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Abstract. We introduce a notion of sectional regularity for a homogeneous
ideal I, which measures the regularity of its general sections with respect to
linear spaces of various dimensions. It is related to axial constants defined as

the intercepts on the coordinate axes of the set of exponents of monomials in
the reverse lexicographic generic initial ideal of I. We show the equivalence
of these notions and several other homological and ideal-theoretic invariants.
We also establish that these equivalent invariants grow linearly for the family
of powers of a given ideal.

1. Introduction

The generic initial ideal (gin) of a homogeneous ideal I of a polynomial ring
captures a number of important features of I. When computed with respect to
the reverse lexicographic monomial order, ginrev(I) retains two of the most signif-
icant measures for the homological complexity of I: the projective dimension and
Castelnuovo-Mumford regularity, as shown by Bayer and Stillman in [4]. These
groundbreaking results have subsequently been refined and generalized by Bayer–
Charalambous–Popescu [2] and Aramova–Herzog [1] to show that ginrev(I) retains
also the extremal Betti numbers of I; see Example 1.3 for an illustration of this
notion.

In this paper we enlarge the scope of the algebraic invariants which can be
read off generic initial ideals by focusing on invariants termed axial constants, a
terminology taken from [6]. These constants are defined below and have been
studied implicitly by Mayes [18, 19], Dumnicki–Szemberg–Szpond–Tutaj-Gasińska
[8, 9], and Chauhan–Walker [6], from an asymptotic perspective.

Definition 1.1. For a homogeneous ideal I of the polynomial ring R = k[x1, . . . , xd]
and an integer 1 ≤ i ≤ d define the i-th axial constant of I to be

ai(I) = min{j ∈ N | xj
i ∈ ginrev(I)}.

If no power of xi is contained in ginrev(I) then we set ai(I) = ∞.
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1364 M. DEBELLEVUE ET AL.

Our main contribution is to point out a multitude of ways in which axial con-
stants can be interpreted as measures of the homological complexity of I. For a
glimpse of their significance, note that axial constants simultaneously generalize
the notion of initial degree and that of Castelnuovo-Mumford regularity. Indeed,
it has been noted in [6, 8, 18] that a1(I) is the least degree of a nonzero element of
I. Moreover, in characteristic zero, if the codimension of I is ht(I) = c and R/I is
Cohen-Macaulay then one has ac(I) = reg(R/I) + 1 = reg(I).

One aim of this paper is to vastly generalize these observations to give homo-
logical and ring-theoretic interpretations for the intermediate axial constants ai(I)
with 1 < i < ht(I). In the process we introduce the notion of sectional regularity
for homogeneous ideals.

Definition 1.2. Let I be a homogeneous ideal of a polynomial ring R=k[x1, . . . , xd]
and let i be an integer 0 ≤ i ≤ d. The i-th sectional regularity number of the ideal
I is defined for sufficiently general linear forms �i+1, . . . , �d as

sregi(I) = reg(I + (�i+1, . . . , �d)).

One of our main results, Theorem 4.1, shows that there is an equality sregi(I) =
ai(I) for 1 ≤ i ≤ ht(I). However sectional regularity distinguishes itself as a better
behaved invariant for the range ht(I) < i ≤ d, where it remains finite, in contrast to
the axial numbers. A multitude of additional invariants are shown to be equivalent
to the two discussed above in Theorem 4.1.

We provide a formula for sectional regularity in terms of generic annihilator
numbers αij(R/I). This notion, introduced in [1], is defined as follows: for a

module M set M (i) = M/(�1, . . . , �i−1), where �1, . . . , �d are linear forms having
the property

αij(M) = dimk(0 :M(i) �i)j < ∞ for 0 ≤ i ≤ d− 1, j ∈ N.

Such linear forms exist by the theory of almost regular sequences introduced in [21]
and developed in [1], among others. We rely heavily on this useful tool following
in the footsteps of similar applications in [16,22]. We establish in Corollary 3.7 the
identity

sregi(I) = max{j | αtj(R/I) �= 0, t ≥ d− i}+ 1.

This allows us to formulate a theory of coextremal annihilator numbers which com-
plements the more familiar notion of extremal annihilator numbers from [1]. In
detail, we call αij(R/I) a coextremal annihilator number if it satisfies αij(R/I) �= 0
and

αst(R/I) = 0 for all pairs (s, t) �= (i, j) with s ≥ i, t ≥ j.

An coextremal annihilator number sits at a south-east corner of the region formed
by the nonzero entries in the table of annihilator numbers. For comparison, an
extremal annihilator number satisfies αij(R/I) �= 0 and αst(R/I) = 0 for (s, t) �=
(i, j), s ≤ i, t ≥ j, thus marking a south-west corner. We illustrate these notions in
connection to axial constants in the following example.

Example 1.3. Let I=(x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x

3
2, x

2
2x3, x2x

3
3, x2x

2
3x5, x

5
3).

This is an ideal of the polynomial ring R = Q[x1, x2, x3, x4, x5] satisfying I =
ginrev(I).

The tables below present the Betti numbers and the generic annihilator numbers
of R/I. The extremal Betti numbers are boxed in the first table. The corresponding
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AXIAL CONSTANTS AND SECTIONAL REGULARITY 1365

extremal generic annihilator numbers are boxed in the second table. This correspon-
dence, established in [1, 2], is given by βi,i+j(R/I) = αd−i,j(R/I) for d = dim(R)
and for each extremal annihilator number αi,j(R/I).

In this paper we focus on the dual notion of coextremal annihilator numbers,
which are underlined in the second table. In Corollary 4.9 we show that their posi-
tion corresponds to a distinguished subset of the minimal generators for the mono-
mial ideal I, namely those minimal generators which are pure powers: x2

1, x
3
2, x

5
3

and thus in turn to the values of the axial constants a1(I) = 2, a2(I) = 3, a3(I) = 5.
The contributions of these generators to the Betti table of R/I, specifically to the
homological degree one column, are also highlighted by underlining.

βi,i+j(R/I) 0 1 2 3 4 5 6
0: 1 . . . . . .

1: . 6 15 20 15 6 1
2: . 2 3 1 . . .

3: . 2 5 4 1 . .

4: . 1 2 1 . . .

αi,j(R/I) 0 1 2 3 4 5
0: . . . . . .

1: 1 1 1 1 1 1
2: . . . 1 1 .

3: . . 1 1 . .

4: . . . 1 . .

Note that the same annihilator number can simultaneously be extremal and
coextremal; this is true of α3,4(R/I) in the above example.

Beyond the setting of monomial ideals Corollary 4.9 extends the correspondence
illustrated in Example 1.3 to a correspondence between coextremal annihilator
numbers and axial constants of arbitrary homogeneous ideals given by

αd−i,j(R/I) is coextremal ⇐⇒ ai−1(I) < ai(I) = j + 1.

This correspondence does not pin down the values of the coextremal annihilator
numbers. It would be an interesting pursuit to understand what these values mea-
sure.

We now preview the organization of our paper and its main results. After pro-
viding necessary background on generic initial ideals in section 2, we introduce
the technical underpinnings of sectional regularity in section 3 and we express this
invariant in terms of coextremal annihilator numbers in Corollary 3.9. Section 4
is dedicated to a plethora of invariants, including the axial constants, which are
equivalent to the sectional regularity. Our main result stating this equivalence is
Theorem 4.1. In section 5 we study the growth of the sectional regularity and axial
constants for powers of ideals. As it was shown by Kodiyalam [17] and Cutkosky–
Herzog–Trung [7] that the Castelnuovo-Mumford regularity is given eventually by
a linear function reg(In) = dn+ e for n 	 0 for the powers of a homogeneous ideal
I, it is natural to ask whether the same is true for the sectional regularity and axial
constants. We show in Theorem 5.1 that the similar result does indeed hold.

2. Background

Let I be a homogeneous ideal of a polynomial ring R = k[x1, . . . , xd]. Through-
out this paper we assume that k is an infinite field, which is a necessary condition
for generic initial ideals to be well-defined. The remarkable notion of generic initial
ideals was introduced by Galligo in characteristic zero [12] and Bayer and Stillman
in arbitrary characteristic [4].

Fix a monomial order on R so that x1 > x2 > · · · > xd. A monomial order that
will be used predominantly in this paper is the graded reverse lexicographic order,
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1366 M. DEBELLEVUE ET AL.

for which xa1
1 · · ·xad

d > xb1
1 · · ·xbd

d if and only if
∑d

i=1 ai >
∑d

i=1 bi or
∑d

i=1 ai =∑d
i=1 bi and for the largest index i so that ai �= bi we have ai < bi. The largest

monomial with respect to a fixed order among those whose coefficients are nonzero
in a polynomial f is called the leading term of f and denoted in(f). The initial
ideal of I with respect to this order is in(I) = (in(f) | f ∈ I) .

The natural action of the general linear group GLd(k) on R1
∼= kd extends to

an action on R via g · f(x1, . . . , xd) = f(
∑d

j=1 g1jxj , . . . ,
∑d

j=1 gdjxj) if g = (gij).

Thus each element of g ∈ GLd(k) yields an automorphism of R, which we call a
linear change of coordinates. We denote the image of I under the corresponding
automorphims by g · I. The generic initial ideal of I is obtained by first applying
to I a sufficiently general linear change of coordinates followed by taking the initial
ideal. The details of the construction of the generic initial ideal are as follows.

Definition 2.1 ([4, 12]). Fix a homogeneous ideal I and a monomial order on R.
There exists a nonempty Zariski open set of Ugin ⊆ GLd(k) so that in(g · I) does
not depend on g for g ∈ Ugin(I). The ideal in(g · I) for g ∈ Ugin(I) is termed the
generic initial ideal of I and denoted gin(I).

Whenever we refer to the generic initial ideal of a homogeneous ideal I with
respect to the graded reverse lexicographic order, we use the notation ginrev(I)
instead of gin(I).

A monomial ideal J is termed strongly stable provided that whenever i < j and
μ is a monomial such that μxj ∈ J , we have μxi ∈ J as well. A monomial ideal is
called Borel-fixed if it is fixed by the action of the Borel subgroup of upper triangular
matrices of GLd(K). If char(k) = 0 the notions of Borel fixed and strongly stable
are equivalent. In positive characteristic, strongly stable implies Borel fixed but not
conversely. Borel fixed ideals which are not strongly stable appear in Example 4.2
and Example 4.3.

Definition 2.2. Recall that the Hilbert function of an N-graded module M over a
graded k-algebra R is the function H(M) : N → N given by H(M)(i) = dimk Mi.

The Castelnuovo-Mumford regularity of M is reg(M) = max{j − i | TorRi (M,k)j �=
0}. When M has finite length this invariant can also be expressed as reg(M) =
max{i | H(M)(i) �= 0}.

It is useful to recall several properties of generic initial ideals.

Remark 2.3 (Properties of gins). Let I be a homogeneous ideal of R = k[x1, . . . , xd].

(1) [10, Theorem 15.26] The Hilbert functions of I and gin(I) agree: H(I) =
H(gin(I)).

(2) [3] The regularity of I and ginrev(I) agree: reg(I) = reg(ginrev(I))
(3) [10, Corollary 15.25] If P ∈ Ass(R/ ginrev(I)), then P = (x1, . . . , xj) and

ht(I) ≤ j ≤ d− depth(I).
(4) [4, 12] gin(I) is Borel fixed
(5) [12] [14, Proposition 4.2.4] If char(k) = 0 or char(k) is larger than any

exponent appearing in the monomial generators of gin(I), then gin(I) is
strongly stable.

3. Sectional regularity

In this section we develop the notion of sectional regularity introduced in
Definition 1.2. The name is meant to suggest that this invariant captures the
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AXIAL CONSTANTS AND SECTIONAL REGULARITY 1367

regularity of a general linear subspace section of a given quotient ring or module.
It bears some similarities to the notion of partial regularity introduced by Trung
in [22], which in turn is equivalent to the �-regularity from the work of Bayer–
Charalambous–Popescu [2]. However we emphasize that these invariants are not
the same as the sectional regularity introduced here. Sectional regularity has been
previously considered from a geometric perspective in [5] and in subsequent work
deriving from this source.

A main goal of this section is to establish well-definedness of sectional regularity
for a homogeneous ideal I as introduced in Definition 1.2. This entails demonstrat-
ing the existence of a nonempty Zariski open subset Usreg(I) ⊂ GLd(k) so that for

each γ = (gij) ∈ Usreg(I), setting �i =
∑d

j=1 gijxj yields the same value for the

integer sregi(I) = reg(I + (�i+1, . . . , �d)). This will be shown in Proposition 3.5.
A useful tool in our work is the notion of almost regular sequence. This was

introduced under the name of filter regular sequence in [21] and further developed
in [1]. Here we follow the presentation in [14, §4.3.1].

Definition 3.1. Let M be a finitely generated module over the polynomial ring
R = k[x1, . . . , xd]. An element � ∈ R is an almost regular element on M if the
module (0 :M �) = {m ∈ M | �m = 0} is a finite dimensional k-vector space.

A sequence of elements �1, . . . , �s in R is an almost regular sequence on M if for
each i the element �i+1 is almost regular on M/ (�1, . . . , �i).

We will be interested in almost regular sequences consisting of linear forms. In
the case of cyclic quotients by generic initial ideals, a canonical example of an
almost regular sequence is given by the sequence of variables.

Example 3.2 ([14, Proposition 4.3.3]). Let I be a homogeneous ideal over R =
k[x1, . . . , xd]. Then xd, . . . , x1 is almost regular on R/ ginrev(I).

Since the above example is fundamental to this work, in order to keep the no-
tation closely aligned with the example, we shall use regular sequences indexed
descendingly, that is, we shall work with elements �d, . . . , �1 which form an almost
regular sequence on a module M . By Definition 3.1 this means that �i−1 is almost
regular on M/ (�d, . . . , �i)) for each 2 ≤ i ≤ d. Whenever we cite results from the
literature such as Lemma 3.3 we adapt the indexing to match this convention.

A crucial fact about almost regular sequence is that, given a module M , a suf-
ficiently general k-basis of R1 yields an almost regular sequence of linear forms on
M .

Lemma 3.3 ([14, Theorem 4.3.6]). Let M be a finitely generated graded module
over R = k[x1, . . . , xd]. To each γ = (gij) ∈ GLd(k) we associate the sequence

�i =
∑d

j=1 gijxj with 1 ≤ i ≤ d. Then there exists a nonempty Zariski open subset

Uar(M) ⊂ GLd(k) such that �d, . . . , �1 is almost regular on M for all γ ∈ Uar.
In particular, there exists a k-basis of R1 which is an almost regular sequence on

M.

One can use almost regular sequences of linear forms to compute regularity.

Lemma 3.4 ([10, Proposition 20.20]). Let M be a finitely generated graded module
over the ring R = k[x1, . . . , xd]. If � ∈ R1 is almost regular on M then

reg(M) = max{reg (M/(�)) , reg(0 :M �)}.
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1368 M. DEBELLEVUE ET AL.

Together these facts allow us to relate the regularity of an ideal and that of its
generic initial ideal modulo appropriate almost regular sequences.

Proposition 3.5. Let I be a homogeneous ideal of a polynomial ring R =
k[x1, . . . , xd]. Then there exists a nonempty Zariski open subset Usreg(I) ⊂ GLd(k)

so that for each γ = (gij) in Usreg(I) setting �i =
∑d

j=1 gijxj yields that �d, . . . , �1
is an almost regular sequence on R/I. Moreover, for all 0 ≤ i ≤ d− 1, one has

H (I + (�i+1, . . . , �d)) = H (ginrev(I) + (xi+1, . . . , xd)) .

reg (I + (�i+1, . . . , �d)) = reg (ginrev(I) + (xi+1, . . . , xd)) .

Proof. We set U−1
gin(I) = {γ ∈ GLd(k) | γ−1 ∈ Ugin(I)}, where Ugin(I) is the

Zariski open set in Definition 2.1. Since Ugin(I) is an open set, so is U−1
gin(I); see

[14, Lemma 4.3.8]. Set Usreg(I) = U−1
gin(I)∩Uar(R/I), where Uar is the Zariski open

set in Lemma 3.3. Since γ ∈ Uar(R/I), the sequence �d, . . . , �1 is almost regular on
R/I.

We proceed to establish the claimed identities. The isomorphisms

I + (�i+1, · · · , �d) ∼= γ−1(I + (�i+1, · · · , �d)) = γ−1(I) + (xi+1, · · · , xd)

give the first equality in the sequence

H(I + (�i+1, · · · , �d)) = H(γ−1(I) + (xi+1, · · · , xd))

= H(in(γ−1(I) + (xi+1, · · · , xd))) by Remark 2.3 (1)

= H(in(γ−1(I)) + (xi+1, · · · , xd))

= H(ginrev(I) + (xi+1, · · · , xd)) since γ−1 ∈ Ugin(I).

As a byproduct of this equality we obtain another useful identity. Set

M (i) = R/(I + (�i+1, · · · , �d)), N (i) = R/(ginrev(I) + (xi+1, · · · , xd))

and note that H(M (i)) = H(N (i)) as shown above. Then the exact sequences

0 → (0 :M(i) �i)(−1) → M (i)(−1)
·�i−→ M (i) → M (i−1) → 0

0 → (0 :N(i) xi)(−1) → N (i)(−1)
·xi−−→ N (i) → N (i−1) → 0

and the equalities H(M (i)) = H(N (i)) yield H(0 :M(i) �i) = H(0 :N(i) xi) for 1 ≤
i ≤ d. Since the regularity of the finite length modules (0 :M(i) �i) and (0 :N(i) xi) is
determined by their Hilbert function it follows that reg(0 :M(i) �i) = reg(0 :N(i) xi).

We now establish the claim regarding regularity by induction on i. The case
i = 0 holds true because M (0) = N (0) = k. Lemma 3.4 (1) cast in terms of our
current notation, where �i is almost regular on M (i) and M (i−1) = M (i)/(�i), yields

(3.1) reg(M (i)) = max
{
reg(M (i−1)), reg(0 :M(i) �i)

}

and similarly

reg(N (i)) = max
{
reg(N (i−1)), reg(0 :N(i) xi)

}
.

The inductive hypothesis guarantees reg(M (i−1)) = reg(N (i−1)) and prior consid-
erations yield reg(0 :M(i) �i) = reg(0 :N(i) xi), therefore the above identities imply
reg(M (i)) = reg(N (i)). From these equalities the last claim follows. �

We now present an alternate formula for the sectional regularity. This can be
formulated in terms of generic annihilator numbers, which we now define.
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AXIAL CONSTANTS AND SECTIONAL REGULARITY 1369

Definition 3.6. Let I be a homogeneous ideal of a polynomial ring R with dim(R)
= d and let �d, . . . , �1 be an almost regular sequence for R/I. Let M (j) = R/(I +
(�j+1, . . . , �d)) and define

αij(R/I) = dimk(0 :M(d−i) �d−i)j for 0 ≤ i ≤ d− 1

to be the generic annihilator numbers of R/I. We do not specify values for anni-
hilator numbers if i = d; although these appear in the literature (see [1]) they are
not relevant here.

Corollary 3.7. Continuing with the notation in Definition 3.6 one has

sregi(I) = max{reg(0 :M(t) �t) | t ≤ i}+ 1 = max{j | αsj(R/I) �= 0, s ≥ d− i}+ 1.

Consequently the sequence of sectional regularity numbers is nondecreasing, that is,

sreg1(I) ≤ sreg2(I) ≤ . . . ≤ sregd(I).

Proof. Applying equation (3.1) repeatedly yields

reg(M (i)) = max
{
reg

(
M (0)

)
, reg (0 :M(t) �t) | t ≤ i

}
.

SinceM (0) = k, and sregi(I) = reg(M (i))+1 by definition, the first claimed equality
follows. The second is obtained by noting that reg (0 :M(d−t) �d−t) = max{j |
αtj(R/I) �= 0}. Either one of the descriptions for sregi(I) obtained above yields
that this sequence is nondecreasing. �

We now introduce a new definition of coextremal annihilator numbers.

Definition 3.8. Let I be a homogeneous ideal of a polynomial ring R. A generic
annihilator number αij as defined in Definition 3.6 is called a coextremal generic
annihilator number if it satisfies αij(R/I) �= 0 and αst(R/I) = 0 for all pairs
(s, t) �= (i, j) with s ≥ i, t ≥ j.

The following result specifies the meaning of the coextremal annihilator numbers.

Corollary 3.9. Let I be a homogeneous ideal of a polynomial ring R with dim(R) =
d.

If αd−i,j(R/I) is a coextremal generic annihilator number then sregi(I) = j +
1. Moreover, if sregi−1(I) < sregi(I) = j + 1 then αd−i,j(R/I) is a coextremal
annihilator number.

Consequently the coextremal annihilator numbers control both the jumps and the
values attained by the sequence sreg1(I) ≤ sreg2(I) ≤ . . . ≤ sregd(I).

Proof. Suppose αd−i,j(R/I) is a coextremal generic annihilator number. Then from
Definition 3.8 it follows that max{j | αst(R/I) �= 0, s ≥ d− i} = j. Combining this
with Corollary 3.7 yields sregi(I) = j + 1.

Suppose now that we have sregi−1(I) < sregi(I) = j + 1. This leads to the
inequality

sregi−1(I) = max{reg(0 :M(u) �u) | u ≤ i− 1}+ 1 <

max{reg(0 :M(u) �u) | u ≤ i}+ 1 = sregi(I),

which forces reg(0 :M(i) �i) > reg(0 :M(u) �u) for each u < i. Casting this in terms
of generic annihilator numbers yields

j = max{t | αd−i,t(R/I) �= 0} > max{t | αd−u,t(R/I) �= 0 for some u < i},
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1370 M. DEBELLEVUE ET AL.

which implies αst(R/I) = 0 for (s, t) �= (d−i, j), s ≥ d−i, t ≥ j, that is, αd−i,j(R/I)
is coextremal.

Finally, to justify how the coextremal annihilator numbers control the sequence
of sectional regularities it suffices to see that the distinct values in the sequence are
given by

{sreg1(I), sreg2(I), . . . , sregd(I)} = {j + 1 | αij(R/I) is extremal for some i}
and the jumps are given by sregi−1(I) < sregi(I) if and only if there exists j such
that αd−i,j(R/I) is a coextremal annihilator number. Due to its monotonicity, the
sequence of sectional regularities is completely determined by these two pieces of
information. �

Finally, we discuss an alternate approach to almost regular sequences that uses
generic linear forms, that is, linear forms whose coefficients are variables in an
extension field of the coefficient field of R. Generic linear forms have the advantage
that the same set of such forms gives an almost regular sequence on any finitely
generated R-module. Therefore this approach is better suited to arguments where
R-modules vary in families. We make use of such arguments in section 5.

Notation 3.10. Let uij be distinct variables with 1 ≤ i, j ≤ d, set F to be the
fraction field of k[uij ], and R′ = F ⊗k R = F [x1, . . . , xd]. Additionally, for any

R-module M set M ′ = M ⊗R R′ and for 1 ≤ i ≤ d set Li =
∑d

j=1 uijxj .

The following is the analogue of Proposition 3.5 for generic forms.

Proposition 3.11. Let I be a homogeneous ideal of a polynomial ring R =

k[x1, . . . , xd]. According to Notation 3.10, let I ′ = IR′ and set Li =
∑d

j=1 uijxj.

Then Ld, . . . , L1 is an almost regular sequence on R′/I ′ and the following identities
hold for each 0 ≤ i ≤ d

H (I ′ + (Li+1, . . . , Ld)) = H (gin(I) + (xi+1, . . . , xd)) .

reg (I ′ + (Li+1, . . . , Ld)) = reg (ginrev(I) + (xi+1, . . . , xd)) .

Proof. It is shown e. g. in [1, Proposition 2.1] that for any R-module M , the se-
quence Ld, . . . , L1 and any permutation thereof is almost regular on M ′.

Set φ : R′ → R′ be the automorphism sending Li �→ xi. To be precise,
consider the matrix (vij) = (uij)

−1 with entries in F . Then φ is defined by

φ(xi) =
∑d

j=1 vijxj . We claim that in(φ(I)) = gin(I)R′.

Suppose in(φ(I ′)) = (m1, . . . ,ms) with mi = in(fi) for some polynomials fi ∈ I ′

and let ci be the coefficient of mi in fi. Then ci ∈ F are rational functions of

uij . Consider the Zariski open set U ′ ⊂ Ad2

k where none of the denominators and

numerators of the functions ci vanish and set U = U−1
gin(I) ∩ U ′. Let γ = (gij) ∈ U

and eγ : R′ → R the evaluation homomorphism that maps uij �→ gij . Then
eγ ◦ φ(f) = γ−1 · f for any f ∈ R. The membership

mi = in(eγ(fi)) ∈ in(eγ ◦ φ(I ′)) = in(γ−1(I))R′ = ginrev(I)R
′

shows there is a containment in(φ(I)) ⊆ ginrev(I)R
′. Since there are equalities

H(in(φ(I))) = H(φ(I ′)) = H(I ′) = H(I) = H(ginrev(I)) = H(ginrev(I)R
′),

the preceding containment is in fact an equality.
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AXIAL CONSTANTS AND SECTIONAL REGULARITY 1371

Set M (i) = R/(I ′+(Li+1, · · · , Ld)) and N (i) = R/(ginrev(I)R
′+(xi+1, · · · , xd)).

Then

H(M (i)) = H(φ(M (i))) = H (R/(φ(I ′) + (xi+1, · · · , xd)))

= H (R/ in(φ(I ′) + (xi+1, · · · , xd)))

= H (R/ in(φ(I ′)) + (xi+1, · · · , xd))

= H (R/(ginrev(I)R
′ + (xi+1, · · · , xd))

= H(N (i)).

Now the proof of Proposition 3.5 can be repeated verbatim to deduce reg(M (i)) =
reg(N (i)) for 0 ≤ i ≤ d, as desired. �

4. Equivalent invariants

In this section we offer multiple equivalent characterizations for the notion of
sectional regularity, establishing in particular the equivalence of sectional regularity
and axial constants. Our main result is the following.

Theorem 4.1. Let I be a homogeneous ideal of a polynomial ring R = k[x1, . . . , xd]
with k an infinite field of characteristic zero or larger than any exponent appearing
in the generators of the reverse lexicographic generic initial ideal ginrev(I). The
following are equal:

(1) the i-th sectional regularity number sregi(I) (see Definition 1.2)
(2) sregi(ginrev(I)) = reg(ginrev(I) + (xi+1, . . . , xd))
(3) the largest i-th partial degree of a minimal generator of ginrev(I) (see

Definition 4.10)
(4) the i-th axial constant ai(I) (see Definition 1.1), provided ai(I) < ∞
(5) redd−i(R/I)+1, where redd−i(R/I) is an s-reduction number for R/I (see

Definition 4.14), provided redd−i(R/I) < ∞.

Moreover, the quantities listed in (1) and (2) and, separately, those listed in (4)
and (5) are equal without any restrictions on characteristic.

Proof. This result collects together Proposition 3.5, which shows (1)=(2),
Proposition 4.12, which shows (2)=(3), Proposition 4.7, which shows (2)=(4), and
Proposition 4.16, which shows (4)=(5). The hypothesis on the characteristic en-
sures that ginrev(I) is strongly stable; see [4, Proposition 2.7] or [14, Proposition
4.2.4]. This technical condition is needed in the proofs of Proposition 4.7 and
Proposition 4.12, but not for Proposition 3.5 and Proposition 4.16. This justifies
the last claim regarding those equalities that are independent of the characteristic
of the base field. �

The hypothesis on the characteristic of the base field in Theorem 4.1 is needed,
as illustrated by the next examples. In these examples we employ gradings of the
polynomial ring termed partial gradings, denoted degi, and given by degi(xj) = 1
if j ≤ i and degi(xj) = 0 for i < j.

Example 4.2. Consider the ideal I = (xp
1, . . . , x

p
d) ⊂ R = k[x1, . . . , xd], where

char(k) = p. It is easy to see that I = ginrev(I) and that this ideal is not strongly
stable, however it is Borel-fixed. Moreover, one has

• ai(I) = p for each 1 ≤ i ≤ d
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1372 M. DEBELLEVUE ET AL.

• sregI(I) = reg(ginrev(I) + (xi+1, . . . , xd)) = reg(xp
1, . . . , x

p
i , xi+1, . . . , xd) =

i(p− 1) + 1
• the largest i-th partial degree of a minimal generator of ginrev(I) is p
• the s-reduction numbers are reds(R/I) = (p − 1)(d − s) cf. [16, Example
1.3]

Thus here the axial constants agree with the largest i-th partial degree of a min-
imal generator of ginrev(I) and the sectional regularity numbers satisfy sreg(I) =
redd−i(R/I) + 1. However the axial constant and the sectional regularity disagree
when i > 1.

In the previous example the connection between axial constants and the largest
i-th partial degree of a minimal generator of ginrev(I) appears more robust than
we prove in Corollary 4.13. However the next example shows that our result is in
fact the best possible.

Example 4.3. Let p be a prime integer and set n = p if p is odd and n = 4 if p = 2.
Consider the ideal I = (xn

1 , x
n
2 , x

n
3 . . . , x

n
d ) + (xn−1

1 x2
2) ⊂ R = k[x1, . . . , xd], where

char(k) = p. Then I = ginrev(I), the axial constants are ai(I) = n for 1 ≤ i ≤ d
but the largest partial degree of a minimal generator of ginrev(I) with respect to
the grading degi is n+ 1, provided i ≥ 2. Moreover the i-th sectional regularity is
sreg1(I) = n and sregi(I) = (n − 1)i for 2 ≤ i ≤ d. Therefore in this example the
quantities listed in (1), (3), and (4) of Theorem 4.1 are pairwise different for i ≥ 2.

We now proceed to show the equivalences between the families of constants in
Theorem 4.1.

4.1. Axial constants. To study the axial constants, we first establish some useful
properties for the sequence formed by these invariants.

Remark 4.4. From Theorem 4.1 and Corollary 3.7 one deduces that if ginrev(I) is
a strongly stable ideal, the axial constants form a nondecreasing sequence a1(I) ≤
a2(I) ≤ · · · ≤ ad(I).

However the sequence of axial constants is usually unbounded. We proceed by
delineating the range in which the axial constants are finite.

Lemma 4.5. Let I be a homogeneous ideal and assume ginrev(I) is strongly stable.
Then ai ∈ N if and only if 1 ≤ i ≤ ht(I).

Proof. According to Definition 1.1, ai ∈ N if and only xi ∈
√
ginrev(I). Since

ginrev(I) is strongly stable, the associated primes of ginrev(I) are of the form
(x1, . . . , xj) with ht I ≤ j; see Remark 2.3(3). Therefore we have

√
ginrev(I) =

⋂
P∈Ass(ginrev(I))

P = (x1, . . . , xht(I))

and consequently xi ∈
√
ginrev(I) if and only if 1 ≤ i ≤ ht(I). The conclusion now

follows. �

Lemma 4.6. Suppose J is a strongly stable monomial ideal of a polynomial ring
R. Then the monomial xj

i is in J if and only if (J + (xi+1, . . . , xd))j = Rj .

Proof. The “if” direction is clear. For the “only if” direction, suppose xj
i ∈ J . We

show that L = J + (xi+1, . . . , xd) contains all monomials of degree j from which
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the desired statement follows. Let m be a monomial of degree j. If xk divides m
for some k > i then it immediately follows that m ∈ L. Otherwise m is expressed
in terms of x1, . . . , xi, and as xj

i ∈ J one can apply the strongly stable exchange

property repeatedly to xj
i to obtain that m ∈ J ⊆ L. �

Now we are ready to give a homological characterization of the axial constants.
The alert reader will realize that the next result justifies the equality ai(I) =
sregi(I) for 1 ≤ i ≤ ht(I) advertised in Theorem 4.1.

Proposition 4.7. Let I be a homogeneous ideal of a polynomial ring and assume
that ginrev(I) is strongly stable. Then

(1) ai(I) = reg(ginrev(I) + (xi+1, . . . , xd)) provided ai(I) < ∞.
(2) there exists a nonempty Zariski open subset U ⊂ GLd(k) so that for each

γ = (gij) ∈ U setting �i =
∑d

j=1 gijxj yields ai(I) = reg(I+(�i+1, . . . , �d)).

(3) setting F = Frac(k[uij ]), R′ = F [x1, . . . , xd] and I ′ = IR′ and consid-

ering the generic linear forms Li =
∑d

j=1 uijxj yields ai(I) = reg(I ′ +

(Li+1, . . . , Ld)).

Proof. (1) By Lemma 4.5, ai(I) is finite if and only if 1 ≤ i ≤ ht(I). Under
this assumption, R/ (ginrev(I) + (xi+1, . . . , xd)) is a zero-dimensional ring, which
implies that

reg(gin(I) + (xi+1, . . . , xd)) = min{j | gin(I) + (xi+1, . . . , xd))j = Rj}.
The desired conclusion now follows by means of Lemma 4.6.

Assertions (2) and (3) follow from (1) by means of Proposition 3.5 and
Proposition 3.11. �

Remark 4.8. The first axial constant is easily seen from Definition 1.1 to be the least
degree of an element of I. Assuming ginrev(I) is strongly stable and dim(R/I) =
depth(R/I), we now compute the largest finite axial constant, ac(I), where c =
ht(I). By Proposition 4.7

ac(I) = reg(ginrev(I) + (xc+1, . . . , xd)) = reg(ginrev(I)) = reg(I),

where the middle equality holds because Remark 2.3(4) ensures that xc+1, . . . , xd is
a regular sequence onR/ ginrev(I), and the last equality follows from Remark 2.3(3).

Given the close relationship between sectional regularity numbers and generic
annihilator numbers observed in section 3, we are now able to characterize axial
constants in terms of the coextremal annihilator numbers.

Corollary 4.9. Let I be a homogeneous ideal of a polynomial ring R with dim(R) =
d and ht(I) = c. Then, setting a0(I) = −∞ we have ai−1(I) < ai(I) = j + 1 < ∞
if and only if αd−i,j(R/I) is coextremal and moreover

{a1(I), a2(I), . . . , ac(I)} = {j | αi,j(R/I) is coextremal for some i}.
Thus the coextremal generic annihilator numbers control both the jumps and the
values attained by the sequence a1(I) ≤ a2(I) ≤ . . . ≤ ac(I).

Proof. It follows from Proposition 4.7 that ai(I) = sregi(I). Therefore this result
transcribes the findings of Corollary 3.9 in the case when the two invariants agree.

�
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4.2. Partial degrees. It is well known that the regularity of a strongly stable ideal
is given by the largest degree of a minimal generator. In this section we generalize
this framework to capture the sectional regularity of a strongly stable ideal in terms
of the largest partial degree of a minimal generator. We now proceed to define the
notion of partial degree.

Definition 4.10. Given a monomial μ = xa1
1 . . . xad

d and an index 1 ≤ i ≤ d we
define the i-th partial degree of μ to be degi(μ) =

∑
j≤i aj . This yields a grading

on the polynomial ring k[x1, . . . , xd], which we also denote degi.

Note that degd is the standard grading. Monomial ideals are homogeneous with
respect to degi for each i.

Definition 4.11. Let J be a monomial ideal of a polynomial ring R = k[x1, . . . , xd].
For each 1 ≤ i ≤ d we define

ωi(J) = max{degi(μ) | μ a minimal monomial generator of J}.

It is well-known that the regularity of strongly stable ideals is equal to the largest
among the degrees of their minimal generators. Below we establish a version of this
fact for sectional regularity.

Proposition 4.12. Let J be a strongly stable monomial ideal of a polynomial ring.
Then for 1 ≤ i ≤ d one has reg(J + (xi+1, . . . , xd)) = ωi(J).

Proof. Let L be the ideal generated by the minimal monomial generators of J
that are not divisible by xi+1, . . . , xd. Since J is assumed strongly stable, so is
L. Therefore by means of the Eliahou-Kervaire resolution [11] there is an equality
reg(L) = ωi(L).

The identity
J + (xi+1, . . . , xd)) = L+ (xi+1, . . . , xd))

yields

reg (J + (xi+1, . . . , xd))) = reg (L+ (xi+1, . . . , xd)))

= reg (L) = ωi(L),

where the second equality follows because xi+1, . . . , xd form a regular sequence on
L. It remains to show that ωi(J) = ωi(L) in order to complete the proof.

Suppose μ = xa1
1 , . . . , xai

i μ′ is a monomial minimal generator of J so that μ′ �∈
(x1, . . . , xi) and degi(μ) = ωi(J). We show μ ∈ L, equivalently, deg(μ′) = 0.
Suppose for the sake of contradiction that deg(μ′) > 0. Then, applying the strongly
stable property yields

xa1
1 , . . . , xai+1

i μ′/xj ∈ J

for some j > i so that xj | μ′. The displayed monomial is a multiple of a minimal
generator

μ′′ = xb1
1 , . . . , xbi

i μ′′′ ∈ J,

where bk ≤ ak for 1 ≤ k ≤ i − 1, bi ≤ ai + 1, and μ′′′ | μ′/xj . If bi ≤ ai then μ is
a multiple of μ′′ contradicting minimality of μ. Thus bi = ai + 1 and since μ has
the largest degi among the minimal generators of J we must have b1 + . . . bi−1 <
a1 + . . .+ ai−1. So, at least one of the exponents bk satisfies bk < ak. Applying the
strongly stable property to μ′′ gives that

xb1
1 . . . xbk+1

k . . . xai
i μ′′′ ∈ J.
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AXIAL CONSTANTS AND SECTIONAL REGULARITY 1375

Since μ is a multiple of the above monomial, this contradicts the minimality of μ
and finishes the proof. �

As a consequence of Proposition 4.12 and Proposition 4.7 we can now give a new
characterization of the axial constants in terms of partial degrees.

Corollary 4.13. Let I be a homogeneous ideal of a polynomial ring and assume
that ginrev(I) is strongly stable. Then for each i such that ai(I) < ∞ we have
ai(I) = ωi(ginrev(I)).

4.3. s-reduction numbers. The relationship between regularity and reduction
numbers is well known starting with pioneering work in [23]. The s-reduction num-
bers were introduced in [20]. The fact that reduction numbers remain unchanged
under taking generic initial ideals was shown in [22] and their interpretation for
Borel-fixed ideals recalled in Lemma 4.15 was introduced in [16].

Definition 4.14. Let A be a standard graded algebra over an infinite field k. An
ideal q = (�1, . . . , �s), where �i are linear forms of A, is called an s-reduction of A
(or of the homogeneous maximal ideal of A) if qt = At for t 	 0. The reduction
number of A with respect to q is rq(A) = min{t | qt+1 = At+1}. The s-reduction
number of A is defined as

rs(A) = min{rq(A) | q = (�1, . . . , �s) is a reduction of A}.
It is not hard to see that any s-reduction of A satisfies s ≥ dim(A). If s = dim(A)

then r(A) := rs(A) is called the reduction number of A. If s < dim(A) then we set
rs(A) = ∞ by convention.

The following characterization for the s-reduction numbers of strongly stable
monomial ideals can be found in [16].

Lemma 4.15 ([16, Corollary 1.4]). Let J be a Borel fixed monomial ideal of a
polynomial ring of dimension d. For any s ≥ dim(R/J) we have rs(R/J) = min{t |
xt+1
d−s ∈ I}.

Now we can give a characterization of the axial constants in terms of s-reduction
numbers.

Proposition 4.16. Let I be a homogeneous ideal of a polynomial ring R =
k[x1, . . . , xd]. For any 0 ≤ i ≤ d we have ai(I) = rd−i(R/I) + 1.

Proof. From Lemma 4.5 and the above considerations it follows that ai(I) = ∞ if
and only if i > ht(I) if and only if d− i < dim(R/I) if and only if rd−i(R/I) = ∞.

Now assume i ≤ ht(I), whence d − i ≥ dim(R/I). Since ginrev(I) is a strongly
stable monomial ideal, Lemma 4.15 gives

rd−i(R/ ginrev(I)) = min{t | xt+1
i ∈ ginrev(I)} = ai(I)− 1.

It was shown in [22] that rs(R/I) = rs(R/ ginrev(I)), which finishes the proof. �

5. Growth of the equivalent invariants for powers of ideals

Applying a fixed algebraic invariant θ to a family of homogeneous ideals F =
{In}n≥1 gives rise to a function n �→ θ(In). A natural endeavor is to study the
growth of such functions.

In this section we fix a homogeneous ideal I of a polynomial ring and focus on the
sequence of powers of I, namely F = {In}n≥1. It is well known that the regularity

Licensed to Univ of Nebraska-Lincoln. Prepared on Mon Apr  3 10:20:22 EDT 2023 for download from IP 129.93.161.223.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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of powers of I is given by an eventually linear function reg(In) = dn+ e for n 	 0
by the celebrated work of Cutkosky–Herzog–Trung [7] and Kodyialam [17]. We use
this to show below that applying each of the invariants listed in Theorem 4.1 to F
also yields an eventually linear function.

Theorem 5.1. Let I be a homogeneous ideal of a polynomial ring R = k[x1, . . . , xd]
with k an infinite field of characteristic zero or larger than any exponent appearing
in the generators of the reverse lexicographic generic initial ideal ginrev(I). Fix
an integer 0 ≤ i ≤ d. Then there exist nonnegative integers d, e ∈ N such that
sregi(I

n) = dn+ e for n 	 0.

Proof. By Theorem 4.1 we have sregi(I
n) = reg(ginrev(I

n) + (xi+1, . . . , xd)), so it
suffices to prove the claim for the function f(n) = reg(ginrev(I

n) + (xi+1, . . . , xd)).
As in Notation 3.10, let F = Frac(k[uij ]), and set R′ = F⊗kR = F [x1, . . . , xd], I

′ =

IR′ and Li =
∑d

j=1 uijxj . By Proposition 3.11 we have the following identities

(5.1) f(n) = reg(ginrev(I
n) + (xi+1, . . . , xd)) = reg(InR′ + (Li+1, . . . , Ld)).

Now set R′ = R′/(Li+1, . . . , Ld) and I ′ = (I ′ + (Li+1, . . . , Ld)) /(Li+1, . . . , Ld) and
note that

I ′
n
= (I ′ + (Li+1, . . . , Ld))

n
/(Li+1, . . . , Ld)

= (I ′n + (Li+1, . . . , Ld)) /(Li+1, . . . , Ld)

= (InR′ + (Li+1, . . . , Ld)) /(Li+1, . . . , Ld).

Thus there is a graded ring isomorphism

R′

I ′
n
∼=

R′

InR′ + (Li+1, . . . , Ld)
,

which yields equalities

reg
(
R′/I ′

n
)
= reg (R′/(InR′ + (Li+1, . . . , Ld))) and reg

(
I ′

n
)
= f(n).

Now the eventual linearity of f(n) follows from the results on regularity of powers
in [7, 17] applied to I ′. �

Naturally, it follows that the other invariants listed Theorem 4.1 also grow lin-
early.

Corollary 5.2. Under the assumptions of Theorem 5.1 the following functions are
eventually linear:

(1) f(n) = ai(I
n) for a fixed integer 0 ≤ i ≤ ht(I).

(2) f(n) =the largest i-th partial degree of a minimal generator of ginrev(I
n).

(3) f(n) = redd−i(R/In) for a fixed integer 0 ≤ i ≤ ht(I).

This result has been previously shown for the reduction numbers red(R/In) =
redd−ht(I)(R/In) in [15]. To our knowledge the remaining assertions of the above
corollary are new.
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