable functions on R? and let
P denote the space of (almost everywhere equivalence classes of) functions which are
almost everywhere equal to a polynomial of degree at most M. Let My, = M/Pyr—1
and let my @ M — My, denote the projection map. Since the operators Qs i /p
annihilate polynomials of degree < M — 1 we can make the following definition.

Definition 3.1. For M € N, s € R, 1 < p < o0, and 1 < r < oo, we define an extended
norm? on Mjy; by

HTerH%I\/I,s,p('Y:T) = HQM,SJr%f”LP’T(VW)
and let B s s (7, 7) be the subspace of My for which |[mas f|ls ;. (v, is finite.

Recall that 7 C M denotes the space of (Lebesgue almost everywhere equivalence
classes of) tempered functions on R¢, and let Tas = T /Pas_1. Tar: M — My restricts
toamap mar: T — Tar. We let 13y denote the natural map Ty — S’ (R?) which assigns
to mar(f) (with f € T) the linear functional tar(mar(f)) @ ¢ — [pa f(2)P(x)dz. We
rephrase Theorem 1.3 in the following, equivalent, form:

Theorem 3.2. Fixr M e N, M > 1. For0 < s < M, p € (1,00), r € [1,0], v € R, we
have

2 A priori, | - |, .,(v.~ 1is merely an extended semi-norm. Lemma 3.6 below shows that
l7was flls s vy = 0 & marf = 0.
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(Z) m?M,s,p(’va) g TM"
(i) By(v,r) = i (Bars p(7:7));
(iii) The map

LM|$BM,S’p(%»,‘) : %Mﬁ»?(’y’ 7’) - B;(Va T)

is an isomorphism of normed vector spaces; i.e., it is a bounded, bijective linear
map with bounded inverse.

The rest of this section is devoted to the proof of Theorem 3.2. In what follows we
denote, for M € N, by Sj/(R%) the closed subspace of S(R?) which consists of all
[ € S(RY) with [ p(z)f(x)dz = 0 for all polynomials of degree < M — 1. Then clearly
Soo = Npren Sm (and Soo = Z in the notation of [56]). We denote by Sy, the dual space
of Spr. To prove the theorem, we introduce two maps: By (7,7) <> Bar s p(7, ), which will
turn out to be inverses to each other. We begin with the map By (v,7) — Bassp(7,7)-
The following proposition is similar to results of Bourdaud [7] and Moussai [44] for the
so-called realized Besov spaces, and, in fact, could be deduced from their results by
interpolation arguments.

Proposition 3.3. Fixr M € N, M > 1. For 0 < s < M, 1 < p < o0, v € R, and
1 <r < oo, there is a bounded linear map

En B;(’y,r) — Barsp(7,7)

such that SA/[(B;(’Y,T)) C Ty and vps is a left inverse to Epy; i.e., LprEpr is the identity
map By(v, 1) — By(v,7).

We need a lemma about the Littlewood-Paley decomposition for f € B;(%oo) -
S/ (R%), for p € (1,00). Note that Ly f is a convolution of an element of S’ (R?) and
an element of S, (R?), and thus a C*-function. By the definition of BZ('}/, o0), Lpf €
Lro(RA) with 2% L 1.~ gy < ]

By Young’s convolution inequality

B (v,00) Uniformly in k € Z.
5 (7,

”Ek HLP=06_>LOO = O(de/p)

and from LyLj, = Lj, we obtain ||Lyf|lse < 284/P||Ly,f||pe. We use this to establish
convergence of the Littlewood-Paley decomposition in Sy, under the additional condition
M > s—d/p.

Lemma 3.4. Let M be a nonnegative integer, 1 < p < oo, N € N. Then the following
holds.
(i) For f € By(v,00) and ¢ € S,

(L fo )| < a2~ min{2—9V, 297} f|

Bs(v,00)"
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(i) Let M > s —d/p, and f € B;(%r), Then ) cq Ljf converges in Sy;.

Proof. Since ¢ € S we get ||zij1 < Cn 279N for j > 0. Using the M — 1 vanishing

moment conditions we get || Lj[|1 < 27 for j < 0.
We have

(L) = (L f, i) < L5 L fllo 1L
S 2% || L fl| oo min{277N, 27M}

S 1A

B (02 min{ 279N, 291}
50

where the implicit constants depend on M, N, . Choosing N large enough we see that

> iso {Ljfab)| < oco. Moreover -, [(Ljf, )| < oo if M > s—d/pandthus >, L; f
converges in §y;. O

Proof of Proposition 3.3. As already mentioned this could be skipped by citing [7,44],
which proves more, but in order to be self-contained we include a direct proof of this
somewhat easier result. We first define the map

Tnr: Tar = Shy(RY)
as taking myu (with u € T) to the distribution Zysmasu defined by
Tumau o) = [ us
]Rd

and observe that Zy, is injective. Alsolet f € U,.e[lm}li.’;(’y, r) = BZ(% o0). By Lemma 3.4
> wez Inuma Ly f converges in Sp,(RY) to some U € S}, (RY).
We claim U € Zp;(Tar). To see this, decompose

U = Unigh + Uiow = ZIMWMka + ZIMWMka,
k>0 k<0

where the above sums converge in Sy, (R?). Since f € B;(’y, 00), we have || Ly f||Lp.e S
27%, and since s > 0 we see that Y, oo Ly f converges in LP>°(R?) and

Unigh = Y I Lif = Tumar [ Y Lif] € Taa ().
k>0 k>0

Since Uow € S)y (]Rd), we can use the Hahn-Banach Theorem to establish the existence
of an extension U € S'(R?) such that

(U ) = (Uiows ), Y4 € Sar(RY).
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In particular, by the definition of Usw, we see that the Fourier transform of UZ! is
supported in {|¢| < 2}. Schwartz’s Paley-Wiener Theorem implies there exists G € T
with (U, 1) = [pa G, for all ¢ € S(R?). Tt follows that Ujgy = UI%)MSM =TZyuruG €

I (Tar). This completes the proof that U € Zp(Tar)-
We now can define €, f; because by injectivity of Zp; we have

for a unique € f € Tar. The map Eps ¢ f — Eprf is then clearly linear. Also U|5 (Rd) =
f and therefore 1y Eps f = IMEMf’S Rd) = U!S RY) = f; that is, tprE s is the identity.
We still need to establish the estimate

M FllBarentvr) S 1 1Bs (.5 (3.1)

ol

this is done using the arguments in §2. Define g(z,k) = ok +3) e 1 L f(x) so that
[ = kez Ty 2 "+ Leg(-, k) with convergence in Siy- By definition of B;(’y,r) we
have g € LP"(p). For all h and a.e. z,

AME N f(x)

aper = D)

where Ty 5 is as in Lemma 2.2. Then we get (3.1) from Lemma 2.2. O

We turn to the map Bas s p(7y,7) — B’;(y, T).

Proposition 3.5. For M € N, s e R, p € (1,00), r € [1,00], v € R, there is an injective
bounded linear map

HM : %M,s,p(’%r) — B;(’}/,T’)
such that

3M|‘BM,s,p(%T’)ﬁTM = LM|%]\4,S,p('Yyr)ﬁ7-]\/l. (32)

The main difficulty we must contend with in Proposition 3.5 is that elements of
Bar,s,p(77,7) are a priori only equivalence classes of measurable functions (not necessarily
locally integrable), and so we cannot directly use any tools from distribution theory to
study them. The following lemma appears to be well-known but we include a proof since
we have not been able to locate a precise reference.

Lemma 3.6. Let M > 1, and f : R? — C be measurable with AM f(x) = 0 for £24-
almost every (h,x) € R4, Then there is a polynomial P of degree at most M — 1 such
that f(x) = P(x) almost everywhere.
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Before proving the lemma we recall some basic facts from the theory of functional
equations [39] which are needed in the proof. First, we need a formula about iterated
differences, attributed to Kemperman in [39, Theorem 15.1.2], see also Djokovié¢ [22] for

related results. Namely, for all dimensions d, for all N € N, if o), ..., (V) are vectors
in R¢ then
Ay Ay fz) = > (=)@ ¥ AN fa + h(e)),
(€1,..,en)E{0,1} N
N (3.3)
where h(e Z] ejo?) h(e) = Zejv(])
j=1

Next we recall that a £%measurable function f : R — C is called almost polynomial
of order M — 1 if AM f(z) = 0 for £L?%-a.e. (z,h) € R It is a result of Ger [27], which
we use in its form presented in [39, Theorem 17.7.2], that there exists a measurable
function P: R? — C such that f(z) = P(z) for L%a.e. v and P is a function satisfying
AMP(z) =0, for all (h,z) € R? x R%; such functions are called “polynomial functions”
in [27], [39].

We also use a result by Ciesielski [12] (see also [39, Theorem 15.5.2]) which states
that if a measurable function g : R — C satisfies AMg(xz) > 0 for all z € R and all
h € R then g is continuous; by an argument using weak derivatives this implies that a
polynomial function of order M — 1 on the real line is actually a polynomial of degree
at most M — 1. In proving Lemma 3.6 we could have used a d-dimensional version of
this fact which could be derived from an abstract result by Kuczma [38, Theorem 3].
However we prefer to give a more direct argument based on induction on d.

Proof of Lemma 3.6. For d = 1 Lemma 3.6 is an immediate consequence of the above
mentioned theorems by Ciesielski and Ger. Let d > 2 and as induction hypothesis,
assume Lemma 3.6 in dimension d — 1. We split variables as = (2/, 24).

Let f : R — C be almost polynomial of order M — 1. By Ger’s theorem there is a
measurable function g : R? — C such that f = g £%a.e. and ¢ is a polynomial function
of order M — 1. We therefore get AM g(x) =0 for all z € R? and all s € R. Thus, for all
2’ € R4 we get from Ciesielski’s theorem that the function  — g(z’,t) is a polynomial

S‘Pd

of degree at most M — 1, i.e. we have

for all 2/ € R?! and every x4 € R. The coefficient functions can be expressed via
divided differences in the x4-variables (alternatively via derivatives) and thus it is easily
seen that each a; is £?~1-measurable. Since AMg(z) = 0 for all (z,h) we also have by
(3.3) that Aé\/[ ;“A’;ed (r) =0, for all z € R? u € R?! and s € R. Letting s — 0 (and

using that x4 — g(2’, z4) is polynomial) this implies that for k =0,..., M,
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M—-1
0 _ i
0= A?ﬁ,of(a—m)kg(w',fd) = > AV )ej "
=k

with ¢; 5 = Hle(j —i+1). This in turn implies AM~*q; (2') =0 for k =0,..., M, and
all u € R, Thus, by the induction hypothesis a,(z’) is almost everywhere equal to a
polynomial of degree at most M — k — 1, and we deduce that g and thus f is £%a.e.
equal to a polynomial of degree at most M —1. O

Lemma 3.7. Fiz v € R, p € (1,00), 7 € [1,00]. Then, if K,L € N are sufficiently large,
we have

/ |F (2, h) | min{[A]™, [A =} + ) "F dz dh S | F Lo

for all F € L7 (vy).

Proof. By interpolation it suffices to show this for » = p (possibly, after increasing K).
The desired bound follows if we can show K;, L € N sufficiently large, that

min{ || (1]~ [a])7F € LY (1),
where p’ = ~E5. This however is elementary. O

Before we define the operator J,; from Proposition 3.5, we introduce some auxiliary
operators. Let j € Z, m € C§¢(R?\ {0}), w € R?\ {0}, and ¢ > 0 be such that

Bi(w,e) C {€:1/2 < [¢] < 2}. For ¢ € Soo(R?), define I, ,, ¥ (x,h) by
(07, 0. c] (&, h) = 29m(=27 ) (€) Lpaga-iwa-ie)(h), (3.4)

where A denotes the Fourier transform in the x — £ variable.

Lemma 3.8. Let Q C Soo (R?) be a bounded set. Then for all K,L € N and o € N9, there
exists Ck 1,00 > 0, which may depend on the fized j,m,w and €, such that

02T, (1) < Cc 2™ min{ B[ [R5 }(1 + fa) -
for all ¢ € Q.
Proof. Equivalently, we wish to show that the set
{max{|A)", [~ }2VIY, |, (-, h) s h e R\ {0}, € 0

is bounded in S(R?). Since 'Y, , . (z,h) = 0 unless |h| ~ 277, it suffices to show that

m,w,e
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{201ADDT (R sy € Qb € RY\ {0}
is bounded in S(Rd). Taking the Fourier transform, this follows if we show that
(201D 9y (_9=T ) (¢) : ¢ € Q)

is bounded in S(RY). Using that supp{m(277-)} C {|¢| =~ 27}, for m € C§°(R?\ {0}),
and Q C Soo(R?) is a bounded set, this follows, completing the proof. O

Forbe R, pe€ (1,00), r € [1,00], v €R, F € LP"(v,), and ¥ € Ss(R?), set

Uk, .F, / \h|°F(x,h)TY, , c0(x, h)dzdh (3.5a)
Um0 =Y (Un3, FL ). (3.5b)
JEZL

Lemma 3.9. For F' € LP"(v,,), the sums and integrals in (3.5) converge absolutely and
(3.5b) defines Ub, ,, .F € 8L, (R?).

Proof. By Lemmas 3.8 and 3.7, we have for any K, L € N sufficiently large,

Z//W |F(2,h)||T%, , ¥z, h)|dz dh

JEZ

<k S 2 IJ\/ P, b)) min{ [, b~} (1 + |2]) % do dh
JEZ

S 2P o,y S I Lo
JEZ

This shows the absolute convergence and defines Uﬁlw -
Soo(R).
To see that U, .F € 8L (R?), let ¢ € Soo(R?) be such that ¢, — ¥ in Soo(RY).

In particular, {1y : k € N} is a bounded set in S, (R%) and therefore by Lemma 3.8,

F in the algebraic dual of

1| |13, o (@, )| < 27 min { R, [R5 (1 + [)) ™"

with implicit constant independent of k. Combining this with Lemma 3.7, the dominated
convergence theorem shows (UY, , _F, ) — (U}, ., .F,v), completing the proof. O

Lemma 3.10. For b,y € R, p € (1,0), r € [1,0],
U’Sl w,e Lpﬂn(”’y) - Bf)_ﬂ//p(’%?a)

is a bounded linear transformation.
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Proof. This is an application of Lemma 2.4. From the definitions (3.4) and (3.5a) we get

, . ) , dh
LiUp?y o F () =277 / (2[h) (2 D)ym(27 D)IF (-, h)](%) 5=54
|h—2"Tw|<e2—J
and thus LyU}J, . = 0 when [k — j| > 2. Then with V%7 _ as in (2.7), we get for
n=-—1,0,1,
n n b,k+n n

LUk = 2- Py R B with i, = o(27)m, (3.6)

and
n bk n
PUL, , F( k) =200t F = Z 2 VM R
n=-—1

Hence

|| mweF”BZ*W/P (y,r) = Z 2_nb|| M ,W,E ( '+n)||LP’T(#-y)

n=-—1

Nb7’\/ Z || mnweF”Lp""(,un,)

n=—1

and since by Lemma 2.4 we have [|[VZ  Fleru,) S IIF|lLer(,) the proof is com-
plete. O

The following lemma has a dual version of formula (2.6) and an extension to tempered
functions.

Lemma 3.11. Let ¢ € Soo(R?). Then

N
3 / AMTI o ap(ah)dh = Ly(a). (3.7)
k=1

Moreover, for f € T and 1 € Soo(R?),

ZZ/ AM ()T, b(z,h) dhdx:/f(ac)w(a:) dz. (3.8)

rk=1j€Z

Proof. We first check (3.7), which, after taking the Fourier transform, is equivalent with

S e e, 0] 60 dh= 29RO ()
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Using (3.4) and (2.5a) we have

N
Z/ (ei(f,—h> — 1)M [anmwmew}/\ (f’ h) dh
k=1

N . . ~
=t [ @ ) 2l an

|h—2"Tw,|<2 e
P(=279E)p (&) = p(277€)(6),

here we used that ¢ is radial. This establishes (3.9) and thus (3.7).
We now prove (3.8). In the argument that follows all integrals and sums converge
absolutely by Lemmas 3.7 and 3.8. Using (3.7) we have

ZZ/ AM f(@) TS, (@, h)dhde

w=1,eZ
_;J%/f /AMthN v, h) dh da
—QEZZ/f Lty do = [ flayu

where the final equality uses f € T and that ) jez Lj = v, with convergence in
Soo(RY), since 1 € Soo(RY). O

We are prepared to define Jps. For f € M with mar f € Bas s p(7y,7) we set

(d(mar f), ¥ ZZ//AMJ” e,V (@, h) dz dh (3.10a)
k=1j€Z
N
=D (Un, o, Fb, ) with Fy(w, h) = % (3.10b)

k=1

where by Lemma 3.9 the sums and integrals in (3.10a) converge absolutely. Note that
the definition of Jy; depends on M, but not on s,~,p,r, and that (3.10b) holds for all
b € R. We shall later use this formula with b = s++/p. When f € T, Lemma 3.11 shows
that (Jar(mwarf), 1) is the standard pairing of f € T with a Schwartz function in S, i.e.

(Am(macf), /f r)de, VfeT. (3.11)

We need to show that Jps is injective on Bps s, (7y, 7). For this, we will need the
following auxiliary lemma.
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Lemma 3.12. Let p € (1,00), r € [1,00], and v € R. Suppose that F € L*"(v,) and
n € C(R4\ {0}) are such that

= Qx) = /F(x,h)n(h) dh
is almost everywhere equal to a polynomial. Then Q(x) = 0 almost everywhere.

Proof. Let ¢ € C2°(R?) be nonnegative and [ ¢ = 1. We claim that, for all G € LP" (v,),

lim // Gla, Byn(h)é(z — a) dhdz = 0 (3.12)

la|—o0

Observe that (3.12) follows by standard estimates whenever G € L9(v.,) for any ¢ €
(1,00). It then also holds for G € LP"(vy) since LP"(vy) C LP'(vy) + LP?(vy), with
p1 <p<pa2

By (3.12) we have

0= lim ‘/ F(z,h)n(h)¢ x—a)dhdx lim ‘/Q ¢(x —a)dx

|a]—o0 |a|—o0

and the last expression is equal to |c| if @(x) = ¢ almost everywhere, and equal to oo if
@ is almost everywhere equal to a nonconstant polynomial. We conclude that Q(z) =0
almost everywhere. O

Lemma 3.13. For M € N, s,7 € R, p € (1,00), and r € [1,00], Jps is injective on
%M,s,p(,)/ar)'

Proof. Suppose f € M is such that marf € Basrsp(7y,7) and Jymarf = 0 as an element
of 8’ (R?). We wish to show f(z) = P(z), almost everywhere, for some polynomial
P(z) of degree < M — 1. In this proof, all sums and integrals converge absolutely by
Lemmas 3.7 and 3.8.

Take ¢ € Soo(R?) and n € C°(R%\ {0}). Then,

/ n(h")AMy(z) dh' € Soo(RY).

Thus, we have, using (3.10a) and the definition of the translation invariant operator
e (see (3.4)),

My Wiy
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/ M /
— (g, [ n(w) MYy v an')

- ZZ///AMf (W) AM, T3, bz, h) dedhdh’

K= 1]6Z

_Z//A /AM 9, o (a, h) dhde i
JEZ

_Z//A n(W') dh' Ly() da
JEZ

where the last equality uses (3.7). It follows from Lemma 3.7 and the fact that n €
C>(R4\ {0}) that [[AM f(n(k')dh' € T. Since ¥ € Ss(R?), we have e Liv =9

with convergence in So. (R ) Thus,

on//A n(h') dh' Ljp(z) dz

ez (3.13)

= ] Atts@ ne) awvia) as

for arbitrary ¢ € Soo(R?%) and we can conclude that

/A n(h')ydh' = Q(x), a.e.

for some polynomial ). By Lemma 3.12 it follows that @) = 0, hence
/ AM "Ydh' =0, a.e.

Since € Cg°(R?\ {0}) was arbitrary, this implies AM f(z) = 0 for almost every (z,h) €
R2?. Lemma 3.6 shows f(z) = P(x), almost everywhere, for some polynomial P(z) of
degree < M — 1, completing the proof. O

Proof of Proposition 3.5. It follows immediately from the definitions that

AM (g
T f ((l‘,h) = ‘}LTEI'E/zZ)
Bar,sp(7,7m) = LV (vy)

is bounded. Lemma 3.10 shows that U;?I%ie D LT (vy) — B;('y,r) is bounded. Com-
posing these maps and using (3.10b) shows that

HM : %M,s,p(ryﬂa) — B;(’Y,T)

is bounded. J is injective by Lemma 3.13. Finally, (3.2) follows from (3.11). O



O. Dominguez et al. / Journal of Functional Analysis 284 (2023) 109775 29

Proof of Theorem 3.2, conclusion. By Proposition 3.3,

(C:M(BZ(’Y,T)) - TM N %M,s,p('}/ar)a

and so by (3. By Proposition 3.3, ¢ps is a left in-

2), 3M‘5M(BZ(’Y7T)) - LM|5M(B§(’YW))' .
verse to €js, and we conclude JprEp is the identity map on B;('y,r). In particular,

3M|TMO%M’W(%T) s T N Barsp(y,7) = B;(%r) is surjective. Proposition 3.5 shows

Inm Brsply,r) = B;('y, r) is injective. We conclude

Tor VB ars,p(7,7) = Brsp(7:7), (3.14)

establishing part (i) of the theorem, and moreover that Jas : Bassp(v,7) — BZS,(% r) is
bijective with two-sided inverse €js. From (3.14) and (3.2) we see that

Inv : Barsp(y,r) — B;(Vﬂ")
agrees with ¢ps on all of By s (7, 7). Thus,
LM|%M,s,p('y,r) :Brrsply,r) = B;(’y,r)

is a bounded bijective map with bounded inverse € ;. This establishes parts (ii) and (iii)
of the theorem, completing the proof. O

4. Embeddings

The proof of the embeddings in Theorem 1.4 is reduced to inequalities for the operator
T, defined on functions F : R¢ x Z — C by

TaF(mvj) = 2jaFj(x)7 (41)
with the parameters a = £v/p.

Lemma 4.1. The following hold for all v e R, 1 < p < 0.
(i) For p <r < oo,

1T pGller Loy S NGllLor(uur)-
(ii) For 1<r<p

”T'y/pFHLPv"(uW) S ||F

e (Ler)-

Proof. Part (i) follows from the definitions of Lorentz spaces via the distribution func-
tion. We use a change of variable with subsequent interchange of sum and integral to
write
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r . r/p AN/
Ty pGllerrrny S /)‘ meas{x 2775 v |G(x, j)] >)\H /pT)

/ﬂr (277 meas{x : |G(z, j)| > B}] / %ﬁ>1

and since r > p we estimate an £"/P-norm by an ¢*-norm and see that the last displayed
expression is dominated by

o0

(/B’“{Z2‘”meas{a:: |G (z,7)] > 6}]

0 J

r/ /r
p dﬂﬂ)l

1

= ([ 7A@ 16 > 877 ) S 1G]
0

For part (i) we use that (LP" (u,))* = LP"" (u1,), ([33]) and (€7 (LP7))* = £ (LP7).
Observe that for 1 <r <p

/Z vk 2]7 ‘Z/ T, )27 a1/ G(z,j)dx

SN Ner oy 1T /p Gl ooy S WEller o) |Gl o 0,

where we have used part (i) for the exponents p’ < r’. The proof is completed by taking
the supremum over all G with HG||L,,/,T/(M) <1l. O

Lemma 4.2. Let 1 < p < oo, v # 0.
(i) For p <r < oo,

”Tv/pF”LP'T(M) S ||F||LP(£T)~
(ii) For 1 <r <p,
1T /pGllLr@ery S NGl Lor ()
Proof. The argument for part (i) has been used in proofs for endpoint multiplier the-
orems, our proof is essential the one from [41, Lemma 2.4] (see also [41] for further

references).
Let 0 <6 <1and1l/r=(1-6)/p. We use the complex interpolation formulas

[LP(7), LP (7))o = LP(€7),  [LP(pn), L2 ()]0 = L2 ().
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These imply that it suffices to prove the assertion for » = p and r = co. For r = p we
have || T /p Fll o () = [1E ][ Lo(er)-
For r = oo the conclusion T, , : LP(£>°) — LP*°(p,) follows from

podwd) TPl >N = [ Y 2

d J:
2-77/p\Fj(a:)|>)\

- (supy, | Fi(@)])”
S/ Z QJWdJJS/TdJJ,

R4 . : R4
257/7 <A~V supy, | Fi (2)

here we used «y # 0.

For part (i) we use that (LP"(u,))* = LP"" (), see [33] and (LP(£7))* = L ().
Observe that for F' e LP (")

/ ZQ*jv/pGj(x)Fj(a:) de = / ZGJ-(:E) T,y F(x,§)2797 da

S NGl o u) 1Ty Ellpor o uyy S NGlzer oy 1E W por oy

where we have used part (i). Now part (ii) follows by taking the sup over all F' with
IE oy < 1. O

Proof of Theorem 1.4. Apply Lemma 4.1 and Lemma 4.2 with F(z,j) = 27°L; f(z) and
G(w,j) =2 Lf(z). O

5. Non-embeddings

We prove Theorem 1.5. Proposition 5.1 covers part (i) and (ii) of the theorem, in
the range v > —d, and Proposition 5.2 covers the same parts for the range v < —d.
Proposition 5.3 covers part (iii) of Theorem 1.5. We begin with some definitions to build
the examples.

Ifvy>—dand k>0, or if v < —d and k < 0, define

0N, (k) = |2M@H) ],

Let {n;r} be a double indexed set in Z, with 1 <1 < 9, (k), which is separated in the
sense that for every k

i1 £y = i — nay ] > 210K
Let n € S such that

[n(x)] ~ 1 for |z| < 1. (5.1a)
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nd .
supp(7)) C {£ €R 16 < < 16 (5.1b)
and let
ik (x) = 02" (z —ni rer)). (5.2)
By (1.2) we have
Nik = Litik (5.3a)
and
Define for k € Z
RIS
Fyp(x) =27F12 N " . (5.4)
i=1
Proposition 5.1. Let f. ;. be as in (5.4). Let s € R. Assume v > —d, and define®
2N
Fyn(z)= Y 27%f w(2). (5.5)
k=N-+1
(i) Then 1 <p <r < o0
HF"/7N| B;('y,oo) = || NHBS (v,00) & 2 Nl/p (56)
155,55 6, = 1185, y SNV for B# 7, (5.7)
1By, = I Flsg, S NYT (5.5)

(i) If p < 0o then Fy = 3o, (27YPF, 40 belongs to (., B, and to (r>p BS(B,7),
- B#Y

r>p T P,T

but not to B-;(’y, 00).
Also F belongs to ()., B, and to ﬂr>p 5 (B,7), but not to By (v, 0).

r>p T p,T

Proof. Let » > p. We begin with the upper bound for the B;(ﬂ, r) quasi-norm of F, n
for 8 # . Let

3 The definitions in (5.5), (5.14) depend on s but we do not include the subscript s to keep the notation
as simple as possible.
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”n, (k)
p
Eype(A) = {x cRY: ‘ Z Ui,k(x)’ > /\pzk(vfﬂ)}.
i=1

Note that from (5.3a) we get

o0 2N

_ r/p d\\ 1/P
| Fy n | Bs(Br) = (r/ [ Z AP2 k'gmeasE%g,k()\)} T) )
5 k=N+1
In what follows we will use, for M > d + ||, the estimate
In(z)| < Car(1+ J|) =M.
Split n; r = ¥ 1 + 5,1 where
ik = NikL{je—n; per|<2*}s €ik = Mk — Vik-
Note for later reference ||e; x|/, S 27F592K(5=M) and therefore
n, (k)
S
= "
Let
9, (k) »
Ea0 = {z e R | 30 vuao)| > (G20}
i=1
) n, (k) ,
B2 ={eer?: | > @) > (§)P2k<v—ﬁ>}.
i=1
Then

By € BS) )V UER (V).

Finally set, for i = 1,...,9,(k),

i A B
EL ) = {2 € RY: [gua(@)pP > (57207},

33

(5.10)

(5.11)

Observe that for fixed k the sets supp(¥; ;) are disjoint and therefore the sets ES}B w(A)

are the disjoint union of the sets Ef/lg)k (A),i=1,...,7M (k). Now from (5.9) we get

(1) . —k(_2PCly o
E%@,k(k) C {a: Ho—n, per] <2 (/\IJZk(’Y—B)) }
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and therefore we get for the Lebesgue measure

2rC?, )M%

1) —kd
meas B 5, (A) < caDy (k)2 (W

Hence, using the definition of 91, (k)

N2 M meas B} | (N) < ca(203) 3 (A2 =))1-

Using (5.9) we also see that for k =N +1,...,2N
E) () =0 for (A/2)P2K0=0) > 20% .

Hence we get, for v > 8 and r < oo,

7 1 r/p d\\ 1/7
/ E AP27 kﬁmeaSEggk(A)] 7) <I+11
0 N+4+1<k<2N

APok(y— B)<QC:D

where

CM(272N(77[’))1/1>
r/p d\ 1/r
I = / C ()\p2k(7 ﬂ))
( 0 |:N+1<Zk<2N Y :| A )

2CM(2—N(’Y—B))1/p

H:( / { N+1§§2N Cur (P2 r/p O}\/\>1/T'

Cr(2—2N(v=5))1/p -
APok(y B)Szpcg/f

We estimate

CM(272N(’Y*5))1/1)
< ( / (AP22N(=5))(1 — )
0

201\4(2*N<‘/*3))1/P
s ( Q)w

Cpr (22N (v=8))1/p

S Nl/r

s (B.r) S < N7 provided that § < 7.

The calculation for ol < B is very similar, except the integration is over A €
[0, Car (242N (B=7))1/P] and the corresponding integrals for the parts I and IT are ex-
tended from 0 to Cu(2NB=/P and from Cy(2NB=)/P to Cpp (212N E=)/p
respectively. Again the first term gives an O(1) contribution and the second one an
O(N'/) contribution. Summarizing we get
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N<k<2N

(7[ Z AP27 kﬁmeaSEl) ()\)y/p%y/rSNl/r. (5.12)
0

A similar (and easier) calculation shows that one has the corresponding bound when
r = o0 as long as § # . We now estimate the error term; we show in fact the stronger
inequality

oo

r/ 1/r
/ S Hmeas B (V)] p%) <oV (5.13)

0 N<k<2N

for » > p. We discretize the integral in A, use the embedding /7 — ¢7, then the change
of variables o = A\2¥(=#)/P and then the formula for the LP-norm via the distribution
function to estimate the left hand side of (5.13) by

1/
Z /)\PQ kﬁmeasE,SéﬂA)%) "

N<k<2N )
N, (k) do 1/
g
9=ky 5P . _)
Z / oPmeas{z : | Z eip(z)| >0} -
N<k<2N } i=1
1/p
> 2kﬂ\§5 ) e
N<k<2N

here we used (5.10) with M large. This finishes the proof of [|Fy n|[g: () S N'/" and

since the Fourier transform of F, x is supported where |£| > 1 we may replace B;(ﬁ, 7)
with By (v, 7). Thus (5.7) is now proved, and this inequality also yields HFPYHB;(B’T) <1

We now give the proof of (5.8). The proof is similar to the above but simpler. We use
(5.3a) to write

2N 1/r
IIFw,NHB;;,T:( > A 2) =L +IL
k=N+1
where
(Y H“”Zﬁ )
k=N+1 i
2N RISIC)) r1/r
TR v S
E=N-+1 i=1 p

Using the disjointness of support property of the 9;  we have
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N, (k)
127577 N ikl 21, N <k<2N

i=1

and hence I ~ N'/7 (with the obvious modification if r = o). For IT; we use (5.10) for

sufficiently large M and see that [I1;| < 27V, and (5.8) follows. We also have || F, || 5. <

1. ’
We conclude by proving the lower bound (5.6). We have for A <« 1

~(F)

1B 2 Do X027 k'ymeas{x | Z Hiw (@ }zfg_ug
N<k<2N
where

(k)

=x % e meas{ai| Y din(@)] > 2}
N<k<2N i=1
N, (k)

In =\ Z Q*Mmeas{x: | 6i,k(x)| > )\}.
N<k<2N i=1

By the support properties of the ¥; ; and by (5.1a) we have for sufficiently small A

o, (k)
meas{z | Z Vi ()| > 2)\} >N, (k)27 ~ 2k

and hence I, > N'/?. By (5.10) and Chebyshev’s inequality

N, (k) »
me 3 w3 el 5o
N<k<2N i=1 p
and combining the two estimates we get for sufficiently large N the desired lower bound
||F’ ,00) 2 CNl/p‘
Finally
N (k) 1/p
sup)\(z Z Q*Mmeas{m*e/ﬂ Z 77i,k| > A})
£>1 20 < <26+ =1
N (k) 1/p
> sup€2—é/P supa( Z 2_’”meas{{ Z ni,k| > O’})
>1 >0 9t <2+ =1

pe sup€2*£/pao(28)1/p =00
>1

for sufficiently small o9 < 1, and we see that F, ¢ B;(fy, o00). O
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The counterpart of Proposition 5.1 in the range v < —d is as follows.

Proposition 5.2. Let f. ; be as in (5.4). Let s € R. Assume v < —d and define

Fy n(z) = Z 27k k(x) (5.14a)
—2N<k<—N
and
Gon(x)=22NG—9F, v (28N a). (5.14b)

(i) Then for 1 < p <r < oo,

||G’YN‘Ba'yoo)_||F’YN|BS'yoo) Nl/p
||G'YN‘BS(BT)*”F ﬂr)NNl/Ta fOTﬂ#’y,
Gz, = 1Bl ~ NV

(7t) If p < oo, then F' =73 ,o, EZ’Z/Z’F%QZ belongs to (., BZT and to ﬂ7>p ([3, T)
. - B#Y
but not to By (7, 0).
(ii) If p < oo, then Gy = 35, €27 /PG, 50 belongs to Nvsp By and to r>p By (B,7)
B#y

but not to By (7, 0).

Sketch of proof. The proof of the bounds for F, y is exactly analogous to the correspond-
ing arguments in Proposition 5.1. Observe that the parameter k now varies between —2N
and —N and since y < —d we now have 9, (k) = [2F(@+7) | = [2IFll4+71] > 1. Also notice
that the Fourier transform of G, n is supported on large frequencies and therefore the
homogeneous and inhomogeneous Besov type norms for G, n coincide.

To pass from estimates for F, n to estimates for G,y we just use the dilation formulas

n(d—s
Gy 0y = 1]

4_ n
M@ gy = fllp, - O

Bs(fy )

The following two lemmas show that the assumption y # 0 in part (ii) of Theorem 1.4
cannot be removed. A combination of these lemmas gives a proof of Theorem 1.6.

Lemma 5.3. Let s € R, and 1 < p < oo. There exists f € ﬂr>p o Which does not
belong to BZS,(O7 00).

Proof. Let 7, be a Schwartz function such that n,(x) > 1 for |x| < 1 and 7), is supported
in {£:|¢] <275} For k > 2 let
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iokg, logk
fila) = () = 2

and f(z) =Y 42527 fr(z). Then Ly f =275 f; and thus

(S 2 ms@r) (Zm )

k>2

S e (@) (Y k7 log k") < Clp 1) o)
k>2

with C'(p,r) < oo for r > p. Hence f € F;T for all r > p.
For A < 1 we have

Ao{(z, k) « | P* f (2, k)| > AP/P

1/p
> A( Z meas{z : |z| < 1/4})
k>2
E~1/Plog k>A

> c/\< 3 1)1/p > clog A1

2<k<c(%)p
so that f does not belong to B;(O, o00). O

Lemma 5 4. Let s € R, and 1 < p < co. There exists g € B;(O, 1) which does not belong

to Ur<p p,r°

Proof. As in the proof of Lemma 5.3 let 7, be a Schwartz function such that n,(z) > 1
for |x| < 1 and 7, is supported in {£ : |£| <275}, For k > 2 let

2z

no(x)e

gk(x) = kl/p[logk]g

and g(z) = > ;.52 " gi(z). Then Lyg = 27" g, and thus

)3 2’“T|Lkg<x>|r)”r=( > o)’

2<k<2N 2<k<2N
r r\1/7 r
> @l Y K /Pllogk|72) " > Clp, 1N/ (log N) ()]

N<E<2N

with C(p,7) > 0and 1 — £ > 0 for r < p. Integrating its p-th power over {x : |z| < 1/2}
and letting N — oo we see that f ¢ inr for all » < p.
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Now let,

Epm = {(x, k) : 271 < Jz| < 2¢, 271 <k < 2™}, for (£, m) € N2,
Eom = {(z,k) : |z] <1, 2™7! <k < 2™}, for m € N.

Then pio(Epm) =~ 2™ and
lgr(z)| Sn 27™/Pm 227N if (2,k) € Epm,

for any (¢,m) € (N U{0}) x N. Therefore

Pég(e k)| = < 9—U(N=d/p),—2 ~Lem ")
|P*g(x, k)| = |gx(z)| SN eZ;le p1o(Eem)'/P

Choosing N > d/p we see that P*g € LP'} (1) and since g(¢) = 0 for |£] < 1 we obtain
g€ B30,1). O

6. Proof of Theorem 1.8
We use a result in [10], namely for v € R\ [-1, 0]
[Q1,1+'yf]L1’°°(u7) S ||fHB'V(]Rd)' (6.1)

Since Q1. (1-4)/p I < Q1,141 2l flly )P, we have

1—1 1
||f||311j/17(%oo) = [Ql,HTWﬂLPv‘X’(VW) S Hf||vof [Ql,l-«-'yf]zl,oc(yv)a

which combined with (6.1) gives

[FAPVETINS < Il ||f|| (6.2)

for every vy € R\ [-1,0] and 1 < p < o0.
We can interpret inequality (6.2) as an imbedding result for the real interpolation
space [V, BV]p, with § = 1 and get,

170370 ey S Wl 501, - (6.3)

For this argument, see [4, p. 49] (specifically a combination of formula (1) and Theorem
3.5.2(b)). O

Remark. Concerning Remark 1.13, by the reiteration theorem ([4, Theorem 3.5.3]) w
have [V, BV]. | [V®,BV]. ], = [V™, BV] oo Drovided that 1 < py < p <
Po’ p1’ 100
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p1 < oo and % == + . Hence [V*°, BV] embeds only into [B%po (v, oo),B;{pl (v,

00)]g,00 (a weaker conclusmn than embeddlng into B,l,/p(fy, 00)).
7. Harmonic and caloric extensions

In what follows let ¥ be a sufficiently well behaved integrable function with
J () dz = 0, specifically we will take ) as one of ¥1y, V(2,;), ¥(3), ¥(a,;) Where

Yy (€) = [Ele™, oy (€) =i e,

~ 2 ~ (7.1)
P (€)= Il P () =ige

or we could also take 1) = 15 = [ ~dp(s71)]|s=1 for any ¢ € S(RY). Let 1, =
t=4)(t=1.). Classical results on characterlzatlons of Besov spaces ([55], [53, Chapter V.5,
Proposition 7], [57, Chapter 1.8]) yield the inequality

// “Pyoe f@ dr L <71, (7.2)

forfEWS’p, 1<p<ooand 0 <s<1.
With 1, 1 as above, define, for f € Bf;(%r) with 0 < s < 1,

KV fa,t) =t 0y * fo(x)

where f, is any representative of f modulo constants. Recall from (1.15) that d\,(z,t) =
=t dt da.

Proposition 7.1. Let 0 < s <1, 1 <p,r < oo and v € R. The operator K*+% is bounded
from B;(fy,r) to L7 (\y).

Proof. We take (sg,po), (s1,p1) and 6 such that (1.17) and (1.18) holds, and 0 < s < 1,
O<31 <1l,1<py<ooandl<p; <oo. Recalls—l—% :si—i—%, and observe that for

f € By v
S+p Pi
‘//. |IC tlf;$ t | dzdt = ﬂt— lpl|1/)t*f0 )‘pz

where f, € W*"Pi is a representative of f modulo constants. It follows from (7.2) that
K**% is bounded from B; p; b0 LP (Ay). The conclusion then follows by interpolation,
in view of Theorem 1.14 and of the classical characterization of Lorentz spaces as inter-

polation spaces. O
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Corollary 7.2. Let 1 < p < oo, vy € R\ [-1,0]. Then

a+1

K% [V®,BV]1, — LP™(),)
1s bounded.

Proof. Combine Proposition 7.1 for s = 1/p with Theorem 1.8. O
7.1. Harmonic extensions: proof of Corollary 1.9

From [54, Lemma 1.17] we recall that ﬂ(«f,t) = e~!E1f(¢£) and therefore we are led
to use the function 1y and vz, for v = 1,...,d in (7.1), for formulas for ¢z5; o ;P f and
t-2Pf, respectively. We let K° f(z,t) = t'=*VPf(,t) and apply Corollary 7.2 to obtain

-~
K% flleee ) S I e, BV,

and the proof of the first inequality in Corollary 1.9 is complete. For the proof of the

+1
second inequality choose v =1 and p = 2, which is the unique choice of p,y where K
becomes VP and A, becomes Lebesgue measure on R‘iﬂ. O

7.2. Caloric extensions: proof of Corollary 1.11

Note that r%[[j}(i, r2)] equals 2|r§\26_‘T5|2f(§), and taking ¢ = (3 in the definition
of Kb = Kb, |, we get

Y f () = PO U S )] = 20 DU S t)] = 20 p ).

8
We apply Corollary 7.2 with v = 23 and observe that

28+1 28+1

Aap({(2,7) (K fy [l r)[ > a}) = %/\ﬁ({( t): My flz,t) > a}).

2841

For 23 ¢ [—1, 0] the operator K5 maps [V, BV];/,1 to LP*°(\24), and hence My
maps [V, BV]y/,1 to LP>=(\g).

For j =1,...,d we argue similar, taking ¢ = 94 ;) in the definition of Kb = le We
then have IC;’-f( r) = ritt 2 72, Uf(z, r2) and again apply Corollary 7.2 with v = 24.
Now for j =1,...,d,

Kof(er) =3 U 0| =9¢ 1),

Lj

28+1

and again we see that fJ-CjT maps [V, B'V]l/p’l to LP>°(\g). This finishes the proof
of part (i) of the corollary. For part (ii) we need dA\g = dz dt so that we put § = 1. We
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then apply part (i), for the operator W with p = 3/2 (so that 2@;1 = 1), and for the

operators % with p = 3 (so that %‘;1 =1). O
J

8. Interpolation: proof of Theorem 1.14

We use the standard retraction-coretraction argument (see [4, §6.4]). Recall that if
X = (Xo,X1) and Y = (Y, Y1) are couples of compatible normed spaces then P : X — Y
is a morphism of couples if P is a linear operator mapping Xg+ X; to Yy + Y7, such that
P: X, =Y, is a bounded linear operator for v =0 and v = 1.

IfP: X =Y, R:Y — X are morphisms of couples such that Ro P : X — X = Id,
the identity operator on X then X is called a retract of Y; R is a retraction and P is a
co-retraction.

2N
p QU NN o

Lemma 8.1. [/] Let X = (Xo, X1), Y = (Yo, Y1) be couples of compatible normed spaces
such that X is a retract of Y with co-retraction P : X —Y and retraction R then

[Xo, X1]o,r = {f € Xo+ X1 : Pf € [Yo, Y1]o,r}
and we have the equivalence of norms, || f|lx,,x11s., = I Pfllvo,vile.. -

Lemma 8.2. Suppose 1 < py < p1 < 00, and v,b € R. Then there are bounded morphisms
of couples

h— L
P’ (Bpo o 7Bp1 p1 ) = (LP(py), LP* (1))

’Y

. b—
Ry« (L7 (py ), LP* (1)) — (B, ;;8 ) Bp1 o)

Proof. The definitions of P?, R, will be independent of pg, p1 and thus one can reduce
to checking the boundedness of

. h—=2
P": By, — IP(u,) (8.1)
Lbh—2
Ry o LP(py) = Bpp” (8:2)

for 1 <p < co.
Recall Ly = ¢(27 kD), Ly = 3(27%D) with ¢ as in (1.2) and @ as in (2.2), satisfying
Ly = LyLy, = LiLy. Let P? be as in Definition (1.1). For F € LP: "(py) define Fy(z) =
F(z,k) and RyF(z) = 70 12~ koL, Fr(z).
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Note that PP : B Wp —> Lp( ~) is an isometric embedding, for 1 < p < co; moreover
Rbe is the 1dent1ty on Bp p" . It remains to show that R, maps L?(u,) boundedly to
b—
Bm, . Indeed we have LkLk+j =0 for |j| > 2 and thus

1
LRy F(z) = 2% ) 2~ A Ly T Froy ()
j=—1

and, defining T;F(x, k) = ka/k+ij+j (z) for j = —1,0, 1, we see that

1
HRbFH b—2 Z 1T5F Nl e ()

Bypp” j=—1

and the boundedness of Ry follows from

~ N\ Ve
1T Fllzagu) = (D2 IEaLassFrrsllfa27)
keZ

1/q )
(Z ||Fk+]HLq (k5)y ) S ||FHL‘7(/J,.Y)a J= —170, 1. O
keZ

Proof of Theorem 1.14, conclusion. Our choice of v allows us to define

b::so—|—lzsl+l-
Po p1

We apply Lemma 8.1 with X, = BY, J/P Y, = LP»" (i), v = 0,1and P = P’ R = Ry,
as in Lemma 8.2. We then use the standard interpolation formula [LPo, LPt]g . = LP"
for (1 —6)/po +0/p1 = 1/p, sce [4], and the definition B (7, 7) via the operator P,. O

Proof of Corollary 1.15. (1.20a) follows from Theorem 1.14 by the reiteration theorem
for the real method. (1.20b) for general qg, q; follows since for 1 < r; < oo and v # 0
given by (1.17) we have by part (ii) of Theorem 1.4
Byi(y,1) = iy s B s B s Bri(y,00). O

Remark. Asekritova and Kruglyak [2] obtained real interpolation results for triples of
the Besov spaces (B9 , . Byl . Bp2 . )g,. with Z?:o 6; = 1 (or more generally (¢ + 1)-
tuples of such spaces with ¢ > 2). Under the crucial additional assumption that the three
points ( ,8i), 1 = 0,1,2 do not lie on a line the interpolation spaces is identified with
the Besov—Lorentz space BS(LP") where (%, s) = Zf 0 ( 8;). The result for triples

does not seem to have an implication on the interpolation of couples of Besov spaces (see
also [1]).
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Remark. One could also use more directly results on real interpolation of weighted
spaces, namely the identification of [L”°(w), LP* (w1 )]g,q in work by Freitag [26] and by
Lizorkin [42].

9. Interpolating Besov spaces through differences

In this section we provide a direct proof of (1.19) in the case M = 1, which is directly
based on the characterization using first differences. Suppose 0 < s < 1, 1 < p < oo,
1 <r < oo, for pg < p < pp so that s; ::s—I—v(%—p%) satisfy 0 < s; < 1 for i = 0,1,
and 0 € (0,1) such that 1p;09 + pil = %. We will prove that for all functions f : R — C

: 1/s 17s
in W #sosPo +W 171017

HQ1,3+%f||LT’v"(u7) ~ ||f||[Wsovpo,W$1wP1]9,,. (9'1)

The alternative proof goes by a retraction argument based on differences. One uses
Lemma 8.1 once the following proposition is established.

Proposition 9.1. Let b € R with 0 < b — v/p < 1. There is a bounded operator A, :
LP(vy) — WP %P such that ApQap is the identity on Wh=oP,

That is, we have the following retract diagram

LP(vy)
w TN
—%,p id Wb—

5
P

Wb

The proof of the proposition is inspired by the metric characterization of sums 020
W#P1 due to Rodiac and the fourth named author [49].

Fix y € R and 1 < p < o0. Fix ¢ € C°(R?) with [ ¢ = 1 and support inside By (0)
and let

Y(y) = —d(y)d — (y, Vé(y)).

Integration by parts shows that [¢(y)dy = 0. For ¢ > 0 define ¢;(y) == t%d)(%) and
Vi(y) = 729 (¥); one verifies that for all ¢ > 0

d
Yi(y) = t%qbt(y). (9.2)
In what follows we set

Oe(2,y) = ot ()¢ (y)- (9.3)



O. Dominguez et al. / Journal of Functional Analysis 284 (2023) 109775 45

Suppose that F' € LP(v,) is compactly supported in R? x (R4 \ {0}). We then define

1/e
bl = [ [ [FempPote —y—bo-yanay. @9

€ RIRd

Since ¥ is supported in By /2(0) x By/2(0) it is clear that for ¢ > 0 and for F' with the
above support property the integral in (9.4) converges absolutely, and defines A; . F' as
a smooth function. Under the additional restriction 0 < b — % < 1 the following result
extends A . to all of LP(v.,) and establishes the existence of the limit A, = lim._,o Ap .
in the strong operator topology.

Lemma 9.2. Let b€ R with 0 < b — % < 1. Then the following holds.
(i) For € > 0, the maps Ap . extend to bounded operators

Ape LP(vy) — Wbi%’p,

with operator norm uniformly bounded in ¢.
(ii) The operators Ay . converge to a bounded operator

Ay LP(vy) — WP,

~1, =0 forall F € LP(v).

in the sense that lime_o ||Ap  F — AbF||Wb

Proof. Let F' € LP(v,) and assume in addition that assume that F' € L”(v,) is compactly
supported in RY x (R%\ {0}). Set

Ah,hﬁt(uv 'U) = ﬁt(u + ha v+ h) - 'lgt(uv v)'

Then

1/e

dt
Ap Ay F(z) = / //F(y,Z)IZ\bAh,hﬁt(w —y—zx—y)dz dy—

£ R2d

and we estimate
AR A F(z)| < I(x,h) + II(x,h) + I1I(x, h)

where

dt
I(x, h) ::///|F(y,z)||z|b|Ah7hﬂt(x—y—z,x—y)|dzdy7

Ihl R2d
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||
1) = [ [ IF 2l e+ h =y - 2o+ h— )] azay
0 R2d
||
III(z,h) ::// |F(y,z)|\z|b|19t(x—y—z,x—y)|dzdy%.
0 R2d

Setting
1 1/p
Tp(t) = (2 [F(y, 2) || dz dy
t
R |z|<t

we estimate, using Minkowski’s inequality,

e / i
. dt
11( 7h)Hp_/ 12d |#(y, 2)l[2]" dz dy L7 (dx)

|| le+h—y|<2t |z|<t

h 1/p
*_/| |H<t2d / / ‘F(yaz)\p‘z|bpd2dy) HLP(dw)dt

|| |z+h—y|<2t|2|<t
|h|
) Jp(t) dt.
||
Similarly we get
|h\1
126+ TGl S [ 37,00t
0
We then have, uniformly in € € (0, 1),
||Ab,EF||Wb—%,p - ||Ql,bAb,EFHL:D(V,Y)
| " dh Y/
b b P p
—J(t)dt| ——

which we estimate (using Hardy’s inequalities) by

. (7(/ th(t) dt)prpr(cbli%)p)

o

([([20a) )

0 T

=
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(/ (Jigt)>ptpt1+(bdt;1)p); + (/ (th(t))ptptpr(gt;)p);
0 0

N

T
P, |bp ~
//\F(y,z)\ || /tlﬂb_%)ﬁd dzdy [ ~|FllLe,)-
de |Z|

This establishes part (i) of the lemma, first for F' compactly supported in RY x (R%\ {0})
and then, by a density argument, for general F' € L”(v,). The above argument also shows
that ||Ape, F — Ab,EzF”Wb—%,p — 0 as €1,62 — 0 and thus A, . F converges in Wh=oP

to a limit Ay oF'; moreover Ay defines a bounded operator LP(v,) — WbsP. o
The proof of Proposition 9.1 is now completed by the following lemma.

Lemma 9.3. Let b € R with 0 < b — % < 1. Then ApyQipf = f, forall f € Wh—eP,

Proof. Note that Qi : Wb LP(v,) is an isometry. As Ay : LP(vy) — W2 is
bounded, by Lemma 9.2, and since Cgo(Rd) is dense in Wb=V/PP_ it suffices to prove
ApQipf = f, for all f € C(R?).

By (9.2) and (9.3) we get for each x € RY

Ab,a Ql,bf(x) = AO,E Ql,Of('r)

1/e

= [ [ [ut+m - syt —y—nEiode - landyar
e RdRd
1/e

— [ [ 6@ - rwpota - 2 Glorte - ] dzdya

L i
=0—1//5///f<y>¢t<x—z)%[¢t<x—y)]dzdydt
A

where we used [p, 2[¢y(z — y)]dy = 4 [o,di(x — y)dy = 0 to integrate the term
involving f(z). We may now integrate in z and ¢ in the last display, using that [ ¢; =1
to obtain for f € C2°(R?)

Ay Q1o f () = / F(0) ($e(@ — ) — brje(x — 1)) dy.
Rd
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Letting € — 0 we obtain 4,9 ,f = f for f € C*(R%). O
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No data was used for the research described in the article.
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