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1. Introduction

An ideal of the polynomial ring R = K [x1, . . . , xd] with coefficients in a field K is a monomial ideal
if it is generated by monomials.

In this paper, we study a notion of powers for monomial ideals, where the exponents are allowed 
to be real numbers as follows: for r ∈ R, r > 0 we define the r-th real power of a monomial ideal, I , 
denoted Ir to be the monomial ideal whose exponent set consists of (integer) lattice points in the r-th 
dilate of the Newton polyhedron of I; see Definition 3.1. We emphasize that Ir is an ideal of the poly-
nomial ring R , and in particular the monomial generators of Ir have natural number exponents. Thus 
our notion of real powers of ideals bears no overlap with work taking place in a ring where monomi-
als are allowed to have real number exponents. Prominent examples of work in the latter context are 
(Ingebretson and Sather-Wagstaff, 2013; Andersen and Sather-Wagstaff, 2015; Miller, 2020).

Our notion of real powers is inspired by, and in fact coincides when r ∈ Q, with the notion of 
rational powers, which can be defined for arbitrary ideals, and have appeared previously in the liter-
ature in Huneke and Swanson (2006, §10.5), Knutson (2006), Rush (2007), Ciupercă (2020), Ciupercă 
(2021), Lewis (2020). In these works, rational powers come up in contexts ranging from valuation 
theory to intersection theory and have application to establishing the Golod property. In particular, 
Lewis (2020, Corollary 3.4) establishes a strong connection between rational powers and the widely 
studied family of symbolic powers of monomial ideals. The above mentioned applications have mo-
tivated and inspired us to seek effective methods for handling rational powers from a computational 
standpoint.

The focus of this paper is twofold. First, we handle the task of computing real powers of monomial 
ideals. One main result in this direction is Theorem 3.5, where we show that the generators of a spec-
ified real power of a monomial ideal can be confined within a bounded convex region depending only 
on the exponent and the Newton polytope of the ideal. We complement this theoretical insight with 
a series of algorithms, Algorithm 1, Algorithm 2, Algorithm 3, and Algorithm 4 which exploit different 
features of the problem to provide practical solutions for computing real powers of monomial ideals.

Our second aim is to study continuity properties of the exponentiation function where the base is 
a monomial ideal. Being able to do this provides motivation for working with real powers as opposed 
to the more common rational powers. We find that the exponentiation function is a step function 
with rational discontinuity points which we term jumping points. This leads to the conclusion that all 
distinct real powers of a fixed monomial ideal are given by rational exponents. Our main results on 
properties for the real exponentiation function of a monomial ideal are contained in Proposition 5.2
(existence of right limits) Proposition 5.6 (left continuity), Corollary 5.7 (step function), and Theo-
rem 5.9 (jumping numbers).

Our paper is organized as follows. After introducing the notions of Newton polyhedron and integral 
closure in section 2, we turn our attention to real powers of monomial ideals in section 3 and present 
algorithms capable of computing these ideals in section 4. We end with studying continuity properties 
and jumping numbers for exponentiation in section 5.

2. Background on integral closure and the Newton polyhedron

Let R and R+ denote the real numbers and non-negative real numbers respectively. We denote 
by N the set of non negative integers.

Let R = K [x1, · · · , xd] be a polynomial ring with coefficients in a field K . Every monomial ideal I in 
R has a unique minimal monomial generating set denoted G(I). This is a set of monomials that gen-
erates I and such that no element of G(I) divides another element of G(I). It is customary to denote 
monomials in R by the shorthand notation xa := xa1

1 · · · xad
d , where a ∈ Nd . The bijective correspon-

dence between monomials xa and lattice points a ∈Nn gives rise to convex geometric representations 
for monomial ideals, chief among which is the Newton polyhedron.

Definition 2.1. For any monomial ideal I denote by L(I) the set of exponent vectors of all monomials 
in I
40
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L(I) = {a | xa ∈ I}.
The Newton polyhedron of I , denoted N P (I), is the convex hull of L(I) in Rd

N P (I) = convex hullL(I) = convex hull({a | xa ∈ I}).
The Newton polytope of I , denoted np(I), is the convex hull of the exponent vectors of a minimal 
monomial generating set for I .

np(I) = convex hull({a | xa ∈ G(I)}).

Notice that Newton polyhedra are unbounded, while Newton polytopes are bounded convex bod-
ies. Both are lattice polyhedra, meaning that their vertices have integer coordinates. Their relationship 
can be described using the notion of Minkowski sum.

Definition 2.2. The Minkowski sum of subsets A, B ⊆Rn is

A + B = {a + b | a ∈ A,b ∈ B}.
We also write A − B = {a − b | a ∈ A, b ∈ B}.

The precise relationship between the Newton polyhedron and the Newton polytope of I , estab-
lished for example in Cooper et al. (2017, Lemma 5.2), is given by the Minkowski sum decomposition

N P (I) = np(I) +Rd+, (2.1)

where Rd+ = {(a1, . . . , ad) ∈Rd | ai ≥ 0} denotes the positive orthant in Rd .
By the version of Carathéodory’s theorem in Cooper et al. (2017, Theorem 5.2), any point a ∈ N P (I)

is written as

a = λ1t1 + · · · + λdtd + c1e1 + · · · + cded, (2.2)

with λi, c j ≥ 0, 
∑d

i=1 λi = 1, t1, . . . , td ∈ np(I), and e1, . . . , ed standard basis vectors in Rd . Thus one 
can reformulate equation (2.1) using coordinatewise inequalities as

N P (I) = {a ∈ Rd | a ≥ b for some b ∈ np(I)} (2.3)

While the containment L(I) ⊆ N P (I) ∩Nd holds by definition, in general the sets of lattice points 
L(I) and N P (I) ∩Nd need not be equal. We recall below that the set of lattice points in N P (I) is in 
fact given by N P (I) ∩Nd =L(I), where I is the integral closure of I .

Definition 2.3. The integral closure of an ideal I of a ring R is the set of elements y ∈ R that satisfy an 
equation of integral dependence of the form

yn + m1 yn−1 + · · · + mn−1 y + mn = 0 where mi ∈ I i,n ≥ 1.

The integral closure of I is denoted I .

Remark 2.4. It is shown in Huneke and Swanson (2006) that the description is significantly simpler if 
I is a monomial ideal. In this case one can give an alternate definition for the integral closure

I = ({xa | xna ∈ In for some n ∈ N}) . (2.4)

We recall below how the integral closure of a monomial ideal I can be described in terms of its 
Newton polyhedron. We also show that the minimal generators of I lie at bounded lattice distance 
from the Newton polytope np(I). In the following we use the notion of lattice (or taxicab) distance 
between points in a, b ∈Rd defined as dist(a, b) =∑d

i=1 |ai − bi |.
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Lemma 2.5. Let I be a monomial ideal in K [x1, . . . , xd]. Then

(1) N P (I) ∩Nd =L(I),
(2) N P (I) = N P (I),
(3) (compare Huneke and Swanson (2006, Proposition 1.4.9)) if xa ∈ G(I), then there exists b ∈ np(I) such 

that a ≥ b and

d∑
i=1

(ai − bi) ≤ d − 1.

Proof. Statement (1) is well-known; see for example Huneke and Swanson (2006, Proposition 1.4.6).
(2) follows from (1) by noticing that, since N P (I) is a lattice polyhedron we have

N P (I) = convex hull(N P (I) ∩Nd) = convex hull(L(I)) = N P (I).

(3) If a ∈ np(I), the choice b = a works as claimed. We may thus assume a /∈ np(I). By (2.3) there 
is y ∈ np(I) such that the inequality a ≥ y is satisfied coordinatewise. Since a ∈ Nd , we have that 
a ≥ �y� := (�y1�, . . . , �yd�) and since �y� ≥ y, we have �y� ∈ N P (I). As xa is a minimal generator of I , 
it follows that a = �y�.

Denote the unit hypercube in Rd by Hd; it has vertices 
∑

i∈S⊆[d] ei . Since xa is a minimal generator 
of I , it follows that the only vertex of a − Hd that is in N P (I) is a. Moreover, since the only lattice 
points in a − Hd are its vertices, the only lattice point in (a − Hd) ∩ N P (I) is a. Finally, we have 
y ∈ a − Hd because a = �y�.

Let z ∈ Nd be any vertex of np(I). From the previous considerations, we have z /∈ a − Hd . Since 
np(I) is convex, the line segment [y, z] is contained in np(I). Let b be the intersection point of this 
line segment with the boundary of the polytope a − Hd . Such an intersection point exists since y is 
inside and z is outside a − Hd . Then b ∈ np(I) and �b� is a vertex of a − Hd that belongs to N P (I); 
thus we have �b� = a. Furthermore, since b 	= a − 1, and b is on the boundary of a − Hd , it follows 
that for some 1 ≤ i ≤ d we have bi = ai . Hence we obtain 

∑d
i=1(ai − bi) ≤ d − 1, as claimed. �

3. Real powers of monomial ideals

We now discuss powers of monomial ideals with real exponents, termed real powers, and their 
relationship to integral closure.

Definition 3.1. Fix a real number r ≥ 0. We define the r-th real power of a monomial ideal, I , to be

Ir =
(
{xa | a ∈ r · N P (I) ∩Nd}

)
.

When r ∈Q we will refer to Ir as the r-th rational power of I .

Rational powers of monomial ideals have appeared previously in the literature under the following 
definition and notation, see Huneke and Swanson (2006, Definition 10.5.1): the r-th rational power of 
an arbitrary ideal I of a ring R for r = p

q with p, q ∈N, q 	= 0 is the ideal

Ir := {y ∈ R | yq ∈ I p}, (3.1)

where I p denotes the integral closure of the p-th ordinary power of I , I p . In the following we show 
that these two definitions agree, i.e., Ir = Ir whenever r ∈ Q and furthermore for natural exponents 
r ∈N the r-th real power agrees with the integral closure of the r-th ordinary power of I , Ir .

Our notation for real powers deviates from that in (3.1), which is more established in the literature, 
in favor of being intentionally consistent with the notation for integral closure, since these notions 
agree for r ∈N as shown in the following lemma.
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Lemma 3.2. Let I be a monomial ideal. Then

(1) If r ∈ N , then the r-th real power of I is equal to the integral closure of the r-th ordinary power Ir . In 
particular, the first rational power of I , I1, is the integral closure of I . Moreover, the r-th real power of I is 
integrally closed.

(2) If r ∈Q then the r-th real power of I in Definition 3.1 agrees with the r-th rational power of I , Ir , in (3.1).

Proof. (1) By definition, a monomial xa is an element of the r-th real power of I if and only if 
a ∈ r · N P (I). Noting that r · N P (I) = N P (Ir) if r ∈N , the latter condition is equivalent to a ∈ N P (Ir). 
Now by Lemma 2.5 (1), we have a ∈ N P (Ir) ∩Nd if and only if xa is an element of the integral closure 
of Ir if and only if xa is an element of the integral closure of Ir .

(2) Let r = p
q with p, q ∈N, q 	= 0 and let xa be a monomial. By (3.1), xa ∈ Ir holds if and only if we 

have xqa ∈ I p , equivalently qa ∈ N P (I p) = N P (I p) = pN P (I). In turn, the last assertion is equivalent 
to a ∈ rN P (I) ∩Nd and by Definition 3.1 this holds if and only if xa ∈ Ir . �

Using Lemma 2.5, for r ∈Q+ we aim to confine the minimal generators of Ir to a bounded convex 
set, which will be obtained by Minkowski sum. In order to define this convex set we introduce the 
unit simplex in d-dimensional space,

Sd = {a = (a1, . . . ,ad) ∈Rd | a1 + · · · + ad ≤ 1,ai ≥ 0 for 1 ≤ i ≤ d}.
In the metric space Rd endowed with the lattice distance, the unit simplex is the non negative portion 
of the ball of radius one centered at the origin. Denoting the origin in Rd by 0, this observation yields 
an alternate description

Sd = {a ∈ Rd | a ≥ 0, dist(a,0) ≤ 1}.

Remark 3.3. Lemma 2.5 (3) can be reformulated using this notation as follows: If I is a monomial 
ideal and xa ∈ G(I), then a ∈ np(I) + (d − 1) · Sd .

The following technical result shall prove very useful for our purposes.

Lemma 3.4. Let xa be a minimal generator of Ir , where r = p
q is a positive rational number. Then there exists 

a minimal generator xb of I p such that qa − b ∈ d(q − 1) · Sd.

Proof. By Lemma 3.2 (2), we obtain xqa ∈ I p . Thus there exists a minimal generator xb ∈ G(I p) such 
that xb divides xqa . This implies b ≤ qa, that is, bi ≤ qai for all 1 ≤ i ≤ d. Suppose that qa − b /∈
d(q − 1) · Sd . Then the inequality

d∑
i=1

(qai − bi) ≥ d(q − 1) + 1

follows by integrality. Applying the pigeon-hole principle, we find that there must exist i0 ∈ {1, . . . , d}
such that qai0 − bi0 ≥ q. Rewriting, we get that q(ai0 − 1) ≥ bi0 . We can now set a′ = a − ei0 and with 
this notation we find

b ≤ q(a1, . . . ,ai0−1 ,ai0 − 1,ai0+1 , . . . ,ad) = qa′.

Thus xb divides xqa′
and xqa′

is an element of I p . Applying Lemma 3.2 (2) again, this yields that, 
xa′ ∈ Ir , which contradicts that xa is a minimal generator of Ir . �
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We are now able to describe a bounded convex set which contains the minimal generators of a 
rational power for a monomial ideal. The following result constitutes the basis for our Minkowski 
algorithm described in Algorithm 1. See also Example 4.2 for an illustration of the convex set C(I, r)
defined below.

Theorem 3.5. Let I be a monomial ideal in K [x1, . . . , xd]. If r = p
q is a positive rational number and xa ∈ G(Ir), 

then a is in the following bounded convex set

C(I, r) = r · np(I) +
(

d − 1

q

)
· Sd. (3.2)

Moreover, if a ∈ C(I, r) ∩Nd, then xa ∈ Ir and thus Ir = ({xa | a ∈ C(I, r) ∩Nd)}.

Proof. By Lemma 3.4, there exists a minimal generator of I p , xb , such that

qa − b ∈ d(q − 1) · Sd

and from Remark 3.3 applied to the monomial ideal I p we have that

b ∈ np(I p) + (d − 1) · Sd = p · np(I) + (d − 1) · Sd.

Combining the displayed statements, we obtain

qa ∈ p · np(I) + (d − 1) · Sd + d(q − 1) · Sd

⇐⇒ a ∈ p

q
· np(I) + d − 1

q
· Sd + d(q − 1)

q
· Sd

⇐⇒ a ∈ r · np(I) +
(

d − 1

q

)
· Sd.

Finally, since Sd ⊆ Rd+ , we have that C(I, r) ⊆ r · N P (I) by (2.1). Thus if a ∈ C(I, r) ∩ Nd , then a ∈
r · N P (I) which yields xa ∈ Ir according to Definition 3.1. The identity Ir = (xa | a ∈ C(I, r) ∩ Nd)

follows from the previous assertions. �
Remark 3.6. While the previous theorem does not require the rational number r = p

q to have 
gcd(p, q) = 1, in applications is desirable to work with the reduced form of r in order to obtain 
the smallest possible region C(I, r).

4. Algorithms for computing real powers

Several algorithms are proposed below for computing real powers of monomial ideals.
Our algorithms rely on several auxiliary computational tasks, which are highly non trivial, but can 

be performed currently by computer algebra systems such as Grayson and Stillman (1992) or 4ti2 
team (2018). Specifically, we assume that independent routines are used to compute the Newton 
polyhedron or polytope for a given monomial ideal. For this reason, we take these convex bodies as 
input for our algorithms. For Algorithm 1 we additionally assume the existence of a routine that finds 
all the lattice points in a bounded convex polytope. This task is discussed in detail in De Loera et al. 
(2004).

4.1. Minkowski algorithm

Our first algorithm uses the ideas presented in Theorem 3.5 and illustrated in Example 4.2 to 
confine the generators of a real power Ir within a convex region of bounded lattice distance from the 
Newton polytope np(I).
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Algorithm 1: Minkowski Sum algorithm.

Input: the Newton polytope np(I) of an ideal I , a rational number r = p
q ∈Q+

Output: a list of monomial generators for the ideal Ir

/* Scaled newton polytope of I */
1 scalednp := r · np(I)
/* Bounded convex set, as given by Theorem 3.5 */

2 d := dimension of the polynomial ring containing I

3 simplex := d-dimensional simplex with vertices at {0, (d − 1
q )e1, . . . , (d − 1

q )ed}.

4 C := minkowskiSum(scalednp, simplex)
/* Find all lattice points and their monomial counterpart */

5 exponentVectors := latticePoints(C )
6 Initialize generators := ∅
7 for b in exponentVectors do
8 generators := append(xb , generators)

/* Return the possibly non minimal monomial generators */
9 Return generators.

Fig. 1. Computing (xy5, x2 y2, x4 y)4/3 using the Minkowski algorithm. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Proposition 4.1. If I is a monomial ideal of a d-dimensional polynomial ring and r ∈ R+ , then Algorithm 1
returns a not necessarily minimal set of monomial generators for Ir .

Proof. This follows from the assertion Ir = ({xa | a ∈ C(I, r)}) ∩ Nd) of Theorem 3.5. In Algorithm 1
the set C(I, r), termed C , is constructed according to equation (3.2). �
Example 4.2. Consider the ideal I = (xy5, x2 y2, x4 y) and the rational number r = 4

3 . Then one can 
determine that

I4/3 = (x2 y5, x2 y6, x2 y7, x3 y3, x3 y4, x3 y5, x3 y6, x4 y2, x4 y3, x4 y4, x4 y5, x5 y2, x5 y3, x6 y2)

based on identifying the lattice points in the convex region

C
(

I,
4

3

)
= 4

3
· np(I) + 5

3
· S2

given by Theorem 3.5. Note that I4/3 is minimally generated by G(I4/3) = {x2 y5, x3 y3, x4 y2}. Thus, 
Algorithm 1 does not in general identify the minimal generators, but rather a possibly non minimal 
set of generators for Ir . In the Fig. 1, the region C(I, 43 ) is shaded in darker blue, while the rest of the 
scaled polyhedron 4

3 · N P (I) is shaded in lighter blue.
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Algorithm 2: Hyperrectangle algorithm.
Input: generators G(I) and the Newton polyhedron N P (I) of an ideal I , a real number r ∈R+
Output: a list of monomial generators for the ideal Ir

1 d := dimension of the polynomial ring containing I

2 candidates := hype(I, r) ∩Nd

3 Initialize generators := ∅
4 for b in candidates do
5 if b in r · N P (I) then
6 generators := append(xb , generators)

7 Return generators.

4.2. Hyperrectangle algorithm

The next algorithms depend on the notion of the hyperrectangle of a scaled Newton polyhedron, 
which is defined below.

Definition 4.3. Given a monomial ideal I of a d-dimensional polynomial ring and r ∈ R+ , define the 
set of scaled vertices of I with respect to r to be

V(I, r) = {�ra� := (�ra1�, . . . , �rad�) | xa ∈ G(I)
}
.

Let α = (α1, . . . , αd) ∈ V(I, r). Define

min(V(I, r), i) = min
α∈V(I,r)

αi and max(V(I, r), i) = max
α∈V(I,r)

αi . (4.1)

Finally, set the hyperrectangle of r · N P (I) to be the following set

hype(I, r) = {c = (c1, . . . , cd) | ci ∈ [min(V(I, r), i), max(V(I, r), i)]}

=
d∏

i=1

[min(V(I, r), i), max(V(I, r), i)].

We now see that the generators for the r-th real power of I are among the set of lattice points in 
hype(I, r).

Lemma 4.4. Let I be a monomial ideal and let r ∈R+ . Denote the set of lattice points in hype(I, r) by S(I, r). 
Then

(1) �r · np(I)� := {(�p1�, . . . , �pd�) | p ∈ r · np(I)} ⊆ S(I, r)
(2) Ir is generated by a subset of the lattice points in hype(I, r), more precisely

Ir = ({xa | a ∈ r · N P (I) ∩ hype(I, r) ∩Nd}).

Proof. (1) Every point in p ∈ r · np(I) is a convex combination of the vertices of this polytope, which 
are in the set V = {ra | xa ∈ G(I)}. Since every coordinate pi of p is a convex combination of i-th 
coordinates of elements in V we obtain that pi ∈ [mina∈V ai, maxa∈V ai] for 1 ≤ i ≤ d. Thus �pi� ∈
[min(V, i), max(V, i)], which settles the claim.

(2) Temporarily denote J := (xa | a ∈ r · N P (I) ∩ S(I, r)). Then J ⊆ Ir follows from Definition 3.1. 
Now let a ∈Nd be such that xa ∈ Ir and thus a ∈ r · N P (I) ∩Nd . From (2.1) we know

r · N P (I) = r · np(I) + r ·Rd+ = r · np(I) +Rd+,

thus there exists b ∈ r · np(I) such that a ≥ b. Since a ∈Nd it follows that a ≥ �b� = (�b1�, . . . , �bd�], 
where �b� ∈ �r · np(I)�. From part (1) it follows that �b� ∈ S(I, r) and from �b� ≥ b we deduce �b� ∈
46
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Fig. 2. Computing (xy5, x2 y2, x4 y)4/3 using the Hyperrectangle algorithm (left) and Improved Hyperrectangle algorithm (right).

r · np(I) hence �b� ∈ r · N P (I) +Rd+ . We have thus shown that �b� ∈ r · N P (I) ∩S(I, r), hence x�b� ∈ J
and since a ≥ �b� we deduce xa ∈ J . Thus the containment Ir ⊆ J has been established. �

Based on the previous result we produce the following algorithm.

Proposition 4.5. If I is a monomial ideal and r ∈R+ , then Algorithm 2 returns a not necessarily minimal set 
of monomial generators for Ir .

Proof. This follows from part (2) of Lemma 4.4. �
Example 4.6. Fig. 2 illustrates the set of lattice points in the hyperrectangle hype(I, 43 ) for the ideal 
I = (xy5, x2 y2, x4 y). These are marked in solid yellow, solid purple and hollow black. The set of gener-
ators returned by Algorithm 2 corresponds to the yellow and purple lattice points, while the minimal 
generators correspond to the purple points.

In general, for fixed I and r, the two convex sets C(I, r)) and hype(I, r) where Algorithm 1 and 
Algorithm 2, respectively, look for a set of generators for Ir are incomparable. For an illustration con-
sider Fig. 1 in Example 4.2, where the set C(I, r)) is shaded in darker blue and Fig. 2 where the set 
hype(I, r) is the marked by the orange boundary. Note that there are no containments between the 
sets C(I, r) and hype(I, r) in this example. In general one does not expect a containment between 
the corresponding sets of lattice points C(I, r)) ∩Nd and hype(I, r) ∩Nd either. However, the cardi-
nality of the former set is typically smaller than the latter. We address this shortcoming in the next 
Algorithm 3.

The exponent vectors for minimal generators of Ir are in C(I, r) ∩ hype(I, r) ∩ Nd . However, as 
illustrated by Fig. 1 and Fig. 2, the exponents for the minimal generators of Ir can form a proper 
subset of C(I, r)) ∩ hype(I, r) ∩Nd .

The next variant improves on the hyperrectangle algorithm by reducing some redundancies in the 
traversal of lattice points. Using the while-loop on the final coordinate, the improved hyperrectangle 
algorithm stops looking for other generators after it finds a lattice point that is inside r · N P (I). Note 
that the improved hyperrectangle algorithm optimizes traversal of the set hype(I, r) ∩ Nd only on 
the last coordinate, so the benefits of using this algorithm over the hyperrectangle algorithm is more 
apparent in low dimensional rings.

Example 4.7. Fig. 2 illustrates the set of generators for the ideal (xy5, x2 y2, x4 y)4/3 returned by the 
improved hyperrectangle algorithm. The set of lattice points considered by this algorithm are marked 
in solid yellow and purple and hollow black. The set of generators returned by Algorithm 3 corre-
sponds to the yellow and purple lattice points, while the minimal generator correspond to the purple 
lattice points only. Compared to Fig. 2, fewer non minimal generators are returned.
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Algorithm 3: Improved Hyperrectangle algorithm.
Input: the Newton polyhedron N P (I) of an ideal I , a real number r ∈R+
Output: a list of monomial generators for the ideal Ir

1 d := dimension of the polynomial ring containing I
2 startPoints := {b ∈ hype(I, r) | bd = min(V, d)}
3 Initialize generators := ∅
4 for b in startPoints do
5 while b not in r · N P (I) and bd ≤ max(V, d) do
6 b := b + (0, . . . , 0, 1) /* “move up” */

7 if b in r · N P (I) then
8 generators := append(xb , generators)

/* Return the possibly non minimal monomial generators */
9 Return generators.

Algorithm 4: Staircase algorithm.
Input: the Newton polyhedron N P (I) of an ideal I , a real number r ∈R+
Output: a list of monomial generators for the real power Ir

1 Initialize generators := ∅
2 d := dimension of the polynomial ring containing I
3 if d = 1 then
4 Return {xmin(V,1)}
5 else
6 startPoints := {a ∈ hype(I, r) | ad−1 = min(V, d − 1), ad = max(V, d)

}
7 for a in startPoints do
8 b := a
9 while a in hype(I, r) do

10 if a in r · N P (I) then
11 b := a
12 a := a − (0, . . . , 0, 1) /* “move down” */

13 else
14 if b in r · N P (I) then
15 generators := append(xb , generators)

16 b := a
17 a := a + (0, . . . , 1, 0) /* “move right” */

18 if b in r · N P (I) then
19 generators := append(xb , generators)

20 Return generators.

4.3. Staircase algorithm

The algorithms presented in the previous sections (Algorithm 1, Algorithm 2, and Algorithm 3) 
have one common disadvantage in that they return possibly non minimal sets of generators for the 
real powers of monomial ideals. The next algorithm, termed the staircase algorithm, traverses lattice 
points near the boundary of the Newton polyhedron. The traversal is designed so that, in the 2-
dimensional case, the minimal generators are found.

A benefit of the following algorithm is to improve upon the runtime of Algorithm 1 and Al-
gorithm 3. Algorithm 1 is slow in practice because of lattice points identification in step 5, while 
Algorithm 3 may be inefficient because a large number of operations could be performed to check if 
lattice points are in or outside r · N P (I). To alleviate this issue, the staircase algorithm optimizes the 
traversal of lattice points on the final two coordinates. The algorithm uses the notation in equation 
(4.1).
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Fig. 3. Computing (xy5, x2 y2, x4 y)4/3 using the Staircase algorithm.

Example 4.8. Fig. 3 shows the set of lattice points considered by the staircase algorithm within 
hype(I, 43 ) for the ideal I = (xy5, x2 y2, x4 y). While all the lattice points along the path of the al-
gorithm are considered, only the minimal generators corresponding to the purple lattice points are 
returned.

We are now ready to show the validity of Algorithm 4. We utilize terminology that is consistent 
with the visual descriptions in Fig. 3. We call the path of the algorithm P(I, r) the set of values taken 
by the variable a in Algorithm 4 for fixed inputs I, r. This set is the disjoint union of two subsets: the 
exterior path and the interior path defined below:

Pext(I, r) = {a ∈ P(I, r) \ r · N P (I)}
Pint(I, r) = {a ∈ P(I, r) ∩ r · N P (I)}.

Proposition 4.9. If I is a monomial ideal of a d-dimensional polynomial ring and d ∈ {1, 2}, then Algorithm 4
returns a minimal set of monomial generators for Ir . If d ≥ 3 then Algorithm 4 returns a not necessarily minimal 
set of monomial generators for Ir .

Proof. In the case d = 1, every monomial ideal J ⊆ K [x1] is principal, minimally generated by xm
1 , 

where m = min{a | xa
1 ∈ J }. Applying this to J = Ir for which case m = min(V, 1) yields G(Ir) =

{xmin(V,1)
1 }, i.e., the output of Algorithm 4 in step 4.

For the case d = 2, first notice that because of the succession of down moves and right moves, the 
interior path Pint(I, r) is a disjoint union of vertical strips of the form

sa,b,c := {γ = (γ1, γ2) | γ1 = a, γ2 ∈ [b, c] ∩N},
where b = min{b′ | (a, b′) ∈ r · N P (I)} by step 12 of the algorithm; see Fig. 3 for an illustra-
tion. Moreover, the interior path contains one lattice point for each value of the x2-coordinate in 
[min(V, 1), max(V, 1)] so that in the decomposition

Pint(I, r) =
e⋃

i=min(V,1)

si,bi ,ci (4.2)

we must have cmin(V,1) = max(V, 2) and bi = ci+1 + 1 for each i ≤ e − 1, where e is the maximum x1
coordinate of any point on the interior path. In particular, if i < j then the inequality bi > c j holds.

Let xa ∈ G(Ir). By Lemma 4.4 it follows that a = (a1, a2) ∈ hype(I, r), so a2 ∈ [min(V, 1), max(V, 1)], 
and by the preceding remarks there exists a unique point b ∈ Pint(I, r) with b2 = a2. We claim that 
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Fig. 4. Computing generators for (y3, y2 z5, x2 y2, x2z3) using the Staircase algorithm.

b = a. If not, then a1 < b1 since xa is a minimal generator (i.e., a lies “left” of b), and for this reason 
a2 = b2 ≤ cb1 < ba1 (i.e. a lies “below” the strip with x1-coordinate a1). Since a = (a1, a2) ∈ r · N P (I)
and ba1 = min{b′ | (a1, b′) ∈ r · N P (I)}, this yields a contradiction. We have shown that

G(Ir) ⊆ {xa | a ∈ Pint(I, r)}.
In the notation of (4.2), the algorithm returns the set {xi

1xbi
2 | min(V, 1) ≤ i ≤ e}. Each of the mono-

mials xi
1x j

2 with j ∈ (bi, ci] ∩ N are not in G(Ir) since they are divisible by xi
1xbi

2 . Thus G(Ir) is 
contained in the returned set. Moreover, the returned set consists of minimal generators since no 
two of its elements are comparable under the divisibility relation. In fact, this proof shows that the 
case d = 2 of the algorithm gives a minimal set of generators for the ideal generated by the mono-
mials with exponents in a given convex set (in our application to real powers, this convex set is 
r · N P (I)). We use this to approach the higher dimensional cases.

The case d > 2 is derived from the case d = 2 by the following analysis. By virtue of Lemma 4.4
we have the identity

Ir =
(
{xa | a ∈ hype(I, r) ∩ r · N P (I) ∩Nd

)

=
⎛
⎜⎝ ∑

γ ∈∏d−2
i=1 [min(V,i),max(V,i)]

xγ1
1 · · · x

γd−2
d−2 · Iγ ,r

⎞
⎟⎠ ,

where Iγ ,r := ({xa
d−1xb

d | (γ1, . . . , γd−2, a, b) ∈ r · N P (I)}) is an ideal in a 2-dimensional polynomial 
ring. According to the case d = 2, steps 7–19 of the algorithm append the set xγ1

1 · · · x
γd−2
d−2 · G(Iγ ,r) to 

the generators list. The union of these sets generates Ir by the above displayed identity. �
Example 4.10. We give a visual illustration of using Algorithm 4 to compute the integral closure of 
I = (y3, y2z5, x2 y2, x2z3), that is, I1 in Fig. 4. In 3-dimensional space, the path of the algorithm is a 
disjoint union of paths, each corresponding to an ideal in a 2-dimensional ring as shown in the proof 
of Proposition 4.9.

5. Continuity and jumping numbers for exponentiation

In this section we analyze how the real powers of monomial ideals vary with the exponent. To be 
precise, for a fixed monomial ideal I we consider continuity properties for the exponentiation function
of base I
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exp : R+ → T , exp(r) = Ir

whose domain is R+ with its Euclidean topology and whose codomain is the set T = {Ir | r ∈ R+}
endowed with the discrete topology.

We start with two elementary properties enjoyed by the family of real powers of the fixed ideal.

Lemma 5.1. If I is a monomial ideal and r, s ∈R+ then

(1) if s ≥ r ≥ 0, then the containment I s ⊆ Ir holds,
(2) I s · Ir ⊆ I s+r .

Proof. Assertion (1) is clear from Definition 3.1. To clarify assertion (2), note that monomials in I s · Ir

correspond to lattice points in the Minkowski sum

s · N P (I) + r · N P (I) = (s + r) · N P (I). �
Part (2) of Lemma 5.1 shows that the real powers of a fixed monomial ideal form a graded family, 

although this terminology is more commonly used for families indexed by a discrete set. Property (1) 
of Lemma 5.1 allows to define for each r ∈R the monomial ideal

I>r =
⋃
s>r

I s.

We show that this ideal can be understood as a limit in T , meaning that a sequence of real powers 
of I where the exponents approach a real number r from the right must stabilize to I>r .

Proposition 5.2. Let I be a monomial ideal and let {tn}n∈N be a non-increasing sequence of non-negative real 
numbers with r = limn→∞ tn. Then Itn = I>r for n sufficiently large.

Proof. A non-increasing sequence of non-negative numbers {tn}n∈N gives an ascending chain of ide-
als It0 ⊆ It1 ⊆ · · · ⊆ Ir by Lemma 5.1 (1). Since the polynomial ring is Noetherian, any such chain must 
in fact stabilize, i.e. there exists N � 0 such that Itn = Itm for m, n ≥ N . We show that the stable value 
of this chain is I>r . Indeed, from the definition of I>r one deduces the containment

ItN =
∞⋃

n=0

Itn ⊆
⋃
s>r

I s = I>r .

Conversely, for each s > r, there exists n ≥ N such that s > tn , hence one has the containments I s ⊆
ItN = Itn for all s > r and consequently ItN ⊇ I>r . �

To distinguish those real numbers r for which the function exp : R+ → T , exp(r) = Ir is right 
discontinuous, we term them jumping numbers.

Definition 5.3. A jumping number for I is a real number r ∈R+ for which the real powers of I are not 
equal to Ir when we approach r from the right, i.e.

Ir 	= I>r .

Example 5.4. 0 is a jumping number for any monomial ideal since I0 = R but Ir is a proper ideal for 
any r > 0.

Example 5.5. For I = (x4, x2 y, xy3) we have that 1
3 is not a jumping number while 1

2 is a jumping 
number. This is because for small values of ε > 0 there is an equality
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Fig. 5. Comparing 1
3 · N P (I) and 1

2 · N P (I).

1

3
· N P (I) ∩N2 =

(
1

3
+ ε

)
· N P (I) ∩N2,

while

1

2
· N P (I) ∩N2 	=

(
1

2
+ ε

)
· N P (I) ∩N2

because the point (2, 0) belongs to the former set but not the latter. In fact, for the ideal I in this 
example, we have (x2, xy) = I1/3 = I>1/3 = I1/2 	= I>1/2 = (x3, xy). (See Fig. 5.)

To verify that right continuity is a special characteristic to study, we show that the exponentiation 
function is a left continuous function.

Towards this end recall that any polyhedron admits a description as a finite intersection of half 
spaces. We term the linear inequalities describing a polyhedron as an intersection of half spaces its 
bounding inequalities. In particular, if I is a monomial ideal in a polynomial ring of dimension d then 
N P (I) is a lattice polyhedron, hence there exist a d × s matrix A with entries in N and a vector 
c ∈Nd such that

N P (I) = {x ∈Rd+ | Ax ≥ c}. (5.1)

In (5.1), if A = [aij], we will further assume that we have gcd(ai1, . . . , ais, ci) = 1 for each 1 ≤ i ≤ d. 
Moreover, scaling the Newton polyhedron amounts to scaling the constant term of the bounding 
inequalities, that is,

r · N P (I) = {x ∈Rd+ | Ax ≥ r · c}.

Proposition 5.6. The function exp :R+ → T , exp(r) = Ir is left continuous.

Proof. Fix r ∈ R+ and consider the set Ar = Nd \ r · N P (I). Observe that each point p ∈ Ar lies at a 
positive Euclidean distance from any point in r · N P (I). Indeed in the notation of (5.1), writing ai for 
the i-th row of A we have ai · p < rci for at least one 1 ≤ i ≤ d and thus the distance from p to the 
hyperplane of equation ai · x = rci is di = (rci − ai · p)/

√
ai · ai > 0. In particular, since ai · p ∈ N , it 

follows that di ≥ δi := (rci −prec(rci))/
√

ai · ai > 0, where prec(u) is the largest integer strictly smaller 
than u. Taking � = min1≤i≤d δi we conclude that any p ∈ Ar lies at distance at least � > 0 from any 
point in N P (I).

Since each δi is a left continuous function of r, it follows that there exists ε0 > 0 such that for any 
0 < ε < ε0 each point p ∈ Ar lies at a positive Euclidean distance from any point in (r − ε) · N P (I) as 
well. Equivalently we have Ar ∩ (r − ε) · N P (I) = ∅ which yields Ar = Ar−ε and thus r · N P (I) ∩Nd =
(r − ε) · N P (I) ∩Nd and Ir = Ir−ε for 0 < ε < ε0. �
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We now show that the real exponentiation function of a monomial ideal is a step function.

Corollary 5.7. Let j < j′ be two consecutive jumping numbers for I . Then the function exp : R+ →
T , exp(r) = Ir is constant on ( j, j′] and I j 	= I j′ .

Proof. Since j < j′ are consecutive jumping numbers, meaning there is no jumping number in ( j, j′), 
the exponentiation function is continuous on ( j, j′] by a combination of Proposition 5.2 and Proposi-
tion 5.6, and left continuity at j′ . Since T carries the discrete topology, this continuity is equivalent to 
the function being constant on ( j, j′]. However, the exponentiation function is right discontinuous at j
by the definition of jumping number, thus I j is distinct from the common value of the exponentiation 
function on ( j, j′], that is, I j 	= I j′ . �

Our next aim is to show that the jumping numbers for monomial ideals are rational. Utilizing the 
notation in (5.1) and setting ai to be the i-th row of the matrix A therein, the facets of the Newton 
polyhedron are supported on hyperplanes Hi with equation aix = ci . Each facet Fi of N P (I) is thus 
cut out by a system formed by one equation and several inequalities of the form

Fi = {x | ai · x = ci,a j · x ≥ c j for 1 ≤ j ≤ d, j 	= i
}
. (5.2)

Proposition 5.8. Given a monomial ideal I with facets Fi, 1 ≤ i ≤ s for N P (I) described as in (5.2) above, the 
following are equivalent:

(1) r ∈R+ is a jumping number for I ;
(2) for some 1 ≤ i ≤ s such that ci 	= 0 there exists a lattice point p ∈ r · Fi ∩Nd;
(3) for some 1 ≤ i ≤ s such that ci 	= 0 there exists an integer solution to the system of equations and inequal-

ities that describes r · Fi , namely{
ai · x = rci

a j · x ≥ rc j for 1 ≤ j ≤ d, j 	= i.
(5.3)

Proof. (2) ⇔ (3) is clear.
(1) ⇒ (2) We show the contrapositive. Assume that r ∈R+ is such that the union of the facets of 

r · Fi of r · N P (I) corresponding to ci 	= 0 contains no lattice point. Note that

r · N P (I) \ (r + ε) · N P (I) ⊆ {x | ai · x ∈ [rci, (r + ε)ci) for some i with ci 	= 0}.
Moreover there is at least one 1 ≤ i ≤ d so that ci 	= 0 since I 	= R . Taking ε < ε0 := minci 	=0{(next(rci)

− rci)/ci}, where next(rci) is the smallest integer strictly larger than rci , one can ensure that [rci, (r +
ε)ci) ∩N ⊆ {rci} whenever ci 	= 0. This means that any possible lattice point t in r · N P (I) \ (r + ε) ·
N P (I) satisfies ai · t = rci for some ci 	= 0. Thus we see that t lies on a facet Fi which contains no 
lattice points by assumption. Thus there are no lattice points in r · N P (I) \ (r + ε) · N P (I).

It follows that Ir = Ir+ε for 0 < ε < ε0 and thus r is not a jumping number for I .
(3) ⇒ (1) Let p ∈ Nd be an integer solution to (5.3). Since this implies p ∈ r · Fi ⊆ r · N P (I), 

we see that xp ∈ Ir . Since p attains equality in the first equation of (5.3) it follows that p satisfies 
ai · p < (r + ε)ci for any ε > 0. (This uses ci 	= 0.) Thus we conclude p /∈ (r + ε) · N P (I) and xp /∈ Ir+ε

for all ε > 0 and therefore xp /∈ I>r . Consequently r is a jumping number. �
From the above characterization we obtain that jumping numbers control the behavior of all real 

powers of a given monomial ideal and are all rational numbers.

Theorem 5.9. Let I be a monomial ideal.

(1) All jumping numbers for I are rational.
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(2) All distinct real powers of I are given by rational exponents, i.e., for each r ∈ R+ there exists r′ ∈ Q so 
that Ir = Ir′ . Moreover r′ can be taken to be a jumping number for I .

(3) If r is a jumping number of I then nr is a jumping number for all n ∈N .
(4) If v is a vertex of N P (I), then for all n ∈N the number rn = n

gcd(v1,··· ,vd)
is a jumping number of I .

(5) The set of jumping numbers can be written as a finite union of scaled monoids J =⋃ci 	=0
1
ci

Si . Here each 
Si is a submonoid of the numerical semigroup generated by the entries of the i-th row of the matrix A in 
(5.1) and ci are the components of the vector c in (5.1).

Proof. (1) follows since Proposition 5.8 (3) yields that there is an integer solution p to an equation 
of the form ai · p = rci where ai is a row of the matrix A in (5.1) and ci 	= 0. Since the entries of ai, p, 
and ci are natural numbers, this gives r ∈Q.

(2) If r ∈Q+ is a jumping number, set r′ = r. If r is not a jumping number, let

r′ = inf{u | u > r and u is a jumping number for I}.
Notice first that r′ is in fact the minimum of the set above, equivalently r′ ∈Q is a jumping number 
for I . Indeed, if this is not the case, then there is a sequence of pairwise distinct jumping numbers 
{un}n∈N converging to r′ from the right. Since we have assumed r′ is not a jumping number, the 
exponential function with base I is right continuous at r′ , thus it must be the case that Iun = Ir′

for n � 0. This contradicts that the numbers un are distinct jumping numbers, since distinct jumping 
numbers yield distinct real powers by Corollary 5.7. Another application of Corollary 5.7 together with 
the observation that r is not a jumping number yields that the exponentiation function is constant on 
[r, r′], thus we conclude there is an equality Ir = Ir′ .

(3) follows since the condition on integer solutions to the system (5.3) in Proposition 5.8 is pre-
served upon scaling the system by any natural number.

(4) Each vertex v of N P (I) furnishes an integer solution to the system of (in)equalities (5.3) corre-
sponding to each facet Fi such that v ∈ Fi . Scaling by rn we see that rn · v ∈Nd is an integer solution 
to the analogous system{

ai · x = rnci,

a j · x ≥ rnc j for 1 ≤ j ≤ d, i 	= j.

Proposition 5.8 yields that rn is a jumping number for I .
For (5), for each 1 ≤ i ≤ d, let aij ∈N be the entries in the i-th row of the matrix A in (5.1) and ci

the entries of c. For each i with ci 	= 0 set

Si =
⎧⎨
⎩rci | ∃x1, . . . , xd ∈N ∪ {0} s.t.

d∑
j=1

aijx j = rci,

d∑
j=1

aljx j ≥ rcl for l 	= i

⎫⎬
⎭ .

It is clear that Si ⊂N ∪{0}. Moreover Si is a monoid as 0 ∈ Si and rci, r′ci ∈ Si imply (r + r′)ci ∈ Si by 
summing the respective (in)equalities. The existence of a non-negative integer solution to the equation ∑d

j=1 aij x j = rci implies that rci belongs to the numerical semigroup Mi generated by the integers aij

for 1 ≤ j ≤ d, thus Si ⊆ Mi . With this notation, Proposition 5.8 can be rephrased to say that the set of 
jumping numbers for I is

J =
⋃
ci 	=0

1

ci
Si . �

In regards to item (1) of Theorem 5.9 we observe that every non-negative rational number is a 
jumping number for some monomial ideal. Indeed if r = p

q with p, q ∈ N, q 	= 0 then r is a jumping 
number of I = (xq

1).
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Fig. 6. The Newton polyhedron of (x9, x4 y3, x2 y5, y8).

Item (2) of Theorem 5.9 yields a new description for the image of the exponentiation function 
with base I

T = {Ir | r ∈Q is a jumping number for I}.
Moreover, the elements of the set T listed above are pairwise distinct by Corollary 5.7.

We end with a worked out example which illustrates the jumping numbers and real powers of a 
particular monomial ideal using the criterion in Proposition 5.8.

Example 5.10. The monomial ideal I = (x9, x4 y3, x2 y5, y8) has Newton polyhedron depicted in Fig. 6
with vertices at (9, 0), (4, 3), (2, 5), (0, 8).

We show that the jumping numbers of I are the elements of the following set

J =
{

0,
i

7
,

j

16
,

k

27
| i ≥ 2, j ∈ {2,4,6} or j ≥ 8,k ∈ {3,6,9,11,12,14,15} or k ≥ 17

}
. (5.4)

The faces of the Newton polyhedron F1, F2, F3, F4, F5 are shown in Fig. 6 together with the corre-
sponding bounding inequalities for N P (I). Putting these inequalities in the form of (5.1) yields⎡

⎢⎢⎢⎣
1 0
3 2
1 1
3 5
0 1

⎤
⎥⎥⎥⎦ ·
[

p
q

]
≥

⎡
⎢⎢⎢⎣

0
16
7

27
0

⎤
⎥⎥⎥⎦ .

Theorem 5.9 (5) says that the jumping numbers depend on the following three monoids:

S2 = {16r | ∃p,q ∈N ∪ {0} s.t. p ≥ 0,3p + 2q = 16r, p + q ≥ 7r,3p + 5q ≥ 27r,q ≥ 0},
S3 = {7r | ∃p,q ∈N ∪ {0} s.t. p ≥ 0,3p + 2q ≥ 16r, p + q = 7r,3p + 5q ≥ 27r,q ≥ 0},
S4 = {27r | ∃p,q ∈N ∪ {0} s.t. p ≥ 0,3p + 2q ≥ 16r, p + q ≥ 7r,3p + 5q = 27r,q ≥ 0}.

Denote N0 =N ∪ {0}. It turns out that S2 = 2N0 + 9N0, S3 = 2N0 + 3N0, and S4 = 3N0 + 11N0 +
19N0. The set of jumping numbers is

J = 1

16
S2 ∪ 1

7
S3 ∪ 1

27
S4.

Writing the elements of each semigroup S1, S2, S3 explicitly yields the set displayed in equation (5.4)
above.
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Below we list the rational powers of I for exponents r ∈ (0, 1]. The generators have been color 
coded based on the bounded edge of the Newton polyhedron that is giving rise to change in genera-
tor(s) cf. Proposition 5.8 (2). Refer to the legend in Fig. 6 for the color corresponding to each edge.

Ir =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y, x) r ∈ (0, 1
9 ]

(y, x2) r ∈ ( 1
9 , 1

8 ]
(y2, xy, x2) r ∈ ( 1

8 , 2
9 ]

(y2, xy, x3) r ∈ ( 2
9 , 2

8 ]
(y3, xy, x3) r ∈ ( 2

8 , 2
7 ]

(y3, xy2, x2 y, x3) r ∈ ( 2
7 , 3

9 ]
(y3, xy2, x2 y, x4) r ∈ ( 3

9 , 3
8 ]

(y4, xy2, x2 y, x4) r ∈ ( 3
8 , 11

27 ]
(y4, xy2, x3 y, x4) r ∈ ( 11

27 , 3
7 ]

(y4, xy3, x2 y2, x3 y, x4) r ∈ ( 3
7 , 4

9 ]
(y4, xy3, x2 y2, x3 y, x5) r ∈ ( 4

9 , 4
8 ]

(y5, xy3, x2 y2, x3 y, x5) r ∈ ( 4
8 , 14

27 ]
(y5, xy3, x2 y2, x4 y, x5) r ∈ ( 14

27 , 5
9 ]

(y5, xy3, x2 y2, x4 y, x6) r ∈ ( 5
9 , 9

16 ]
(y5, xy4, x2 y2, x4 y, x6) r ∈ ( 9

16 , 4
7 ]

(y5, xy4, x2 y3, x3 y2, x4 y, x6) r ∈ ( 4
7 , 5

8 ]
(y6, xy4, x2 y3, x3 y2, x4 y, x6) r ∈ ( 5

8 , 17
27 ]

(y6, xy4, x2 y3, x3 y2, x5 y, x6) r ∈ ( 17
27 , 6

9 ]
(y6, xy4, x2 y3, x3 y2, x5 y, x7) r ∈ ( 6

9 , 11
16 ]

(y6, xy5, x2 y3, x3 y2, x5 y, x7) r ∈ ( 11
16 , 19

27 ]
(y6, xy5, x2 y3, x4 y2, x5 y, x7) r ∈ ( 19

27 , 5
7 ]

(y6, xy5, x2 y4, x3 y3, x4 y2, x5 y, x7) r ∈ ( 5
7 , 20

27 ]
(y6, xy5, x2 y4, x3 y3, x4 y2, x6 y, x7) r ∈ ( 20

27 , 3
4 ]

(y7, xy5, x2 y4, x3 y3, x4 y2, x6 y, x7) r ∈ ( 3
4 , 7

9 ]
(y7, xy5, x2 y4, x3 y3, x4 y2, x6 y, x8) r ∈ ( 7

9 , 13
16 ]

(y7, xy6, x2 y4, x3 y3, x4 y2, x6 y, x8) r ∈ ( 13
16 , 22

27 ]
(y7, xy6, x2 y4, x3 y3, x5 y2, x6 y, x8) r ∈ ( 22

27 , 23
27 ]

(y7, xy6, x2 y4, x3 y3, x5 y2, x7 y, x8) r ∈ ( 23
27 , 6

7 ]
(y7, xy6, x2 y5, x3 y4, x4 y3, x5 y2, x7 y, x8) r ∈ ( 6

7 , 7
8 ]

(y8, xy6, x2 y5, x3 y4, x4 y3, x5 y2, x7 y, x8) r ∈ ( 7
8 , 8

9 ]
(y8, xy6, x2 y5, x3 y4, x4 y3, x5 y2, x7 y, x9) r ∈ ( 8

9 , 25
27 ]

(y8, xy6, x2 y5, x3 y4, x4 y3, x6 y2, x7 y, x9) r ∈ ( 25
27 , 15

16 ]
(y8, xy7, x2 y5, x3 y4, x4 y3, x6 y2, x7 y, x9) r ∈ ( 15

16 , 26
27 ]

(y8, xy7, x2 y5, x3 y4, x4 y3, x6 y2, x8 y, x9) r ∈ ( 26
27 ,1]
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