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SUMMARY

Point processes are probabilistic tools for modelling event data. While there exists a fast-
growing literature on the relationships between point processes, how such relationships
connect to causal effects remains unexplored. In the presence of unmeasured confounders,
parameters from point process models do not necessarily have causal interpretations. We
propose an instrumental variable method for causal inference with point process treat-
ment and outcome. We define causal quantities based on potential outcomes and establish
nonparametric identification results with a binary instrumental variable. We extend the tra-
ditional Wald estimation to deal with point process treatment and outcome, showing that it
should be performed after a Fourier transform of the intention-to-treat effects on the treat-
ment and outcome, and thus takes the form of deconvolution. We refer to this approach as
generalized Wald estimation and propose an estimation strategy based on well-established
deconvolution methods.

Some key words: Causal inference; Identification; Intensity; Principal stratification; Unmeasured confounding.

1. INTRODUCTION

Point processes have long been used for modelling event data. The past decade has wit-
nessed a surge of interest in point process models in many fields, including neuroscience,
finance and the social sciences. In this paper, we consider the analysis of neural data as a
concrete motivation. Modern technologies allow neuroscientists to simultaneously record
neural spike trains, i.e., arrays of timestamps of when neurons fire, across the brain. With
these data, one can hope to gain insight into the mechanisms of neural computing. The
essence of such scientific questions is the inference of causal effects.
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Current technologies, however, present a major challenge for causal inference with neural
data. Except for experiments on very simple animals, even state-of-the-art technologies can
record only a very small fraction of neurons in chosen regions of the nervous system, leav-
ing the vast majority unobserved. These unmeasured neural activities inevitably lead to
the issue of unmeasured confounding; that is, unmeasured activities could be the common
causes of observed neural activities. As a result, any relationship inferred based on the par-
tially observed system may reflect, not the true causal relationship, but rather a spurious
association.

Fortunately, advances in optogenetics have created new opportunities for dealing with
unmeasured confounding. Neuroscientists are able to instigate neural activities in a living
brain via optical stimulation, which alters the activity of any chosen neuron with high spatial
and temporal precision (Mardinly et al., 2018; Carrillo-Reid et al., 2019). From a causal
inference perspective, such interventions can serve as instrumental variables for inferring
the causal relationships between neurons, as they affect the outcome neuron only through
the treatment neuron while introducing exogenous variation in the treatment neuron.

Instrumental variable methods are powerful tools for inferring causal effects in the pres-
ence of unmeasured confounding between the treatment and the outcome. The seminal
paper of Angrist et al. (1996) clarified the role of a binary instrumental variable in iden-
tifying the causal effect of a binary treatment for an unmeasured subgroup, known as
the complier average causal effect. Angrist et al. (1996) proposed two crucial identifica-
tion assumptions, monotonicity and exclusion restriction. Under these assumptions, they
showed that the complier average causal effect is identified by the Wald estimator (Wald,
1940; Ridder & Moffitt, 2007), which equals the ratio of the differences in means of the
outcome and the treatment when the instrumental variable changes from 0 to 1.

Most existing work on instrumental variables considers nondynamic settings, and the
instrumental variable methods in survival analysis focus mainly on a scalar treatment and a
nonrecurrent outcome (e.g., Liet al., 2015; Martinussen et al., 2017; Richardson et al., 2017
Jiang et al., 2018). To the best of our knowledge, there is no formal instrumental variable
framework for point processes that addresses nonparametric identification.

We propose an instrumental variable method for causal inference in the case where both
the treatment and the outcome take the form of point processes. We define several causal
quantities for the effect of the treatment on the outcome over time. Using a binary instru-
mental variable, we establish the nonparametric identification of causal effects allowing for
the unmeasured treatment-outcome confounding. The identification assumptions hold as
long as the impact of the unmeasured confounders on the outcome is additive. Our iden-
tification result implies that the causal effects can be obtained by solving a convolution
equation. This extends the Wald estimation in traditional instrumental variable methods
so that it takes the form of deconvolution, leading to the proposed generalized Wald esti-
mation. We also examine several commonly used models within our framework, studying
the identification of the causal effects and the causal interpretation of the model para-
meters with a binary instrumental variable. When the unmeasured confounders are additive
on the outcome, the causal effects are identifiable without any distributional assumptions
on the confounders based on the proposed generalized Wald estimation. Our findings justify
the identifiability of many commonly used models, such as the Hawkes process, broadening
their applicability with fewer assumptions.

We use the following notation. Let A 1L B | C denote conditional independence of 4
and B given C. Let R denote the set of real numbers and B(R) the Borel o-algebra of the
whole real line. Let L' (R) denote the set of functions f(x) such that ffooo If (x)|dx < oo.
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Instrumental variable method for point processes 3

Unless specified otherwise, in this paper we assume that all functions belong to L' (R). Let
W denote the Fourier transform, i.e., for any f(x) € L'(R) and v € R, define

o0
W) = / J(x) exp(—i2mvx) dx,
—00
where i = \/(—1). Let W~! denote the inverse Fourier transform.

2. AN INSTRUMENTAL VARIABLE FRAMEWORK FOR POINT PROCESSES
2.1. A brief review of the binary instrumental variable model

We begin by reviewing the binary instrumental variable model in the context of non-
compliance (Angrist et al., 1996). For unit 7, let Z; be the binary treatment assigned, N;
the actual treatment received and Y; the outcome of interest. Let N;. be the potential
value of the treatment received if the assigned treatment condition is z, and let Y, be
the potential value of the outcome if the assigned treatment is z and the actually received
treatment is #. The joint values of N;; and N;y define the unmeasured compliance type
U; = (Nj1, Njp). Units with (N;; = 1, Njg = 0) are compliers who take the treatment
assigned, units with (N;; = 1, Njg = 1) are always-takers who always take treatment 1,
units with (V;; = 0, Ny = 0) are never-takers who always take treatment 0, and units with
(N;1 = 0, Njp = 1) are defiers who take the treatment opposite to that assigned.

Angrist et al. (1996) make three assumptions: (i) exclusion restriction, that the treatment
assigned affects the outcome only through the treatment received, i.c., Y;., = Y./, forall z, Z/
and n; (i1) randomization, that Z; is independent of N;. and Y}, for z,n = 0, 1; (iii) mono-
tonicity, that the assigned treatment does not negatively affect the treatment received for
all units, i.e., N;; > Njo. Exclusion restriction simplifies Y;., to Yj,. Randomization rules
out confounding between the treatment assignment and the treatment received, as well
as confounding between the treatment assignment and the outcome. Monotonicity rules
out defiers. Under these assumptions, Angrist et al. (1996) introduce the complier average
causal effect as the average effect of the treatment received on the outcome for compliers,
CACE = E(Y;1 — Yio | Niit = 1, Njp = 0), and show that it is identified by

EY;|Zi=1)—-EY;|Z =0)
CACE = . (1)
EN;i | Zi=1)—EN;| Z;=0)

In this model, the treatment assignment Z; is the instrumental variable. The expression in
(1) suggests the Wald estimator (Wald, 1940) for the cAck, i.e., the ratio of the differences
in means of the outcome and the treatment received when the treatment assigned changes
from 0 to 1.

Angrist et al. (1996) identify only the treatment effect in the complier subpopulation.
For extrapolation to the whole population, we can invoke the homogeneity assumption (cf.,
Heckman, 1996; Chen et al., 2009) that the treatment effect is the same across compliance
groups:

E(Yy — Yo | Nii, Nip) = E(Yi1 — Yi). (2)

Under the assumption in (2), the treatment effect in the whole population equals the CACE.
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Fig. 1. Neural data from Bolding & Franks (2018a) and the causal diagram depicting the relationships among
the variables in the instrumental variable framework: (a) spike trains collected in the mouse olfactory bulb in
the stimulated (blue) and unstimulated (red) trials, where each row represents a spike train in the olfactory bulb
in one trial (;) and the shaded area represents the duration of the light pulse; (b) spike trains collected in the
mouse piriform cortex in the stimulated (blue) and unstimulated (red) trials, where each row represents a spike
train in the piriform cortex in one trial (Y;); (c) zoomed-in view of two randomly selected trials, where the solid
curves are the smoothed intensities; (d) causal diagram for the relationships among the variables, where variables
in the solid square and circles are observed, the variable in the dashed circle is unobserved, and the subscript 7
denotes the ith unit.

2.2. Notation and basic assumptions with point process treatment

We now consider a setting where both the treatment N; and the outcome Y; are point
processes. We will establish a ratio relationship similar to that in (1) for the point process
treatment and outcome, but in the frequency domain. As a concrete example, we consider the
neuroscience application from Bolding & Franks (2018a). In this application, the treatment
and the outcome are the neural activities of the mouse olfactory bulb and piriform cortex
within each brain region, respectively. In experiments at the single-cell resolution, one can
also model single-neuron activities as the treatment and outcome. As shown in Figs. 1(a) and
(b), these data take the form of spike trains that are commonly modelled as point processes.
Bolding & Franks (2018a) applied light pulses to randomly selected trials to stimulate the
olfactory bulb without affecting other brain regions. Therefore, the light pulse serves as an
instrumental variable. To formally discuss causal inference, we need to generalize the model
in Angrist et al. (1996) to account for the point process treatment and outcome.

Leti = 1,...,m index the units. We use point processes to describe the neuronal activi-
ties; see, e.g., Cox & Isham (1980, Ch. 2) or Daley & Vere-Jones (2003, Ch. 3). Define the
treatment point process N;(-) as a family of random nonnegative integers {N;(4)}4cBR)
that count the number of events in each set 4. Let dN;(r) = N{[z, ¢+ d¢)}. Throughout this
paper we consider point processes that are simple, pr{d/N;(z) = O or 1 for all t} = 1, and with
bounded intensity, pr{d/N;(z) = 1}/dz < oco. In a similar manner, we introduce the outcome
point process Y;(-). We focus on a binary instrumental variable, Z; € {0, 1}, and present
results for a discrete instrumental variable in the Supplementary Material. Without loss of
generality, we assume that the onset of the instrumental variable is at time 0, and that N;(-)
and Y;(-) are observed from 0 to 7. To avoid cumbersome bookkeeping, we constrain the
processes to the observed period and ignore the history before time 0, and we write N;([0, ¢])
as simply N,(7).
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For ease of discussion, we first consider the case where the treatment N;(-) is a point
process with at most one event. We refer to N;(-) as a single-point process if N;(T) < 1. We
will extend the method to a general point process in § 3.2. We can characterize a single-point
process N;(-) using its event time: define 7; = T if Ni(T) = 0 and 7; = 7 if N;(r) = 1 for
t>7tand N;(t) =0fort < t.

We adopt the potential outcomes framework under the following stable unit treatment
value assumption (Rubin, 1980).

Assumption 1. There is no interference between units and there are no different versions
of the instrumental variable and the treatment process.

Assumption 1 rules out the spillover effect of other units’ instrumental variable on one’s
treatment process, and that of other units’ instrumental variable and treatment process on
one’s outcome process. It also requires that there be only one version of the instrument and
the treatment process. In our motivating example, one unit corresponds to one trial, and
trials conducted at different times may use the same mouse. The no-interference assump-
tion would be violated if the neural dynamics of a mouse were to adapt to stimulation over
time, causing activities in one trial to depend on previous trials. This phenomenon is known
as neural plasticity. To restrict spillover between trials, adequate washout periods are incor-
porated to separate trials sufficiently apart. As a result, we can reasonably neglect spillover
effects. Furthermore, uniform stimulation is employed to ensure that there is only one ver-
sion of the instrumental variable. For the treatment process, we follow the common practice
in neural data analysis of focusing on the effect of the timings of spikes, ignoring the vari-
ation in spike intensities (cf. Brillinger, 1988; Yu et al., 2009; Wu et al., 2017; Zhao & Park,
2017).

Assumption 1 allows us to define the potential values as a function of a unit’s own
instrumental variable and treatment process. Let N;.(-) and Y;.(-) be the potential pro-
cesses of the treatment and outcome, respectively, and let 7;. be the potential event time
of the treatment process if the instrumental variable were set to Z; = z. Also, define
Y-z (-) as the potential process of the outcome if the instrumental variable were set to
Z; = z and the event time were set to 7; = 7. By definition, the two versions of the
potential outcome process satisfy Y;-(-) = Y. 7.(-). The observed treatment process is
Ni(-) = ZiNjy(-) + (1 — Z;)Njo(-), and the observed outcome process can be written as
Yi() = ZiYn() + (1 — Z)Yip() or Yi() = Z;iYi. () + (1 — Z)Yip: () if T;i = 7. We
assume that {Z;, Ni-(-), Yi-z(-) : z =0,1; 7 € [0,T] U T*};”:1 are independent and iden-
tically distributed, and hence the observables {Z;, N;(-), Y;(-)}7_, are also independent and
identically distributed. We abbreviate N;(-) to N; and Y;(-) to Y; when no confusion is likely
to arise. In our motivating example, the experiment is carefully designed to ensure that the
trials are independent and identically distributed. For instance, the optical stimulation is
targeted at the same location with the same chosen power to eliminate unintentional vari-
ability, and thus ensures an identical distribution condition; the trials are separated with
adequate washout periods to ensure independence between units; and the power of optical
stimulation and the length of the experiment are limited to avoid physical damage to the
neural circuits.

In addition to Assumption 1, we impose the following three assumptions throughout the
paper. First, we generalize the exclusion restriction assumption of Angrist et al. (1996).

Assumption 2 (Exclusion restriction). We have that Y, = Y. forz,zZ/ =0, 1 and all i.

Assumption 2 means that the instrumental variable affects the outcome only through the
treatment. It holds in optogenetic experiments since only the targeted neurons respond to

€202 Iudy €0 uo Jasn Asjesiag “eluioyied Jo Alun/AleIar YiesH 211and Aq G618669/S00PESEASWOIN/EE0 L 0 L/I0P/S[0ILE-S0UBAPE/OIOIG/WOS"dNO"olWUSPEdE//:SARY WOy POpeojumod



6 Z. JIANG, S. CHEN AND P. DING

optical stimulation. Under Assumption 2, we can simplify Yj.; to Y;;. There are two ways
of describing the potential outcome processes under Assumption 2, namely Y;: and Y;;. We
will use Y;1 and Yjo to represent the potential processes if the instrumental variable were
setto Z; = 1 and Z; = 0, respectively, and use Yj; to represent the potential process if the
event time of N; were set to 7, = .

Second, the following independence assumption holds automatically because trials are
randomly selected for optical stimulation.

Assumption 3 (Randomization). We have that Z; 1L {N;.(-), Yiz(-) : z € {0, 1}, T € [0, T]U
T}

Assumption 3 implies that Z; 1L {7, Yi-(¢) : z € {0, 1}, t € [0, T]} under Assumption 2.
It allows for the identification of the intention-to-treat effects of the instrumental variable
on the treatment and the outcome. However, it is insufficient for identifying the effect of the
treatment on the outcome, owing to the possibility of unmeasured confounders.

Finally, we make the following no-anticipation assumption because the event time of N;
at a later time cannot affect Y; at a previous time.

Assumption 4 (No anticipation). We have that Y. (t) = Y;./(¢) for t,t’ > t and all i.

Assumption 4 is well known in causal inference with time series data (see, e.g., Bojinov
& Shephard, 2019). The use of a nonstrict inequality sign, instead of a strict inequality
in Assumption 4, indicates that the effect of N; on Y; is not instantaneous. Replacing the
nonstrict inequality with a strict inequality would allow Y;;(t) # Y/ (7) fort < 7/, i.e., the
event at time t has an effect on the outcome at the same time. The nonstrict inequality in
Assumption 4 also implies Y;7+ = Y;7 because the event at time 7 does not have an effect
on Y;in [0, T].

Under Assumptions 1-4, the relationships among Z;, N;, Y; and the unmeasured con-
founder U, can be illustrated by the causal diagram in Fig. 1(d). The randomized stimulation
Z; affects the treatment N;, which in turn affects the outcome Y;. Because the treatment N;
is not randomized, unmeasured confounders U; may exist between N; and Y;.

2.3. Definitions of causal effects with point process treatment and outcome

We are now ready to define the causal quantities of interest. First, we define the average
causal effect, ACE, of the instrumental variable on the treatment and outcome processes
at time 7 as ACEy () = E{N;1(f) — Nj(?)} and Acey(¢) = E{Y;1(¢) — Yo(1)}, respectively.
Although ACEy (7) and ACEy (f) are possible quantities of interest in the experiment, they do
not directly answer the question of how the treatment N; affects the outcome Y;. Therefore,
we define the AcE of the treatment process on the outcome process as

ACE(t; Tla TZ) = E{ I,l"[l (t) - I,l"[z(t)}a Tla TZ € [0: T] U T+: Tl 2 7525 (3)

which characterizes how the change in the event time of N; from 1, to 71 affects Y; at time
t. A positive ACE(t; 71, 7o) With 71 > 1o implies that a later event in the treatment process
increases the expected outcome process at time ¢. This effect varies over time ¢ and depends
on the two event times t; and 7. We define the average causal effect rate, ACER, of N; on Y;
as

. ACE(t; T + AT, T) oE{Yiz (1)}
ACER(f;T) = lim = .
AT—0+ AT ot
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The AceErR measures how fast E{Y;;(¢)} changes given an infinitesimal change in the event
time 7. This concept is similar to the infinitesimal shift function defined in Lok (2008). Under
Assumption 4, we have

ACE(L;T1,T2), Tp < T <,
ACE(%;T1,T0) = JACE(;1,T0), T <t<T
0, I< 1 <1,

and thus Acer(#; 7) = 0 if r < t. When the treatment is a single-point process, we have the
following relationship between the ACE and ACER of the treatment:

71

ACE(%; 71, T2) :/ ACER(f; T) dT. 4)

©

Therefore, we can focus on the ACER because it determines the ACE.

Under Assumption 3, the Acgs of the instrumental variable on the treatment and out-
come processes can be identified by the observed differences between the stimulated and
unstimulated groups,

ACEN(D) =f(1), f(0) =E{Ni() | Zi =1} — E{Ni(n) | Z; = 0}, (5)
ACEY (1) = h(n), (1) = E{Yi(n) | Z; = 1} — E{Yi(1) | Z; = O}. (6)

However, Assumption 3 is insufficient for identification of the AcE and ACER of the treatment
process on the outcome process, because the treatment process is not randomized.

3. NONPARAMETRIC IDENTIFICATION AND ESTIMATION

3.1. Nonparametric identification with a single-point process treatment
We begin by generalizing the monotonicity assumption of Angrist et al. (1996).

Assumption 5 (Monotonicity). Foreach i, the potential event times of N; satisfy 7;1 < 7.

Assumption 5 requires that the potential event time of N; under stimulation be no later
than that without stimulation. Under Assumption 5, the AcCE of the instrumental variable
on the treatment process at time 7 equals the proportion of a subpopulation defined by the
joint potential event times of N, i.e.,

ACEN(T) =pr(Th <1 < Tp), tTel0,T]

Units in this subpopulation would have the event time of the treatment process before or
equal to t with stimulation and after ¢t without stimulation. Thus, these can be viewed as
the compliers whose treatment is positively affected by the stimulation. With a point pro-
cess treatment, the definition of compliers is time-dependent. Similarly, the other three sub-
populations, 7o < v < T;1, max(7;1, Tio) < v and T < min(7;1, Tj), generalize the defiers,
always-takers and never-takers in the binary instrumental variable model, respectively.

We cannot validate Assumption 5 since it depends on unit-level potential outcomes. How-
ever, Assumption 5 implies a testable condition that can be checked using the observed
data.
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PROPOSITION 1. Under Assumption 3, Assumption 5 implies that for all T € [0, T],
pr(Ti> 7| Zi=1) < pr(Ti > 7 | Z; = 0).

Proposition 1 states the stochastic dominance of the survival function of 7; under stim-
ulation over that without stimulation. We can assess Assumption 5 by comparing the
empirical survival functions of 7; in the stimulated and unstimulated groups. If the two
curves cross, then the testable condition in Proposition 1 is violated, which in turn falsifies
Assumption 5. Therefore, our identification results will consider scenarios both with and
without Assumption 5.

Angrist et al. (1996) showed that the effect of the instrumental variable on the outcome
equals the product of the effect of the instrumental variable on the treatment and the effect
of the treatment on the outcome. The following theorem generalizes their result to our
setting.

THEOREM 1. Suppose that N; is a single-point process and Assumptions 1-4 hold. For any
tel0,7],

T
ACEY () = / E{0Yin(1)/07 | To < 7 < Ta) pr(To < < Ti) dr
0

T
- / EW@Ye()/i7 | Th <t <To)pr(Ta <t < Toyde. (1)
0

If, in addition, Assumption 5 holds, then for any t € [0, T we have

T
ACEY(1) = —/ E{dYir(0)/07 | Ta < T < Tio} ACEN(T) dT. ®)
0

In Theorem 1, 8 Y;- (#)/d7 is a generalized derivative that may consist of Dirac delta func-
tions (Lax, 2002, Appendix B). Since the conditional set 7;; < t < T;p depends on t, it is
important to be aware that E{dY;;(1)/dt | Tii < © < Tio} = 0E{Y;ip () | Ti1 < T <
Tio}/07'| /=7, which is generally not equal to dE{Y;- (¢) | T1 < t < Tjp}/0t that takes into
account the change of the conditional set.

By rewriting ACER(?; 7) as E{d Y (¢)/dt}, we can view E{0 Y (f)/ot | Ti1 < T < Tjp} as
the ACER in the subpopulation 7;; < t < Tj. In a sense, E{0Y;(¢)/ot | Ta < Tt < Tio}
generalizes the complier average causal effect in the binary instrumental variable model.
Similarly, E{0 Y;;(£)/97 | Tio < © < T;1} generalizes the average causal effect for the defiers.
These conditional expectations may not equal the ACER because Y;; (¢) and (7;1, Tip) may not
be independent, because of the unmeasured confounding between N; and Y;.

The formula in (7) shows that the average causal effect of the instrumental variable on
the outcome process, ACEy (#), equals the difference between the weighted averages of the
two subpopulation ACERs over the timeline. The weights rely on the joint distribution of
(Ti1, Tio). When Assumption 5 holds, the first term on the right-hand side of (7) vanishes
and the weight pr(7;; < t < Tjp) is equal to ACEx (7). As a result, (7) reduces to (8) under
monotonicity.

Under Assumption 3, ACEy (f) and ACEy (¢) are identifiable. Thus, we can view (7) and (8)
as integral equations for the subgroup Acgers (Newey & Powell, 2003). Unfortunately, these
subpopulation ACERs are not identifiable without additional assumptions. To provide some
intuition, consider (8) under monotonicity. Based on the observed data, (5) and (6) give the
identification formulas for AcEy (7) and Acey(7) for all ¢z, € [0, T] under Assumption 3.
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So (8) is an integral equation for the unknown quantity defined as y (t, ) = E{0 Y;; (¢)/07 |
Ti1 < t < Tip}. Consider a discrete approximation of y (t, ¢) by evaluating its values over a
K; x K> two-dimensional grid of (t, #). Equation (8) generates only K> equations by con-
sidering the K5 grid of #, which cannot provide identification of the K; x K> unknown
values of y (-, -). Consequently, identification of the ACERs is infeasible without additional
assumptions.

To address this problem, we make the following identification assumption.

Assumption 6 (Stationarity). We have that ace(t; t1, 12) = ace(t—1; 11 —12,0) for71 > 1
and all 7.

Assumption 6 states that the Ace of the treatment on the outcome is invariant under
timeline shifts. The left-hand side is the effect of the treatment when the event time is 1
versus 7 on the outcome at time ¢. In contrast, the right-hand side represents the same
effect, but with the timeline shifted forward by 7p. Therefore, Assumption 6 means that
the ACE of the treatment is invariant regardless of the absolute time. Under Assumption 6,
we have ACER(#; T) = ACER(Z — 7;0), and thus can simplify ACER(Z; T) to ACER(¢ — ) with
ACER(t — 1) = 0 if # < 7. We show in the Supplementary material that, if E{Y;7+(?)} is
constant for all ¢, then, Assumption 6 leads to

ACER(£;0) = —dE{Yio(1)}/0t. (9)

The formula in (9) offers a more natural interpretation of the ACER, that is, —ACER(Z;0)
describes the expected rate of change in the potential outcome at time ¢ when the event in
N; happens at time 0. The next theorem gives sufficient conditions for identifying the ACER.

THEOREM 2. Suppose that N, is a single-point process and that Assumptions 1-4 and 6 hold.
Furthermore, suppose that either of the following conditions holds:
(1) Assumption 5 holds and for all t,t € [0, T7,

E{0Yic(0)/97 | Tn <t < Tio} = 0E{Yiz (D)}/07; (10)
(1) forallt,t €[0,T],
E{dYiz(0)/0t | Tn <t < Tio} = EQ0Yiz(0)/07 | Tio < T < Ti} = AE{Yiz (0)}/ 0.

(11)

Then the ACER satisfies
ACER(£: 7) = {ACER(Z —1;0), t>T1, (12)

0, t<1
and
T
h(t) = —/ ACER(? — 7;0)f (1) dt (13)
0

fort € [0, T). If, further, (Wf)(v) £ 0 for all v € R, then the ACER is identified by ACER(Z;T) =
—UNG)(t — 1) for t > T and AcER(t;T) = O for t < T, where

(WA

G _ - 7
) =whHoy

eR. (14)
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10 Z. JIANG, S. CHEN AND P. DING

The condition in (10) means that the ACERs are homogenous across subpopulations
defined by 7;1 < t < Tjo with different values of 7, generalizing the homogeneity assump-
tion in (2). Without monotonicity, the condition in (11) further requires that the ACERs be
homogenous across subpopulations defined by 7,0 < t < 7;1. As with the instrumental
variable methods in survival analysis (e.g., Li et al., 2015; Tchetgen Tchetgen et al., 2015),
these conditions are satisfied as long as the impact of the confounders on the outcome is
additive. With a binary treatment and a scalar outcome, Wang & Tchetgen Tchetgen (2018)
imposed a similar condition, assuming no additive interaction between the treatment and
the unmeasured confounders on the outcome. We will study this condition in detail under
several commonly used outcome models in §4.

The deconvolution problem (13) belongs to the family of Wiener—-Hopf equations; see
Noble (1959) and other references. It is essentially the same as the well-studied deconvolu-
tion of densities in statistics (e.g., Fan, 1991; Diggle & Hall, 1993; Pensky & Vidakovic, 1999;
Johannes, 2009; Dattner et al., 2011, 2016). From the Paley—Wiener—Schwartz theorem, we
know that (¥f)(v) £ O forallv € Rif f(r) = E{N;(?) | Z; = 1} — E{N;(¢) | Z; = 0} is a
nonzero function with bounded support. This is true as long as the effect of the instrumen-
tal variable Z; on the treatment process N; vanishes in finite time. The nonzero condition
on (Vf)(v) is also employed in the nonparametric deconvolution problem; see, for example,
Fan (1991).

In the binary instrumental variable model with the homogeneity assumption, the effect
of the treatment on the outcome equals the ratio of the effects of the instrumental variable
on the treatment and the outcome. Theorem 2 shows that this ratio relationship also holds
for point process treatment and outcome, but in the frequency domain. The well-known
convolution theorem tells us that the Fourier transform of a convolution of two functions
is equal to the product of their Fourier transforms. Therefore, by applying the Fourier trans-
form to each term of the convolution equation in (13), we can obtain the generalized Wald
estimation formula (14) in Theorem 2.

3.2. Treatment with multiple events

We generalize the identification result in § 3.1 to a treatment process with possibly multiple
events. We begin by generalizing the definition of potential values and causal effects. Let
Yin()(-) be the potential process of the outcome if the treatment were set to a fixed process
n(-). The observed outcome process is Y;(-) = Y;,y(-) if N;(-) = n(-). Then we can define
the ACE of the treatment n(-) versus #'(-) on the outcome as

ACE{t;n(:),n' ()} = E{Yin)(1) = Yiw) (D} (15)

For single-point process treatments, (15) reduces to the definition in (3). Using the linearity
of expectation, we can write

ACE{t;n(1),n' ()} = E{Yin) () = Yiw (D}
= E{Yin)() = Yir+ (O} — E{Yiw) () — Yir+ (D},
where E{Y; (1) — Yir+ (1)}, and E{Y;,y)(1) — Yir4(?)} are the effects of n(-) and n'(-)

versus a null process with no events in [0, 7], respectively. As in § 3.1, we can characterize
the treatment process using event times. Suppose that n(-) has / events at times 7y, ..., 7;.
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Instrumental variable method for point processes 11

Then Y; ;) (f) can be written as Y, ... ;,(£), so its expectation decomposes as

/
EYig...qO} = EYir O} + Y E{Yigy .0 = Yigy ooy (D) (16)

s=1

with Yi¢, ... -, (0) = Yir4(?) for s = 1. The following assumption simplifies the decompo-
sition by assuming away the interactive effects of the event times in the potential outcome
process.

Assumption 7 (Additivity). We have that E{Y; ¢ ...+ () — Yig,...0, ()} = E{Yi, () —
Yir4(-)} for any s > 1 and any event times (11, ..., Ty) satisfying 71 < 7o < -+ < Tj.

Point processes with event times (ty, ..., ts) and (ty, ..., T,_1) have the same trajectory up
to time 7,1, where the former has an additional event at t;. Assumption 7 means that the
effect of the process with event times (7, ..., T5) versus that with event times (zy, ..., Ty_1)
does not depend on their common trajectory up to time 7;_;. Hence, the causal effect
remains the same when the first s — 1 events are removed from both processes. Under
Assumption 7, (16) simplifies to E{Yir,....o (1) — Yirs (0) = Y\_| E{Yir () = Yirs (),
which means that the effect of each event time on the outcome process is additive. In the Sup-
plementary Material we show that Assumption 7 holds under the Hawkes process (Hawkes,
1971) and under Aalen’s additive hazard model (Aalen, 1980) for the potential outcome pro-
cess. Assumption 7 may be violated because of the interactive effect of the event times in the
treatment process. For instance, neural ensembles are famous for their plasticity in the long
term, the ability of neural connections to reorganize themselves in response to stimulation,
which clearly violates Assumption 7. Such violations of Assumption 7 are sometimes of
scientific interest. We leave the investigation of their effects for future research.

Under Assumption 7, we can separately study the effect of each event in N;. The following
proposition generalizes (4) to treatment processes with multiple events.

PROPOSITION 2. Under Assumptions 1, 2, 4 and 7, we have

t
ACE{t;n(-),n' (1)} = —f ACER(t; T){n(t) — n' (1)} dr.
0

Based on Proposition 2, we can focus on the identification of the ACER. The next theorem
generalizes Theorem 2 to treatment processes with multiple events.

THEOREM 3. Suppose that Assumptions 1-4, 6 and 7 hold. If for all t € [0, T] and any fixed
processes n(-) and n'(+),

E{Yiny (1) = Yiwy (@ | Na(-) =n(), Nip(-) =0’ ()} = E{Yjney () — Yipy (O}, (17)

then the ACER satisfies (12) and (13). If (¥f)(v) £ 0 for all v € R, then the ACER is identified
by ACER(f;T) = —W N (G)(t — ©) for t > © and ACER(t;T) = O for t < t, where G(v) is as
defined in (14).

When N; is a single-point process, Theorem 3 does not require Assumption 7, and the
condition (17) reduces to (11) in Theorem 2. As a result, Theorem 3 reduces to Theorem 2
when N; has at most one event. Similar to Theorem 2, the condition in (17) means that the
ACERs are homogenous across subpopulations defined by N;; and Njp.
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12 Z. JIANG, S. CHEN AND P. DING

3.3. Estimation

We consider estimation of the ACER based on identification results from Theorems 2 and 3.
This is essentially the deconvolution problem commonly studied in the literature; for more
discussion see, for instance, Diggle & Hall (1993), Pensky & Vidakovic (1999), Johannes
(2009) and Dattner et al. (2011, 2016). Since deriving an optimal estimation procedure is not
the focus of this paper, we only provide a simple regression-based procedure to estimate the
ACER. To be specific, we use a two-step procedure by first obtaining the estimates of f and 4,
and then solving for the ACER from the empirical version of the convolution equation in (13).

Let f and & denote the estimators of f and A defined in (5) and (6), which equal the
empirical mean differences in the treatment and outcome processes in the stimulated and
unstimulated groups. We approximate the true ACER with truncated basis expansions: for
A el0,T],

J
ACER(A; 0) ~ Z Yi(A)B),

j=1

where J is a tuning parameter for the number of bases and {y;(-) : j = 1,2,...,J}isa
set of prespecified basis functions. Here the support of Acer(-;0) can be determined by
prior knowledge. We then estimate 8 = (fy, ..., 87) by minimizing the following penalized
£>-distance based on the convolution equation (13):

B = arg min
BeR/

J 2
h+> "= HB| +nllBl3, (18)
Jj=1 2

where * denotes the convolution between two functions and we have introduced the ridge
penalty to reduce boundary effects. An analytic solution for f is available since the objec-
tive function in (18) is quadratic in 8. Recalling that we consider independent trials, we can
choose the values of the parameters J and n using cross-validation or based on prior knowl-
edge such as the smoothness of the ACER. Denoting the selected parameter values by J and

7, the final estimator is ACER(-;0) = Z}'I=1 Vi) ,3,;;,. We can then construct the confidence
band for the function ACER(- ; 0) using the bootstrap. The asymptotic properties for ACER as
the sample size m increases follow from the standard theory assuming independent samples.
We leave the rigorous discussion for future analysis, as it is beyond the scope of the present
work.

4. THE ROLE OF MODELS: CAUSAL INTERPRETABILITY AND IDENTIFIABILITY
4.1. Conditional intensity

In this section, we study several commonly used models for point process outcomes in
applied research when an instrumental variable is available, allowing for the presence of
unmeasured confounders. We do not impose any distributional assumptions on the un-
measured confounders. Consequently, it is difficult to study the identifiability of the model
parameters themselves. We take an alternative route by connecting the model parameters
to the causal effects, and considering the identifiability and estimation of the causal effects
directly. With a binary instrumental variable, we show that the ACER is identifiable and can
be estimated using generalized Wald estimation under many commonly used models. This
estimation strategy does not rely on the identification or estimation of the model parameters,
as long as the unmeasured confounding is additive in the underlying outcome model.
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Instrumental variable method for point processes 13

We begin by introducing some additional notation to characterize a point process. Let
U;(-) denote the unmeasured confounding process on R. We use H;;— to represent the o-
algebra induced by the history up to, but not including, time ¢. We define the conditional
intensity of Y; as

Ay () = E{dYi(n)/dt | Hi-}. (19)

The conditional intensity, or intensity, is the conditional mean of the event rate of Y; in
an infinitesimal time interval [z, f + d¢), which is analogous to the conditional mean of the
outcome in the binary instrumental variable model. It fully characterizes the probabilistic
structure of a point process, and is closely related to the hazard function in survival analysis;
see Daley & Vere-Jones (2003, Ch. 7) for more discussion of the intensity.

In (19), the conditional intensity could depend on the history of Y;. When the outcome
Y; describes recurrent events, it is common practice to allow the conditional intensity to
depend on past events of Y; (e.g., Hawkes, 1971; Brillinger, 1988; Lawrence, 2004; Kulkarni
& Paninski, 2007; Yu et al., 2009; Gao et al., 2015; Macke et al., 2015; Gao et al., 2016;
Wu et al., 2017; Zhao & Park, 2017; Pandarinath et al., 2018). As concrete examples, in the
context of neural data, the dependence on past events captures the known phenomena that
a single neuron cannot fire consecutively in a very short period of time, and that activities
in a region may trigger inhibitory circuits to stabilize the activity on a longer time scale.

An inherent constraint on the intensity is that it must be nonnegative for the proba-
bilistic model to be well-defined. A similar constraint is well acknowledged in modelling
the hazard function in survival analysis. This constraint on the intensity creates a schism
in the modelling of point processes, between whether to employ a linear working model
(Aalen, 1980) or a nonnegative generative model (Cox, 1972). In either model, since U; is
unobserved, existing methods usually impose strong parametric assumptions on U; in order
to estimate the parameters. A common assumption is that U; is a Gaussian process (see,
e.g., Yuetal., 2009; Zhao & Park, 2017), primarily owing to its simplicity for the Bayesian
computation. However, the analysis can be sensitive to these parametric assumptions. We
study a linear model in §4.2 and a nonlinear model in §4.2.

Before specifying Ay (¢), we assume the following conditions on the relationships among
N;, Y; and U;, which are commonly used in instrumental variable methods when outcome
models are employed; see Tchetgen Tchetgen et al. (2015) for an example in survival analysis.

Assumption 8. The following conditions hold:

() Z; AL {Ni-(8), Yir (), Ui(t) : 2 € {0,1}, 1 € [0, T], T € [0, TIU T};

(i) for z € [0, T1, Yiny () 1L Ni() | {HiN, Ni(s) = n(s), s € [0, 1)} and any fixed point
process n(-), where HZ\_Ni denotes the o-algebra induced by all potential processes
including U;, except for N; up to time ¢.

See Lok (2008) for the measure-theoretic description of the independence given histo-
ries of point processes. Assumption 8(i) is a restatement of Assumption 3 with the addition
of Uj. It holds because Z; is randomized. Assumption 8(ii) generalizes the latent sequen-
tial ignorability in Ricciardi et al. (2020) to a continuous-time setting with point process
treatment and outcome. It assumes that U; fully characterizes the confounding between the
treatment and the outcome, so that the treatment is independent of the potential outcome
at time ¢ given the histories of N;, Y; and U;. Under Assumption 8 we have that for any
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14 Z. JIANG, S. CHEN AND P. DING
t€ (0,117,

E(dYju)(0/dt | Hi—} = E{AYi(0)/d1 | Ni(-) = n(), 7z, (20)

which links the potential processes to the conditional intensity of the observed outcome.
Therefore, the discussion in §4.2 will focus on the models for the observed outcome. Under
each of the models, we will connect the model parameters with the AcEr and study its
identification.

4.2. Identification of causal effects with linear additive unmeasured confounding

We start with linear models for the intensity. This type of model has been widely used in
different contexts because of its mathematical tractability (e.g., Hawkes, 1971; Aalen, 1980;
Tchetgen Tchetgen et al., 2015; Jiang et al., 2018). In particular, consider a linear Hawkes
process Y;(-) with intensity

t t
Ay (1) =MY+/O g(t—s)dNi(s)—I—/O w(t—s)dYi(s) + ¢y, (0), 1)

where g(A) = w(A) = 0 for A < 0 and Yy, (¢) represents any function of {Ui(s) : s €
[0, 1)}. The next proposition connects the ACER with the parameters in (21) and shows the
identification.

PROPOSITION 3. Suppose that Assumptions 1-3 and 8 hold and that the underlying outcome
model satisfies (21). Then the following hold:

(1) we have that
ACER(#; T) = ACER(f — 7;0) = —(\D_lfi)(l - 1),

where G(v) = {1 + (Y)W} ' W) (v) if 1 + (Ww)(v) % 0 for all v € R;
(1) when (Wf)(v) £ 0 for all v € R, the ACER is identified by ACER(t; T) = —(WG)(r—1)
fort > t and ACER(¢t; ) = 0 for t < T, with G(v) as defined in (14).

In practice, the function g(-) is often interpreted as the effect of an event in N; on the
outcome Y; conditional on the history up to time ¢. Proposition 3(i) expresses the ACER in
terms of the model parameters, showing that g(-) and w(-) jointly characterize the ACER
of N; on Y;. When the dependence on past Y; does not exist, i.e., w(-) = 0, we have
ACER(%; T) = —g(t — 7). From Proposition 3(i), we can obtain the ACER if we can estimate
the model parameters in (21). However, this requires specifying the distribution of U;(-).
Fortunately, Proposition 3(ii) shows that, when a binary instrumental variable is available,
we can identify the ACER without any distributional assumption on U; and hence estimate
it using the method in §3.3. This broadens the applicability of (21) with fewer parametric
assumptions.

Proposition 3(ii) is an application of Theorem 2 under (21). The linearity in (21) plays a
key role in the causal interpretation of the model parameters and nonparametric identifi-
cation of the Acer. The linear terms of N; and Y; connect the ACER with g(-) and w(-), and
the linear term of U; implies Assumption 6 and the condition in (11).
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Instrumental variable method for point processes 15

4.3, Identification of causal effects with nonlinear additive unmeasured confounding

We now consider the following nonlinear model, which is similar to models in sur-
vival analysis with an instrumental variable (e.g., MacKenzie et al., 2014; Li et al., 2015;
Tchetgen Tchetgen et al., 2015):

t
ry()=¢ {MY +/0 g(t—s) dNi(S)} + Y (0. (22)

Model (22) generalizes model (21) by allowing for a nonlinear relationship between N;
and Y; through the link function ¢ while requiring the unmeasured confounding effect
to be additive. For (22), the following proposition characterizes the causal effect and its
identifiability.

PROPOSITION 4. Suppose that Assumptions 1-3 and 8 hold, N; is a single-point process, and
the underlying outcome model satisfies (22). Then the following hold:
(i) fort,T €[0,T],

ACER(1;T) = ¢p(uy) — d{uy + gt — 1)}

(ii) when (Wf)(v) & 0 for all v € R, the ACER is identified by ACER(f;T) = —(V~1G)(t — 1)
for t > T and ACER(t; ) = 0 for t < t, where G(v) is as defined in (14).

From Proposition 4(i), the causal interpretation of g(-) depends on uy and the link func-
tion ¢ (-) under (22). As a result, even with the same link function, the interpretation of g(-)
differs in populations with different values of wy. This tells us to beware of interpreting
g(-) as some causal effects. Proposition 4(ii) is an application of Theorem 2. As with (21),
we can use the method in § 3.3 to estimate the AcErR without knowledge of ¢ (-) or U;. There-
fore, Proposition 4 suggests directly targeting the ACER instead of the model parameter g(-).
This circumvents the daunting task of identifying, estimating and interpreting the model
parameters in (22), broadening its applicability with fewer parametric assumptions.

Critically, although (22) allows for nonlinearity, it restricts the effect of the unmeasured
confounder to be additive. Relaxing this modelling assumption is challenging. In the Supple-
mentary Material we show that, when the confounding effect on Y; is nonadditive, the ACER
would depend on the distribution of the confounder, making the identification impossible
without a distributional assumption on U;.

5. NUMERICAL ANALYSIS
5.1. Simulation

We use simulation to illustrate the numerical performance of the proposed nonparametric
estimation procedure. In this simulation study, we generate the treatment N; and outcome
Y; from the model

AN(D) = un + g la(t;an, by)Zi + Ui(b)}, (23)

I3
Ly (1) = ¢p, |:¢f31 {MY +/0 a(Asay,by)dN;(t — A)} + ¢p {Ui(t — dU)}], (24)

where a(-;a,b) = baztexp(—al) is the alpha function (see, e.g., Ermentrout & Terman,
2010, Ch. 7) and ¢g(x) = xP is the link function. The confounding variable U; is generated
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16 Z. JIANG, S. CHEN AND P. DING

as a Gaussian process with mean zero and a squared exponential kernel cov{U;(¢), U;(t +
d)} = crlz] exp{—dz/(2l%])}. The parameters in (23) and (24) are set to uy = uy = 0.2,
ay = 10,by = 0.5, ay =8, by = 1,dy = 0.5, oy = 0.2 and Iy = 0.1. We consider five
scenarios in this simulation.

Scenario la (8p = B1 = B> = 1): a linear model for Y; with a single-point process
N;, which is achieved by suppressing the intensity (23) to zero after the first event in N, is
generated.

Scenario 1b (81 = 2, By = B> = 1): an additive confounding model for Y; with a single-
point process N;.

Scenario 2a (By = B1 = B2 = 1): a linear model for Y; with multiple events in ;.

Scenario 2b (By = 3, B1 = 2, B> = 1): a linear model for Y; with multiple events in N;
and nonadditive confounding effects on ;.

Scenario 3 (8p = B1 = 1, B> = 3): a nonadditive confounding model for Y;.

For each scenario, we generate m trials with m ranging from 40 to 800. In each simulated
dataset, half of the trials are set to have Z; = 1 and the other half Z; = 0. The processes
N; and Y; are generated from 0 to 7" = 3 using a thinning process, while the unmeasured
confounding process U; is generated from —1 to 3 to account for its delayed effect on Y;.

For Scenario 3, identification of the ACER is difficult with nonlinear confounding effects,
as illustrated in the Supplementary Material. Therefore we use the Monte Carlo method
to calculate the ACER to show its dependence on the distribution of the unmeasured con-
founder. For Scenarios la to 2b, we apply the proposed generalized Wald estimation
procedure in §3.3. We estimate the function /(¢) as the difference between the empirical
cumulative intensities of Y; in the treatment group, Z; = 1, and the control group, Z; = 0.
The function £(¢) is estimated in a similar manner. We approximate the ACER using a cubic
B-spline with six knots evenly spaced in [0, 1], where the mass of «(-;ay, by) resides. The
tuning parameter of the ridge penalty 7 is set to m~! to reduce boundary effects from the
nonparametric approximation. To measure the performance, we calculate the proportion of
integrated squared errors with respect to the true ACER, that is,

T Y
L Jo {ACERI(A) — ACER(A;0)} dA’ 25)
Jo ACER?(A;0)dA

where the true AcER is calculated from (24) based on Propositions 3 and 4.

Figure 2 shows the simulation results averaged over 1000 replicates. Panels (a) and (b)
show that the performances of the estimators improve as the number of trials increases in
Scenarios la, 1b, 2a and 2b. In particular, the proportion of integrated squared error in
Scenario la is larger than in Scenario 2a, despite their using the same model for Y;. This
reveals a feature of point process treatments, namely that given the same number of tri-
als, more events in N; contribute more information for recovering the causal effects of N;
on Y;. The four curves in Fig. 2(a) and (b) converge slowly towards zero due to the exis-
tence of approximation error in the basis expansion and the bias from penalization. Panels
(c) and (d) of Fig. 2 show the calculated true AceR in Scenario 3 under two different dis-
tributions of Uj; in each panel the five curves correspond to t being 0,0.25,0.5,0.75 and
1. Even with the same ¢, the shape of ACER(#; T) varies as t changes in both panels, imply-
ing that ACER(Z; 7) does not equal ACER(z — 7). Moreover, the contrast between Figs. 2(c)
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Fig. 2. Identification of the Acer and performance of the generalized Wald estimation averaged across 1000
replicates. Panel (a) shows the performance of the proposed estimation procedures in Scenarios la (black) and
1b (blue), and panel (b) shows the performance of the proposed estimation procedures in Scenarios 2a (pur-
ple) and 2b (orange). The horizontal axes represent the number of trials, m, and the vertical axes the measure r
defined in (25). The shaded areas are the interquartile bands from the 1000 replicates. Estimation performances
in the four scenarios are not directly comparable, given the huge differences between their data-generating mech-
anisms. Based on the interpretation in (9), panels (c) and (d) show the true value of —ACER(#; 7) with nonadditive
confounding effects on Y, in Scenario 3. The curves in (c) are calculated with oy = 0.1, and those in (d)
with oy = 0.3. In each panel the five curves correspond to t being 0,0.25,0.5,0.75 and 1, respectively, and
are not shift-invariant.

and (d) shows that the ACER depends on the distribution of the unmeasured process Uj;,
demonstrating the sensitivity of the ACER to distributional assumptions on Uj.

5.2. Empirical analysis

We apply the proposed method to the neural data from Bolding & Franks (2018a). First,
we provide some basic background to aid understanding of the experiment; for more details,
see Bolding & Franks (2018a) and the Supplementary Material. Bolding & Franks (2018a)
conducted an experiment to understand how a mouse brain maintains stationarity in odour
detection regardless of odour concentration. Specifically, it is known that neural activities
in the olfactory bulb, OB, increase in response to a higher concentration of odour particles,
and that a spike in the OB triggers neural activities of principal neurons, PN, in the piriform
cortex, where the odour is perceived by the brain. To avoid other neural processes that nor-
malize odour responses, Bolding & Franks (2018a) used optogenetics to stimulate neurons
in the OB with one-second light pulses, which meet the requirements of an instrumental
variable in our framework. Bolding & Franks (2018a) also took an optogenetic approach to
circumventing the contribution of centrifugal inputs and other intrabulbar processes, which
effectively cuts of the feedback from the PN to the OB. Figure 3(d) shows a causal diagram
of the relationship between the stimulation, OB, and the PN.

The dataset contains spike trains recorded in the OB and PN during the experiment. A
total of 160 trials were conducted on eight mice, with each mouse having 10 trials without
stimulation, Z; = 0, and 10 trials with a one-second light pulse at 20 mW mm~2, Z; = 1. The
light pulse, if present, has onset time 0 and ends at 1s. In our analysis, we consider the first
3.5 seconds of a trial, from —0.5 to 3, as there are hardly any residual effects afterwards. We
regard the treatment N; as the process of events in the OB and the outcome Y; as the process
of events in the PN. Each recorded event in N, is a spike of one neuron in the OB that may

€202 Iudy €0 uo Jasn Asjesiag “eluioyied Jo Alun/AleIar YiesH 211and Aq G618669/S00PESEASWOIN/EE0 L 0 L/I0P/S[0ILE-S0UBAPE/OIOIG/WOS"dNO"olWUSPEdE//:SARY WOy POpeojumod



18 Z. JIANG, S. CHEN AND P. DING

(@) (c)
1500 " %
S 60
1000 s
% g’ 30
& &,
= m
= 500 - S o
<
0 T = T T T T = T T T I _30 T T T T T T
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.2 0.4 0.6 0.8 1.0
Time (in seconds) A (in seconds)
(b) (d)
o ACER
Light > OB > PN
@ 1000 ‘.\ ; P
<
.E \\ /,
=500 AR L,
YT TV
/ A\
o+ - VU
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 \ 4

Time (in seconds)

Fig. 3. Empirical intensities and the fitted ACER based on data from Bolding & Franks (2018b). Panels (a) and
(b) show the empirical intensities of the neural activities of (a) the OB and (b) the PN in the stimulated (blue) and
unstimulated (red) groups. The solid curves represent the average intensity over 80 trials, and the dashed curves
the empirical intensities from 20 randomly selected trials in each group. The shaded area in panel (a) represents
the duration of the light pulse. Based on the interpretation in (9), panel (c) shows the estimated —ACER(A; 0) from
the full dataset; the shaded area represents a 90% confidence band for visualizing the uncertainty of the estimates
from 5000 bootstrap samples. Panel (d) shows the causal diagram of the relationship among the variables.

trigger a distinct group of PN in the piriform cortex. Given the number of PN in the piriform
cortex, the triggered groups may have few or no overlaps, limiting the interactive effect of the
treatment process. Therefore, the additivity in Assumption 7 is a plausible approximation to
the true underlying mechanism. Figure 3(a) and (b) show the smoothed intensities of neural
activities in the stimulated and unstimulated groups. We can see that the stimulation triggers
increased activities in the OB in all trials. However, large variations are present in the neural
activities across trials.

We first conduct a preliminary analysis assuming no unmeasured confounders between
the treatment and outcome processes. In this case, identification of the causal effects does
not require the instrumental variable. We fit a model of Y; on N; and directly interpret the
coefficient function of N; as the causal effect. However, the conclusion is inconsistent with
the findings in Bolding & Franks (2018a), implying possible unmeasured confounders or
model misspecification. For more details see the Supplementary Material.

We then apply the generalized Wald estimation procedure to estimate the causal effects of
neural activities in the OB on the neural activities of PN. From the observed data, we esti-
mate the functions /2 and f using differences between empirical cumulative intensities in the
stimulated, Z; = 1, and unstimulated, Z; = 0, groups. We approximate the unknown ACER
using cubic B-splines with evenly spaced knots in [0, 1], where two knots are selected by five-
fold cross-validation. We set the tuning parameter for the ridge penalty to n = 0.01 to handle
boundary effects. A 90% confidence band is constructed using the bootstrap; for details
see the Supplementary Material. We use the bootstrap confidence band to approximate the
uncertainty in the estimates.

Figure 3(c) displays the estimated Acer. The curve shows that an event in the OB elicits
high activity in the PN immediately after the event, i.e., within 0.1 seconds, but the effect
quickly turns negative for an extended duration, from 0.1 to 0.4 seconds, before dying down.
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This is consistent with the findings of Bolding & Franks (2018a) that a temporal mecha-
nism is in place to stabilize the neural activities of PN after the initial detection of odours.
Additional analysis of the neural dataset can be found in the Supplementary Material. The
confidence band shows that the proposed generalized Wald estimation procedure yields high
uncertainty near the boundaries, despite a large number of events and inclusion of the ridge
penalty. In this particular case, it appears that the ACER vanishes after 0.5 seconds, but the
boundary effect causes spurious estimates in the bootstrap samples. In practice, we recom-
mend that practitioners use the generalized Wald estimation procedure, and then apply a
suitable parametric form or shape constraint to the ACER.
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