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ABSTRACT: Machine learning (ML) has become a part of the fabric of high-throughput screening 
and computational discovery of materials. Despite its increasingly central role, challenges remain 
in fully realizing the promise of ML. This is especially true for the practical acceleration of the 
engineering of robust materials and the development of design strategies that surpass trial and error 
or high-throughput screening alone. This Review covers recent advances in algorithms and in their 
application that are starting to make inroads toward: i) the discovery of new materials through 
large-scale enumerative screening, ii) the design of materials through identification of rules and 
principles that govern materials properties, and iii) the engineering of practical materials by 
satisfying multiple objectives. We conclude with opportunities for further advancement to realize 
machine learning as a widespread tool for practical computational materials design. 
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1. Introduction.  

With ever-increasing computing power and developments in algorithms in the past few 

years, the face of computational materials science has evolved significantly. In the mid-2000s, 

accurate but low-cost first-principles, density functional theory (DFT) became a widespread tool 

for the high-throughput screening and discovery of new materials(1-3). In the present era, machine 

learning (ML) methods have benefitted from growing data sets to overhaul computational 

materials science again(4). Nowhere is this more true than in efforts to uncover new materials. 

While many ML models, and even their application to challenging spaces such as transition-metal 

catalysis, were established in prior decades(5-8), it is the availability of larger data sets(9) and easy 

to use tools(10, 11) that have particularly transformed this landscape. Nevertheless, the number of 

ways ML can be applied in computational materials science is diverse. In some cases, the benefit 

of ML is transparent by reducing computational cost, whereas in other cases, traditional physics-

based modeling may be more expedient, predictive, and interpretable. Alternatively, in cases 

where no physics-based modeling protocol is established, ML can be used to bring computational 

materials science closer to counterpart experimental efforts, such as by predicting quantities related 

to synthesis(12-16) or materials stability(17). For each property or material of interest, the optimal 

approach may vary. In this Review, we will explore representative demonstrations of ML in 

computational materials science as well as outstanding challenges. A comprehensive discussion of 

the historical relationship between physics-based modeling and the incorporation of ML in 

transition-metal chemistry is provided in Ref. (18). 

First, we define three key areas of opportunity in computational materials science for the 

application of data science and ML algorithms: i) to discover, ii) to design, and iii) to engineer 

new materials. To strictly delineate these three terms is challenging, as they have some overlap 
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that is increased when ML models are brought into consideration (Figure 1). We define discovery 

as the approach to characterize enumerated materials until a “best” material is found, a process 

which ML regression models can greatly accelerate (Figure 1). The design of materials is more 

narrowly defined than discovery here, as it refers to the determination of a structure–property 

relationship and its use to tune a target property (Figure 1). ML models and features can accelerate 

this design process by providing more complex and accurate structure–property mappings than 

simple heuristics (Figure 1). We distinguish engineering of materials as an evolution of the design 

paradigm, wherein development of practical and robust materials is carried out through automated 

optimization of one or more properties (Figure 1). Here, ML models are essential to accelerate the 

optimization of materials in high-dimensional spaces to find “needles” in “haystacks” (Figure 1).  

We focus in this review on transition-metal-containing complexes and porous metal–organic 

frameworks (MOFs) due to the combination of challenge and promise that their materials space 

imparts. For these materials, computational materials science has until recently required accurate 

first-principles DFT or bespoke force fields for property prediction, but recent demonstrations have 

shown them to be tractable targets for ML. We also touch upon other materials (e.g., organic 

molecules) and efforts based on experimental data sets.  

 
Figure 1. Venn diagram of three approaches to computational materials science that can be aided 
by machine learning (ML): discovery that is accelerated by high-throughput DFT or ML models; 
designing by identifying and inverting structure–property relationships; and engineering by using 
optimization algorithms to satisfy multiple trade-offs, accelerated with ML models.  
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2. Discovery through Accelerated High-throughput Screening.  

 The discovery of materials as a fundamental goal of scientists and engineers is not new. 

One key difference from earlier serendipity-driven discovery efforts is the increasing availability 

of automation strategies(1-4, 19-24) and related large repositories of experimental data(25) and 

computation-ready datasets(9, 26-30) (e.g., for materials repurposing). These advances have come 

in combination with increased computing power for physics-based (e.g., DFT) models as well as 

the development of machine learning models trained on these large data sets for rapid property 

prediction. As a result, the scale of new materials that can be screened for discovery has been 

transformed from hundreds by trial and error to thousands or millions. Here, we outline strategies 

for enumerating materials to discover lead compounds that satisfy specific or as-yet unknown 

property targets. We describe how pairing discrete enumerated spaces with ML models can be 

used to reveal trends that would have otherwise been missed in smaller data sets. We conclude this 

section by presenting some remaining challenges for ML-accelerated materials discovery.  

2.1. Approaches for Screening and Enumeration. 

 Screening of available experimental or enumerated data sets can be accelerated with ML 

regression models. In this approach, some traditional calculation or experimentation must be 

carried out on a sufficiently representative data set to train the ML model so that it can make 

predictions on the remaining, unseen compounds. For many models, it is expected that the ML 

model will interpolate between unseen compounds better than it will extrapolate, but a measure of 

chemical similarity or dissimilarity must be available to make this assessment. Chemical 

fingerprints (i.e., matching the presence of specific functional groups) or ML representations can 

be used to define similarity. ML representations obtained from feature selection (see Sec. 3) are 

particularly useful for this task.  
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 Experimental data sets for the direct screening of transition-metal complexes and closely 

related metal–organic framework (MOF) materials are relatively small and scarce. The largest data 

set of experimentally-characterized metal-organic (e.g., MOFs or TMCs) compounds is the set of 

structures obtained from X-ray diffraction in the Cambridge Structural Database (CSD)(25). 

Geometric structures of many transition-metal complexes are available (ca. 150k or more) in the 

CSD(25). Chung and coworkers have refined a subset of the CSD believed to contain porous MOFs 

in a set known as the computation ready experimental MOF dataset (CoRE MOF), which has 

recently been updated to contain over 14k MOFs.(29) Such sets are typically augmented with 

simulation data, e.g., as is the case for the 86k structures in the tmQM dataset of DFT and low-

cost, semi-empirical properties(31) or for specific target properties such as gas adsorption in 

MOFs(29) (see Sec. 2.2).  

Because experimental data sets are both small and limited in available properties, 

enumeration has played an important role in data generation for ML models and ML-based 

screening (Figure 2). Focusing on transition-metal complex enumeration, symmetry has often been 

exploited(22, 26, 32, 33) (i.e., by requiring that ligands of a transition-metal complex be identical), 

in part because higher-symmetry complexes are more frequently synthesized (e.g., as indicated by 

frequency in the CSD). Even with such constraints, the enumeration of all feasible compounds can 

rapidly lead to a larger space (ca. billions) than is tractable to study with direct computation or 

even ML regression model-accelerated screening. As a result, the materials space is typically 

constrained for the target application and to reduce the combinatorial challenge of enumeration. 

Ways in which this constraint can be applied include limiting the number of components that are 

varied, such as the possible elements in binary or ternary solid-state alloys(34) or the ligands in a 
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transition-metal complex(26) (Figure 2). The range of system sizes(35) or types of geometric 

arrangement(27, 28) can also be constrained to reduce the search space.  

 

Figure 2. (Left) Types of data set development approaches that can be used in combination for for 
discovery of transition-metal complexes and metal–organic materials (schematic of a metal and 
three ligand types in an octahedral metal environment shown in inset). Approaches include: 
enumeration (e.g., of SMILES strings) with weak constraints on allowed chemistry to generate 
molecules, fragments of stable motifs for subsequent fusion (e.g., indicated by gray circle in inset), 
from common ligands, and data sets of entire materials. Databases generated from hypothetical 
enumeration of molecules (e.g., GDB-17 organic molecules(35) or OHLDB transition-metal 
complexes(26)) and MOFs (e.g., hMOF(27) or ToBaCCo(28)) can be subsequently screened. 
Whole materials are often extracted from these databases or from experimental databases such as 
the CSD(25). (Right) Schematic of how scale of a standard screen (top) compares to high-
throughput (middle) and machine learning interpolation (bottom) for screening studies, with an 
equivalent property color scale from blue to green to red used in all three panes. 

 

Enumerative strategies include ones that define connectivity (e.g., from a simplified 

molecular input line entry string, SMILES) based on heuristic constraints including satisfaction of 

the octet rule(35), although some benefit has been found to weakening heuristic constraints(26). 

The GDB-17(35) set of organic molecules of up to 17 heavy atoms with a limited number (i.e., C, 

N, O, S and halogen) of elements contains 66 billion compounds, and a subset of it formed the 

basis of the QM9 dataset widely used for organic molecule ML(9). When aiming to generalize 

such an approach to small transition-metal complexes, Gugler et al.(26) relaxed constraints on the 
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octet rule to sample a wider array of chemical bonding in ligands while constraining octahedral 

complexes to no more than 13 heavy (i.e., C, N, O, P, or S) atoms.  

Another strategy is to constrain the space of enumerated compounds to ones where 

fragments are based on experimentally synthesizable and stable materials(20, 36, 37). For 

example, stable five- and six-membered carbon-containing conjugated rings with a limited number 

(i.e., 1 or 2) heteroatoms (e.g., N, O, S) are common motifs in many inorganic materials. Through 

combinatorial fusion and subsequent functionalization, Janet et al.(37) constructed a space of 2.8M 

homoleptic transition-metal complexes. Yet another strategy is to constrain enumeration to 

common ligands based on the frequency of their occurrence in inorganic complexes in the CSD 

and to assemble them into more varied combinations and with distinct metal centers(22, 32, 33) 

(Figure 2). 

For MOF screening, enumeration of large sets of feasible compounds is typically carried 

out by leveraging the reticular structure of a MOF(27) (Figure 2). A MOF consists of the inorganic 

secondary building unit (SBU, i.e., a metal node), linkers, and functional groups. An additional 

consideration for MOFs is the favored topological net (i.e., the crystal structure formed)(28), 

although early enumeration focused on simple cubic unit cells(27). Combinatorial enumeration 

with small changes in linker chemistry (e.g., functional groups) and metal SBUs can result in large 

data sets of 100k or more MOFs(27, 28, 38, 39), although how well such sets represent the diversity 

of synthetically accessible materials has been questioned(40) (see Sec 2.3). Similar strategies have 

also been demonstrated in the enumeration of zeolites(41). 

2.2. Demonstrations of Enumerative Materials Screening. 

Once data sets of hypothetical materials(34), molecules (e.g., QM9(9) or OHLDB(26)) and 

MOFs (e.g., hMOF(27), BW-DB(38), or ToBaCCo(28)) or their experimentally based (e.g., 
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CoRE-MOF(29) or tmQM(31)) counterparts are assembled, their sizes can easily number in the 

thousands to hundreds of thousands of unique compounds (Figure 2). As a result, these sets can be 

employed both for direct high-throughput screening and as training sets for ML models such as 

artificial neural networks (ANNs) or kernel-based (e.g., Gaussian process regression or kernel 

ridge regression, KRR) models.  

Once an ML model is trained, enumerative screening of a larger, related set of compounds 

can be beneficial to reveal trends in structure–property relationships. The power of dataset 

enumeration for virtual screening was realized over 15 years ago by Rothenberg and 

coworkers(42), but the high computational cost of virtual screening with DFT at the time limited 

the scope of approaches based on computational chemistry, instead favoring the use of 

experimental results.(6) For example, after training an ANN on 412 experimental catalysts and 

reaction conditions, 66,000 new combinations were then predicted with the trained ANN.(6)  

More recently, Nandy et al.(43) trained an ANN on an 80/20 train/test split of 712 open-

shell transition-metal complexes for the prediction of the reaction energetics for metal-oxo 

formation to a test set accuracy of 5.5 kcal/mol. To identify metal- and spin-state-dependent trends, 

they enumerated and predicted properties of a set of nearly 10k catalysts comprised of the original 

29 ligands in the dataset (Figure 3). Because only 5% of these compounds were previously seen in 

model training, the revealed trends provide a more general interpretation, despite being inherently 

interpolative in nature (Figure 3). Key observations included the strong dependence on metal and 

spin state of the stability of formed terminal metal-oxos (Figure 3). A similar approach was carried 

out by Liu et al.(44), in this case to identify metal and spin-state dependence of multireference 

(MR) character (i.e., as judged through ratios of the non-dynamic and total correlation 

diagnostics(45), rND, from fractional occupation DFT). Starting from a data set of 4,865 
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complexes, an ANN trained to predict the multireference diagnostic rND to 3% mean absolute 

percent error (i.e., 0.018) was applied to a theoretical space of 187.2k new complexes, only 1% of 

which had been seen in training data. Through this analysis, Liu et al. observed(44) that although 

MR character is expected to be higher in low-spin states, this trend is only seen for some (i.e., Cr 

or Mn) metals (Figure 3).  

 
Figure 3. Examples of trends revealed for catalysis (left) and degree of multireference character 
in electronic structure (right) from enumerative scoring of materials from Refs. (43, 44). (Left) 
Distribution of oxo formation energies (DEoxo, in kcal/mol, bin size: 10 kcal/mol) as predicted by 
an ANN from Ref. (43) for 9,860 transition-metal complexes with four metals in up to three spin 
and two oxidation states. Unnormalized counts are shown on the y-axis, and histogram is colored 
by spin (red for low-spin, LS, green for intermediate-spin, IS, and blue for high-spin, HS). The 
stacked histogram is shaded by oxidation state, with oxidation state +5 complexes represented by 
translucent coloring, and oxidation state +4 complexes represented by opaque coloring. (Right) 
Normalized probability density distribution of rND (unitless, bin size 0.0167) as predicted by the 
ANN from Ref. (44) for 11,700 M(II) complexes (M = Cr, Mn, Fe, Co) in two spin states. The 
histograms are colored by spin (red for low-spin, LS, and blue for high-spin, HS). The median of 
each distribution is indicated by a vertical line with the same corresponding color. Adapted with 
permission from Refs. (43, 44). Copyright 2019 and 2020 American Chemical Society. 

 

Enumerated sets can improve ML model generalization in comparison to models based on 

sets of transition-metal complexes formed from commonly-studied ligands. For example, the 

OHLDB set from Gugler et al.(26) of small transition-metal complexes with diverse metal-
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coordination environments was used to improve the generalization of earlier ANN models for 

property prediction. Incorporation of OHLDB compounds reduced errors of ML models (i.e., 

ANNs) on experimental (i.e., CSD) complexes by around 25%.(26, 46) This improvement was 

observed despite the larger size of the CSD complexes, because the two sets shared similarities in 

direct metal-coordination environment.  

Enumerative screening has been most widely exploited for screening MOF materials for 

gas adsorption and separation. While the hypothetical space of MOF materials is large, the cost of 

classical molecular mechanics (MM) calculations to determine properties such as surface area or 

gas uptake are relatively low in comparison to DFT calculations required for catalysis and other 

applications. Demonstrations have included the screening of the over 13k MOFs in the ToBaCCo 

set(28) for hydrogen storage(47) or other similarly large MOF sets for methane storage(39, 48).  

2.3. Outstanding Challenges for Enumeration in Transition-Metal Chemistry. 

Despite the power of enumerative screening, caveats should be noted. First, once spaces 

have been enumerated, high-throughput screening with DFT is most widely used to collect 

property information. However, each discrete calculation requires considerable computational 

effort and can lead to failed outcomes if the DFT calculation of the new, hypothetical material 

does not converge(49) (Figure 2). The ML models that interpolate a space from discrete DFT 

results may have the least available information where calculations are unsuccessful and thus may 

be the most unreliable there (Figure 2). It may be necessary to validate the ML-interpolated and 

DFT-level predictions with experiment to ensure predictions are realistic and materials are 

synthesizable, as was done for organic light-emitting diodes(50) or MOFs for wet flue gas 

capture(51). Additionally, the choice of data selected for training the ML model can bias its 

predictions. Moosavi et al.(40) noted that KRR models trained to predict gas separation 
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characteristics (e.g., CO2 adsorption) on different data sets (e.g., experimental CoRE-MOF(29) vs 

hypothetical BW-DB(38) or ToBaCCo(28)) were not transferable. The influence of data set bias 

on ML-driven design will be discussed next in Sec. 3. Overall, despite some caveats, ML-driven 

enumerative screening is a powerful approach to reveal trends in large sets that may not have been 

obvious with the standard approach (Figure 2). 

3. Design of Materials via Abstracted Principles.  

In contrast with discovery, we distinguish materials design as the process by which 

structure–property relationships are inferred over a dataset and then often used to iteratively 

improve upon known designs. ML models, analysis of their key features(32, 52), and 

dimensionality reduction (i.e., unsupervised learning)(53-56) represent important tools for 

building structure–property relationships and mapping chemical space(57). Despite their recent 

prominence, it is worth noting that closely related quantitative structure–property or structure–

activity relationships, typically involving linear models, have long been used in transition-metal 

catalysis(58-60). We describe approaches to building and interpreting primarily ML-based 

structure–property relationships and then discuss recent demonstrations and remaining challenges. 

3.1. Approaches for Inferring and Interpreting Structure–Property Relationships.  

A key ingredient in building structure–property relationships is the development of 

descriptors or representations that encode the key chemical features that dictate materials 

properties. We use the term descriptors to refer to ad hoc features that have been heavily 

engineered or hand-picked (Figure 4). We use the term representations to indicate higher-

dimensional feature vectors that are most beneficial in non-linear models of increasing complexity 

(Figure 4). The selection of essential descriptors or features is an approach to building structure–

property relationships. In multiple linear regression (MLR) models, descriptors may be selected 
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one at a time either by identifying those that individually correlate with the desired property or by 

adding them only if they reduce the error of the fit (Figure 4). It is recommended that cross-

validation error on subsets of training data be used for descriptor selection because it reduces 

overfitting that might occur if goodness of fit is used as the metric instead (Figure 4). In a similar 

fashion, one-shot models such as least absolute shrinkage and selection operator (LASSO) or 

random forests are widely used both as ML models for property prediction(61) and for selection 

of important features(22, 32, 40, 43) (Figure 4). In random forest models, predictions are made 

based on a series of binary decision trees. The effect of omitting trees with specific features can 

provide a measure of the relative importance of features, and the features that have a limited effect 

on the error of the model can be omitted (Figure 4). LASSO is an MLR model with a modified 

loss function that sets uninformative features to zero via regularization (Figure 4).  

 
Figure 4. Different approaches to feature selection (top) and the associated model complexity/type 
(bottom) with increasing complexity from left to right: multiple linear regression selection by 
cross-validation or comparison of univariate correlations; one-shot feature selection and model 
fitting in LASSO and random forest; recursive feature addition with selection by CV error in more 
complex models such as KRRs; and model interpretation of deep neural networks such as gradient-
weighted class-activation map (grad-CAM) and Shapley additive explanations (SHAP) scores.   

 

While these models are widely used and fast to train, kernel models and deep learning (e.g., 

ANN) models can generally achieve lower errors on comparable data sets as long as the data set 

sizes number in the hundreds of points(6, 32, 33). Kernel ridge regression (KRR) or Gaussian 

process models inherently encode structure–property relationships by weighting the predictions of 

new compounds by the most proximal (i.e., similar) molecules in the relevant feature space. Thus, 
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good prediction by a KRR model suggests a good feature set has been chosen. As a result, recursive 

feature addition (RFA) or elimination (RFE) can be used to identify the best features as judged by 

KRR test set errors (Figure 4). Because exhaustive enumeration of all possible combinations of 

initial features for the RFA along with model hyperparameter selection is prohibitive, pre-ordering 

features for addition(22), e.g., with random forest, is one preferred alternative (Figure 4). When 

KRR models are applied with tailored feature sets, their prediction accuracy can rival or 

surpass(22) deep learning (e.g., fully connected ANNs or convolutional neural networks, CNNs) 

models. Nevertheless, ANNs can be preferable both in the case of larger data sets and in chemical 

discovery applications either with enumeration of large spaces (see Sec. 2) or in materials 

optimization (e.g., with active learning, see Sec. 4).  

Although typically viewed as ‘black box’, interpretation of ANNs has been achieved in a 

number of ways in recent years (Figure 4). The response of an ANN model to changes in variables 

measured with Shapley Additive Explanation (SHAP) scores(62) can guide feature importance. In 

the case of CNNs, other approaches include identifying model focus (e.g., with gradient weighted 

class-activation map or grad-CAM(63), Figure 4). It is worth noting that an ANN consists of a 

series of layers that essentially carry out feature selection, because each layer manipulates the 

space in which the data is represented and reorients points closer or further to each other. From the 

last layer of the model known as the final latent space, a linear regression is typically carried out 

to make the property prediction. As a result, analysis of latent space distances has been useful in 

materials design(64) and in identifying model uncertainty by determining support of a prediction 

on a new compound with respect to similar available data(46, 49) or finding the most useful places 

for data enrichment(65).  
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 Dimensionality reduction is another approach to simplify analysis of compounds either in 

feature space or model (i.e., latent) space. Formally an unsupervised learning technique because 

the data distribution is learned on unlabeled data, dimensionality reduction can be beneficial to 

identifying the most essential descriptors that distinguish compounds. Principal component 

analysis (PCA) projects a high-dimensional space into a smaller space spanned by the key 

combinations of features. When most of the variance of the data can be explained by the first few 

PCs, they can act as a useful reduced feature set(54, 66, 67). Other methods such as t-distributed 

stochastic neighbor embedding (t-SNE)(68) or uniform manifold approximation and projection 

(UMAP)(69) aim to preserve apparent pairwise distances approximately in a reduced two-

dimensional space so that it can be readily visualized. Like PCA, UMAP dimensions can also be 

used as a feature set, whereas those from t-SNE cannot. These techniques can be applied to the 

latent space of models just as readily as the feature space, for example, to highlight regions of 

promise for enrichment(37, 65) or to reveal governing design principles(64).    

3.2. Developing Structure–Property Relationships with Machine Learning.  

Identifying key descriptors or features in a structure–property relationship mapping has 

been demonstrated as an approach to revealing design principles(18, 22, 32, 52) and enabling 

iterative design(70). Early efforts in this area can be traced back to the use of linear models and 

descriptors.(71) While descriptors and representations have evolved with the increasing use of 

more sophisticated ML models in recent years, demonstrations in the early 2000s(5-8, 42) bear 

striking similarity to many modern applications.(32, 43, 72-74) Nevertheless, the source and scope 

of data set sizes has evolved. Closely related inverse design strategies are outlined in Ref. (75).  

Because structural data of transition-metal complexes has been widely available for some 

time (e.g., from the CSD(25)), many early descriptors were motivated by analyzing CSD 
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structures(76), even prior to the development of affordable computational modeling (e.g., with 

DFT). In this case, successful descriptors were generally demonstrated in single or multiple linear 

regression models(59, 60). These include relationships between catalysis or ligand binding and the 

steric bulk (e.g., Tolman cone angle(77, 78) or buried volume(79)) of a ligand. Other 3D-focused 

approaches include the development of maps of electrostatics with probe molecules(71), an 

approach which has recently gained favor in deep learning models for predicting gas storage 

characteristics of MOFs(80), or experimental homogeneous catalyst activities(81), where it is 

sometimes called stereocartography(82). In open-shell transition-metal complexes, the metal–

ligand bond length is a sensitive reporter of the molecule’s experimental spin state. The likelihood 

of a transition-metal complex to exhibit spin-crossover behavior has been predicted based on the 

ligand nitrogen–nitrogen separation(83), and similar features have been invoked for predicting 

single molecule magnet behavior.(84) An ANN trained on topological descriptors to predict DFT 

metal–ligand bond lengths(52) was used to classify experimental spin states(85) and even correct 

DFT-based energetic predictions of spin states. 

As quantum chemical modeling became tractable, first-principles descriptors were used, 

with frontier orbital energies or partial charges playing an important role in building transferable 

models capable of predicting experimental catalyst activities(59, 61). Fey and coworkers 

augmented sets of CSD ligands with quantum chemical descriptors to further distinguish their 

properties(53, 54). In some cases, deep learning (e.g., ANN) models have been developed to 

predict frontier orbital energies(22, 43, 86), which can be applied to explain experimental activity 

of catalysts known to be correlated to such energies(86). Alternative first-principles reactivity 

descriptors(87), such as those measuring interaction between catalysts and reactants(88), have also 

been fruitfully employed with deep learning models to predict experimental catalytic activities. 
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Importantly, interrogation of the key descriptors, even in the case of a limited data set, can provide 

further insight into what maximizes catalytic activity(89). 

Beyond trial-and-error, ad hoc selection of descriptors, rigorous feature selection with ML 

models has emerged as a powerful tool for inferring design principles(22, 32, 43, 52, 72, 90, 91). 

Low-cost, topological(5, 7, 32, 92-94), three-dimensional(95-100), one-hot chemical encoding(92, 

101), and geometric descriptors (e.g., for MOF pores)(102-104) are often employed for this 

purpose in transition-metal chemistry. Applying random-forest-ranked recursive feature addition 

(RF-RFA) to KRR models, expected heuristics have been reinforced by feature selection 

approaches(22, 32, 105), such as the spin splitting of a complex being strongly dependent on the 

metal-local electronic environment (e.g., from the electronegativities of surrounding atoms, Figure 

5). Conversely, other properties such as the frontier orbital energies(22), band gap(44, 105), or 

ionization/redox potential(32, 52) have been found to depend much more on the global structure 

of the molecule (Figure 5). Such significant differences suggest opportunities for orthogonal 

design of the two properties(52). This type of analysis has also demonstrated the circumstances in 

which some heuristics can be expected to fail. The HOMO level has been proposed to be 

important(106) in predicting metal-oxo formation in homogeneous catalysts, but feature selection 

has shown that HOMO energetics depend much less on the metal than does strongly metal-

dependent oxo formation. The similarity of metal-local features for predicting metal-oxo formation 

and spin-state ordering also highlight why strong dependence of reaction energetics on spin-state 

and metal (see Sec. 2) can be expected in this class of catalysts(43). Importantly, in sufficiently 

balanced data sets(43, 105), these observations are relatively insensitive to the DFT functional on 

which the data was trained (Figure 5).  
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Figure 5. Feature analysis for representative materials and properties. (top) Transition-metal 
complexes (TMC) adiabatic spin splitting (DEH-L, top row) and HOMO–LUMO gap from D-SCF 
(bottom row) with revised autocorrelation functions (RACs) grouped by property (inset) and most 
distant atom in the RAC: metal (blue), 1st coordination sphere (red), 2nd coordination sphere 
(green), 3rd coordination sphere (orange), and more distant (global, gray) for the BLYP GGA (left) 
and the PBE0-DH double hybrid (right) on around 2000 TMCs from Ref. (105). (bottom) MOF 
grand canonical Monte-Carlo (GCMC) gas adsorption for CO2 (top row) and CH4 (bottom row) 
applied to the CoRE-MOF 2019 data set (left) and BW-20K hypothetical MOF data set (right). 
The MOF RACs and results from Ref. (40) show the features grouped by being metal-centered 
RACs (blue), linker-centered (red), functional group-centered (FGs, green), or derived from pore 
geometry characteristics (purple). 

 

3.3. Outstanding Challenges in ML-accelerated Design Strategies. 
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 The development of structure–property relationships is not without its challenges, most of 

which stem from the balance and size of data sets on which the relationships are built. For example, 

in experimental data sets extracted from the literature(14, 15, 19), there can be positive bias for 

reporting only successful experiments(16, 107, 108), leading to challenges in classification 

tasks(17). Additionally, the availability and consistency of reporting of key properties may be 

limited, with only structural data or related properties widely available except in very recent 

demonstrations(17). It has also been observed that experimental data sets (e.g., of MOFs in CoRE-

MOF(29)) do not necessarily have the same characteristics as hypothetical sets (e.g., hMOF(27) 

or ToBaCCo(28)).(40) As a result, extracted design principles show a significant difference when 

obtained from feature importance analysis of ML models trained on these different sets (Figure 

5).(40) Interestingly, the hypothetical sets do not necessarily fully include and go beyond the 

experimental sets into uncharted materials space. Instead, the experimental sets exhibit greater 

diversity of metal SBUs that are identified only in experimentally derived structure–property 

relationships to be important for gas adsorption. Thus, challenges for design stem from the 

challenges of enumerative discovery described in Sec. 2.  

4. Engineering Materials to Address Challenges.  

 We next distinguish engineering of materials with ML by the act of optimization of one or 

more properties. Along with engineering of the activity, other practical considerations include 

stability(17), solubility(37), synthesizability(109), cost(74, 110), and optimal conditions (e.g., for 

reaction or operation)(111-113). Here, it may be necessary to work directly with experimental data 

from extracted literature reports(14, 15, 19, 114) or high-throughput experimentation(115, 116) 

because, unlike activity, there may not be a good way to model these factors due to their 

dependence on complex phenomena and often unknown factors. When multiple properties are 
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being optimized, the search space naturally grows in a way that benefits from ML. We next 

describe some approaches and demonstrations of engineering materials through ML-accelerated 

optimization as well as the challenges that remain.  

4.1. Single-objective Optimization and Iterative Approaches. 

Optimization of a single property is feasible either with direct experimentation(117, 118) 

or physics-based modeling(119) but can often be accelerated with ML(43, 120, 121). Genetic 

algorithms are one automated approach to improve materials over successive “generations” 

(Figure 6).(122, 123) Genes suitable for optimizing transition-metal complexes or MOFs could be 

the metals or inorganic SBUs(118) as well as ligands/linkers(37, 43), or functional groups(124) 

(Figure 6). Discrete pools of each of these possible choices gives rise to a large space(125), similar 

to those discussed for full enumeration (see Sec. 2). At each generation, a series of operations is 

carried out, first to score the population to identify the fittest compounds and then to carry out 

mutation or crossover to ensure diversity of the population of optimizing materials (Figure 6). This 

approach proceeds until terminated, and the local nature of the optimization usually motivates a 

series of runs(120) to ensure all best leads are found. Jensen and coworkers(36, 126) have devised 

ring closure operations for transition-metal complexes, as implemented in their DENOPTIM 

code(126), that can alter ligand denticities to identify the optimal denticity (e.g., for spin-crossover 

compounds(36)).  
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Figure 6. (Left) Schematic of a genetic algorithm applied to materials defined by three genes 
(circle and two surrounding arcs). At each generation, fitness is evaluated, and the fittest survive 
with crossover (shown) and mutation applied to encourage diversity. (Right) Demonstration of 
how a surrogate model can be exploited, e.g., in combination with a genetic algorithm. (top) The 
fitness function in a genetic algorithm uses the ANN for scoring in a composite function that 
penalizes points at a high distance, d, from training data (middle) A schematic of an ANN property 
prediction is shown with the input feature space and the latent space both highlighted. (bottom) 
The distance of a new point in either feature or latent space to available training data (pink) can be 
close (shown schematically at bottom left) or far (shown at bottom right).  
 

Although fitness evaluation for each generation can be parallelized, the computational cost 

may remain high. As a result, use of genetic algorithms with experimental results typically 

involves efficient assays, for example using rapid colorimetric outputs(117). Because fitness 

evaluation dictates the overall time for optimization, multiple linear regression (i.e., quantitative 

structure–property relationship, or QSPR) models(59, 60), force field or semi-empirical 

models(36), or ML regression models (e.g., with ANNs)(120) are preferable in comparison to full 

DFT evaluation. The molSimplify automatic design (mAD)(22) and DENOPTIM codes(126) both 

flexibly apply any type of fitness evaluation, and mAD has a series of built in ANNs to ensure 

rapid evaluation(22).  In addition to these automatic optimization procedures, iterative exploitation 

of developed structure–property relationships (see Sec. 3) can be used to identify ways to change 

one property without altering another(17, 52) (see Sec 4.3). Alternatively, kernel-based Gaussian 

processes (discussed in Sec 4.2) are also commonly used for optimization, especially in continuous 

spaces. 

4.2. Multi-Objective Optimization Algorithms. 

Optimizing multiple objectives for property engineering is often necessary in practice, and 

this is where acceleration through the use of ML models for search in high-dimensional spaces is 

most needed. For the optimization of multiple properties, a Pareto front represents a hypersurface 

that passes through the series of compounds that have the best combination of properties (e.g., 
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price and activity(110), catalyst selectivity and conversion(127), or different measures of MOF 

surface area(128), Figure 7). To ensure enrichment at the Pareto front with ML-accelerated 

discovery, a number of active learning strategies have been proposed.(37, 129-132) In all cases, 

some initial pool of discrete candidates is curated (see Sec. 2), and initial DFT or experimental 

data is obtained (Figure 7). From this data, an ML model such as a Gaussian process (GP) or ANN 

may be trained to make predictions on the larger set of compounds in the full discrete space (Figure 

7). Most optimization procedures then focus on identifying the new points that in combination 

provide the most information to the model and have the greatest promise of enriching or 

superseding the current Pareto set (Figure 7). When these approaches use Bayesian statistics to 

predict these quantities, they are referred to as Bayesian optimization.  

 
Figure 7. Example of steps in an active learning workflow (clockwise from top left): 1) initial data 
generation (e.g., with DFT, circle symbols) and determination of a Pareto front (blue lines and 
dots); 2) training and evaluation of a machine learning model (e.g., an ANN) across a large space 
of hypothetical compounds (smooth shaded space); 3) scoring and selection of compounds 
expected to go past the Pareto front (e.g., with expected improvement, E[I]); 4) further evaluation 
of selected candidates with DFT. The cycle, including ANN training and prediction, is repeated, 
as indicated by inset magenta arrow.   
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A specific type of efficient global optimization (EGO) affords a score, known as the 

expected improvement, E[I], based on both the predicted property from the ML model as well as 

the uncertainty of the ML model.(133) Once promising points have been identified by the ML 

model, they are then evaluated with DFT or experiment and used to retrain the model (Figure 7). 

Repeating this procedure ensures enrichment of data for the ML model as well as optimal leads 

close to the Pareto front.  

4.3. Demonstrations of Materials Optimization. 

Single-objective, ML-driven or QSPR-driven optimization with genetic algorithms has 

been widely demonstrated for both experimental and computational improvements in 

heterogeneous(134-136) and homogeneous(43, 137) catalysis, spin-crossover complexes(120), 

among others(121). The promise of these techniques is even greater when multiple tradeoffs are 

considered. ML-driven optimization has also been demonstrated in scanning optimal catalyst and 

reaction space combinations(138), selection of solvents to improve reaction outcomes(139), or in 

the design of experiments to optimize turnover number in CO2 reduction catalysts(140). 

Janet and coworkers used(37) EGO with the 2D expected improvement criterion for multi-

objective optimization of complexes with earth-abundant (i.e., Cr, Mn, Fe, or Co) metals for redox 

flow battery applications. From a space of 2.8M candidate homoleptic transition-metal complexes 

that were sufficiently bulky (ca. 100–200 atoms) to be resistant to membrane crossover, they 

simultaneously improved the predicted solubility in non-polar aqueous electrolytes (i.e., as judged 

through logP) and the redox potential of the compounds (Figure 8). They showed that lookahead 

errors (i.e., predictions on future generations in the EGO run) were better with a multi-task ANN 

than with a GP model, suggesting the ANN generalized better to previously unseen compounds. 

The best compounds in terms of simultaneous solubility and redox characteristics had a common 
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motif of a fusion of five- and six-membered O-coordinating rings around a high-spin Mn center 

with small polar groups (Figure 8). The need for small polar groups to increase solubility without 

reducing redox potential could have been inferred from the strong size dependence of oxidation 

potential that had been noted in prior design abstractions(32), but the ring structure was new 

(Figure 8). In five generations, the best-performing materials all significantly exceeded(37) those 

that could have been observed in diversity-oriented or random search-based screens (Figure 8). 

Properties were optimized at least 500-fold faster through the EGO algorithm, achieving design 

leads in weeks instead of decades. These performance improvements are consistent with 

observations of global optimization for other materials (e.g., transition-metal oxides(141), hybrid 

perovskites(142)), where the improvement with each property optimization dimension is generally 

multiplicative. 

 
Figure 8. Distribution of DGox(sol) (top) and logP (bottom) values for each generation (colors by 
generation and symbols as in inset) alongside a larger random sample (gray symbols). The mean 
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value for each generation is indicated with a blue horizontal line. The points exceeding those 
obtained from the random sample in performance are shown in a magenta shaded region. Three 
complexes are labeled and shown at top with each ligand shown as a skeleton structure: the highest 
DGox(sol) Mn complex (A), the best trade-off Mn complex (B), and the highest-magnitude logP Fe 
complex (C). Adapted with permission from Ref. (37). Copyright 2020 American Chemical 
Society. 
  

In some cases, ML-accelerated DFT-based or MM-based property optimization is 

insufficient, and researchers have extracted experimental data from the literature to guide materials 

engineering principles. This effort is most mature in extracting and predicting synthesis recipes(12-

15, 19, 114) or other quantities (e.g., MOF surface area(143)) that are reported uniformly. Nandy 

and coworkers(17) recently demonstrated extraction of properties related to thermal stability and 

solvent removal stability in MOFs, two key characteristics for the design of MOFs as useful 

catalysts and in gas storage. They exploited(17) the CoRE-MOF(29) set to ensure that 

topological(32, 40) representations could be applied to train GP and ANN classifiers (i.e., for 

solvent removal) and regression models (i.e., for breakdown temperatures) on sets of over 1000 

reported experimental results. Through these models, Nandy et al. showed(17) it was possible to 

redesign linker chemistry (e.g., functional groups) to enhance stability in known materials, 

suggesting a strategy for re-engineering materials with improved properties. Thus, the 

multiplicative nature of ML acceleration and the opportunities created by the proliferation of 

experimental data sets suggest that it may soon be possible to engineer materials for practical 

considerations in much shorter timescales than traditional experimentation allows.  

4.4. Outstanding Challenges for Materials Engineering.  

 In the case of QSPRs or ML models, a question of domain of applicability arises that can 

be challenging to answer before embarking on a materials optimization campaign. While this can 

partly be controlled by the choice of ligands or metals in the pool of candidates, an alternative 
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approach is to modify the fitness function to ensure exploitation of a model only in regions well 

supported by training data. Similar to early multi-objective estimates of model uncertainty in 

optimization(144), Janet and coworkers employed(120) a composite fitness function that penalized 

points distant either in feature space(120)  or in the latent space(43, 46) of an ANN model (Figure 

6). The fitness is thus highest where both the target property is satisfied and the compound is not 

too distant from training data, controlling errors on newly discovered compounds to little more 

than the baseline test error of the models for applications in spin-crossover design(46, 120) or 

catalysis(43) (Figure 6).  

For multi-objective optimization with model exploration, i.e., where promising regions of 

space with high model uncertainty are identified and then incorporated as new data to an updated 

model, GPs are a natural choice because they provide inherent uncertainty estimates. However, 

GP property evaluation scales supralinearly with the data set size, making them less attractive from 

a time-to-evaluation standpoint when data set sizes are large unless specific approaches are 

employed that exploit sparsity to reduce scaling. Additionally, ANNs have been shown(37) to have 

better generalization errors, indicating they have more promise for predicting new points past the 

Pareto front (Figure 7). As a final caveat, prediction based on literature data can suffer from 

positive publication bias(107), and it can be challenging to automatically extract large data sets of 

experimental properties if there is no universal reporting standard. In classification problems, some 

have proposed to intentionally inject hypothetical, negative results to improve classifier 

performance(145). Despite these caveats, ML-driven multi-objective optimization and engineering 

remains a promising way to reduce time to discovery of materials with optimal tradeoffs from 

decades to weeks and to uncover new ways to repurpose existing materials.  

5. Conclusions and Outlook.  
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ML has become a part of the fabric of high-throughput screening and computational 

discovery of materials. Despite its increasingly central role, challenges remain in fully realizing 

the promise of ML, especially for the practical acceleration of the engineering of robust materials 

and elucidation of design strategies that surpass trial-and-error or high-throughput DFT-based or 

experimentation-based screening alone. This Review covered recent advances in both the 

algorithms and in their application that are starting to make inroads toward: i) the discovery of new 

materials through ML-accelerated large-scale enumerative screening, ii) the design of materials 

through identification of rules and principles that govern materials properties, and iii) the 

engineering of practical materials especially by satisfying multiple objectives.  

Beyond the approaches discussed here, numerous opportunities remain for further realizing 

the potential of ML-accelerated computational materials science. While enumeration is one 

successful strategy for discovering new materials that can be accelerated with ML regression 

models, the potential bias in either the rules for enumeration or in the training data available to the 

ML model is still poorly understood. The use of either published experimental or computational 

results can be expected to lead to a bias towards successes, which can then influence the ML 

models that lack information about unsuccessful compounds. Another opportunity is for the 

continued development of generative models, which have begun to be applied in materials 

science.(146-149) However, generative models can lead to compounds that are not experimentally 

feasible and can inherit the biases in the underlying data distribution. It remains to be seen how to 

best enumerate new compounds with finite available resources while maintaining realism, but ML 

models that predict calculation success(49) could provide one useful way to ensure that 

calculations are fruitful.  
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Uncertainty in all aspects of ML-accelerated computational materials science remains a 

challenge. For simple materials (e.g., organic molecules), transfer learning from a low level of 

theory to a higher level one has been demonstrated(150), but a hierarchy of tractable methods 

remains out of reach for most correlated materials such as transition-metal complexes. While 

training on a single DFT functional is common and can be expected to bias predicted lead 

compounds(52), consensus approaches that are trained on an ensemble of functionals can provide 

more robust predictions when ground-truth theory or experiment are unavailable.(105) Another 

source of uncertainty is in the ML model itself and how well it generalizes to new spaces. 

Transferable descriptors or representations as well as improved uncertainty quantification 

metrics(46) along with ever-growing data sets will be useful in addressing these challenges. 

In the design and engineering of new materials, DFT-based ML models can only go so far. 

They are suitable for predicting properties such as activity but they may miss longer-term goals of 

selectivity or stability essential to real-world materials predictions. While careful extraction of 

experimental literature data(17) or high-throughput experimentation can address some of these 

challenges, large data sets are seldom available for new classes of materials, either due to a lack 

of prior experimentation or inconsistent reporting in the scientific literature. Another challenge in 

building structure–property relationships is that many of the approaches discussed here required 

knowledge of the structure, which itself can evolve or be unknown during the operative lifecycle 

(e.g., in catalysis). Even in atomically precise transition-metal complexes, challenges can arise in 

understanding when the electronic structure may differ (e.g., for distinct, excited electronic states) 

while the geometric structure remains largely unchanged. Finally, there can be uncertainty in both 

the experimental measurement and conditions that may challenge the robustness of any automated 

extraction protocol that aims to leverage data across numerous experimental setups. Despite these 
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challenges, increased availability and size of datasets of materials properties, both from DFT and 

from experiment in challenging materials spaces such as transition-metal chemistry, will 

undoubtedly unlock new opportunities for ML-accelerated computational materials science in the 

years to come. 
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Terms and Definitions list: 
 
Machine learning (ML): This is the study of computer algorithms that improve automatically 
based on training/sample data without explicitly being programmed to do so. These methods are 
closely related to statistical learning. 
 
Artificial neural network (ANN): A powerful class of nonlinear models with easy-to-compute 
derivatives. They were originally conceptualized as a model of how neurons communicate in the 
brain because they typically contain activation functions that “turn on” in response to a signal. In 
this Account, we are generally referring to a class of feed-forward, fully-connected ANNs with a 
few layers that are sometimes also called deep neural networks (DNNs). 
 
Kernel ridge regression (KRR): A family of models that use a potentially nonlinear kernel to 
assign similarity between different inputs. KRR models are powerful regression models that are 
relatively easy to train and understand. 
 
Domain of applicability: The physico-chemical or structural space, knowledge, or information 
on which the training set of a model has been developed and thus for which the model is suitable 
to make predictions in new compounds. Typically, some measure of similarity in either the full 
feature space or a principal component analysis (PCA) is employed to determine the likelihood a 
model’s domain of applicability extends to a new compound. 
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Genetic (evolutionary) algorithms: This is a class of optimization algorithms inspired by 
biological evolution, typically involving “generations”, reproduction/mutation/recombination, and 
selection. Solutions in optimization are individuals in a population, and their fitness is evaluated 
to guide the evolution of the population.  
 
featurization: The process of assigning features to an input. Features are usually numerical 
constructs based on the chemical structure or constituent atomic properties of a molecule or 
material.   
 
regularized multiple linear regression (MLR): This is a class of multiple linear regression 
techniques wherein the fitting objective (typically called the loss function) is modified to penalize 
model complexity (i.e., regularized) to avoid overfitting. The most well known and widely applied 
of these techniques is the least absolute shrinkage and selection operator (i.e., LASSO). LASSO 
behaves like a standard MLR approach but penalizes coefficients associated with uninformative 
(i.e., uncorrelated) features. 
 
revised autocorrelations (RACs): Extensions of Moreau-Broto autocorrelation (AC) functions, 
which are products of heuristic properties on the molecular graph distinguished by the number of 
bond paths the atoms are apart and thus encode no explicit 3D information. RACs were introduced 
in Ref. (32) to modify the scope of the AC function to focus on ligand-centered and metal-centered 
products as well as to introduce difference-based evaluations. They also are averaged over 
equatorial and axial ligands distinctly. The most common application of RACs include several 
heuristics of oxidation state, HF exchange, spin state, and denticity. For the heuristic properties, 
electronegativity, covalent radius, identity (i.e., 1), topology (i.e., number of atoms to which an 
atom is connected), and nuclear charge are used. The conventional application uses a distance 
cutoff of 3 for the maximum number of bond paths. This typically leads to an approximately 150-
dimensional feature vector.  
 
feature selection/feature engineering: Feature selection broadly refers to either by-hand or 
automated approaches to eliminate uninformative features and identify a sparse set of 
representative features needed in model training. This is a necessary step for simpler models, 
whereas deep neural networks essentially act through successive layers to carry out feature 
selection. Feature engineering is a closely related synonym but more commonly refers to by hand 
identification of ad hoc features derived from experience with the problem (e.g., inorganic 
chemistry) at hand. 
 
distances: This generally refers to the difference (i.e., Euclidean distance) of two compounds in 
their feature space or in a model’s space (e.g., the latent space). 
 
similarity: A measure of how comparable two molecules are either in their chemical composition, 
as judged through feature space distances, or properties. Typically, one aims in simple models for 
the measure of similarity in the feature space to be comparable to the similarity in property space.  
 
hyperparameter: A parameter whose value controls the model complexity/selection and training 
process as opposed to parameters that are obtained via training. Examples include the learning 
rate, mini-batch size, or even number of hidden layers and nodes in an artificial neural network, 
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the kernel width and regularization in a KRR model, the degree of regularization in an MLR model, 
and so on. 
 
kernel width: This refers to a key hyperparameter in KRR models. A KRR model prediction is 
influenced by the nearest neighbors to an applied test point, where the influence of points decays 
with the inverse of the kernel width (typically a Gaussian or exponential decay function, for 
example). If the kernel width is narrow, then only the most proximal neighbors influence 
prediction. Conversely, if the kernel width is high, then a larger number of points influence model 
prediction. 
 
hidden layers: An interior layer of nodes in an ANN, i.e. a layer whose output is not directly 
observed. Normally, all layers except the input and output layers are hidden layers. 
 
active learning: A special case of machine learning in which new data points are labeled and used 
in iterative model training, typically at multiple steps, such that the model is iteratively improved, 
as judged through reduction in MAE rather than trained in one shot. The EGO with 2D-EI approach 
referenced later in the glossary represents one example of this approach.  
uninformative features: Portions of a feature set input vector that do not correlate to output 
properties and therefore do not improve model performance when they are included in the feature 
set. 
 
 
 

 

 


