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Abstract

The oceans contribute to aerosol particles in the atmosphere through two different
physical mechanisms: first by the production of sea spray aerosol (SSA), and second by
emitting gases that condense to produce secondary marine aerosol (SMA). These
aerosol emissions include three types of chemical compounds: salt particles account for
>90% of the mass, most of which is >1 ym dry diameter; sulfate particles are mostly
<0.5 pm, typically constituting most of the number and the largest impacts on clouds;
organic components include the greatest variety of compounds and the most uncertain
effects on clouds. Most SSA particles are expected to form from bubbles as film drops
that are <1 pym dry diameter and form from flapping bursting bubbles, although >1 uym
film drops can form by ligament fragmentation. SMA particles include contributions from
marine biogenic gas emissions, including dimethylsulfide (DMS), isoprene, amines, and
monoterpenes. The role of particles from the ocean in the atmosphere varies by region
and by season, but since atmospheric concentrations of ocean-derived <1 ym particles
are typically much smaller than the concentrations of their continental counterparts, they
have the largest impacts on climate in regions where continental sources are limited.
Most efforts to quantify global SSA and SMA emissions rely on global models, where
representations of marine aerosol sources are constrained by a small number of field
measurements. Satellite-based retrievals of coarse and marine aerosol optical depth
provide near global coverage that has been linked to coincident wind speed, whitecaps,
and biological productivity for >1 ym particles. The current best estimate of SSA flux of
5000 Tg/yr can be used to calculate SSA-related carbon flux as 35 TgClyr, by
approximating <1 um SSA particles as 10% of SSA flux with 7% organic carbon and >1
pum particles as 90% of SSA flux with no organic carbon. SMA is estimated to contribute
0.6 TgClyr as DMS, 0.6 TgC/yr as amines, and an additional trace amount from
isoprene and monoterpenes for a total of <2 TgC/yr. Because of the limited availability
of observations to constrain SSA and SMA global estimates, oceanic fluxes to aerosol
and aerosol precursors could vary by over two orders of magnitude. Key open questions
that require additional observational constraints include the variability in >1 ym SSA
mass size distributions, the relative contributions of SSA and SMA to number
concentrations of particles <0.5 um, and the regional and seasonal factors that may
control these <0.5 ym particle concentrations.



1. Introduction: Ocean Sources of Atmospheric Aerosol Particles

Oceans cover two-thirds of the Earth, and they produce two sources of aerosol particles
— one directly as particles (primary) and the other as gases that later form particles
(secondary). These naturally occurring sources are produced from most of the area
covered by the world oceans, but quantifying the contributions of these sources is a
complex challenge limited by instrument and simulation capabilities, as well as by
logistical obstacles for open-ocean measurements. The direct or primary source of
particles to the atmosphere is that of sea spray aerosol (SSA), the particles formed from
the bursting of bubbles generated by wind-driven breaking waves (Gong, 2003;
Monahan, 1968). The indirect source of particles is the emission of gases from the
ocean that can condense to particles after they are in the atmosphere, which are
considered “secondary” marine aerosol (SMA) (Gantt et al., 2010; Meskhidze et al.,
2010; Shaw, 1987; S. L. Shaw et al., 2010). SSA consists largely of sea salts from the
ocean but also includes a contribution of organic components that are produced by the
metabolism of biological organisms in the ocean. These ocean ecosystems also
produce and release organic gases that can form SMA.

This review provides an update on the understanding of SSA and SMA, building from
prior reviews (de Leeuw et al., 2011; Gantt & Meskhidze, 2013; Lewis & Schwartz,
2004; O'Dowd & De Leeuw, 2007; Quinn et al., 2015; S. L. Shaw et al., 2010). The
objective is to summarize the findings most relevant to the physical drivers of marine
aerosol sources and impacts, focusing on the fluxes of SSA and SMA. We consider the
regional and seasonal differences that may influence SSA and SMA, including the role
of ocean biota, and compile estimates of their global fluxes. Finally, we discuss the most
important open questions for which answers are needed to improve our understanding
of the role of ocean fluxes of aerosol in contributing to Earth’s climate.

2. SSA Fluxes

Aerosol particle fluxes from the ocean known as “sea spray aerosol” (SSA) are
composed of inorganic sea salts, including mostly NaCl and trace amounts of other
salts, and organic components (Gantt & Meskhidze, 2013; Russell et al., 2010). The flux
of these particles has been characterized indirectly by measurements of particle
concentrations in marine areas with minimal continental contributions, and have been
shown to increase with wind speed (Monahan, 1968; Monahan et al., 1983). Laboratory
measurements have quantified the links between bubbling of trapped air and particle
production, showing that the flux may depend not only on the wind-speed-driven
entrapment of air but also on the conditions of the sea surface and its composition
(Blanchard, 1989; Martensson et al., 2003; Sellegri, O'Dowd, Yoon, Jennings, & de
Leeuw, 2006). The understanding of the SSA number size distribution is well developed
for particles >1 uym but quite limited for particles <0.5 ym, which has substantial
implications for SSA contributions to CCN (O'Dowd, Lowe, & Smith, 1999; O'Dowd,
Lowe, Smith, et al., 1999).

2.1 Modes of SSA Production

The modes of SSA have been associated with different processes involved in bubble
bursting, with jet drops ejected from bubbles often attributed as the producers of
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particles 1-10 um dry diameter, film drops from bubble cap fragmentation as the
producers of smaller particles <1 ym dry diameter (Woolf et al., 1987), and spume
drops from wave tearing as producers of particles at 100 um formation diameter
(Anguelova et al., 1999; Fairall et al., 2009; Monahan et al., 2017; Veron, 2015; Wu,
1993). The formation processes for film and jet drops are illustrated in Figure 1, and the
size ranges of film, jet, and spume particles are illustrated in Figure 2. The bubbles
formed by wave-breaking in the ocean span a range of sizes from <50 ym radius to >10
mm radius (Figure 3), but there are few measurements characterizing bubble production
in the open ocean (Deane & Stokes, 2002). Most of the quantitative relationships
between bubble production and particle size distributions are based largely on
laboratory rather than ocean conditions (Lewis & Schwartz, 2004). The scarcity of these
measurements means that extrapolations to global and annual SSA are highly
uncertain. This uncertainty means that current models use parameterizations rather
than bottom-up calculations of sea spray particle production.

For this review as for most of the literature, bubble sizes are reported as observed
geometric radius. Airborne particle sizes, in particular those related to chemical
composition, typically are referenced to dry diameter to provide a more standard and
reproducible metric for quantification. Aerosol particle diameter may be measured by
mobility, aerodynamic, optical, or geometric properties, and here the diameter given is
most often calculated as equivalent to geometric for spherical particles. Exceptions, as
in Figure 2, are noted.

Bubbles larger than 1 mm radius have been observed to produce film drops with a
maximum dry diameter given by the area and thickness of the bubble cap (Lhuissier &
Villermaux, 2012) and apparent minimum diameters as small as 0.01 ym (Martensson
et al., 2003). Photographic evidence indicated that ligaments form after the inertial
destabilization of the rim enclosing the initial rupture in the bubble, and the elongation of
those ligaments leads to the formation of droplets <10 um wet diameter (Lhuissier &
Villermaux, 2012; Spiel, 1998). Ligament-mediated (also called centripetal)
fragmentation of the bubble film is thought to be relatively independent of bubble size
(Lhuissier & Villermaux, 2012), producing a characteristic gamma distribution of drops
(Spiel, 1998). The wet drops produced from bursting bubbles of radius 12 mm were
measured from 5 to 500 uym (Lhuissier & Villermaux, 2012), which is approximately
equivalent to dry diameters ranging from 1 to 100 um (Figure 4). High speed
photographic observations account for the formation of particles <0.1 yum by capturing
the role of flapping bubble films for bubbles <2 mm (X. H. Jiang et al., 2022). The
flapping of the film begins as the bubble film recedes from the initial hole at the foot of
the bubble cap, resulting in film fragmentation and drop formation. The flapping motion
of the bubble film results from the thinness of the films for small bubbles and has been
proposed to control the size of particles produced, with particles as small as 0.04 pm
from saltwater bubbles of radius 73 ym (Gafan-Calvo, 2022; X. Jiang et al., 2022; X. H.
Jiang et al., 2022).

Film drops have been thought to represent the majority (60-80%) of the particles
produced in wave breaking (Veron, 2015). Laboratory measurements with controlled
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bubbling show production of many <1 ym particles from bubble bursting events
(Martensson et al., 2003). Those laboratory experiments included a range of bubble
sizes, precluding the use of these experiments to establish a quantitative relationship
between particle production and bubble film fragmentation. Recent evidence shows that
bubbles smaller than 10-20 um radius produce particles with dry diameters 0.5-1 ym,
suggesting that jet drops may also play a role in <1 uym particle production (Wang et al.,
2017), even though there are not yet open-ocean photographic measurements of
bubbles smaller than 50 um radius (Deane & Stokes, 2002). Acoustic measurements of
more complete bubble sizes have been captured in the open ocean, providing evidence
of large numbers of particles as small as 10-20 ym radius (Medwin, 1977; Medwin &
Breitz, 1989; Vagle & Farmer, 1998). Smaller bubbles have been measured in tanks
with plunging water (Stokes et al., 2016; Stokes et al., 2013), with particles from jet
drops with dry diameters 0.5-1 um accounting for 20-40% of <1 ym particle number
concentrations and the remainder being film drops with dry diameters 0.04-0.4 ym
(Wang et al., 2017).

Unlike film drops, jet drops tend to form particles that are determined by the bubble size
(Blanchard, 1989; Wang et al., 2017; Wu, 2002). The “10% rule” for jet drops predicts
jet drop dry diameter to be 5% of the bubble radius, and observations typically find 1-3
jet drops are produced per bubble (Veron, 2015; Wang et al., 2017). Contamination
from surfactants has been shown to change the distribution of surface bubbles, thereby
changing the production of jet drops (Neel et al., 2022). Interestingly, the mean size for
film drops has been shown to be a function of the bubble radius and the ratio of the
density of the bubble film to the enclosed gas, making its size dependent on the surface
water composition and temperature (X. H. Jiang et al., 2022). Interactions of multiple
bubbles may also play a role in changing the production of particles, in ways not
represented by single-bubble experiments (Bird et al., 2010). An upper limit on film drop
size can be calculated from the bubble cap volume assuming one film drop per bubble,
but larger production is expected and broad size distributions have been observed
(Martensson et al., 2003). Consequently, there are a wide range of particle production
functions (Figure 5) that may reflect the role of environmental conditions on bubble
bursting. Several studies have reported a variety of dependences of SSA production on
ocean and atmospheric parameters (Table 1). One notable similarity across laboratory-
generated size distributions (Martensson et al., 2003), coastal observations of vertical
differences in concentrations (Clarke et al., 2003; Clarke et al., 2006), and shipboard
bubbling proxies (Keene et al., 2017) is the presence of a particle mode <0.1 ym dry
diameter. There are not yet direct measurements of <0.1 ym SSA flux in open-ocean
conditions because of the lack of instrumentation that are chemically specific for sea
salt, quantitative for sea salt mass concentration, and sufficiently resolved for sizes <0.1
pum at time resolutions of hours or less. The impacts of ocean (or laboratory) conditions
on the bubble bursting process likely explain the variability between proposed sea spray
production functions, which have been derived from laboratory generation of SSA
(Figure 5).

Spume drops are the largest and shortest-lived contributors to aerosol particles (Figure
2), with sizes extending from 30 to 4000 um diameter (Erinin et al., 2022). Given dry
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diameters >20 ym, their fall velocity often exceeds 0.1 m s making it unlikely for them
to persist in the atmosphere. In addition, most chemical and physical measurements of
aerosol particles are limited to diameters <10 ym because of the high loss rates of
larger particles in instrumentation, as discussed in Section 2.2.1. For these reasons, this
review will focus on film and jet drops.

2.2 Approaches to Quantifying SSA Size Distributions

Direct measurements of SSA fluxes are generally not available for the <1 ym and >1

um size distributions over most of the world oceans (Markuszewski et al., 2018; Norris
et al., 2008), likely because of the combined challenges of designing instruments to
measure sea salt components quantitatively at high time resolution and the low and
dispersed ambient net flux rates. Instead, three complementary approaches have been
used to identify the mass and number contributions of SSA particles to open-ocean and
coastal aerosol. The first and most chemically specific is size-resolved measurements
of Na and Cl composition of particles, which can then be scaled to estimate inorganic
“sea salt” (Quinn et al., 2000; Russell & Singh, 2006). The second is to infer the sea salt
concentration based on its characteristic contribution to the size distribution and
correlation to wind speed (Dedrick et al., 2022; Modini et al., 2015; P. K. Quinn et al.,
2017; Saliba et al., 2019). The third is to associate measured physical properties (such
as volatility or hygroscopicity) of the size distribution with sea salt composition (Clarke et
al., 2003; Clarke et al., 2006; Xu et al., 2022; Xu et al., 2021). The three methods vary
in their uncertainty for different size ranges, their accuracy for number or mass, their
time resolution, their labor intensiveness and consistency across groups, their reliance
on assumptions that may be region-specific, and their ability to resolve non-salt
contributions.

2.2.1 Chemical mass measurements

The most comprehensive and consistent set of size-resolved chemically-specific open-
ocean sea salt measurements are available from a series of cruises by researchers at
NOAA Pacific Marine Environmental Laboratory (PMEL)
(https://[saga.pmel.noaa.gov/data/). Size-resolved aerosol was collected and analyzed
for Na*® and CI- with analysis by ion chromatography on more than a dozen open-ocean
cruises for typical sampling times of one day at heights of 10-20 m above sea level
(Bates, 2009; Quinn & Bates, 2011; Quinn et al., 2019; Quinn et al., 2000). Compiling
those concentrations from six different ocean cruises that had measurements
quantifying the continental influence shows clear similarities for the marine air masses
with peaks in mass concentrations between 2 and 6 ym, at ~3 ym aerodynamic dry
diameter (Figure 6a). SSA mass concentrations have been shown to be correlated to
wind speed in prior work (Lewis & Schwartz, 2004; Saliba et al., 2019) but the mass
distributions illustrate the consistency in the peak of the >1 ym mass distribution and
reflect a strong degree of similarity of SSA modes across seasons and regions.

These mass size distributions were dried and size-segregated during six open-ocean
cruises that also measured in situ tracers to exclude continental influences, namely <1
um absorption (at 530 nm from PSAP) less than 0.8 Mm™"' and radon concentration less
than 540 mBq m3. In this simple summary of measurements, organic contributions are
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excluded because they were not available for the seven stage impactor bins, and sea
salt is scaled from measured Na* and CI- and ammonium bisulfate from measured non
sea salt sulfate (SO4%). The accuracy of the mass distributions is limited by the number
and width of the impactor size bins, as well as by other sampling constraints, with an
effective compromise afforded by sampling from a 7-stage Berner impactor (Quinn et
al., 2000). The mass concentration distributions illustrate the large mass concentrations
>1 um, with <1 ym bins contributing 10% or less (Kleefeld et al., 2002; Murphy et al.,
1998; Quinn et al., 1998; Zheng et al., 2018).

The open-ocean sea salt mass concentrations show a weak correlation (0.12<R?<0.2)
of the >1 um mass concentrations (and the summed mass from all bins) to the local
wind speed, but the correlations for the <1 um bins have R?<0.15. To quantify the size
dependence on wind speed, the mass concentrations were normalized to wind speed
and then the remaining variability was quantified as the ratio of the standard deviation to
the mean. For >1 pym size bins, the standard deviations of the mass concentrations
were near or below the means, making the ratio of standard deviation to mean
approximately 1 or smaller (Figure 6d). For the <0.5 ym bins, the ratio of the standard
deviations to the means of the mass concentration normalized to wind speed are all
larger than 1. This high standard deviation relative to the mean of the wind speed
normalized mass concentrations reflects an apparent weakness of the dependence of
the <0.5 ym bin mass concentrations on wind speed. The low wind speed dependence
for <0.5 pym particles is analogous to the higher correlations of sea spray particles to
wind speed when <0.5 ym particles were excluded (Figure S17 of Saliba et al. (Saliba
et al., 2019)). The <0.5 ym sea salt mass concentration may still be produced from
breaking waves, but the processes that produce the smaller particles may have a
greater dependence on other environmental conditions (such as surface composition,
whitecaps, sea surface temperature (SST), and coastal effects) than on wind speed.
Smaller particles could also experience more influence from confounding non-local
sources contributing at longer lifetimes. Such variability in conditions could explain the
wide range of reported parameterizations in this size range (Figure 5).

The measured mass concentrations for each size bin can also be used to estimate the
number concentrations, assuming as a starting point that the two different types of
particles are externally mixed, with one consisting of sea salt and the other of
ammonium bisulfate (Quinn et al., 2000), and using an effective density of 2.0 for sea
salt (Saliba et al., 2020) and 1.78 for ammonium bisulfate. The largest uncertainty in this
calculation of number concentrations arises from the width of the measured bins
(dlogD), which bounds the possible mean dry diameter of the particles within each bin.
This sensitivity to the bin mean diameter is quantified here with three different estimates
to bound the mean diameter: (1) an upper bound at the 50% cutoff diameter (D50) for
the bin (Dhigh=D50), (2) a lower bound at approximately the 50% cutoff diameter of the
next smaller bin (Dlow=D50-dlogD), and (3) a best estimate at the geometric mean of
these two values (Dmid=D50-0.5dlogD). This range of mean diameter means that the
mass per particle varies by a factor of 5-9 for the bins with D50 of 0.31, 0.55, 1.06, 2.02,
4.13, and by factors of 12 for the smallest bin (D50 of 0.18) and 16 for the largest bin
(D50 of 10.3). The uncertainty in the smallest bin has the largest effect on the number
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concentration, making the uncertainty in the number concentration a factor of 12 for the
<0.18 um bin. Since the number concentration in the <0.18 uym bin represents more
than half of the summed 7-bin number concentration, the uncertainty in the sum is more
than a factor of 12. This uncertainty is too large to use mass distributions to evaluate the
absolute number flux, but since the error in bin mean diameter is likely to affect the sea
salt and ammonium bisulfate number concentrations in the same way, the relative
fractions of sea salt and ammonium bisulfate can be compared with less uncertainty. By
normalizing the number per bin by the particles summed from all bins, for both sea salt
and ammonium bisulfate particle types, the sensitivity to the mean diameter uncertainty
is reduced (Figure 6c¢). The resulting number distributions show that ammonium
bisulfate accounts for the majority of <0.5 ym particles in most projects (Figure 6¢). In
particular, the mean number concentration for the <0.18 ym bin range shows that sea
salt accounts for 28% to 34% compared to 40% to 49% ammonium bisulfate particles
(Figure 6¢). If the assumption of two separate particle types is relaxed as is likely more
realistic, then the <0.18 um bin has particles with 44% sea salt and 56% ammonium
bisulfate (neglecting organic and trace constituents). Such mixed particles could be
classified either as SMA based on the majority of mass being ammonium bisulfate or as
SSA based on the sea salt being the primary particles to which secondary mass was
added.

2.2.2 Size distribution correlations

The size distribution correlation approach for estimating sea salt concentrations was
developed to attribute modes fitted to merged submicron and supermicron size
distributions to sea spray (Modini et al., 2015). The interpretation of particles as sea
spray was supported by showing that the summed mass concentration increased with
wind speed (Figure 7), from which a flux dependence on wind speed could be inferred
(Saliba et al., 2019). By incorporating the high size resolution from differential mobility
measurements along with >1 ym optical or aerodynamic size distributions, and using
simultaneous <1 ym chemical composition measurements for corroboration, the
contribution of SSA to smaller sizes has also been evaluated. This approach showed
that a single SSA mode with median diameter ranging from 0.05 to 1.1 ym was
correlated with <1.1 ym Na* and CI- concentrations as well as wind speed for a number
of open-ocean campaigns (Modini et al., 2015; P. K. Quinn et al., 2017; Saliba et al.,
2019). Smaller modes were also retrieved simultaneously from each distribution, but
comparisons to chemical measurements and wind speed indicated their source was
largely sulfate and organic components (Figure 8) without a wind speed dependence
(Modini et al., 2015; Saliba et al., 2019).

Recent work has studied the accuracy of this approach in the absence of >1 uym size
distribution measurements (Dedrick et al., 2022; Sanchez et al., 2020), showing that
reasonable SSA number concentrations are retrieved with only <1 ym size distributions
but that SSA mass concentrations are improved by constraining to coarse-mode
scattering measurements (Dedrick et al., 2022). The range of retrieved sea spray
modes does vary in not only number but also size and width (Table 2). The range of the
reported parameters from each study does not appear to depend on the relative
humidity of the measurements, suggesting the variability is greater than the

Page 7 of 59



dependence on hygroscopicity. The advantage of the size distribution-based approach
is that it measures particle number concentrations directly with 10 bins or more per
decade of diameter at high time resolution (<10 min), even though chemical
composition is inferred. The correlation of retrieved SSA mode mass to measured <1.1
um Na*® and CI- composition provides indirect support for the chemical identification,
although this approach is not expected to be sufficiently sensitive to identify particles
<0.1 ym. The small and variable mass concentrations for particles <0.1 ym noted above
may obscure any relationship between chemical composition and modes in this size
range, which makes it difficult to rule out SSA <0.1 uym but also provides no support for
the contribution of SSA in that size range.

2.2.3 Physical property proxies

The physical property proxy approach has used the low volatility or the high
hygroscopicity of sea salt particles to identify particles with those properties as sea salt.
The volatility approach separates the particles in optical or mobility size distributions by
heating sufficient to evaporate sulfate and some organic components and identifying the
remaining particles as nonvolatile SSA (Blot et al., 2013; Clarke et al., 1987; Clarke &
Kapustin, 2003; Odowd & Smith, 1993). Measurements at three levels of a coastal
tower were used to identify the SSA contribution by the amount the >0.04 um
concentrations at 360°C sampled at 5m above sea level (ASL) exceeded the 20m ASL
concentrations, where the near-surface concentration exceedances at 5 m were
interpreted as recent emissions of SSA in the coastal zone that had not yet mixed up to
the 20m level (Clarke et al., 2003; Clarke & Kapustin, 2003; Clarke et al., 2006). The
measurements showed a heated peak in the number size distribution at 0.03 ym, which
could result from evaporation of semi-volatile material from ~0.1 ym. These particles
could be consistent with a mixture of the sea salt and sulfate mass concentration in the
<0.18 ym bin measured by Quinn and colleagues (Figure 6¢). Mass spectrometry and
combined thermal/electron microscopy measurements also support the presence of sea
salts in particles as small as 0.13 um over the Southern Ocean (Murphy et al., 1998)
and at Macquarrie Island (Kreidenweis et al., 1998). To rule out the confounding effects
of nonvolatile organic components that may be associated with quantifying the
contribution from SSA, chemical measurements were used to show that SSA
represented a small contribution by excluding measurements with significant organic or
black carbon from open-ocean cruises (Blot et al., 2013). A disadvantage is that the
heated size distributions measure particles at diameters reduced from their size at
ambient temperature, making it necessary to back-calculate the ambient particle size
distribution from the lower concentrations in the heated distribution.

Hygroscopicity has also been used as an indirect way to identify sea salt particles at a
coastal site in the northeastern North Atlantic, showing that 2% of the measurements
collected during a 5 year period have a large number contribution to hygroscopic
particle concentrations <0.2 ym dry diameter (Xu et al., 2022; Xu et al., 2021). This
method relies on a cutoff value of Kk=0.67 for the size-selected hygroscopic tandem
differential mobility analyzer measurements, which is interpreted as a mixture of organic

components contributing less than half of the volume (assuming k<0.1 for organic
components) and sea salt contributing the majority (with a 20% uncertainty from the
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uncertainty in its hygroscopicity for kK=1.0-1.2) (Zieger et al., 2017). The interpretation of

particles with K>0.67 as SSA assumes no contribution from ammonium bisulfate (k=0.8
for ammonium bisulfate), even though the ammonium bisulfate is typically measured in
particles <0.18 ym in marine environments (Quinn et al., 2000). (Note that the
hygroscopicity of ammonium bisulfate was estimated from Kohler theory, with the
molality-dependent osmotic coefficient using an ion-interaction approach with tabulated
parameters (Pilinis & Seinfeld, 1987; Pitzer & Mayorga, 1973)). This interpretation of

particles with k>0.67 as sea salt results in a much higher SSA number concentration
and contradicts the open-ocean results for the measured mass distributions (Figure 6a)
and for the size distribution correlation approach (Figure 8). The high SSA concentration
implies that there are no sulfate or organic particles contributing to CCN during the 2%
of measurements selected. Certainly, this is possible for the 940 hr of measurements
during a 5-yr period (with unspecified selection criteria), but the absence of supporting
chemical correlations for the hygroscopicity identification suggest the results should be
considered with caution. The sparse sampling of the extended data set suggests also
that the apparent contradiction between this finding for a coastal location and those for
the open-ocean studies, and the lack of correlation to wind speed, may indicate that
regional and seasonal variability, as well as coastal differences from open-ocean wave-
breaking, are important factors.

2.3 Composition of SSA

Seawater includes a mixture of dissolved inorganic salts, with Na* and CI- typically
accounting for 86% of the inorganic mass and the remainder constituted primarily by
Mg?*, Ca?*, K*, SO4* (sulfate), HCOs", Br, B3*, and F- (Holland, 1978). Together the
mass contribution of these sea salts can be estimated as from the relation Na*+1.47*ClI-
(Quinn et al., 2000). The contribution of trace salts to seawater means that the particle
hygroscopicity is slightly lower than that of pure NaCl (de Leeuw et al., 2011; Ming &
Russell, 2001; Tang et al., 1997; Zieger et al., 2017). The inorganic components of sea
spray are expected to be generally refractory, which is the term used in aerosol mass
spectrometry to indicate that they are largely nonvolatile when heated to 600°C. The
presence of SO42" as nearly 8% of the dissolved inorganic salts means that
measurements of sulfate in marine aerosol will include both sulfate from seawater and
sulfate from SMA and other secondary sources. To distinguish between these types of
sulfate, the amount of sulfate associated with sea salt is calculated from the seawater
composition and the remainder is designated as “non sea salt” sulfate. Analogous “non
sea salt” quantities can also be defined for Br and K*, in order to calculate the amount
of these constituents that may be associated with wildfires, and for Ca?*, in order to
identify the amount that may be associated with dust (Bottenus et al., 2018; Gilardoni et
al., 2009; Gilardoni et al., 2016; Song et al., 2021).

The presence of Na* and CI" in the <0.18 ym bin of the open-ocean ion chromatography
measurements (Figure 6) is important because the presence of nonvolatile components
can only be explained by the direct production of droplets during bubble bursting,

namely there is no secondary source of Na* and CI. Reports of SSA particles <0.03 pm
dry diameter in coastal and lab measurements are consistent with a tail of larger modes,
although separate modes of particles <0.1 ym dry diameter have been reported (Clarke
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et al., 2003; Martensson et al., 2003; Xu et al., 2022). There are no direct chemical
measurements in this size range, but hygroscopicity values less than that of salt and
mass loss during volatility measurements indicate the measured modes are partially sea
salt with the remainder including less hygroscopic and more volatile sulfate and organic
components.

The ocean contains both dissolved (DOC) and particulate (POC) forms of organic
carbon, which are usually defined operationally as the quantities that do (dissolved) and
do not (particulate) pass through a submicron-sized pore filter when suspended in
seawater (Carlson & Hansell, 2015). Several techniques have been used to identify
organic components of SSA (Table 3). Both DOC and POC mix with sea salts when film
and jet drops are formed (Gong, 2003; Walls & Bird, 2017), although the contributions of
20% on average (but up to 60%) organic components for 0.1-1 uym fraction are likely
associated primarily with film drops (Bates et al., 2020; Keene et al., 2017). In contrast,
the >1 uym sizes have negligible organic contributions, with 100% of mass produced by
bubbling proxies having a negligible organic volume fraction according to open-ocean
bubbling experiments (Keene et al., 2017) and open-ocean ambient measurements
(Quinn et al., 1998). The qualitative explanation for the size dependence of the organic
contribution is that the thinner the bubble film (and the smaller the bubble), the larger
the contribution of the organic surface constituents to the film composition (Figure
9)(Frossard, Russell, Burrows, et al., 2014; X. H. Jiang et al., 2022).

Many experiments using realistic physical simulations of the sea spray aerosol
production process have shown that organic components can be measured in primary
submicron SSA immediately or very shortly after emission, suggesting that at least
some organic components enter the aerosol together with salt rather than through
secondary formation from condensation of volatile gases (Alpert et al., 2017; Ault et al.,
2013b; Bates, Quinn, Frossard, Russell, Hakala, Petaja, et al., 2012; Maria Cristina
Facchini et al., 2008; Frossard, Russell, Burrows, et al., 2014; Gao et al., 2012; W. C.
Keene et al., 2007; Kieber et al., 2016; Long et al., 2014; Quinn et al., 2014; Schmitt-
Kopplin, Liger-Belair, Koch, Flerus, Kattner, Harir, Kanawati, Lucio, Tziotis, Hertkorn, &
Gebefugi, 2012). The primary sea spray origin of marine organic components is also
supported by laboratory studies and field experiments using a variety of analytical
methods (including Proton Nuclear Magnetic Resonance (H-NMR), Fourier Transform
Infrared Spectroscopy (FTIR), Fourier Transform lon Cyclotron Resonance (FT-ICR),
Gas Chromatography Mass Spectrometry (GCMS), High Resolution Time-of-Flight
Aerosol Mass Spectrometry (HR-ToF-AMS), Evolved Gas Analysis (EGA), lon
Chromatography (IC), High Performance Liquid Chromatography (HPLC), liquid-phase
Total Organic Carbon (TOC), Raman microspectroscopy, and Atomic Force Microscopy
(AFM)) (Ault et al., 2013b; Bondy et al., 2017; Frossard, Russell, Massoli, et al., 2014).
Because inorganic sea salts are generally refractory, measurements of organic
contributions to sea salt by non-refractory methods have been shown to miss the
organic components on particles with sea salt (Frossard, Russell, Massoli, et al., 2014).

The organic components of seawater are expected to be produced as the metabolic
byproducts of phytoplankton and other ocean biota, which also serve as nutrients for a
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variety of ocean organisms (Aluwihare et al., 1997; Burrows et al., 2014; Gantt et al.,
2011). Some of the organic components are expected to track with the populations of
these biota for which chlorophyll has been used as a proxy, however the variety of
organisms and their differing (or nonexistent) amounts of chlorophyll make it
problematic as a general tracer for all organic-producing organisms. The composition of
the organic components of seawater is likely to include thousands of molecules that
range from carbohydrates to amino sugars to lipids, many of which are macromolecules
that are difficult to isolate or to characterize fully as molecular structures (Aluwihare et
al., 1997; Aluwihare et al., 2005; Repeta et al., 2002). Individual molecules have been
speciated by GCMS and other techniques, accounting for a few percent of the seawater
composition (Maria Cristina Facchini et al., 2008; M. C. Facchini et al., 2008; Gagosian,
1983; Lawler et al., 2020). Indirect characterization of the organic carbon in <1 um
marine aerosols has accounted for a larger proportion of organic components using
functional group characterization (Russell et al., 2010). Subsequent work has shown
consistently a majority of quantified organic mass can be characterized by alcohol
groups with minor contributions from amine and alkane groups (Figure 10) (Frossard,
Russell, Burrows, et al., 2014). This composition is consistent with amino sugars and
more generally carbohydrates, although the uncertainties do not preclude contributions
from lipids.

Primary contributions of amine groups are evident in <1 ym samples collected from
proxies of bubble bursting and ambient particles (Berta et al., 2022 in review; Frossard,
Russell, Burrows, et al., 2014). Measurements of the organic functional groups of
marine aerosol particles <0.5 ym show some similarities to the <1 ym composition
(Lewis et al., 2021). The higher variability and stronger contribution from secondary
amine and acid groups <0.5 um likely indicates a combination of primary and secondary
marine sources to the aerosol (Berta et al., 2022 in review).

2.4 SSA Contribution to Scattering, CCN, and INP

SSA particles contribute to light scattering in the atmosphere, cloud condensation nuclei
(CCN), and ice nucleating particles (INP). To quantify SSA impacts, a combination of
laboratory measurements and clean marine observations have been incorporated in
global transport and climate models using parameterizations that predict particle mass
as functions of wind speed for a specified size distribution (Anguelova & Webster, 2006;
Brumer et al., 2017; Gong, 2003). More sophisticated parameterizations have also
incorporated dependence on white caps and SST. Verification of these
parameterizations with observations has been promising but limited in scope due to the
mismatch of time scales between available observations and global models (Figure 11)
(Jaegle et al., 2011). Recent advances in satellite retrievals may improve these
comparisons with new products for coarse and fine marine-related particle mass
concentrations (Dasarathy et al., 2021; Dror et al., 2018), although chemical
composition cannot be retrieved directly by satellite.

SSA is important in the atmosphere because of its direct contributions to albedo, as well

as its indirect impacts on clouds and precipitation. The direct contribution is from the
scattering of light, and this effect is controlled by the mass concentration of salt particles
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and their humidity-dependent hydration. Almost all of the particle mass (>90%) comes
from particles >1 ym dry diameter (Figure 6a). The indirect effect on albedo is the result
of the provision of CCN to clouds, which often scales with the number concentration of
particles and provides the nucleation sites on which droplets form. Clouds respond to
increases in CCN number immediately by an increase in cloud droplet number, resulting
in brighter clouds (Twomey, 1977). A variety of “knock-on” effects and more subtle
aerosol-cloud impacts also occur that can change the extent, depth, and optical
thickness of clouds (Fan et al., 2016). These so-called “cloud adjustments” typically
enhance the sensitivity of Earth’s climate to aerosol emissions (Sherwood et al., 2015).
Supermicron salt particles can also act as “giant” CCN and affect precipitation (Dziekan
et al., 2021; Feingold et al., 1999; Jensen & Lee, 2008; Jung et al., 2015; Reiche &
Lasher-Trapp, 2010).

In addition, the glaciation of supercooled cloud droplets can be affected by particles that
act as ice nucleating particles (INP), potentially impacting cloud evolution, precipitation,
Earth’s radiative budget, and cloud feedback, especially when emissions occur in
remote regions such as the Arctic and Southern Ocean, where cloud phase feedbacks
are important (Burrows, McCluskey, et al., 2022; Gettelman & Sherwood, 2016; Tan et
al., 2022; Tan & Storelvmo, 2016; Tan et al., 2016; Vergara-Temprado et al., 2018).

The impacts of SSA on CCN, INP, and scattering depend strongly on SSA size
distributions. CCN are primarily sensitive to number concentrations; the majority of sea
spray particle number concentration is <1 ym dry diameter (Figure 6c). In contrast,
marine INP are more sensitive to larger SSA; supermicron SSA particles contribute
more effectively to INP populations but quantifying the impact of these larger SSA in the
atmosphere remains challenging (Mitts et al., 2021; Steinke et al., 2022). Supermicron
SSA also play an important role in scattering, although this effect is driven by mass
rather than number concentration (Figure 6a). The different size dependences of these
effects make it important to identify the size distribution of sea spray particles and their
relative contribution to the atmosphere in open-ocean regions.

2.4.1 SSA Contribution to Light Scattering

Sea salt particles >1 ym have been shown to have a large role in scattering light in
clean marine conditions, indicating a large role for wind-driven particles in scattering
light over the ocean (Chamaillard et al., 2006; Covert et al., 1972; Kleefeld et al., 2000;
O'Dowd et al., 2010; Quinn et al., 1998; Quinn et al., 2004). Satellite and surface-based
aerosol optical depth (AOD) measurements in clear sky conditions have shown a
dependence on local wind speed that is consistent with parameterizations based on in
situ observations (Mulcahy et al., 2008; O'Dowd et al., 2010; Smirnov et al., 2012),
suggesting that the satellite retrievals provide reasonable proxies for sea spray particle
mass concentrations. Early retrievals based on Moderate Resolution Imaging
Spectroradiometer (MODIS) Collection 5 may have overestimated AOD at wind speeds
>6 m/s, due to wind-speed dependent changes in open-ocean surface roughness and
white cap foam fraction that affected the assumed surface albedos (Kleidman et al.,
2012). MODIS Collection 6 resolved this systematic bias by employing a wind speed
look-up table (Kleidman et al., 2012; Levy et al., 2013). This revision produced a more

Page 12 of 59



modest dependence of AOD on wind speed over the open ocean (Merkulova et al.,
2018). The remaining wind speed dependence, when combined with the observations of
>1 um particles accounting for 90% or more of sea spray mass (Section 3.2.1, Figure
6), indicates that satellite clear-sky retrievals of aerosol optical depth include signatures
for wind-driven sea spray aerosol in marine regions.

Column retrievals of coarse-mode aerosol optical depth (AODc) from MODIS are limited
by cloud coverage and lack of vertical resolution (Ichoku et al., 2004), but recent
approaches to marine aerosol optical depth (MAOD) have used the NASA Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) spaceborne lidar
to retrieve vertical profiles of layer-specific AOD (including the marine boundary layer)
(Dasarathy et al., 2021; Kim et al., 2018). The lidar technique can measure under
conditions that would challenge passive remote sensors, such as partial cloud cover
and low sun angles. Recent work based on AODc and MAOD retrievals has
investigated a seasonal biological contribution in the tropics and in the Antarctic, which
show that the dependence on wind speed may be reduced or enhanced by biologically-
produced surfactants in the summer (Dasarathy et al., 2022 in review; Dror et al., 2018).
Comparisons with surface-based column optical depth measurements from AERONET
have shown good correspondence between with satellite and in situ measurements
(Asmi et al., 2018; Heslin-Rees et al., 2020; Holben et al., 2001; Kaufman et al., 2001;
Porter et al., 2003; Smirnov et al., 2011; Virkkula et al., 2022).

2.4.2 SSA as CCN

The most direct measurements of SSA are chemical mass distributions, but CCN
concentrations require the accurate size resolution afforded by number distributions.
Calculating the contribution of SSA to CCN based on the chemical mass approach is
uncertain, since the largest number of particles resides in the smallest bin. The
estimated mean diameter of 0.12 uym for the <0.18 um bin is below the critical diameter
of 0.13 uym for sea salt particles for a supersaturation of 0.1% (Figure 12) (Sanchez et
al., 2018), meaning that the high uncertainty in the <0.18 pym bin may not be relevant for
low marine stratocumulus. However, for higher supersaturations the uncertainty in
estimating number from mass reduces the utility of using size-resolved mass
concentrations to estimate chemically specific number concentrations.

Using the size distribution correlation approach to evaluate the contribution of SSA to
CCN has shown that SSA contributes a third or less of CCN in open-ocean clean
marine conditions (Figure 13) (P. K. Quinn et al., 2017). This contribution is similar to
the results suggested by the mass distribution-based calculation of number distribution
in Figure 6¢, which indicates <1 ym particles have an SSA contribution of 38%
compared to 62% from SMA (ammonium bisulfate) for the Dmid mean diameters
including the smallest bin with Dmid=0.12 um. SMA is discussed in detail in Section 3,
and the role of SMA in contributing to CCN is summarized in Section 3.3. If only
particles larger than the SSA critical diameter of 0.13 um at 0.1% supersaturation are
included, that would give contributions of 30% SSA and 70% SMA. The similarity of the
open-ocean results from size-distribution correlations approach (Figure 13) and
chemical mass measurements approach (based on the number distributions in Figure
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6¢) shows broad agreement across the first two approaches for open-ocean
measurements from six cruises. The physical property approach with volatility found
that SSA accounted for 20%-40% of CCN over the southeastern Pacific (Blot et al.,
2013), consistent with the first two approaches described above. More larger particles,
implying more CCN, were also attributed to entrainment of free tropospheric aerosol
than to <1 ym SSA particles at Christmas Island (Clarke et al., 1996). A model-based
estimate of CCN for the Southern Ocean was also consistent with this result, concluding
that the seasonal variations in sulfate aerosol were primarily attributable to SMA rather
than SSA (McCoy et al., 2015).

The physical property approach with hygroscopicity has identified a much higher
contribution of SSA to CCN, estimated as 2 or 3 times more than the size distribution
correlation approach (Xu et al., 2022). There is occasional evidence for this higher CCN
contribution in estimated number concentrations from the open-ocean mass mode
<0.18 ym (Figure 6¢) for a few times in each project, possibly representing 2% or more
of the sampling time. Such similar conditions could explain the Mace Head observations
(Xu et al., 2022), although the high number contributions they reported do not seem
sufficiently representative to use as the basis for a global mean parameterization for
marine areas since the majority of time the number concentrations are generally lower
for sea salt than for ammonium bisulfate.

While satellite-derived AOD has retrieved reasonable estimates of the SSA mass
concentration, the large contribution of relatively few >1 ym SSA to the light scattering
limits its ability to quantify the more numerous and CCN-relevant <1 ym SMA and SSA
particles. Recent advances in relating AOD to fine particle mass concentration in urban
environments using high-spectral resolution lidar (Sawamura et al., 2017) are not
effective in the presence of the coarse mode aerosol found in marine environments.
However, combining satellite retrievals of cloud drop number concentrations (Painemal
et al., 2020; Painemal et al., 2021) with AOD retrievals may provide an approach to
quantifying CCN number concentrations.

2.4.3 SSA as Ice Nuclei

Although SSA is largely composed of inorganic salts that tend to suppress ice
formation, SSA can provide a source of ice-nucleating particles (INP). In particular, the
inclusion of organic and biological components appears to play a critical role in enabling
SSA to act as INP, thereby enhancing the immersion-mode nucleation of supercooled
droplets to ice (DeMott et al., 2016). The ice-nucleating entities that contribute to the
INP activity of SSA may be associated with the sea surface microlayer (Wilson et al.,
2015), and the presence of marine INP in the ambient atmosphere may correlate to
ocean biological indicators (Trueblood et al., 2021).

Marine INP are typically less effective and more scarce than dust or terrestrial biological
particles (DeMott et al., 2016; Ickes et al., 2020; Irish et al., 2017; Irish et al., 2019;
McCluskey, Hill, et al., 2018; Twohy et al., 2021; Wex et al., 2019). Specifically, results
from a wave tank experiment showed that SSA particles have <1% of the ice nucleation
effectiveness (nucleating sites per particle area) compared to continental particles
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(DeMott et al., 2016). In addition, INP concentrations in clean marine regions such as
the Southern Ocean are two or more orders of magnitude smaller than INP
concentrations in continental air (McCluskey, Hill, et al., 2018). However, both models
and observations have shown that SSA particles can serve as INP in the absence of
better nuclei such as dust (Chen et al., 2021; DeMott et al., 2016; McCluskey, Hill, et al.,
2018; Vergara-Temprado et al., 2017; T. W. Wilson et al., 2015). Observations have
identified episodes in which marine INP provide the main INP source along the
coastlines of the North Atlantic and Pacific Oceans (Cornwell et al., 2019; McCluskey,
Ovadnevaite, et al., 2018).

In addition to acting as INP when immersed in supercooled cloud droplets, some
constituents of SSA have been shown to be capable of contributing to ice formation by
serving as nuclei for the deposition of water vapor, a mode of ice nucleation that can be
important in the upper troposphere (Knopf et al., 2011; Patnaude et al., 2021; Wolf et
al., 2019). However, observations of this ice nucleation mode for ambient SSA are
limited, and it is unclear how to extrapolate from the observed ice nucleation behavior of
individual constituents to complex ambient SSA particles. Few direct observations are
available of particle chemical composition and INP in the upper troposphere.
Consequently, constraining the impacts of SSA on deposition-mode ice nucleation
remains difficult.

Global models have been used as a tool to estimate climate impacts of INP, but such
models are not yet capable of representing all of the processes important in controlling
the climate response to INP at the necessary scales. Given the limited role of SSA as
INP when better INP such as dust are present, it is not yet possible to quantify the
overall role of SSA as INP globally. More research is needed to better quantify SSA
contributions to INP in order to assess which areas of the Earth would be most sensitive
to SSA contributions to INP (Burrows, McCluskey, et al., 2022).

3. SMA Fluxes

The contributions of gases to the aerosol are considered “secondary” because they are
emitted in the vapor phase and only form liquid or solid particles after atmospheric
processing, which typically includes oxidation to convert the emissions into less volatile
compounds. Several approaches have been used to distinguish secondary contributions
of SMA from the primary contributions of SSA (Table 4). Chemically-specific
contributors are methanesulfonate (MSA) and non-sea-salt sulfate, which are known to
form as secondary aerosol from DMS (Quinn & Bates, 2011; Sanchez et al., 2018). A
variety of organic compounds also contribute to SMA.

3.1 Marine Gas Emissions

DMS, which is produced from dimethylsulfoniopropionate (DMSP) (Hatton & Wilson,
2007; Stefels et al., 2007), is the sole source of MSA and the marine source of sulfate in
the atmosphere. DMS emissions are poorly quantified at the global scale, and
climatologies of their emissions are heavily dependent on sparse observations (Bock et
al., 2021; Lana et al., 2011). A recently proposed satellite-based parameterization uses
Chlorophyll-a, ocean mixed-layer depth, photosynthetically available radiation, and SST
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as inputs to an algorithm that predicts ocean DMS concentrations (Gali et al., 2018).
DMS emissions have been increasing at high latitudes as Arctic sea ice recedes, which
could mean that additional sulfate aerosol serving as CCN would have a
disproportionate impact on global climate by slowing the loss of Arctic ice (Gali et al.,
2019; Levasseur, 2013). Prediction of future DMS is complicated by shifts in
phytoplankton community composition (Wang et al., 2018).

Other ocean-emitted gases that may contribute to SMA include isoprene,
monoterpenes, iodine, and amines (Maria Cristina Facchini et al., 2008; Gantt et al.,
2010; O'Dowd et al., 2002; Shaw, 1987), but there are very limited observations of the
magnitude of their contributions. The limited observations that are available suggest that
the contributions of these gases to SMA production are minor in comparison to the
contributions from DMS. For example, Kim et al. (2017) conducted ship-board eddy
covariance measurements of the vertical flux of isoprene, monoterpenes, and DMS over
the North Atlantic during fall, and calculated the SMA production rates from DMS to be
ten times greater than production from either isoprene or monoterpenes. Other ocean-
emitted gases, such as acetone, acetaldyhyde, and alkyl nitrates, do not contribute
significantly to SMA, but have important impacts on OH, HOx, and NOx chemical
reactions (Novak & Bertram, 2020). More details on the ocean production of volatile
organic compounds (VOCs) are provided by Halsey (this issue). After production, gases
in the ocean are transferred to the atmosphere by wind-driven, bubble-mediated sea-to-
air transfer processes, which have been reviewed elsewhere (Blomquist et al., 2017;
Blomquist et al., 2014; Brumer et al., 2017; Garbe et al., 2014; Liss & Slater, 1974; Liss
et al., 1993; Yu, 2019; Zavarsky & Marandino, 2019).

3.2 Secondary Marine Aerosol Composition

The organic components of SMA are typically formed from the oxidation and
condensation of volatile precursor gases emitted from the ocean that contribute to
observed sulfate and organic mass in marine aerosol (Ceburnis et al., 2008b; Maria
Cristina Facchini et al., 2008; Facchini, Decesari, et al., 2010; M. C. Facchini et al.,
2008; P. Fu et al., 2013; Meskhidze & Nenes, 2006; C. D. O'Dowd et al., 2004; M.
Rinaldi et al., 2010; S. L. Shaw et al., 2010; Turekian et al., 2003). The Quinn and
colleagues measurements support these observations over a broad range of clean
marine conditions (Figure 6b) (Quinn et al., 2000; P. K. Quinn et al., 2017), with non-sea
salt sulfate providing the largest contribution to <1 pym inorganic mass concentration,
consistent with studies in a variety of ocean conditions (Sanchez et al., 2018; Sanchez
et al., 2016; Twohy et al., 2021). Some organic mass contributions for <1 ym particles
have also been identified as SMA based on their carboxylic acid group composition,
their non-refractory molecular fragments, and their increases with shortwave radiation
(Frossard, Russell, Burrows, et al., 2014; Lewis et al., 2021; Saliba et al., 2020).
Isoprene oxidation products include molecules with carboxylic acid groups (Claflin et al.,
2021; Ziemann & Atkinson, 2012) and may be consistent with an ocean source,
although field observations may also have contributions from continental sources.
Amines have been shown to have both primary and secondary contributions to marine
aerosol (Maria Cristina Facchini et al., 2008).
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There is recent evidence suggesting that secondary products have larger relative
contributions to particle fractions <0.5 ym than to <1 ym (Sanchez et al., 2018), which is
consistent with expected contributions for condensational growth (Maria et al., 2004;
Seinfeld & Pandis, 2016). Volatile gases can also be produced by photosensitized
heterogeneous reactions at the air-water interface, potentially leading to formation of
SMA (Bernard et al., 2016; Tinel et al., 2016). Detailed chemical analyses of marine
aerosol at coastal sites have shown organic and sulfate as SMA contributions, including
a study at Amsterdam Island that showed that water-soluble organic matter (WSOM)
accounted for 2.8% of fine aerosol mass and was predominantly from MSA. Additional
WSOM was attributed to oxidation of fatty acid residues from SSA (Claeys et al., 2010).

Open-ocean measurements in the North Atlantic in four seasons showed SMA in
remote marine aerosol during late spring and summer months (Lewis et al., 2021;
Saliba et al., 2020; Sanchez et al., 2018), despite relatively low measured rates of local
production of dimethyl sulfide and isoprene (among other VOCs) (Davie-Martin et al.,
2020). The apparent inconsistency of low DMS with substantial submicron sulfate may
be attributed to lofting to the free troposphere, where colder conditions with lower
particle concentrations enhance gas-to-particle transfer (Clarke et al., 1999; Clarke et
al., 2013; Raes, 1995; Sanchez et al., 2018). The SMA signature of carboxylic acid
groups by FTIR was clearly present in May-June and September, but almost entirely
absent in November and March (Lewis et al., 2021). This seasonal dependence is
generally consistent with the chlorophyll and sunlight-based emission parameterization
used in global models (Myriokefalitakis et al., 2010). Observed carboxylic acid group
mass of 10% of marine organic mass implies a larger vapor-phase precursor
concentration than was explained by measured DMS or isoprene (Saliba et al., 2020).
Carboxylic acid groups are a common component of SMA from isoprene and
monoterpenes (Claflin et al., 2021; Lewis et al., 2021), but the lack of simultaneous
precursor measurements precludes a specific source attribution.

3.3 Secondary Marine Aerosol as CCN

SMA can add new CCN either by growing particles from sizes too small to be CCN
(generally <0.1 um for 0.1% supersaturation) to sizes large enough to be CCN or by
adding new particles through homogeneous nucleation. For example, SMA could
provide crucial increases in particle size that allow SSA and other particles emitted at
sizes <0.1 ym dry diameter to grow to sizes large enough to serve as CCN at
supersaturations of <0.2% (Robert J. Charlson et al., 1987; Sanchez et al., 2018). While
there is little evidence for new particle formation occurring in the marine boundary layer
given the competing sink of aerosol surface area (Quinn & Bates, 2011), exchange
between the free troposphere and the boundary layer may provide transported or
nucleated particles that can be grown into CCN by SMA (Zheng et al., 2018; Zheng et
al., 2021). The magnitude of this contribution to CCN varies with the condensable
gases, ambient temperature and relative humidity, and the availability of other sinks. For
example, in the North Atlantic, the seasonal difference in the role of SMA as CCN varies
from sulfate contributing 34% of CCN at 0.1% supersaturation in windy fall compared to
64% in the sunny late spring, both to wind-driven differences in the SSA produced and
differences in the DMS emitted and oxidized (Sanchez et al., 2018). For cloud
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supersaturations >0.1%, the contribution of SMA to CCN number concentration would
be expected to increase given the typically high concentrations of particles <1 pm.

4. Regional Ocean Differences and other Controlling Factors

Parameterizations of SSA rely on empirical measurements rather than a theoretical
formulation, since even idealized bubble bursting process simulations at micrometer
scales have not quantified particle production (Bird et al., 2010; Lhuissier & Villermaux,
2012; Veron et al., 2012). Ocean conditions include diverse processes at many scales
that interact with small scale processes. In addition, ocean ecosystems differ across
ocean regions (Burrows et al., 2018; Burrows, Easter, et al., 2022; Burrows et al.,
2014), with different organic components of sea spray contributing compounds from
different ecosystem populations (Figure 14). There is considerable evidence that SSA
and SMA have some similar properties globally, including the general similarity of the
mass size distributions of sea salt and non-sea salt sulfate in regions as diverse as the
North Atlantic and the Southern Ocean (Figure 6a). However, in the absence of a priori
(bottom up) predictions of either SSA or SMA, it is reasonable to consider that
differences in regions, seasons, and other environmental conditions influence both the
concentrations of aerosol sources and their sizes.

Future climate may also bring significant changes in SSA associated with changes in
surface wind speeds. SSA emissions will change as surface wind speeds are either
increased or decreased by a warming climate and a recovering ozone layer (Gettelman
et al., 2016; Korhonen et al., 2010). In addition, the retreat of sea ice and ice shelves
leaves more ocean surface exposed and increases the emissions of SSA, although the
net climate effects of such an increase in emissions are uncertain (Browse et al., 2014;
Struthers et al., 2011).

4.1 Open-Ocean, Coastal, and Polar Regions of Marine Aerosol

Marine regions include three distinct types of ocean areas, namely open-ocean, coastal,
and polar regions. Open-ocean areas are expected to be characterized by large and
relatively homogeneous expanses of wave breaking, with consistent near-surface wind
speeds and temperatures. Coastal regions are generally expected to be influenced by
open-ocean conditions upwind, with only recent production of SSA and SMA affected by
shore-influenced wave breaking (Clarke et al., 2003). Polar regions may have a mix of
breaking waves as well as processes associated with sea ice and open-lead formation,
below-ice ecosystems, and resuspension of deposited SSA and SMA as blowing snow
or frost flowers (Abbatt et al., 2019; Chang et al., 2011; Frey et al., 2020).

Open-ocean measurements are very limited given the deployment costs, but such
measurements are most likely to represent sea spray emissions over the largest fraction
of the area of global oceans. No direct flux measurements are available for the open
ocean, although proxies from bubbled seawater have been collected underway on the
open ocean to determine fluxes (Keene et al., 2017). The chemical composition
measurements of Quinn and colleagues (Figure 6) provide a consistent >1 ym SSA size
distribution signature across many regions, with a mass concentration peak at ~3 ym
dry diameter. Their measurements have also characterized the role of SMA in the open
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ocean, typically showing an NH4*/SO4? molar ratio of 1, consistent with ammonium
bisulfate.

Substantial differences between open-ocean SSA (interpreted as aerosol measured at
20 m during onshore winds) and near-shore SSA (measured as the difference between
5 m and 20 m ASL) were observed at Hawaii. Their observations showed a majority of
particles at 5 m ASL were smaller than 0.1 ym dry diameter (Clarke et al., 2003), similar
to the inferred fluxes at a North Atlantic coastal site at Mace Head (Xu et al., 2022).
There is some support for a small particle mode similar to that observed in coastal
studies in open-ocean observations (<0.18 um bin, Figure 6a) and laboratory studies,
but this SSA mode could also be generated by coastal dynamics since open-ocean
studies do not show a clear wind speed dependence (Figure 6d).

SSA in polar regions has a strong seasonal variation with sea ice coverage, because
sea ice reduces the area of breaking waves in winter when the wind speeds are
expected to be highest (Liu et al., 2018; P. M. Shaw et al., 2010). Polar regions are very
different between the north and the south, with Antarctic measurements lacking the
springtime haze events that confound measurements of SSA and SMA in the Arctic
(Lubin et al., 2020). The unique biogeochemistry associated with seasonal sea ice could
also result in differences in SSA and SMA to a greater extent than at the milder lower
latitudes.

4.2 Temperature Dependence

Wave breaking and the subsequent bursting of bubbles is controlled by the fluid motion
of seawater at the ocean surface (Veron, 2015). The sea surface temperature changes
the density, viscosity, and surface tension of the fluid, of which the viscosity is likely the
most sensitive parameter for the film rupture process (Lhuissier & Villermaux, 2012).
Laboratory experiments demonstrated the role that temperature played in changing the
size distribution of bubble-generated particles, showing a significant increase in flux with
temperature (Martensson et al., 2003). Incorporating this effect in a global model
showed that this increase improved the model correspondence to open-ocean SSA
measurements (Jaegle et al., 2011). Further evidence of the effect of SST on SSA is
provided by four seasons of open-ocean measurements in the North Atlantic, where the
mean size of the SSA mode varied with SST (Liu et al., 2021; Saliba et al., 2019).

4.3 Whitecap Dependence

Persistent bubbles on the ocean surface appear as “whitecaps” that can affect the
persistence and bursting of bubbles (Andreas & Monahan, 2000; Monahan et al., 1983).
Whitecaps are difficult to replicate in laboratory measurements, although foam
persistence has been noted to change SSA production (Keene et al., 2017; Stokes et
al., 2016; Stokes et al., 2013). Open-ocean observations of whitecaps have also been
carried out (Callaghan et al., 2008), but correlations to SSA are difficult because of the
mismatch in the spatial scale of the observed whitecaps and the fetch of the SSA
produced (Hoppel et al., 2002). Retrievals of whitecaps from satellite may improve
parameterizations for SSA (Albert et al., 2016; Anguelova & Webster, 2006; Salisbury et
al., 2013).
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4.4 Sea Surface Microlayer

Rudimentary separation of a lighter, more surface-active layer in the top millimeter of
the ocean from the seawater below has been accomplished with rotating drums and
simple mesh screens (Miller et al., 2015). These methods are not able to quantify the
thickness of the layer collected, but the composition and properties of the material have
been shown to be substantially different from the seawater below (Aller et al., 2017;
Crocker et al., 2022; Ickes et al., 2020; Irish et al., 2017; Lewis et al., 2022; Mungall et
al., 2017; Theodore W. Wilson et al., 2015). The location of this layer at the sea surface
means that it is expected to affect the bubble formation and bursting processes, unless
sufficiently disturbed by wave-breaking processes. Modeling of bubble drainage shows
an important role for contamination of the seawater surface (Poulain et al., 2018).
Laboratory experiments have included proxies for this layer, from simple surfactants to
complex biological mixtures (Modini et al., 2013; K. A. Prather et al., 2013).

Comparison of the organic functional group signature in the FTIR alcohol group
absorbance of the sea surface microlayer reveals a heterogeneity from day to day that
is consistent with other microlayer measurements and with the atmospheric aerosol
composition measured in clean conditions (Lewis et al., 2022). Similarities in
composition of <1 ym marine aerosol and the sea surface microlayer have included the
presence of TEP and similar moieties from biological sources (Maria Cristina Facchini et
al., 2008). The variability in the shape and peak locations of the alcohol group
absorbance in the microlayer and aerosol particles supports a role for the microlayer in
SSA formation, although the quantitative ratios of alcohol to alkane and amine group
mass concentrations are also generally consistent with the subsurface water
composition (Lewis et al., 2022). Combined these results indicate that both subsurface
seawater and sea surface microlayers contribute to SSA formation, consistent with
general expectations.

4.5 Biological Diversity

Since ocean ecosystems produce organic compounds that contribute to subsurface and
sea surface composition, SSA and SMA will be affected by regional and seasonal
differences in those ecosystems. Ocean ecosystems in the “polar”, “westerlies” (mid-
latitude), "trades” (equatorial) and “coastal” biomes are controlled by different processes
and exhibit different seasonality (Longhurst, 1995). The dominant phytoplankton
functional groups and their seasonal cycles also vary between ocean biomes (Figure
15)(Alvain et al., 2008). In particular, the Phaeocystis group, which is a dominant group
only at high latitudes, has long been recognized as an important contributor to

atmospheric DMS emissions (Belviso et al., 2004; Liss et al., 1994).

Several studies have supported the connection between ecosystems and marine
aerosol by showing correlations between SSA and Chlorophyll (Colin D. O'Dowd et al.,
2004), but limited observations from open-ocean studies have shown no dependence
on daily time scales and only a weak dependence on seasonal time scales (Bates et al.,
2020; Saliba et al., 2020). A metric more specific to overall biological productivity is net
primary productivity (NPP), which has also been shown to explain some of the variability
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in SSA (Lewis et al., 2022; Saliba et al., 2019). Observation-based efforts to link SMA to
either Chl or NPP have not been successful, perhaps due to the time lag and complexity
of those processes (K. J. Sanchez et al., 2021). However, bottom-up modeling of ocean
ecosystems has shown that the seasonal cycle in the North Atlantic for ocean biological
effects on sea spray may have a narrow maximum that occurs in July (Figure 16) rather
than during the peak in chlorophyll intensity that was sampled in May (Burrows, Easter,
et al., 2022) (Burrows et al.,2022). More complete sampling of the seasonal
dependence, as well as the latitude dependence, of open-ocean measurements of SSA
would be required to observe the seasonal cycles predicted by models and observed at
coastal sites (Rinaldi et al., 2013; Sciare et al., 2009).

5. SSA and SMA Carbon Budget

The best model-based estimates for the global emissions of primary marine organic
mass (OM) span the range of 6.9 — 76 Tg/yr for <1 ym emissions and 7.5—58 Tg/yr for
>1 ym emissions (using an organic mass to organic carbon ratio of 3 to convert where
appropriate) (Gantt et al., 2011; Ito & Kawamiya, 2010; Long et al., 2011;
Myriokefalitakis et al., 2010; Spracklen et al., 2008; Vignati et al., 2010; Westervelt et
al., 2012), with earlier estimates reviewed previously (Tsigaridis et al., 2013). These
studies used both different emissions parameterizations and different model systems,
which may impact the simulated atmospheric residence time of SSA and SMA. As a
simple comparison, we can use the open-ocean measurements from Quinn and
colleagues (Figure 6) to see that >90% of <10 ym sea salt mass concentration is coarse
(>1 ym), with the remaining <1 ym contribution ranging from 3% to 10%. The average
ambient organic fraction of SSA <1 ym is 20% OM or 7% OC. Using the global SSA
estimate of 5000 Tg/yr, organic components account for 7% of <1 yum SSA at 105 Tg/yr
(35 TgClyr), which is within the range from the models noted above for the combined <1
um and >1 pym emissions of 134 Tg/yr. If >1 ym organic carbon measurements have
shown negligible contributions to SSA mass as has been typically reported (Keene et
al., 2017), then the <1 uym organic mass flux estimated here is within the model-
estimated range.

Secondary aerosol formed from DMS oxidation products is an important aerosol source
in remote marine regions (Ayers & Gras, 1991; Charlson et al., 1992). The recent multi-
model estimate of contemporary global ocean DMS emissions is 16—24 TgS/yr, even
though the observation-derived range is 16--28 TgS/yr. Global sources of SOA from
oceanic precursor gases are thought to be substantially smaller than primary organic.
This is especially true of sources other than DMS and its oxidation products, which are
already included in models. According to one set of estimates, marine volatile organic
carbon emissions contribute less than 2 TgC/yr to organic SMA globally, with DMS
oxidation contributing about 0.6 TgC/yr (Quinn et al., 2015). Combined amine
compounds contribute approximately 0.6 TgC/yr and isoprene and monoterpenes up to
1 TgClyr (Quinn et al., 2015).

Oxidation products of marine isoprene may contribute a substantial fraction (over 30%)

of organic aerosol mass over oceans in the tropics, where the SSA source is small due
to low wind speeds (Gantt et al., 2009). The SMA contribution to marine organic carbon
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at mid- and high latitudes, and globally, was minor, <0.2% of global marine organic
aerosol mass (Gantt et al., 2009). SMA from marine hydrocarbon precursors was found
to be negligible compared to the estimated marine <1 ym organic SMA source of about
5 Tglyr, but this flux consisted primarily of DMS oxidation products (78%), with most of
the remaining mass originating from dialkyl amine salts (21%) (Myriokefalitakis et al.,
2010).

These fluxes of 35 TgC/yr as SSA and 1.5 TgC/yr as SMA to the atmosphere are
expected to have a lifetime of 5-7 days in the marine boundary layer, after which time
they will generally be deposited to the surface with a small fraction transported upwards
to the free troposphere. A general estimate based on the ocean-covered area of the
Earth would be that more than 70% would be deposited back to the ocean and the
remaining fraction would be deposited to land. The resulting flux from ocean to land
may be about 30% of 37 TgC/yr, or 11 TgClyr.

6. Open Questions

SSA plays an important role in light scattering in Earth’s atmosphere, contributing
approximately 5000 Tg/yr of mostly >1 uym particle mass. /In situ measurements and
satellite retrievals show a clear wind speed dependence of these particles, providing
reasonable constraints for global models. The uncertainties in satellite retrievals of SSA-
specific AOD prevents global inventories from including accurate size distributions, so in
situ measurements of SSA provide important constraints. Consequently whether the
SSA coarse mode is correctly represented by satellite AOD retrievals and wind speed
parameterizations merits additional evaluation (Schutgens et al., 2021), and
observationally-constrained global modeling simulations could reduce the uncertainty
associated with this question. Additional measurements of >1 ym mass and number
size distributions would be essential for improving constraints on SSA direct and indirect
radiative effects.

Open-ocean measurements of SSA and SMA are limited in availability and in specificity
of either number concentration or chemical composition, especially for particles <0.5 ym
and <0.1 ym dry diameter. These open-ocean reports include sea salt particle modes
<0.5 ym (Figure 6b) similar to coastal and laboratory reports. However, the open-ocean
observations of SSA <0.5 ym do not show a clear dependence on wind speed and vary
substantially with region and time (Figure 6d). These limitations and the contrasting
observations from open-ocean studies mean that there remain several open questions
about the magnitude and contribution of <0.5 ym and <0.1 ym particles, as well as very
little information on the extent to which wind speed or other factors control their
production. Specifically, there are no direct measurements of how many CCN are SSA
or SMA, so it is an open question whether they contribute 10%-30% of CCN or much
higher numbers globally. Open-ocean observations with simultaneous measurements of
size-resolved composition and hygroscopic and volatility properties could help to close
the gap on these questions. More complete sampling of the open-ocean seasonal cycle
could also address the extent to which ocean biology impacts SSA composition.
Combining satellite retrievals of cloud drop number concentrations (Painemal et al.,
2020; Painemal et al., 2021) with AOD-based fine particle mass concentrations
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(Sawamura et al., 2017) may also make it possible to continuously retrieve marine
CCN, or possibly even SMA and SSA, number concentrations from remote regions with
continued global coverage.

While the mechanism and size dependence for producing most SSA >1 ym particles is
expected to be jet drops at 10% of the bubble radius, particles smaller than 0.5 pm are
produced from film drops that extend over a wide range of sizes for a given bubble size.
This process is also likely affected by regional and seasonal conditions, with an
important open question relating to the mechanistic role of the sea surface microlayer.
Further work on theoretical approaches and numerical simulations is needed to
understand these processes, with supporting observations from atmospheric and ocean
conditions.
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FIGURE CAPTIONS

Figure 1. The multiscale approach discussed in this review to model mass exchange
due to breaking waves, drops, and bubbles. At moderate to high wind speeds, breaking
waves form whitecaps on the ocean surface. (a) The breaking statistics can be

described by the length distribution /(c). (c) of breaking crests moving at speed c,

typically from 1 to 10 m s™'. (b) Each breaker’s dynamics is assumed to be self-similar
and is described by its speed c, leading to scaling models for the associated energy
dissipation, air entrainment, and bubble statistics. At the smallest scales, bubbles with
sizes ranging from ~1 ym to ~10 mm (c,d) burst at the surface to produce liquid sea
sprays via (c) film and (d) jet drops, with sizes ranging from ~0.1 ym to ~1 mm, and (e)
exchange gas in the turbulent upper ocean. Reproduced from (Deike, 2022).

Figure 2. Terminal fall velocity of a water droplet in quiescent air at ambient
temperature and pressure. The gray line shows the Stokes solution. Additional axes
shown are the particle Reynolds number, Rep, and drag coefficient, Cpp , as well as the
particle inertial relaxation time. Ro is the radius at formation and Rgo is the radius at 80%
relative humidity. Also shown is the size range for the film, jet, and spume drops.
Reproduced from (Veron, 2015).

Figure 3. The average bubble size spectrum estimated from 14 breaking events during
their acoustic phase. Two camera magnifications were used and the results
superimposed to obtain the slightly greater than two decades of bubble radii observed.
The vertical scale is number of bubbles per m? in a bin radius 1 um wide. Vertical bars
show +/- one standard deviation. The size distribution shows a marked change in slope
at a radius that we are identifying as the Hinze scale. Bubbles larger and smaller than
this scale respectively vary as (radius)'%® and (radius)®?2 denoted by B and c. Inset, the
bubble size distribution at the beginning of the quiescent phase (crosses) and 1.5 s into
the quiescent phase (open circles). Both slopes of the bubble spectrum have increased
noticeably during this time interval. This rapid evolution becomes important when
interpreting size distributions collected during the plume quiescent phase. Reproduced
from (Deane & Stokes, 2002).

Figure 4. Summary of relationships identified between bubble radius, jet drop dry
diameter, and film drop dry diameter, with selected references included (Blanchard,
1989; X. H. Jiang et al., 2022; Lhuissier & Villermaux, 2012; Spiel, 1998; Veron, 2015;
Wang et al., 2017; Wu, 2002). Connecting lines are approximate representations of the
size ranges from the references cited. For film drops, the different size regimes for
flapping bursting and ligament fragmentation (centripetal) processes are noted (X. H.
Jiang et al., 2022). Spume drop production is not included. The size ranges indicated
are on different scales to show relevant ranges.

Figure 5. Parameterizations of size-dependent SSA production flux, evaluated for wind
speed Uio =8 ms™ (or U2 = 8 m s~ for Geever et al.(Geever et al., 2005)). Also
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shown are central values (curves) and associated uncertainty ranges (bands) from
review of Lewis and Schwartz (Lewis & Schwartz, 2004 ), which denote subjective
estimates by those investigators based on the statistical wet deposition method (green),
the steady state deposition method (blue), and taking into account all available methods
(gray); no estimate was provided for rgg < 0.1 ym. Lower axis denotes radius at 80%
relative humidity, rso, except for formulations of Nilsson et al. (Nilsson et al., 2001),
Martensson et al. (Martensson et al., 2003), and Clarke et al. (Clarke et al., 2006),
which are in terms of dry particle diameter, dp, approximately equal to rso and those of
Geever et al. (Geever et al., 2005), Petelski and Piskozub (Petelski & Piskozub, 2006)
(dry deposition method), and Norris et al. (Norris et al., 2008) which are in terms of
ambient radius, ramb. Formulation of Petelski and Piskozub (Petelski & Piskozub, 2006)
by the dry deposition method. Formulations of Tyree et al. (Tyree et al., 2007) are for
artificial seawater of salinity 33 at the two specified bubble volume fluxes. Formulations
of Nilsson et al. (Nilsson et al., 2001) and Geever et al. (Geever et al., 2005) of particle
number production flux without size resolution are plotted arbitrarily as if the flux is
independent of ramp Over the size ranges indicated to yield the measured number flux as
an integral over that range. Note that the different diameters indicated on the horizontal
axis represent different measurement conditions that limit direct comparisons of some
measurements. Reproduced from (de Leeuw et al., 2011).

Figure 6. Mass size distributions (a,b) collected from six open-ocean cruises that also
measured in situ tracers to exclude continental influences, namely <1 um absorption (at
530 nm from PSAP) less than 0.8 Mm™" and radon concentration less than 540 mBg m™
(Quinn et al., 2000). Panel b has the same information as panel a, but with the axes
zoomed in to show the submicron concentrations. The six cruises with appropriate
measurements were the First Aerosol Characterization Experiment (ACE1) in 1995, the
International Chemistry Experiment in the Arctic Lower Troposphere (ICEALOT) in
2008, the Western Atlantic Climate Study (WACS) in 2014, and the North Atlantic
Aerosol and Marine Ecosystem Study (NAAMES) campaigns in Winter 2015
(NAAMES1), Late Spring 2016 (NAAMES2), and Autumn 2017 (NAAMES3). Organic
contributions are excluded because they were not available. Sea salt is scaled from
measured Na* and ClI; ammonium bisulfate is based on measured non sea salt sulfate
(S04%). Relative number size distributions (c) averaged over all six cruises in (a) are
calculated using effective sea salt density of 2.0 (Saliba et al., 2020) and 1.78 for
ammonium bisulfate. This sensitivity to the mean diameter is quantified here with three
different estimates to bound the mean diameter: (1) an upper bound at the 50% cutoff
diameter for the bin (Dhigh=D50), (2) a lower bound at approximately the 50% cutoff
diameter of the next smaller bin (Dlow=D50-dlogD), and (3) a best estimate at the
geometric mean of these two values (Dmid=D50-0.5dlogD). The ratio of the standard
deviation to the mean of the mass distributions normalized to the wind speed (d) are
also shown for the six cruises.
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Figure 7. SSA mode diameter (dm) versus (A) wind speed (U1g), (B) seawater particle
attenuation at 660 nm (cp660), (C) and SST. SSA number concentrations (Nssa) versus
(D) wind speed, (E) cp660, and (F) SST. The measurements are colored by campaign for
Winter 2015 (NAAMES1), Late Spring 2016 (NAAMES2), Autumn 2017 (NAAMES3),
and Early Spring 2018 (NAAMES4). Lines of best fit for all four NAAMES campaigns are
plotted as solid black lines if |R|> 0.3. Published parameterizations are plotted as dotted
colored lines. The dotted blue curve in C is the mean diameter of the flux size
distribution from Martensson et al. (Martensson et al., 2003) (first right y axis) and the
dotted yellow curve in C is the mean diameter of the particle size distribution from Salter
et al. (Salter et al., 2015) (second right y axis). The O’Dowd et al. (Odowd et al., 1997)
SSA parameterization versus wind speed is shown in (D) as a dotted blue line. SSA flux
production versus SST from Jaeglé et al. (Jaegle et al., 2011) at a wind speed of 8 m
s—1 (green dotted line right y axis) and SSA flux production from Martensson et al.
(Martensson et al., 2003) (blue dotted line, right y axis) versus SST are shown in F.
Parameterization for dm versus SST is shown in bold in C. The correlation between dm
and SST (R = 0.61) decreased when excluding NAAMES 4 measurements sampled at
latitudes south of 30°N (R = 0.46). Reproduced from (Saliba et al., 2019).

Figure 8. (Top row) AMS-based organic + sulfate (Org + SO4?") submicron mass
concentrations and accumulation mode mass concentration (Macc, calculated by
integrating the marine number size distribution between 0.08 ym and 0.32 ym and
assuming spherical particles and a density of 1.0 g/cm?) for NAAMES. (Bottom row)
AMS submicron chloride mass concentrations versus Macc. Solid black lines are lines
of best fit obtained. AMS-based concentrations are calculated assuming a collection
efficiency of unity, so the numerical values the slopes shown are not quantitative.
Reproduced from (Saliba et al., 2019)

Figure 9. Average functional group composition of OM in (top) particles generated with
Sea Sweep (a floating bubble generator) and Bubbler (a continuous-feed, on-board
bubble generator), (middle) surface seawater, and (bottom) deep seawater at 27.4 m
and 2500 m measured in (left column) productive and (right column) nonproductive
seawater during WACS. The term “productive” is used to mean seawater with high
chlorophyll relative to the campaign average. The colors in the pies represent the
organic functional group fractions for hydroxyl (pink), alkane (blue), and amine (orange).
The bubbles show the bubble draining process in both seawater types, with more
surfactant in the productive seawater. The OM is shown as hydrophobic (blue squares),
hydrophyllic (pink circles), and polysaccharides (red circles). Reproduced from
(Frossard, Russell, Burrows, et al., 2014).

Figure 10. Comparison of the selected normalized organic FTIR spectra and average
functional group composition measured at (a) the California Nexus study (CalNex), (b)
WACS Station 1, and (c) WACS Station 2 in the gPMA generated with (top) the Bubbler,
(middle) the Sea Sweep, and (bottom) the corresponding composition of OM in surface
seawater. Pies represent the organic functional group composition as hydroxyl (pink),
alkane (blue), and amine (orange). The dashed vertical lines indicate hydroxyl functional
group peak absorption at 3369 cm™' (pink) and amine functional group peak absorption
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at 1630 cm' (orange). The range of alkane functional group absorption from 2980 to
2780 cm™' (blue dashed lines) is also shown. The higher wave number peak absorption
of the hydroxyl functional groups is evident in the seawater panel. The functional group
compositions and spectra are from the subset of collocated samples. Reproduced from
(Frossard, Russell, Burrows, et al., 2014).

Figure 11. Time series of coarse mode sea spray mass concentration during the
Radiatively-Important Trace Species 1993 (RITS-93), ACE1, and ICEALOT PMEL
cruises. For each cruise, observations of sea salt concentrations are shown with black
circles. The horizontal bar corresponds to the instrumental averaging period. The three
lines are the three different models: standard model (MODEL-STD, red), model using
Eq. (3) (MODELUZ2, blue), model using Eq. (4) (MODEL-SST, green). The bottom panel
shows the timeseries of observed 10m wind speed (black dots) compared to the
modeled windspeed (red line) as well as the observed SST (blue). Reproduced from
(Jaegle et al., 2011).

Figure 12. Particle type size distributions for examples from NAAMES1 and NAAMES2.
Black arrows identify the 0.1% supersaturation activation diameters for the Estimated
Salt (at 0.13 pm), New Sulfate, and Added Sulfate types. Reproduced from (Sanchez et
al., 2018).

Figure 13. Calculated CCN modal number fraction as a function of supersaturation and
latitude. a—f, Data are based on combined, latitudinally binned data from RITS-93,
RITS-94, ACE-1 Legs 1 and 2, ICEALOT, the second Western Atlantic Climate Study
(WACS-2), and NAAMES-1 for the SSA mode with a composition of sea salt and OM
(a), Aitken mode for a composition of nss SO4? (as NHsHSO4) and OM (b),
accumulation mode for a composition of nss SO+ (as NHsHSO4) and OM (c),SSA
mode as pure SSA (d), Aitken mode as pure nss SO4% (as NHsHSO4) (e) and
accumulation mode as pure nss SO+ (as NHsHSO4) (f). Reproduced from (P. K. Quinn
et al., 2017).

Figure 14. Submicron SSA dry mass fraction from each compound class for February
from the Organic Compounds from Ecosystems to Aerosols: Natural Films and
Interfaces via Langmuir Molecular Surfactants (OCEANFILMS) model BASE case.
Fractions of processed and humic classes (not shown) are negligible. Reproduced from
(Burrows et al., 2014).

Figure 15. Monthly climatology (January and June, 1998-2006) of the dominant
phytoplankton group as retrieved by the spectral-based method for identifying
phytoplankton from anomalies in satellite retrievals of ocean color known as PHYSAT.
The colors indicate diatoms in red, nanoeucaryotes in blue, Synechococcus in yellow,
Prochlorococcus in green, and phaeocystis-like in light blue. Reproduced from (Alvain et
al., 2008).

Figure 16. OCEANFILMS-predicted seasonal cycle of biological enhancement in the
emission flux (a; ratio of predicted marine organic aerosol plus sea salt flux to flux of

Page 27 of 59



pure sea salt) and the organic mass fraction (b) of sea spray particles with diameter <1
pum, for the region of the NAAMES field campaign. The NAAMES campaign consisted of
four cruises in different seasons, with most scientific sampling occurring close to 40°W
and between approximately 40°N and 50°N (Behrenfeld et al., 2019)(Behrenfeld et al.,
2019). All model results are monthly mean output at 40°W and at the latitudes indicated
in the legend. Vertical lines indicate the months during which each variable was
measured by NAAMES. Reproduced from (Burrows, Easter, et al., 2022).
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TABLES

Table 1. Publications relevant to SSA production. Modified from Saliba et al. (2019).

Reference Type Findings
(Grythe et al., Review Positive dependence of SSA production on SST
2014)
(Lewis & Review SSA flux dependence on wind speed based on multiple
Schwartz, 2004) laboratory and field studies
(Meskhidze et al., Review CCN fluxes and optical properties are still poorly constrained
2013)
(Forestieri & Laboratory Positive dependence of SSA concentration on SST using
Moore, 2018; artificial seawater, but no correlation when using filtered but not
Forestieri et al., autoclaved seawater
2018)
(Fuentes et al., Laboratory Complex response of SSA number and mean diameter to
2010) dissolved organic amount for water collected off the West
African coast
(Martensson et Laboratory Complex dependence of SSA concentrations on SST using
al., 2003)) artificial seawater
(Modini et al., Laboratory Decreased SSA production efficiency and increased mean
2013) diameter of largest SSA mode (~0.2um) with decreased surface
tension
(Sellegri, O'Dowd, Laboratory Enhancement of largest SSA mode (0.3um - 0.5um) with
Yoon, Jennings, increased surfactants and wind stress (1m/s)
& DelLeeuw, 2006)
(J. Zabori et al., Laboratory SSA flux dependence on wind speed based on multiple
2012) laboratory and field studies
(Salter et al., Laboratory and Increased SSA mean diameter with increased water
2015) model temperature for laboratory experiments using artificial sea water
and a temperature-controlled chamber
(Jaegle et al., Model Positive dependence of SSA production on SST using field
2011) measurements and satellite observations
(Burrows et al., Model Represented organic emissions in sea-spray using the
2016) OCEANFILMS partitioning model
(Kasparian et al., Observational  Aerosol number concentrations in the North Atlantic for 1.0 - 2.5
2017) pum were consistent with Jaeglé et al. (2011)
(Lehahn et al., Observational  Positive correlation with wind speed and negative correlation
2014) with SST and chlorophyll for SSA number concentrations with
diameter larger than 0.5um
(Middlebrook et Observational  Most particles larger than 0.16um contained organic compounds
al., 1998) near Cape Grim in the Southern Ocean
(Modini et al., Observational  Fitted the tail of the marine size distribution to a lognormal
2015) function and argued that this mode was the salt mode using
measurements from the Eastern Pacific
(Murphy et al., Observational  Large fraction of particles larger than 0.16um sampled at Cape
1998) Grim in Southern Ocean contained sea salt
(Odowd et al., Observational  Positive correlation of SSA concentrations on wind speed for the
1997) Northeast Atlantic
(C.D. 0'Dowd et Observational ~ Organics components contributed a substantial part of the
al., 2004) submicron aerosol mass, especially during plankton blooms
(Ovadnevaite et Observational  Gong (2003), Martensson et al. (2003), and Fuentes et al.
al., 2012) (2010) SSA parameterizations with wind speed were higher than

measured NaCl mass in the Eastern Atlantic
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(Quinn et al.,
2000)

(P. K. Quinn et al.,
2017)

(Russell et al.,
2010)

(Gong, 2003)

(Dror et al., 2018)

Observational

Observational

Observational

Observational +
model

Satellite
observations

SSA concentrations and size depend on location, with
submicron particles dominating SSA in the Northeastern Atlantic
and Southern Ocean.

Sea salt number concentrations contributed up to 30% of CCN
in clean marine conditions and correlated positively with wind
speed, using the Modini et al. (Modini et al., 2015) method
Organic compounds (similar to saccharides) contribute less than
50% of submicron particle mass and correlated positively with
wind speed and Na* mass

Modified the Monahan et al. (1986) parameterization of sea
spray on wind speed to best fit concentrations from O'Dowd et
al. (1997)

Positive correlation between wind speed and AOD on daily and
yearly timescales but not on seasonal timescales and negative
correlation between AOD and chlorophyll concentrations on
seasonal timescales
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Table 2. Literature reported values of sea spray modal parameters. Number mean diameters (Dg,number)

were converted to mass mean diameters (Dgmass) using Eq. (7), integrating over particle sizes 0.01 — 10
um, and averaging over a total particle concentration range of 1 — 100 cm™. Values are averages unless
noted as an upper or lower bound. Modified from Dedrick et al. (2022).

Parameter
Reference Experiment type Ocean basin Dg,number Dg,mass Gg
(um) (um)
(Lewis & Schwartz, field measurements 0.3 1.3 3
2004), (RH: 80%)
(Sellegri, O'Dowd,
Yoon, Jennings, & de
Leeuw, 2006),
(W. Keene et al., laboratory-based 0.05 (lower  0.25 (lower 28
2007), bubble bursting bound) bound)
(Fuentes et al., (RH: ambient) 0.1 (upper  0.48 (upper
2010), bound) bound)
(Modini et al., 2010),
(Bates, Quinn,
Frossard, Russell,
Hakala, Petaja, et al.,
2012),
(J Zabori et al.,
2012)
(K. Prather et al., laboratory-based N.E. Pacific 0.16 0.88 3
2013) breaking wave
flume
(RH: 10 £ 15%)
(Modini et al., 2015) field measurements N.E. Pacific 0.14 (lower 0.5 (lower 2.5 (lower
(RH: < 40%) bound) bound) bound)
0.26 (upper 1.3 (upper 3 (upper
bound) bound) bound)
(P. Quinn et al., field measurements Pacific, 0.3 1.08 2.5
2017) (RH: variable, Er?:l’:itchigt’j
0, ’
mostly < 50%) Atlantic
(Saliba et al., 2019) field measurements N. Atlantic 0.5 1.6 23
(RH: < 40%)
(K. Sanchez et al., field measurements Southern 0.6 0.71 1.4
2021) (RH: ambient) Ocean
(Dedrick et al., field measurements S. Atlantic 04 0.68 1.8
2022) (RH = 55 + 10%) (UHSAS- (UHSAS- (UHSAS-
only) only) only)
0.5 1.47 2.4
(UHSAS- (UHSAS- (UHSAS-
NEPH) NEPH) NEPH)
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Table 3. Selected references investigating the organic composition and concentration of
SSA, generated SSA, SMA, and general Marine Aerosol measured in different ocean
regions (from Frossard et al., 2014).

Particle Size

oM,
Reference Ocean Region® | OM Composition Lg m-)
SSA
(P.Q. Fuetal., 2013) Arctic Saccharides Bulk
(Leck et al., 2013) Arctic Heteropolysaccharides 0.035-10 ym
Arctic and N
(Russell et al., 2010) Atlantic Polysaccharides Submicron

(Hawkins & Russell, 2010)

Arctic and SE
Pacific

Polysaccharides, proteins, and
phytoplankton fragments

Submicron and
Supermicron

(W. C. Keene et al., 2007)

(Sargasso Sea)

WSOC

NE Atlantic Enriched in WIOC with high
(C.D. O'Dowd et al., 2004) | (Ireland) molecular weight Submicron
NE Atlantic
(Ceburnis et al., 2008a) (Ireland) WIOC Submicron
NE Atlantic
(M. C. Facchini et al., 2008) | (Ireland) WIOM Submicron
NE Atlantic Submicron,
(Bigg & Leck, 2008) (Ireland) Exopolymers <200 nm
NE Atlantic
(Ovadnevaite et al., 2011) (Ireland) Hydrocarbon Submicron
(Mochida et al., 2002) N Pacific LMW saturated fatty acids Bulk
(Sciare et al., 2009) Austral Ocean WIOC Bulk
Generated SSA
(Gao et al., 2012) Arctic Polysaccharides Bulk
NE Atlantic
(M. C. Facchini et al., 2008) | (Ireland) WIOM: colloids Submicron
(Facchini, Rinaldi, et al., NE Atlantic
2010) (Ireland) WIOM: lipo-polysaccharides Submicron
NW Atlantic Submicron and

Supermicron

(Schmitt-Kopplin, Liger-
Belair, Koch, Flerus,
Kattner, Harir, Kanawati,
Lucio, Tziotis, Hertkorn, &

Biomolecules with high

Gebefuegi, 2012) SE Atlantic aliphaticity <10 uym

(Bates, Quinn, Frossard,

Russell, Hakala, Petja, et NE Pacific Polysaccharide-like, Alkyl-like,

al., 2012) (Coastal) pattern of CH-fragments Submicron
NE Pacific

(Ault et al., 2013a) (Coastal) Aliphatic hydrocarbons 0.15-10 ym
NE Pacific
(Coastal) and

(Quinn et al., 2014) NW Atlantic Saccharide-like Submicron

SMA

(P.Q. Fuetal., 2013) Arctic Isoprene product Bulk
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Enriched in WSOC (partly

NE Atlantic oxidized species with extended
(C.D. O'Dowd et al., 2004) | (Ireland) aliphatic moieties) Submicron
NE Atlantic
(Ceburnis et al., 2008a) (Ireland) WSOC Submicron
NE Atlantic
(M. C. Facchini et al., 2008) | (Ireland) WSOM Submicron
(Maria Cristina Facchini et WSOC - dimethyl and diethyl
al., 2008) NE Atlantic ammonium salts Submicron
(Facchini, Rinaldi, et al., NE Atlantic
2010) (Ireland) Diethyl and dimethyl amine salts | Submicron
NE Atlantic WSOC: MSA, alkylammonium
(Matteo Rinaldi et al., 2010) | (Ireland) salts, dicarboxylic acids Submicron
(Meskhidze & Nenes, 2006) | Southern Ocean | Isoprene product Bulk
NW Atlantic Submicron and

(Turekian et al., 2003)

(Sargasso Sea)

Oxalate

Supermicron

Marine Aerosol®

Submicron OC

(0.66);
NE Atlantic WIOC; aliphatic and partially Supermicron
(Cavalli et al., 2004) (Ireland) oxidized humic-like substances OC (0.26)
NE Atlantic Submicron
(Cavalli et al., 2004) (Ireland) WSOC 0.25
Total OC
NE Atlantic (0.07, LBA;
(C.D. O'Dowd et al., 2004) | (Ireland) WIOC and WSOC 0.62, HBA)
Total OC
(1.2, spring;
0.1, winter)
Submicron OC
NE Atlantic (0.2, spring;
(Yoon et al., 2007) (Ireland) 0.05, winter)
NE Atlantic Submicron
(Ovadnevaite et al., 2011) (Ireland) (3.8)
WIOC similar to lipids; WSOC
containing fatty acids, alkanoic
acids, aliphatic acids, sulfate
(Decesari et al., 2011) NE Atlantic esters Submicron
(Schmitt-Kopplin, Liger-
Belair, Koch, Flerus,
Kattner, Harir, Kanawati,
Lucio, Tziotis, Hertkorn, & Biomolecules with high
Gebefuegi, 2012) SE Atlantic aliphaticity <10 uym
Tropical Mid- Dicarboxylic acids,
(Crahan et al., 2004) Pacific carbohydrates <3.5pum
(Kawamura & Gagosian, Oxo-, mono-, and di-carboxylic
1987) N Pacific acids Bulk
(Matsumoto & Uematsu,
2005) N Pacific Free amino acids in WSOC <25pum
SW Pacific WIOC aggregates; exopolymeric | Submicron,
(Bigg, 2007) (Tasmania) gels <200 nm
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Submicron

(Shank et al., 2012) SE Pacific N/A (0.01)
NW Proteins, amino acids, and

(Kuznetsova et al., 2005) Mediterranean polysaccharides in gels Bulk
N Pacific, N
Atlantic, Indian, LMW fatty acids, fatty alcohols,

(Fu et al., 2011) South China and sterols Bulk

@The specific stationary sampling locations are in parentheses.
®The OM in the studies in this category were not identified as SSA or SMA and are thus included as
general atmospheric marine aerosol particles (aMA).
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Table 4. Selected references on DMS as an SMA source (from Sanchez et al., 2018).

controlled by the rate of entrainment from the
free troposphere in most conditions.

1999)

Page 35 of 59

Relevant Findings Ref. Location | Observati
ons or
Model

Relationship between DMS and CCN

DMS-derived sulfate aerosol account for most of (R. J. Charlson et al., Global Model
the CCN in the remote marine boundary layer. 1987) plus

Observati
ons

MSA and CCN vary seasonally and have a non- (Ayers & Gras, 1991) Cape Observati
linear relationship. Grim ons

DMS and CCN in boundary layer are strongly (Hegg et al., 1991) NE Observati
(non-linearly) correlated. Pacific ons

CCN and DMS are correlated but relationship can | (Russell et al., 1994) N/A Model
be nonlinear because of SOz sinks.

CN correlates strongly with atmospheric DMS and | (Andreae et al., 1995) S. Observati
DMS flux but weakly with CCN. Atlantic ons

Modeled CN and CCN correlate with DMS flux; (Raes, 1995) N/A Model
free tropospheric entrainment affects CN and
CCN concentration in the marine boundary
layer.

New Particle Formation from DMS Products

The number of particles formed by homogeneous | (Warren & Seinfeld, N/A Model
nucleation depends on the preexisting aerosol 1985)
concentration.

Particle number concentration increases rapidly (Covert et al., 1992) NE Observati
after a decrease in particle surface area and Pacific ons
increase in SOz concentration.

After precipitation, marine boundary layer aerosol | (Pirjola et al., 2000) N/A Model
particles can be replenished from new particles
formed by nucleation if DMS concentrations are
high.

Evidence of New Particle Formation in the
Free Troposphere

Vertical profiles of Aitken mode aerosol (Hegg et al., 1990) NW and | Observati
concentrations showed maximum values just NE ons
above cloud tops. Pacific

Aerosol nucleation is observed above cloud top (Perry & Hobbs, 1994) N. Pacific | Observati
and downwind of cloud outflows. ons

CN and CCN were replenished on time scales of | (Clarke et al., 1996) Christma | Observati
2-4 days with transported nuclei from the free s Island ons
troposphere after precipitation scavenging.

Variability in marine boundary layer aerosol (Raes et al., 1997) NE Observati
concentration is closely linked to changes in Atlantic ons
vertical transport.

Nucleation is observed in the free troposphere but | (Clarke et al., 1998) Southern | Observati
not the marine boundary layer, and it is Ocean ons
observed more frequently for particle surface
area less than 5-10 ym? cm,

CN concentration in the marine boundary layer is | (Katoshevski et al., N/A Model




Observed growth rates of new particles in the free
troposphere cannot be explained by SO-
products and water vapor so other components
must contribute to condensation.

New sulfate particles do not form in the marine
boundary layer but instead in the free
troposphere and then are entrained downward.

Entrainment of nucleated sulfate particles from the
free troposphere account for 43-65% of CCN,
but only 7-20% in the winter; long range
transport of marine CCN results in a time lag
between CCN and DMS concentrations.

45% of marine boundary layer CCN (at 0.2%) are
from nucleation that occurred in the free
troposphere.

Sulfate particles from DMS mixed up to the free
troposphere are a source of marine boundary
layer CCN.

(Reus et al., 2000)

(Kazil et al., 2006)

(Korhonen et al., 2008)

(Merikanto et al., 2009)

(Clarke et al., 2013)

NE
Atlantic

Global

Southern
Ocean

Global

Tropical
Pacific

Model/Ob
servations

Model

Model

Model

Observati
ons
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