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ABSTRACT: Virtual high-throughput screening (VHTS) and machine learning (ML) have 
greatly accelerated the design of single-site transition-metal catalysts. VHTS of catalysts, 
however, is often accompanied with high calculation failure rate and wasted computational 
resources due to the difficulty of simultaneously converging all mechanistically relevant reactive 
intermediates to expected geometries and electronic states. We demonstrate a dynamic classifier 
approach, i.e., a convolutional neural network that monitors geometry optimizations on the fly, 
and exploit its good performance and transferability on identifying geometry optimization 
failures for catalyst design. We show that the dynamic classifier performs well on all reactive 
intermediates in the representative catalytic cycle of the radical rebound mechanism for the 
conversion of methane to methanol despite being trained on only one reactive intermediate. The 
dynamic classifier also generalizes to chemically distinct intermediates and metal centers absent 
from the training data without loss of accuracy or model confidence. We rationalize this superior 
model transferability as arising from the use of on-the-fly electronic structure and geometric 
information generated from on-the-fly density functional theory calculations and the 
convolutional layer in the dynamic classifier. When used in combination with uncertainty 
quantification, the dynamic classifier saves more than half of the computational resources that 
would have been wasted on unsuccessful calculations for all reactive intermediates being 
considered. 
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1. Introduction. 

Virtual high-throughput screening (VHTS)1-8 powered by density functional theory (DFT) 

coupled with machine learning (ML)9-15 has shown promise to accelerate the discovery of 

materials. This acceleration is necessary because exploring large spaces of candidate materials 

introduces combinatorial challenges. Exemplary of the challenges that arise from combinatorial 

explosion is single-site inorganic catalyst design, where metals, ligands, and substrates all must 

be considered.16-18 To address this challenge, ML has been applied to predict thermodynamic 

quantities to rapidly screen this combinatorial design space in both homogeneous5, 19-23 and 

heterogeneous catalyst24-30 design. Combined with active learning31-33 and global optimization 

algorithms34-36, catalysts with optimal catalytic properties can be quickly identified under a given 

mechanism. Because it is often difficult to experimentally characterize all mechanistically 

relevant intermediates due to their transient nature37, computational approaches that explore 

reaction mechanisms are also desired.38-39 In this case, ML combined with automated VHTS 

workflows can accelerate the exploration of potential reactive intermediates and reaction 

pathways.40-46 

Many promising catalysts are comprised of mid-row 3d or 4d transition metals, which 

give rise to favorable reactivity due to their unpaired electrons and superior tunability in response 

to changing coordination environment.47-54 However, these exact same characteristics of 

transition-metal catalysts often lead to failed geometry optimizations due to converging to 

unintended geometries or unexpected electronic states.55-56 Because we require the knowledge of 

all relevant intermediates to compute the full thermodynamic landscape of a catalyst or to 
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explore multiple possible reaction mechanisms, VHTS of catalysts is usually accompanied by 

high overall failure rates and wasted computational resources. 

Recently, ML models have been developed to predict the computational cost57-58 or 

suggest the most inexpensive density functional that will be of reasonable accuracy59 for a 

calculation to optimize the use of finite computational resources. These approaches, however, do 

not overcome wasted computational time due to their assumption that the calculations will 

eventually succeed. On the other hand, one can directly predict the likelihood of success for a 

calculation to avoid wasted resources. In our previous work55, we built ML models to directly 

classify outcomes (i.e., success or failure) of transition-metal complex geometry optimizations 

using the 2D molecular-graph-based descriptors (i.e., revised autocorrelations or RACs60) as 

inputs. While achieving 88% accuracy on the set-aside test data, the RAC-based models failed to 

generalize to chemical spaces that are distinct from the training data due to their explicit 

dependence on chemical compositions as inputs. 

To overcome this issue, we introduced a dynamic classifier55, 61, which monitors a 

geometry optimization on the fly and terminates a calculation if it is predicted to be 

unproductive. This convolutional neural network dynamic classifier takes step-series inputs 

representing the evolving geometric and electronic structure features (e.g., energy gradient and 

Mulliken bond orders) and predicts the likelihood that an ongoing geometry optimization will 

complete successfully (Figure 1). Because this model uses incremental information gathered over 

the course of a DFT optimization, the dynamic classifier can generalize well across different 

chemical spaces.55 This good transferability is particularly important in catalyst design, because 

we would like to only train a single model that works well for all reactive intermediates possibly 
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involved in a reaction. A similar idea has also been recently adopted in predicting trajectories of 

molecular dynamics simulations62-63 and the dynamic control of tokamak reactors64-65. 

 
Figure 1. (top left) The radical rebound mechanism for direct partial oxidation of methane to 
methanol. The cycle proceeds clockwise from the resting state (1) to the metal−oxo intermediate 
(2) formed by two-electron oxidation with N2O, followed by hydrogen atom transfer to form a 
metal–hydroxo intermediate (3), and rebound to form a methanol-bound intermediate (4). (top 
right) Success rate for geometry optimizations for each intermediate (blue) and cumulative 
success rate when a catalyst proceeds to each intermediate after success of the previous 
intermediate in the catalytic cycle (red). (bottom) Schematic of a multi-task dynamic classifier. 
Electronic structure and geometric features are collected from DFT geometry optimization and 
used as inputs to an ANN classifier with a convolutional layer followed by a fully connected 
layer. The model has multiple outputs that predicts calculation success with respect to geometry, 
⟨S2⟩	deviation, and metal spin deviation. 

 

In this work, we exploit and demonstrate the transferability of our dynamic classifier for 

catalyst design. We show that a dynamic classifier can perform equivalently well on all reactive 
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intermediates in a representative reaction. Despite being trained on only one reactive 

intermediate in a reaction cycle, this dynamic classifier generalizes to unseen intermediates 

within that same cycle. In addition, this dynamic classifier makes accurate predictions on 

reactive intermediates with distinct chemistry that are absent from the training data. We further 

incorporate uncertainty quantification when using dynamic classifier for job control, saving more 

than half of the computational resources that would have been wasted on failed calculations. 

2. Methods 

2.1 DFT geometry optimizations 

Gas-phase geometry optimizations and single-point energy calculations were performed 

using density functional theory (DFT) with a development version of TeraChem v1.9.66-67 The 

B3LYP68-70 global hybrid functional with the empirical D3 dispersion correction71 using 

Becke−Johnson damping72 was employed for all calculations. The LACVP* composite basis set 

was employed throughout this work, which consists of a LANL2DZ effective core potential73-74 

for Mn, Fe, Ru, Br, and I and the 6-31G* basis75 for all other atoms. All singlet calculations were 

carried out in a spin-restricted formalism whereas all other spin states were performed in the 

unrestricted formalism. As motivated by prior work76, we simulated the metal–hydroxo 

intermediate by majority-spin radical addition to the metal–oxo intermediate. For other reactive 

intermediates (e.g., resting state and methanol-bound intermediates), we conserved the metal–

oxo spin state. Level shifting77 of 0.25 Ha was applied to both majority- and minority-spin 

virtual orbitals to aid self-consistent field (SCF) convergence. Geometry optimizations were 

carried out with the translation rotation internal coordinate (TRIC) optimizer78 using the L-BFGS 
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algorithm with default convergence thresholds of maximum energy gradient of 4.5×10−4 

hartree/bohr and energy difference between steps of 10−6 hartree. 

 Job submission was automated by molSimplify79-80 with a 24 h wall time limit per run 

with up to five resubmissions. Geometry optimizations were carried out with geometry checks55 

prior to each resubmission, and structures that failed any check were labeled as failed 

calculations (Supporting Information Table S1). Open-shell calculations were also deemed failed 

calculations in the data set following established protocols19, 55-56: i) if the expectation value of 

the S2 operator deviated from its expected value of S(S + 1) (i.e., D⟨S2⟩)  by >1 μB2 or ii) the 

combined Mulliken spin density on the metal and oxygen differed from the spin multiplicity (i.e., 

D metal spin) by >1 μB (Supporting Information Table S2). A geometry optimization is labeled as 

failed calculation if any of the three failure modes (i.e., geometry, D⟨S2⟩, and	 D metal spin) 

presents otherwise it is labeled as successful. 

2.2 Data sets 

We calculated the radical rebound mechanism81 for methane-to-methanol conversion on 

mononuclear Mn and Fe catalysts with realistic tetradentate macrocycles constructed from 

known ligand fragments35 (Supporting Information Figure S1). For these catalysts, two resting 

state oxidation states, M(II) and M(III), in their corresponding spin states were considered 

(Supporting Information Table S3). For this catalytic cycle, we optimize three catalytic 

intermediates: metal–oxo, metal–hydroxo, and the methanol-bound species. The initial 

geometries for metal−oxo species were constructed using molSimplify,79 which uses 

OpenBabel82-83 as a backend to interpret SMILES strings for constructed tetradentate 

macrocycles. All metal−hydroxo geometries were generated by adding an H atom to the 
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optimized metal−oxo structure, and all methanol-bound intermediates were generated by adding 

a methyl group to the optimized metal−hydroxo structures using a custom script in molSimplify, 

as in prior work76 (Supporting Information Figure S2). The workflow starts by optimizing the 

metal−oxo geometry, and if this structure or a subsequent intermediate fails, downstream 

intermediate optimizations are not attempted (Supporting Information Figure S3). We refer to 

this combined data set of metal−oxo, metal−hydroxo, and methanol-bound intermediates as the 

“whole cycle” (WC) data set (Supporting Information Table S4). 

 Starting from the WC data set, we generated three data sets inspired by common 

strategies and potential difficulties (i.e., overoxidation) in catalyst discovery: 1) the 

functionalized whole cycle (FWC) data set, where tetradentate macrocycles were functionalized 

with electron-withdrawing and electron-donating groups to introduce Hammett tuning effects, 2) 

the Ru-oxo species (RO) data set, where the metal (Mn or Fe) of 300 randomly sampled metal-

oxo species in WC is substituted by Ru, and 3) the carbonyl species (CS) data set, where a 

carbonyl ligand replaces any converged oxo moiety in catalysts from the WC set (Supporting 

Information Table S5). For the FWC, RO, and CS data sets, we follow the same procedure for 

geometry optimizations used for the WC data set. Additionally, the metal−oxo, metal−hydroxo, 

and methanol-bound intermediates in the FWC set were computed following the same workflow 

as in WC set (Supporting Information Figures S2–S3). Each Ru-oxo complex in RO was 

initialized by a direct substitution of Mn or Fe with Ru from the initial geometry of a metal–oxo 

intermediate generated with molSimplify, with an initial Ru=O bond length of 1.65 Å. Each 

metal–carbonyl complex in the CS set was initialized by a direct substitution of CO in place of 

the oxo moiety from the initial geometry of metal–oxo intermediate generated with molSimplify, 
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with an initial metal–C bond length of 2.10 Å, C–O bond length of 1.13 Å, and metal–C–O angle 

of 180º. 

2.3 ML models and representations 

As in prior work55, 84, we train convolutional neural network dynamic classifiers using 

step-series electronic structure and geometric information generated during DFT geometry 

optimizations to directly predict the final classification outcomes of geometry fitness, ⟨S2⟩, and 

metal spin deviation (Figure 1 and Supporting Information Table S6 and Figure S4). The 28 

electronic structure descriptors were computed from the Mulliken charge, bond order matrix, and 

the energy gradient of a complex (Supporting Information Table S6). These properties are 

focused on components directly involved in the first coordination sphere along with any long-

range behavior captured by singular value decomposition of these quantities (Supporting 

Information Table S6). The 7 geometric descriptors include the bond lengths and angular 

deviation from an ideal octahedron as well as the distortion of individual ligand (Supporting 

Information Table S1). We trained two sets of multi-task dynamic classifiers: one on all three 

intermediates (i.e., metal−oxo, metal−hydroxo, and methanol-bound) of the WC data set, and the 

other only on the metal−oxo species subset of the WC data set. For all ML models, we adopted 

the same sets of hyperparameters used in our prior work55 and a random 80/20 train/test split, 

with 20% of the training data (i.e., 16% overall) used as a validation set (Supporting Information 

Table S7). All ML models were trained using Keras85 with Tensorflow86 as a backend, using the 

Adam optimizer up to 2,000 epochs, and dropout, batch normalization, and early stopping to 

avoid over-fitting. All the ML models and codes are available in our open-source Python 

package molSimplify79-80. 
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3. Results and discussion. 

3.1 Generalizing the dynamic classifier across a catalytic cycle 

The design of  selective and active C−H activation catalysts for direct methane-to-

methanol conversion remains a grand challenge.87-88 Here, we focus on the radical rebound 

mechanism on representative Mn and Fe catalysts with macrocyclic tetradentate ligands, which 

have shown promise for exhibiting favorable thermodynamics for partial methane oxidation.76, 89-

90 The “whole cycle” (WC) data set consists of a number of intermediates bound to these 

catalysts (Figure 1 and see Computational Details).35 Starting from a resting state structure (1), a 

metal–oxo intermediate (2) is formed via two-electron oxidation with a terminal oxidant (here, 

N2O). The newly formed terminal oxo can undergo a hydrogen atom transfer step where a 

hydrogen atom is abstracted from CH4 to form a metal–hydroxo intermediate (3). Lastly, 

CH3· recombines with the metal–hydroxo intermediate to form a methanol-bound intermediate 

(4). Thus, properties of both the resting state (1) and each of the three reactive intermediates (i.e., 

2, 3, and 4) must be obtained to evaluate the full thermodynamic landscape of a catalyst (see 

Computational Details). We focus here on only the reactive intermediates because we follow the 

convention of prior work76 to evaluate (1) as a single-point energy (i.e., without geometry 

optimization) on intermediate 2 with the oxo removed. Even if the success rate of geometry 

optimization is high on each individual intermediate, the cumulative success rate can decay 

rapidly because multiple intermediates are necessary to obtain reaction energetics. For the 1,653 

candidate catalysts evaluated, we observe an overall success rate of only 33% for the whole 

catalytic cycle although all three intermediates have individual success rates ranging from 60% 

to 83% (Figure 1 and Supporting Information Table S4). 
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We first train our dynamic classifier as a multi-task classification model for predicting 

three optimization outcomes: geometry, ⟨S2⟩ deviation, and metal spin deviation, on all three 

reactive intermediates in the WC set (see Computational Details). The first property, good 

geometry, corresponds to whether a structure optimizes to the intended connectivity expected for 

the structure. While we have generally used this to assess metal coordination geometries, this 

metric is applicable even to closed-shell systems such as organic molecules. The latter two 

properties, ⟨S2⟩ deviation, and metal spin deviation, correspond to whether the structure has a 

large degree of spin contamination (i.e., ⟨S2⟩	 differs from its expected value) or if the spin does 

not reside on the metal. Importantly, these properties do not always coincide: a geometry can be 

good while the spin is not localized to the metal or ⟨S2⟩ deviation is too large and vice versa. We 

focus on these three properties because they are common sources of failure and/or indicate low 

reliability of single-reference DFT results in VHTS. 	

The dynamic classifier systematically improves as the number of optimization steps used 

as input increases (Figure 2 and Supporting Information Figure S5). The model, trained on data 

pooled from all three intermediates, performs comparably well on all three intermediates 

(Supporting Information Figure S5). For the first few steps of the geometry optimization, the 

relatively poor model accuracy (ca. 0.85) on the geometry classification task could result in false 

negative predictions that incorrectly terminate calculations that would have converged 

successfully. To overcome this challenge, we previously introduced a classifier-specific 

uncertainty quantification (UQ) metric, the latent space entropy (LSE)55, to ensure high model 

confidence during prediction. LSE measures the model classification uncertainty using the 

distances and distributions of a test point relative to the training data in the latent space (i.e., last 

layer of a neural network). LSE is high and thus classification uncertainty is high when a test 
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point lies close to the decision boundary or/and far away from all training data. Using the LSE as 

a guide, we only act on model predictions if the LSE value is below a user-defined cutoff. We 

use a cutoff of 0.3 (roughly half of its theoretical maximum, 0.69) as this value gave a balanced 

trade-off on making accurate and conservative classifications in our previous work55. Using this 

requirement for classification certainty, we achieve uniformly high model accuracy (i.e., > 0.95) 

for all optimization step numbers and intermediates for all three tasks at the cost of forgoing 

predictions for a significant fraction of the data until we have acquired 20 steps of optimization 

(Figure 2 and Supporting Information Figure S6). As the dynamic classifier is provided more 

information about the optimization (i.e., with an increasing number of steps), model confidence 

grows and the data fraction that falls below the LSE cutoff increases (Figure 2 and Supporting 

Information Figure S6).55 
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Figure 2. Model accuracy (top) and data fraction (bottom) versus the number of geometry 
optimization steps for the dynamic classifier at each Nstep (i.e., 2, 5, 10, 15, 20, 30, and 40) 
evaluated on the set-aside test set of the WC set. The performance of each task: geometry (left), 
⟨S2⟩ deviation (middle), and metal spin deviation (right), is reported separately. We report two 
sets of dynamic classifiers: one that is trained on all three intermediates in the WC set (solid 
circles), and the other trained only on the metal–oxo intermediate in the WC set (open circles). 
Model performance is shown in the absence of model uncertainty control (green) and when we 
impose an LSE cutoff of 0.3 (blue). Here, accuracy is defined as the number of correct 
predictions divided by the total number of data points, and data fraction is defined as the number 
of points with LSE < 0.3 (thus we think we make faithful predictions) divided by the total 
number of data points. 

 

To understand why our dynamic classifier performs equivalently well on all three 

classification tasks, we visualize the latent space of the model (i.e., the outputs of the last hidden 

layer in a dynamic classifier). We find that calculations corresponding to different failure modes 

cluster into regions of the latent space (Figure 3). The failed calculations are generally well 

separated from the portion of latent space containing successful calculations. The relative 

orientation of the clusters is also intuitive. There is a cluster of calculations with both high ⟨S2⟩ 

deviation and metal spin deviation since these two failure modes both stem from the unexpected 

electronic structure and are often concurrent (Supporting Information Figure S7). The boundary 

between calculations with good or bad geometry is the least well defined, consistent with this 

being the most challenging classification task for our models (Figure 2). 
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Figure 3. Uniform manifold approximation and projection91 (UMAP) 2D visualization of the 
latent space of the multi-task dynamic classifier trained on 40 steps of geometry optimization 
trajectories of all three intermediates in the WC set. All data points from the WC set are shown in 
gray. Geometry optimizations that are labeled as bad are colored separately for each failure mode: 
red for geometry, blue for ⟨S2⟩	 deviation, and green for metal spin deviation. Different sizes of 
circles are used only for the visualization of overlapping points indicating multiple failure modes 
for a given calculation. 
 

Encouraged by the good performance of the dynamic classifier and good transferability 

offered by electronic structure inputs, we tested the dynamic classifier in a use case 

representative of a regime with lower data availability. Here, we train the dynamic classifier 

using the geometry optimization results obtained only for the metal–oxo intermediate (see 

Computational Details). This oxo-only dynamic classifier performs comparably to the dynamic 

classifier trained on all three intermediates of the WC set (Figure 2 and Supporting Information 

Figure S8). This good performance is observed despite the model having roughly 1/3 of the 

training data in the WC set and only learning from one intermediate out of the three. Specifically, 

the oxo-only dynamic classifier has accuracies within a margin of 1% for ⟨S2⟩ deviation and 

metal spin deviation classifications and within 3% for the geometry classification (Figure 4). The 

two sets of dynamic classifier models give nearly identical predictions on each individual set-
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aside test point in the WC set and have comparable latent space structures, which suggest that the 

dynamic classifier can learn similar information from a single intermediate in the reaction cycle 

(Supporting Information Figures S9–S10). This observation implies a promising reduction (i.e., 

to 1/Nintermediate) in the number of necessary training data points for a dynamic classifier than can 

handle the multiple catalytic intermediates that must be screened for a given reaction. 

 
Figure 4. Difference in model accuracy (acc.) between the dynamic classifier trained on all three 
intermediates and the one trained on only the metal–oxo intermediate in the WC set with an 
increasing number of optimization steps. The differences for each of the three tasks is shown 
separately: blue for geometry, red for ⟨S2⟩	 deviation, and green for metal spin deviation. A 
dashed line is shown for no difference. 

 

3.2 Transferability of the dynamic classification model to out-of-distribution catalysts 

We next tested the transferability of the dynamic classifier to intermediates and catalysts 

beyond those contained in the initial set, a characteristic which is valuable in catalyst discovery 

applications. To do so, we curated three additional data sets that are chemically distinct from the 

WC set but are relevant to screening methane-to-methanol catalysts. The first set is the 
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functionalized whole cycle (FWC) data set, where tetradentate macrocycles were functionalized 

with electron-withdrawing and electron-donating groups to tune catalyst energetics (Figure 5 and 

Supporting Information Figure S11). In the FWC set, we functionalize all three reactive 

intermediates as in the WC set. In the Ru–oxo (RO) data set, we randomly sampled 300 metal–

oxo species (metal = Mn, Fe) from the WC set and substituted the metal centers with Ru prior to 

re-optimization (Figure 5). We use the RO set as an example of catalyst design with isovalent 

metals, motivated by the fact that Ru compounds are promising catalysts for C–H bond 

activation and oxidation reactions.92-93 Lastly, we introduce the carbonyl species (CS) data set, 

where we replace the oxo with a carbonyl ligand on all converged catalysts in the WC set (Figure 

5). The CS set thus contains a representative off-cycle intermediate that could be generated in 

conditions of methane overoxidation and would be likely to poison the catalyst. Importantly, the 

metal-coordinating element (i.e., C) is distinct in the CS set from the other three sets. Because the 

chemical compositions of the four data sets (i.e., WC, FWC, RO, and CS) are distinct (i.e., either 

due to metal or coordinating species), we observe significantly different distributions for both 

their chemical-composition-based representation (e.g. RACs60) and electronic-structure-based 

descriptors (e.g., Mulliken charges and bond orders, Supporting Information Figures S12–S13). 
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Figure 5. Schematic of out-of-distribution test data sets: The FWC set (left) is constructed by 
adding functional groups (FG) on the rings and bridges of the base macrocycles in the WC set 
(middle). The CS set (top right) is constructed by changing the substrate on the metal to carbonyl, 
a common product when methane is over-oxidized. The RO set (bottom right) is constructed by 
substituting the metal (i.e., Mn or Fe) in the WC set with Ru. 
  

We find that the dynamic classifier trained only on the metal–oxo intermediate in the WC 

set shows exceptional transferability to all three test sets despite differences in chemical 

composition. The accuracy for the most difficult prediction task (i.e., geometry classification) is 

comparable among all four data sets (i.e., WC, FWC, RO, and CS). Namely, we observe 

geometry classification performance accuracy to be within 5% for all four data sets, regardless of 

the number of steps used for dynamic classification (Figure 6). In addition, the accuracy for the 

other two tasks, ⟨S2⟩ deviation and metal spin deviation, is identical for the out-of-distribution 

FWC, RO, CS sets relative to the in-distribution WC set (Supporting Information Figure S14). 

More interestingly, the model confidence (i.e., average LSE) of the dynamic classifier on the 

three out-of-distribution test sets is comparable to that of the in-distribution WC set-aside test set 

for all three classification tasks (Figure 6 and Supporting Information Figure S14). This 

observation suggests that our oxo-only dynamic classifier has similar confidence for making 
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predictions on a compound that is chemically distinct from the training data due to good 

transferability across chemical compositions. 

 
Figure 6. Accuracy (top) and the average LSE (bottom) for the geometry classification task for 
the set-aside test set in WC set (blue) and three out-of-distribution test sets (FWC in gray, RO in 
green, and CS in red) with an increasing number of optimization steps, Nstep. The dynamic 
classifier was trained only on the metal–oxo intermediate in the WC set. 
 

 We can rationalize the transferability of our dynamic classifier through an analysis of the 

inputs to the model. These inputs are electronic structure and geometric features generated from 

DFT calculations on the fly, which make them agnostic to catalyst chemical composition. As a 

result, all out-of-distribution intermediates, despite being chemically distinct from the training 

complexes, reside within the 2D projected convex hull spanned by the metal–oxo intermediate of 

the WC set in the latent space of the dynamic classifier (Figure 7). Therefore, for a new geometry 
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optimization trajectory, the dynamic classifier can be expected to have good training data support 

even if the specific intermediate or catalyst has not been seen by the model. This is a 

consequence of our use of electronic structure and geometric features and would not have been 

possible with a chemical-composition-based representation (e.g., RACs). With chemical-

composition-based representations, the out-of-distribution intermediates reside in different 

regions of latent space, extending beyond the 2D convex hull spanned by the metal–oxo 

intermediate of the WC set (Supporting Information Figure S12). 

 
Figure 7. UMAP 2D visualization of the latent space for different intermediates of the multi-task 
dynamic classifier trained on 40 steps of geometry optimization trajectories of the metal–oxo 
intermediate in the WC set (gray). Multiple intermediates in different data sets are shown 
separately: metal–hydroxo intermediate in the WC and FWC set (blue, top left), metal–methanol 
intermediate in the WC and FWC set (orange, top right), Ru–oxo intermediate in the RO set 
(green, bottom left), and metal–carbonyl intermediate in the CS set (red, bottom right). 
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 Another reason for the good transferability is likely the fact that the dynamic classifier 

learns from trends in how electronic structure and geometric features evolve over the course of a 

geometry optimization rather than solely from the value of each feature at a single optimization 

step. This is inherent to the dynamic classifier model architecture, which involves a 1D 

convolution along the dimension of the optimization step. For example, an intermediate-spin (IS) 

Mn(II)–oxo complex in the WC set and a high-spin (HS) Mn(II)–methanol complex in the FWC 

set have similar trends in the trajectories of their metal Mulliken bond valence descriptor but 

distinct values of this property. However, the dynamic classifier can correctly classify both 

optimization trajectories as good with high confidence (LSE < 0.1) even though their metal bond 

valences lie at opposite extrema of the distribution (Figure 8 and Supporting Information Figure 

S13).  

 
Figure 8. Metal bond valence (BV, top), scaled dynamic features (middle), and GCAM focus of 
the geometry classification task versus the number of steps of optimizations. The scaled dynamic 
features and GCAM focus are colored following the color bars (right). Properties are shown for 
three example complexes: a Mn–oxo complex in the WC set with a final good geometry (left), a 
functionalized Mn–methanol complex in the FWC set with a final good geometry (middle), and a 
Fe–carbonyl complex in the CS set with a final bad geometry (axial ligand dissociated, right). 
The dynamic classifier used for GCAM analysis was trained on 40 steps of geometry 
optimization trajectories obtained only from the metal–oxo intermediate in the WC set. In all 
three cases, the dynamic classifier makes the correct prediction with high confidence (LSE < 0.1). 
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 For a convolutional neural network, one can visualize the model focus, that is, the portion 

of input features that map most strongly to model output, while making predictions using 

gradient class activation map (GCAM)94. Here, the GCAM focus on the two trajectories are 

comparable, indicating that the dynamic classifier makes the same prediction for the same reason 

(Figure 8). In contrast, an IS Fe(III)–carbonyl complex in the CS set has distinct trends in its 

trajectory despite similar values of the metal bond valence to the IS Mn(II)–methanol complex 

(Figure 8). For this HS Fe(III)–carbonyl complex, however, the distal axial ligand dissociates 

and produces a bad geometry. This time, the dynamic classifier confidently (LSE < 0.1) predicts 

this Fe(III)–carbonyl compound to result in a bad geometry by recognizing distinct fluctuations 

in properties during geometry optimization. Interestingly, GCAM shows that the dynamic 

classifier primarily focuses on the later portion of the trajectory (i.e., step > 18), which 

corresponds to the second peak and decay in the metal bond valence trajectory data. This point is 

approximately at the point in the optimization where dissociation of the distal axial ligand starts 

to occur. 

 After introducing an LSE cutoff of 0.3 as a UQ cutoff, we achieve uniformly high 

accuracy for all prediction tasks, i.e., > 0.90 for geometry and > 0.97 for both ⟨S2⟩ and metal spin 

deviation, for all four data sets at all optimization steps (Supporting Information Figure S15). 

This consistent performance is surprising because the dynamic classifier was only trained on the 

metal–oxo intermediates in the WC set. Overall, this high accuracy leads to a reduction of more 

than 1/2 of the computational time that would have been wasted due to failed calculations along 

with a negligible false negative rate (< 2%) for each of the four data sets (Figure 9). Thanks to 

the uniformly good performance across chemically distinct out-of-distribution test sets especially 
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when paired with uncertainty quantification, the dynamic classifier can be expected to be 

transferable for other mechanistic studies and catalyst screening efforts. We anticipate the 

dynamic classifier to be readily transferable across catalysts with different metal, oxidation state, 

spin state, and ligand environment but would expect it to require additional training data when it 

is applied to catalysts with different coordination number and geometry type. While the 

electronic properties used as inputs to the model are general and should be possible to generate 

with a range of electronic structure codes, changing the basis set (e.g., to plane waves) or DFT 

functional might require generation of new training data. Explicit calculation of transition states 

is also expected to be compatible with the current classifier approach but would motivate 

defining additional failure modes, such as a lack of convergence of a minimum energy pathway.  

 
Figure 9. Percentage of time saved from bad calculations (gray bars, y-axis on the left) and false 
negative rate (red circles, y-axis on the right) for the uncertainty-aware dynamic job control. 
Results are reported for the set-aside test set in WC set and three out-of-distribution test sets (i.e., 
FWC, RO, and CS). The dynamic classifier was trained on 40 steps of geometry optimization 
trajectories obtained on the metal–oxo intermediate in the WC set. An LSE cutoff of 0.3 was 
used to make model predictions. 
 

4. Conclusions 
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Computational catalysis requires the rapid screening of different catalyst compositions 

across several intermediates. As these screening efforts are increasingly carried out with 

automated workflows, it becomes essential to anticipate and detect when calculations fail. To 

address this, we built a dynamic classifier to predict geometry optimization outcomes on the fly 

for reactive intermediates. We demonstrated our approach on the challenging reaction of direct 

conversion of methane to methanol via a radical-rebound mechanism. We showed that the 

dynamic classifier trained on all reactive intermediates exhibits good, balanced performance on 

each intermediate. Encouraged by the model's good transferability across intermediates, we 

tested the model in a lower data regime where only the metal–oxo intermediate was included in 

the training data. This oxo-only dynamic classifier performed similarly well compared to the 

original model. This observation is general, suggesting the promise of reducing the required 

training data to 1/Nintermediate in practical applications for complex reaction networks. A proposed 

workflow motivated by this observation is to train the dynamic classifier only on the first 

reactive intermediate of a reaction cycle and then apply that model for all additional reactive 

intermediates to accelerate screening of the full catalytic cycle. 

In addition to expected catalytic intermediates, a true test of transferability for 

computational catalysis is that the model generalizes to reactive intermediates with distinct 

chemistry. We evaluated model performance on catalysts that were functionalized with small 

functional groups frequently employed in Hammett tuning, those with substituted transition 

metals (i.e., Ru instead of Fe), and intermediates with distinct metal-coordinating atoms (here, 

metal–carbonyl). For all three sets, we found that the oxo-only dynamic classifier generalized 

well to these out-of-distribution intermediates. We rationalized the transferability of the dynamic 

classifier in two ways. First, the dynamic classifier only uses electronic structure and geometric 
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features generated during DFT geometry optimizations. Thus, the model can be expected to be 

transferable because DFT-based descriptors are likely to be more comparable than chemical-

composition-based ones. Second, the dynamic classifier utilizes a convolution layer for step-

series features generated during an optimization, making it focus on the trends of a trajectory 

rather than the value of each feature that differs more significantly between catalysts. 

We incorporated an uncertainty quantification metric in the form of the latent space 

entropy to ensure that the oxo-only dynamic classifier made predictions only where it was most 

confident. Using this approach, we demonstrated a greater than 50% reduction in computational 

time to carry out catalyst screening by avoiding unsuccessful calculations along with negligible 

false negative predictions (< 2%) for all intermediates considered in this work. The uniformly 

high reduction rate with few false negatives highlights how this dynamic classifier model is 

ready for use to improve the robustness of automated workflows, perhaps even beyond that 

which can normally be achieved via manual intervention. This uncertainty-aware dynamic 

classifier represents a promising approach to both accelerate VHTS and improve its fidelity, and 

we expect our approach to be general to a wide range of materials and catalyst screening studies.  
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