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Abstract
Wereview our recent quantum stochasticmodel for spectroscopic lineshapes
in the presence of a coevolving and nonstationary background population of
excitations. Starting from a !eld theory description for interacting bosonic
excitons, we derive a reduced model whereby optical excitons are coupled
to an incoherent background via scattering as mediated by their screened
Coulomb coupling. The Heisenberg equations of motion for the optical ex-
citons are then driven by an auxiliary stochastic population variable, which
we take to be the solution of an Ornstein–Uhlenbeck process. Here, we
present an overview of the theoretical techniques we have developed as ap-
plied to predicting coherent nonlinear spectroscopic signals. We show how
direct (Coulomb) and exchange coupling to the bath give rise to distinct
spectral signatures and discuss mathematical limits on inverting spectral
signatures to extract the background density of states.
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EID:
excitation-induced
dephasing

TMDC:
transition-metal
dichalchogenide

1. INTRODUCTION
It is well recognized that many-body phenomena have a profound effect on the linear and non-
linear optical lineshapes of semiconductors with reduced dimensionality, in which Coulomb
correlations can be particularly strong due to decreased screening and quantum con!nement ef-
fects. One such effect is biexciton formation, in which Coulomb binding of two electron-hole
pairs results in new two-electron, two-hole quasi-particles (1–11). Another important process that
is highly relevant in exciton quantum dynamics is excitation-induced dephasing (EID) (12–28),
investigated primarily in 2D systems such as III-V quantum wells (13, 18–20, 22–24), single-
layer transition-metal dichalchogenides (TMDCs) (25, 26), quantum dot photocells (28), and 2D
metal-halide perovskite derivatives (27). This can be described as the incoherent Coulomb elastic
scattering between multiple excitons or between excitons and an electron-hole plasma generated
with the excitation optical !eld. The scattering process gives rise to faster dephasing dynamics
compared with the low-density pure-dephasing limit and may be the dominant dephasing path-
way at suf!ciently high densities. In many systems, especially those with strong exciton-phonon
coupling, the background excitations are transient and coevolve with optical modes of the system,
and consequently a strictly incoherent kinetic description such as this mesoscopic approach or
a kinetic Markovian Boltzmann-like scattering theory (15) cannot describe coherence dynamics.
EID can be effectively rationalized from a mesoscopic perspective by means of the optical Bloch
equations (OBEs), which capture the effect of many-body exciton scattering on both population
and coherence dynamics derived from coherent spectroscopy of semiconductors (20, 21).

Recent advances toward a more microscopic perspective have been presented by Katsch et al.
(29), who used excitonic Heisenberg equations of motion to describe linear excitation line broad-
ening in 2DTMDCs. Their results indicate exciton-exciton scattering from a dark background as
a dominant mechanism in the power-dependent broadening EID and sideband formation. Similar
theoretical modeling on this class of materials and their van derWaals bilayers has yielded insight
into the role of effective mass asymmetry on EID processes (30). These modeling works highlight
the need for microscopic approaches to understand nonlinear quantum dynamics of complex 2D
semiconductors, but the computational expense could become considerable if other many-body
details such as polaronic effects are to be included (31). As an alternative general approach, we
recently developed an analytical theory of dephasing in the same vein as Anderson–Kubo line-
shape theory (32, 33) that includes transient EID and Coulomb screening effects, which are
valuable for extracting microscopic details about screened exciton-exciton scattering from time-
dependent nonlinear coherent ultrafast spectroscopy, via direct and unambiguous measurement
of the homogeneous excitation linewidth (34, 35).

Here,we present an overview of our work that employs a quantum stochastic approach, derived
from a !rst-principles many-body theory of interacting excitons, to develop a mostly analytical
model that describes linear and nonlinear spectral lineshapes that result from exciton-exciton scat-
tering processes and, importantly, their dependence on population time due to the evolution of
a nonstationary/nonequilibrium excitation background (see Figure 1a). Our approach is similar
in spirit to the celebrated Anderson–Kubo theory (32, 33) and reduces to that in the limit of a
stationary background population at suf!ciently long times (36). The model captures a micro-
scopic picture of EID by integrating over the interactions of excitons produced via a well-de!ned
coherent pathway (Figure 2). The background excitons that do not have a well-de!ned phase re-
lationship induced by the optical !eld can be treated as a nonstationary source of quantum noise.
In doing so, we can directly insert the spectral density of the bath into nonlinear spectral response
functions and obtain fully analytical expressions for the coherent exciton lineshapes.

We implement the model to investigate the evolution of the 2D coherent excitation lineshape
in a polycrystalline thin !lm of a prototypical 2D single-layer metal-halide perovskite derivative,
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Figure 1
(a) Schematic representation of optical absorption of excitons and exciton-exciton scattering with a background population, in which
the dispersion relation is in the exciton representation and k = ke + kh is the exciton wave vector. (b) Time evolution of population
N(t)/Neq from an initial nonstationary state produced by exciton injection. Individual trajectories are represented by blue dots.
Asymptotically, the function reaches a stationary state that yields the Anderson–Kubo limit. (c) Crystal structure of (PEA)2PbI4 with a
schematic representation of exciton-exciton elastic scattering interactions. Figure adapted with permission from Reference 37;
copyright 2020 American Institute of Physics. Abbreviation: (PEA)2PbI4, phenylethylammonium lead iodide.

phenylethylammonium lead iodide [(PEA)2PbI4] (for the crystal structure, see Figure 1c). We
have selected this material as a model system because of its well-de!ned exciton lineshape, which
we have modeled quantitatively within a Wannier–Mott framework (38), and because it displays
strong many-body phenomena such as strongly bound biexcitons at room temperature (39) and
robust EID effects (27). Furthermore, we have concluded that the primary excitations are exciton
polarons (31, 40), quasi-particles with Coulomb correlations that are renormalized by lattice
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Figure 2
Double-sided Feynman diagrams for coherent response functions (Equation 20) with rephasing phase-
matching, (a) R2a, (b) R3a, and (c) R∗

1b; nonrephasing phase-matching, (d) R1a, (e) R4a, and ( f ) R∗
2b; and double

quantum phase-matching, (g) R∗
3b and (h) R4b.
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Dispersive lineshape:
the 2D spectrum has
odd re"ection
symmetry along the
off-diagonal axis

Absorptive lineshape:
a diagonal slice of a 2D
spectrum directly
maps onto the linear
absorption spectra of
the system and has
even re"ection
symmetry along the
off-diagonal axis

Rephasing:
ks = −k1 + k2 + k3

Nonrephasing:
ks = k1 − k2 + k3

EIS:
excitation-induced
shift

dynamics via polaronic effects; both electron-hole and photocarrier-lattice correlations are ingre-
dients of the systemHamiltonian, such that the lattice dressing constitutes an integral component
of its eigenstates and eigenvalues.This renders the system in a highly dynamically disordered state,
such that lattice screening effects play an important role in shaping the line width (27) and in dic-
tating nonadiabatic dynamics (41).Wemeasure the dephasing dynamics via the homogeneous line
width extracted by means of 2D coherent excitation spectroscopy (34, 35). In our measurements,
excitons generated coherently by a sequence of time-ordered and phase-matched femtosecond
pulses scatter from incoherent background excitons and thereby undergo EID, which is perceived
via changes of the homogeneous line width. We !nd that EID affects the complex lineshape by
mixing absorptive and dispersive features in the real and imaginary spectral components; the real
component of the 2D coherent spectrum initially displays a dispersive lineshape that evolves into
an absorptive lineshape over the timescale at which EID couplings persist, and the imaginary
component evolves in the converse fashion. Furthermore, we !nd that the homogeneous contri-
bution to the spectral line width narrows with the population time, indicating a dynamic slowing
down of the dephasing rate as the EID correlations active at early times dissipate.We !nd that the
dynamic line narrowing phenomenon is reproduced by our stochastic scattering theory, which
allows us to explore the effect of dynamic Coulomb screening on EID quantum dynamics.

2. NONLINEAR SPECTROSCOPIC SIGNATURES OF EID
Two-dimensional coherent electronic spectroscopies are powerful techniques by which to iden-
tify and quantify many-body effects in semiconductors and they have been instrumental in the
study of EID of excitons in 2D materials (21–24, 27, 37, 42). Much of the early work on semi-
conductor nanostructures was carried out by the Cundiff group (21–24), but here we focus on
our recent work on a Ruddlesden–Popper metal halide, namely phenylethylammonium lead io-
dide [(PEA)2PbI4] (27, 37, 42), which is a 2D analog of a lead-iodide perovskite structure (see
Figure 1c). We highlight the peculiar signatures of EID on the 2D exciton complex lineshape,
the effect of exciton density on the homogeneous line width, and !nally the time evolution of
the spectral lineshape in Section 2.2, but !rst we brie"y discuss the precedent set by Li and
coworkers (22).

The early-time complex lineshape indicative of EID many-body correlations was previously
observed in GaAs quantum wells (22). Figure 3 displays the real part of the zero-population-
time rephasing and nonrephasing spectra at excitation densities in which the signature of many-
body interactions is clearly observed, and we identify a dispersive lineshape (derivative lineshape
about the peak energy). This lineshape is in contrast to what is expected in the absence of many-
body Coulomb contributions—the real lineshape is expected to be absorptive. We examine more
extensively in Section 2.2 the effects that lead to this lineshape.

2.1. Optical Bloch Equations
Themany-body exciton scattering signatures in the 2D coherent lineshape, shown in Figure 3 for
GaAs quantum wells, can be rationalized by numerical simulation based on modi!ed OBEs (22).
For a two-level system that includes bothEID and excitation-induced shift (EIS) effects, the coher-
ences carried by the off-diagonal term of the density matrix, ρ12, evolve according to the following
nonlinear OBE:

ρ̇12 = −
[
(γ0 + γ ′Nρ22) − i(ω0 + ω′Nρ22)

]
ρ12 + i

!
µ12 · E(t )(ρ22 − ρ11)

= i
[
(ω0 + iγ0) + (ω′ + iγ ′ )Nρ22

]
ρ12 + i

!
µ12 · E(t )(ρ22 − ρ11), 1.

20.4 Li et al.
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Figure 3
(a) Linear absorption, excitation pulse spectrum, and experimental real spectra for the (b) rephasing pulse sequences (RA–RD) and
(c) nonrephasing pulse sequences (NA–ND) for GaAs quantum wells. Figure adapted with permission from Reference 22.

where γ 0 is the natural dephasing rate, ρ11 and ρ22 are the ground and excited state populations
connected by coherence term ρ12,N is the number density of chromophores, and γ ′ and ω′ char-
acterize the collision rate and collective interactions within the excited-state population. The last
term corresponds to the driving !eld of the laser and dipole coupling between the ground and ex-
cited states. As the nonlinear OBE system evolves, both the total dephasing rate [γ 0 + γ ′Nρ22(t)]
and the phase oscillation frequency [ω0 + ω′Nρ22(t)] depend on the fraction of chromophores in
the excited state at time t. The evolution is nonlinear since the time evolution of ρ22(t) in prin-
ciple depends on the coherence term when the laser is acting on the system. However, to a good
approximation, ρ22(t) can be replaced with a simple exponential decay for times between pulses.

Figure 4 shows the predicted four-wave mixing signals for a two-level system with and without
the term attributed to the EID component. Although the simple OBE approach does capture
the narrowing, shift, and asymmetry of the lineshape, it fails to capture the phase scrambling
that is clearly observed in the experimental signals in Figure 3. The real OBE signals are clearly
absorptive rather than dispersive.

2.2. EID Effects in (PEA)2PbI4
As in GaAs quantum wells (Figure 3), EID effects are also observed in the complex 2D coherent
excitation spectrum of (PEA)2PbI4. The linear absorption spectrum (Figure 5a) reveals a family
of exciton polarons with binding energy offsets of ∼40 meV (31, 38, 40); we label the dominant
excitons as XA and XB and a shoulder at the blue edge of XA as XA′ . We have previously reported
that the multiple excitons identi!ed in Figure 5a display strong many-body effects, manifested
via the presence of stable biexcitons (39) and the dominance of EID signatures on the homoge-
neous line width (27). We have observed that XA and XB display different dependence of EID on
the exciton density and on the temperature (27), and we have interpreted these phenomena as
indicative of speci!c dynamic Coulomb screening of XA and XB by different polaronic dressing
phonons (40).
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Figure 4
Calculated real spectra for the rephasing sequence. Panel a is based on a simple V system without any
many-body interactions, while excitation-induced dephasing is included in panel b. Figure adapted with
permission from Reference 22.

Figure 5b,c shows the real parts of two different coherent excitation pathways; the time or-
dering of the three optical pulses in the experiment and phase-matching conditions de!ne the
speci!c excitation pathways, based on which rephasing (Figure 5b) and nonrephasing (Figure 5c)
spectra are obtained (43). In the rephasing experiment, the pulse sequence is such that the phase
evolutions of the polarization after the !rst pulse and after the third pulse are of opposite signs,
whereas in the nonrephasing experiment, they are of the same sign (see Equation 20; Figure 2)
(cf 44). Both measurements shown in Figure 5 are taken at a population waiting time of τ p = 0 fs
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spectra at a population time of τ p = 0 fs and at 5 K. The dotted orange lines connecting panels a–c indicate the positions of the three
excitons in the linear absorption spectrum. The line at ∼2.30 eV corresponds to a biexciton. The dashed red diagonal lines in panels b
and c correspond to where the absorption energy equals the emission energy. The bar to the right of the !gure displays the vertical false
color scale in arbitrary units. Figure adapted with permission from Reference 37; copyright 2020 American Institute of Physics.
Abbreviation: (PEA)2PbI4, phenylethylammonium lead iodide.
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τp: time between
pulses 2 and 3 in which
the system is in a
density-matrix
population state, |n〉〈n|

and an excitation "uence of 40 nJ/cm2, which correspond to an exciton density in which we have
identi!ed effects of elastic exciton-exciton scattering (27). Corresponding diagonal spectral fea-
tures at the energies of XA, XA′ , and XB (Figure 5) in both rephasing and nonrephasing spectra
are observed. Apart from these diagonal peaks, we observe an off-diagonal excited-state absorp-
tion feature (opposite phase with respect to the diagonal features) corresponding to a correlation
between the absorption energy of XA and the emission energy of ∼2.3 eV, which has no corre-
sponding diagonal signal.We have assigned this cross-peak to a biexciton resonance (39). The full
time series for the rephasing spectrum is in Reference 37 and reproduced in the Supplemental
Appendix. From this, one can extract the homogeneous and inhomogeneous line widths via a
global analysis of the diagonal and the antidiagonal lineshapes (34, 35).

We now return to the complex zero-time spectral lineshape displayed in Figure 5. Upon
close inspection, we notice that the real part of the spectrum displays a dispersive lineshape,
i.e., derivative shape about the peak energy, for both diagonal and off-diagonal resonances, in
both the rephasing and the nonrephasing spectra. Note the sign "ip for the off-diagonal fea-
ture, which is consistent with its assignment to the excited-state absorption to the biexcitonic
state (39). Similarly, the imaginary part of the spectra (given in the Supplemental Appendix)
displays an absorptive lineshape.We have demonstrated that such dispersive lineshapes are a con-
sequence of many-body correlations (37), consistent with the analysis of similar measurements in
semiconductor quantum wells (22). These lineshapes are unexpected in the absence of many-body
correlations; the real part of the spectrum should be absorptive and the imaginary part should be
dispersive. The spectra in Figure 5 therefore reveal phase mixing due to many-body Coulomb
correlations responsible for EID.

To quantify the measured dynamic line narrowing, we display in Figure 6 the homogeneous
line width as extracted as in Reference 27 as a function of population time τ p. By this analysis,
Figure 6 shows that the line width of XA reduces most drastically but that the line width of XB

a   XA b   XA' c   XB
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Figure 6
Homogeneous line widths obtained from the lineshape analysis of the absolute value of the rephasing spectra
(see Reference 27) plotted as a function of the population time for (a) XA, (b) XA′ , and (c) XB exciton lines
shown in Figure 5a. Figure adapted with permission from Reference 37; copyright 2020 American Institute
of Physics.
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also reduces over a typical time window, whereas XA′ displays no line narrowing. Previously, we
(27) reported that XA has a stronger density dependence on EID than XB does, which is consistent
with the observation derived from Figure 6a,c. We have found XB to be more strongly displaced
along phonon coordinates involving an octahedral twist in the plane of the inorganic layer and
in the out-of-plane scissoring of the Pb–I–Pb apex (40). The stronger exciton-phonon coupling
implies that XB is more susceptible to dynamic screening than XA is, which is consistent with
the data in Figure 6. Finally, we point out that the asymptotic value of the homogeneous line
width for XA, XA′ , and XB tends toward the low-exciton-density line widths that we reported in
Reference 27.

The line width of XA′ remains relatively constant over the probed population time. Although
this might initially suggest that this resonance is immune to EID effects, we note that the real part
of the rephasing spectrum associated with this particular transition exhibits a dispersive lineshape
at all population times, consistent with the initial lineshapes ofXA andXB. This lineshape indicates
the clear presence of EID effects, as also con!rmed by the density-dependent line width previously
published in Reference 27. The trend shown in Figure 6b, on the other hand, suggests that the
interexciton scattering does not evolve with the population time, at least within the probed time
range. Inspection of the lineshape, however, suggests that the dispersive shape of the real part
is preserved at all population times, implying that XA′ is subjected to EID over a much longer
period than the other two resonances. Following the arguments developed by the theoretical work
described below, this dispersive lineshape implies the presence of a background exciton population
that contributes to the scattering of XA′ and whose stochastic evolution is that of the background
of the other two resonances.

However, the decomposition of a 2D spectrum into its real and imaginary parts depends on the
techniques applied, for example, through the comparison to an independent spectrally resolved
differential transmission measurement. In other words, the feature of dispersive lineshape may
be hidden in the imaginary part of the spectrum. On the other hand, from the Green’s function
approach, the EID and EIS are attributed, respectively, to the real and imaginary parts of the
exciton self-energy renormalization. Therefore, the term of ω′ + iγ ′ in Equation 1 cannot be
treated separately in a quantum mechanical theory. As we illustrate later in our model, including
the many-body interaction in the Hamiltonian leads to EID and the frequency shift effect in the
spectral signals simultaneously.

What is then desired is an approach that incorporates the many-body dynamics of a dark,
nonoptical population that coevolves with the optical signals. In this section, we accomplish this
via the use of a stochastic lineshape approach, taken in the limit that the nonoptical population
makes nonequilibrium and nonstationary contributions to the "uctuations of the optical energy
gap.

In the next section, we present an overview of our recent work in developing spectroscopic
models in which the energy gaps evolve in concert with a bath of background excitations that are
both nonequilibrium and nonstationary as the result of being incoherently pumped by a series
of laser pulses. Here, we develop the theory starting from a microscopic/many-body description
of a system of excitons interacting via long-range Coulomb interactions and coupled to a dissi-
pative environment. The theory is developed by deriving stochastic Langevin equations for the
excitons and then using these derived spectral responses in the mean-!eld limit. The resulting
model reduces to the well-known Anderson–Kubo model in the limit that the excitonic dynamics
are stationary. The model provides a microscopic origin for the EID and EIS effects in semicon-
ductor systems. As part of our review, we work through many of the technical details of the theory
and our use of stochastic calculus to derive analytical expressions for the spectral responses.
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3. NONLINEAR COHERENT SPECTROSCOPY
OF NONSTATIONARY SYSTEMS
3.1. A Brief Review of Lineshape Theory
A spectroscopic measurement of a condensed-phase system interrogates both the system and its
surrounding local environment. In the statistical sense, the background density of states coupled
to the system being probed imparts an uncertainty in the energy of the transition. According to the
Anderson–Kubo model (AK) (32, 33), this can be incorporated into the spectral response function
by writing that the transition frequency has an intrinsic time dependence

ω(t ) = ω0 + δω(t ), 2.

where ω0 is the central (mean) transition frequency and δω(t) is some time-dependent modulation
with 〈δω(t)〉 = 0. Lacking detailed knowledge of the environment, it is reasonable to write the
frequency autocorrelation function in terms of the deviation about the mean, &, and a single
correlation time, τ c = γ −1, namely

〈δω(t )δω(0)〉 = &2e−|t|/τc . 3.

The model has two important limits (45). First, if &/γ ! 1, the absorption lineshape takes a
Lorentzian functional form with a homogeneous width determined by the dephasing time T2 =
(&2/γ )−1. Second, if &/γ " 1, the absorption spectrum takes a Gaussian form with a line width
independent of the correlation time. In this limit, "uctuations are slow and the system samples
a broad distribution of environmental motions. Increasing the rate of the "uctuations (i.e., de-
creasing the correlation time) leads to the effect of motional narrowing, whereby the line width
becomes increasingly narrow (32, 33).

3.2. Stochastic Many-Body Processes
Our model is initiated by assuming that at t = 0 a nonstationary population of background exci-
tations is created by a broadband laser excitation. This physical picture is sketched in Figure 1.
In this review, excitation occurs with a sequence of phase-matched and time-ordered femtosec-
ond pulses used to measure a coherent nonlinear excitation spectrum, and the excitons produced
and measured via a well-de!ned coherent pathway (for the relevant excitons in this review, see
Figure 2) are assumed to scatter elastically with their incoherent counterparts—excitons that are
produced by the pulse sequence but have no phase relationship to those that produce signal in our
experiments. The initial background population can be characterized by an average population
N0 and variance σ 2

N0
, both of which depend on the excitation pulse as well as the density of states

of the material. Optical excitations at k = 0 evolve in concert with a nonstationary (k '= 0) back-
ground of excitations, in which the interaction is determined by a screened Coulomb potential,
giving rise to a noisy driving term that effectively modulates the exciton energy gap.

Here, we consider the case where we have an ensemble of bosonic excitons described by a
Hamiltonian written in second-quantized form as

H =
∑

k

!ωka†kak + 1
2

∑

kk′q

Vqa†k+qa
†
k′−qak′ak, 4.

where V = L3 is the unit volume and Vq,

Vq = 1
(2π )3

∫
V (r)e−iq·rdr, 5.
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is the Fourier component of the many-body interaction potential.We now collect the k '= 0 terms
by keeping those interacting with k = 0 excitons and involving no more than two k '= 0 states,

H = !ω0a†0a0 +
∑

q '=0

!ωqa†qaq + V0

2
a†0a

†
0a0a0

+ a†0a0



2V0

∑

q '=0

(a†qaq )





+ a†0a
†
0



V0

2

∑

q '=0

aqa−q



 + a0a0



V0

2

∑

q '=0

a†qa
†
−q



 , 6.

and focus only the k = 0 term

H/! = ω0a†0a0 + )Â
†
Â

+ γ1

2

(
a†0a

†
0a0a0 + 4a†0a0N̂ + a†0a

†
0ÂÂ+ a0a0Â

†
Â

†)
, 7.

where the operators Â, Â
†
, and N̂ are collective bath operators de!ned by inspection of Equation 6.

!γ 1 = V0 is the exciton-exciton interaction, which we obtain from the s-wave scattering length a
and reduced mass µ within the Born approximation (46)

γ1 = 4π!a
µ

. 8.

This assumption does not rely upon the speci!c form of the exciton-exciton interaction, only that
it be of !nite range. In the current context, this interaction is due to Coulomb-mediated exciton-
exciton scattering that gives rise to EID (27). However, it is possible that each distinct exciton
within the family of the 2D perovskite system considered here (31) has a distinct and unique value
of γ 1, as we reported in Reference 27, where we demonstrated distinct Coulomb screening of
different exciton polarons. For the purposes of our theoretical model, we assume that the system
has a single exciton species that is susceptible tomany-body scattering and therefore EIDmediated
via γ 1.

3.3. Exciton Scattering Contributions in the Mean-Field (Hartree) Limit
and Quantum Langevin Equations
The term involving N̂ introduces a mean-!eld interaction between the k = 0 excitons and the
net population of the k '= 0 excitons. Consequently, it introduces energy "uctuation simply due
to scattering of the k '= 0 population from the k = 0 population. The other two terms give rise
to "uctuations/dissipation due to exciton pair creation/annihilation. For the moment, we neglect
these terms but return to them in Section 3.5.

In the mean-!eld Hamiltonian equation (Supplemental Equation B.4), the background exci-
ton population operator N̂ (t ) = Â

†
(t )Â(t ) is of our interest.Using Supplemental Equation B.11,

we deduce the Heisenberg equation of motion (for details and derivation, see the Supplemental
Appendix).

For a stationary background population, i.e., 〈N(t)〉 = 0, the population covariance evolves
according to

〈N (t )N (s)〉 = 〈N (t − s)N (0)〉 = σ 2

2*
exp(−*|t − s|).

20.10 Li et al.
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Itô lemma: (dW(t))2 =
dt, whereW(t) is the
Wiener process

In this limit, our model reduces to the Anderson–Kubo model in which the frequency "uctuates
about a stationary average according to an Ornstein–Uhlenbeck process. In this case, the popu-
lation relaxation time in our model is equivalent to the correlation time in the Anderson–Kubo
model and this gives the rate at which the environment relaxes back to its stationary average given
a small push. Moreover, the "uctuation amplitude, &ω2, in the Anderson–Kubo model is equiva-
lent to σ 2/2* in our model. As we show, what appears at !rst to be a simple modi!cation to the
dynamics of a system has signi!cant implications in terms of the nonlinear spectral response of
the system.

At time t = 0, we push the background population signi!cantly away from the steady-state
distribution to an initial value of 〈N(0)〉 = N0, and the population evolves as

N (t ) = N (0)e−*t + σ

∫ t

0
e−*(t−s)dW (s) 9.

and

〈N (t )〉 = e−*tN0, 10.

where N0 is the mean number of background excitations present at time t = 0.
In principle, there will be a distribution about this mean characterized by a variance σ 2

N0
. As a

result, we break reversibility and the time symmetry of the correlation functions. Mathematically,
this means that 〈N(t)N(s)〉 '= 〈N(t− s)N(0)〉 because the choice of initial time is no longer arbitrary.

In References 37 and 47 we used the Itô calculus to evaluate these correlation functions. From
a practical point of view, the Itô calculus is a tool for manipulating stochastic processes that are
closely related to Brownian motion and Itô lemma allows us to easily perform noise-averaged
interactions. For the model at hand, the covariance of N(s) and N(t) is given by

Cov[N (s),N (t )] = 〈(N (s) − 〈N (s)〉)(N (t ) − 〈N (t )〉)〉

= σ 2

2*
[
e−*|t−s| − e−*(t+s)] + σ 2

N0
e−*(s+t ), 11.

with σ 2
N0

being the variance of N(0). Similarly, the variance

Var[N (t )] =
(

σ 2
N0

− σ 2

2*

)
e−2*t + σ 2

2*
12.

also depends on the initial "uctuation in the background population. Mathematically, the Fourier
transform of the kernel of the integral in Equation 9 provides the spectral density of the noisy pro-
cess. In fact, a trivialmodi!cation of the approachwould be to replace the kernel in Equation 9with
another kernel re"ecting a more complex spectral density. The resulting expressions for the re-
sponses are more complex indeed. However, Itô’s lemma provides a tractable route for computing
the necessary response functions.

3.4. Predictions from the Stochastic Model
Having established the mathematical model, let us brie"y recapitulate some of its features. First,
we started by assuming that the background population dynamics give rise to a stochastic process
N(t) that enters into theHeisenberg equations ofmotion for the system operators. In particular,we
assumed that N(t) corresponds to an overdamped Brownian oscillator and that at time t = 0 there
is a nonstationary population of background excitations. These two mathematical assumptions
can be relaxed to some extent if one has a more detailed description of the spectral density of
the background process and the initial background population. Second, we assume that averages

www.annualreviews.org • Many-Body Exciton Scattering 20.11
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over exponential terms can be evaluated using the cumulant expansion.What then follows are the
mathematical consequences as expressed in terms of the spectral responses of the model.

3.4.1. Linear response. The linear response for optical excitation is given by

S(1)(t ) = i
!

〈µ̂(t )[µ̂(0), ρ(−∞)]〉, 13.

where µ̂(t ) = µ(â†0(t ) + â0(t )) is the excitonic transition dipole operator and ρ(−∞) is the initial
density matrix. The absorption spectrum is obtained by Fourier transformation.

Averaging over the "uctuations generates terms involving cumulants of the background noise,
which result in terms such as

〈
exp

[
i2γ1

∫ t

0
N (τ )dτ

]〉
≈ ei2γ1g1(t )−2γ 2

1 g2(t ), 14.

where 〈· · ·〉 denotes averaging over noise.Note that the exciton interaction strength is 2γ 1 in Equa-
tion B.4 of the Supplemental Material. Here, the !rst cumulant g1(t) gives rise to a characteristic
frequency shift as the background population decays,

g1(t ) =
∫ t

0
〈N (τ )〉dτ = N0

*

(
1 − e−*t), 15.

and

g2(t, t ′ ) =
∫ t

0

∫ t ′

0
Cov

[
N (τ ),N (τ ′ )

]
dτ ′dτ

= σ 2

2*3

[
2*min(t, t ′ ) + 2e−*t + 2e−*t ′ − e−*|t ′−t| − e−*(t ′+t ) − 2

]

+
σ 2
N0

*2

[
e−*(t+t ′ ) − e−*t − e−*t ′ + 1

]
. 16.

When the two time limits are the same, this reduces to

g2(t ) =
∫ t

0

∫ t

0
Cov[N (τ ),N (τ ′ )]dτdτ ′

= σ 2

2*3

(
2*t + 4e−*t − e−2*t − 3

)
+

σ 2
N0

*2

(
1 − e−*t)2 . 17.

In Figure 7 we highlight some of the key physical effects that can appear in the linear absorption
spectra based on our model. These effects are consistent with experimental observations and the-
oretical models of 2D semiconductors and TMDCs (27, 29, 39). Figure 7a displays the effect of
a nonstationary background on the linear absorption spectrum of a system. The notable feature is
the tail that extends to higher absorption energies.The character of this tail dependsmost strongly
on the initial choice ofN0 and is attributable to the g1(t) term in our response function,which is the
time integral over the evolving background population. This term, as it appears in Equation 13,
produces an evolving frequency shift, re"ecting the dynamic relaxation of the background. In the
S(1) response, the background evolution is manifest as a tail extending out toward higher energies.
A summary of the physical effects that can be attributed to the nonstationary evolution is given in
the sidebar titled Spectral Effects That Can Be Attributed to the Nonstationary Evolution.

Figure 7b shows how the linear spectra are affected by the background relaxation rate γ for
!xed values ofN0 = 4. In the case of fast background relaxation (* = 50meV), the exciton and biex-
citon splitting is clearly resolved and the lineshapes are Lorentzian about each peak. Decreasing

20.12 Li et al.
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N0 = 0

V0

V0

2N0V0
N0 = 2

N0 = 4

N0 = 6

S(1
) (ω

)

S(1
) (ω

)

a b

γ = 50

γ = 15

γ = 10

γ = 5 γ = 2

hωhω
hω0 + n0V0 hω0 + n0V0

Figure 7
The linear response function with (a) increasing background population density N0, and (b) different
relaxation rate *, from the homogeneous limit of * = 50 meV to the inhomogeneous limit of * = 2 meV.
Figure reproduced from Reference 47.

the relaxation rate * produces a systematic shift toward the higher energies due to the mean-!eld
interaction between the exciton and the background population. This shift saturates when the
peak is fully shifted by 2V0N0 and the spectral peak acquires a Gaussian form, re"ecting mean N0

and variance σ 2
N0

of the initial background. In this slow-relaxation limit, the bright state is simply
swamped and suppressed by the background excitation.

3.4.2. 2D coherent spectroscopy. In Reference 37 we discussed the linear response of our
model and its relation to the Anderson–Kubo model. Here, we focus solely on the higher-order
responses that reveal the dynamic evolution of the 2D coherent excitation lineshape. The third-
order response involves phase-matched interactions of the system with a sequence of three laser
pulses,

S(3)(τ3, τ2, τ1) =
(
i
!

)3

〈µ(τ3) [µ(τ2), [µ(τ1), [µ(0), ρ(−∞)]]]〉. 18.

SPECTRAL EFFECTS THAT CAN BE ATTRIBUTED TO THE NONSTATIONARY
EVOLUTION

1. Blocking: Increasing the initial background exciton density suppresses the peak absorption intensity.
2. Biexciton formation: The peak is split by γ 1/2 corresponding biexciton interactions (39).
3. (1D) Energy shift: The peak position shifts toward higher energies with increasing background population

due to increased Coulombic interactions.
4. (1D) Broadening: The spectrum acquires a long tail extending toward higher energies due to the dynamic

evolution of the background.
5. (2D) Phase scrambling: This effect appears in the 2D coherent spectroscopy as an asymmetry along the

absorption axis and as phase scrambling in the rephasing and nonrephasing signals.
6. (2D) Excitation-induced shift:This systematic shift of peak position evolves as the background population

decays.
7. (2D) Excitation-induced dephasing: Transient narrowing occurs along the off-diagonal due to the

decreasing rate of exciton-exciton scattering.

www.annualreviews.org • Many-Body Exciton Scattering 20.13
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The times 0< τ 1 < τ 2 < τ 3 de!ne the sequence of the time-ordered interactions in Figure 2. The
expressions for the corresponding time correlation functions can be evaluated using the standard
rules for double-sided Feynman diagrams (Figure 2) (cf 44), representing various optical paths
that for a given pathway take the form

Rα (τ1, τ2, τ3) =
(
i
!

)3

µ4(n0 + 1)2 exp



i(ω0 + n0γ1)
3∑

j=1

(±) jτ j




〈

exp



i2γ1

3∑

j=1

(±) j
∫ τ j

0
N (s)ds




〉

19.

=
(
i
!

)3

µ4(n0 + 1)2 exp



i(ω0 + n0γ1)
3∑

j=1

(±) jτ j





× exp



i2γ1

3∑

j=1

(±) jg1(τ j )



 exp



−2γ 2
1

3∑

i, j=1

(±)i(±) jg2(τi, τ j )



 . 20.

The sign function (±)j takes + or − depending on whether the time step involves an excitation
or a deexcitation of the system. The prefactor (n0 + 1)2 is for the pathways involving only the
single-excitation manifold (distinguished by subscript a); it is (n0 + 1)(n0 + 2) when double exci-
tation (subscript b) is involved. Figure 2 shows the most relevant diagrams for the rephasing and
nonrephasing optical responses.

It is important to notice that the exciton-exciton interaction term γ 1, and hence the screening
due to exciton-lattice interactions, appears in three distinct places in the third-order responses:
!rst, as a frequency shift due to self-interactions between the bright excitons; second, as a fre-
quency shift due to interactions of bright excitons with the evolving background population
density; and third, as the leading contribution to the lineshape. In addition, the third term in-
volving g2(t) carries the in"uence of the initial conditions (via σN0 ). The effect of many-body
exciton-exciton scattering thus leads to time-evolving EID processes. Given these observations,
we expect that the homogeneous line width will evolve with the population time, dictated by the
evolution of g2(t).

Figures 8 and 9 correspond to the rephasing and nonrephasing behaviors of the theoretical
model as parameterized to approximate the excitons in the 2D metal-halide perovskite system
studied in the experimental investigations, which we describe later in this section. Figure 8 gives
the rephasing (Figure 8a,b) and nonrephasing (Figure 8c,d) spectra computed at τ p = 0. Two
features highlighted above are immediately striking in the modeled 2D spectra. Both the asym-
metry of the signals and the lineshape inversion of the real and imaginary spectral components
can be traced speci!cally to terms within the response functions in Equation 20 that depend on
the transient background relaxation and exciton self-interactions.

Both the phasing and the asymmetry evolve with increasing population time as shown in
Figure 9a–l. Importantly, the real rephasing signal evolves from being dispersive at τ p = 0 to
being absorptive at longer times. The imaginary rephasing signal (Figure 9e–h) has complemen-
tary phasing behavior, evolving from absorptive to dispersive.Figure 9i–l gives the absolute value
of the total response as it evolves over τ p. The peak is displaced from the diagonal, and its position
as well as the line width evolves over τ p.

In Figure 9 we extract the contour corresponding to the half-maximum intensity at various
indicated τ p population times. Superimposed over each contour is one principal axis of the contour
scaled according to its magnitude. The central points are the geometric centers of contours. This

20.14 Li et al.
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Figure 8
Theoretical real and imaginary spectra, respectively, of (a,b) rephasing and (c,d) nonrephasing phase-
matching and at population waiting time τ p = 0 fs. The two pairs of gray dashed lines correspond to the bare
exciton energy at !ω0 = 2.35 eV and the dressed exciton energy at !ω0 + γ 1 = 2.36 eV.

analysis clearly shows that the peak systematically narrows, rotates, and distorts as the exciton
coevolves with the background population. Moreover, the center peak shifts by about ∼10 meV
toward the red in both absorption and emission spectral dimensions as Coulombic interactions
with the evolving background are diminished (10).

Within the stochastic model the frequency peak evolution is due to the !rst cumulant
g1(±τ 1, ±τ 2, ±τ 3), which introduced a phase shift that depends on the background population
evolution as well as on the background displacements following each interaction with the laser
!eld. The early-time blue shift and more rapid dephasing arise from many-body effects contained
within g1.As the background population decays, the scattering effects are diminished.We note that
if we set g1 = 0 in Equation 20, the coherent response functions reduce to a stationary background,
and the frequency peak evolution does not occur.

3.5. Exciton/Polaron Formation Dynamics due to Exchange Interactions
In deriving this model, we also assumed that an additional term corresponding to pair creation/
annihilation could be dropped from consideration. That term takes the form

Hpair =
∑

q '=0

γq
(
a†0a

†
0aqa−q + a†qa

†
−qa0a0

)
21.

and corresponds to the Boson exchange interaction, whereby momentum is transferred within
the background population (q '= 0) as the result of interaction with the optical (q = 0) exciton.
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Figure 9
(a–d) Real parts of theoretical rephasing spectra at population times τ p indicated at the top of each panel. (e–h) Corresponding
imaginary parts of the spectrum. (i–l) The norm (absolute value) of the optical response. The two pairs of gray dashed lines correspond
to the bare exciton energy at !ω0 = 2.35 eV and the dressed exciton energy at !ω0 + γ 1 = 2.36 eV. (m) Exciton 2D coherent lineshape
contour at half-maximum intensity as a function of the population waiting time derived from the theoretical rephasing absolute spectral
evolution in Figure 8. The center of mass and one principal axis are shown for each contour.

However, such exchange terms may give important and interesting contributions to the spec-
tral lineshape, especially in systems in which excitons are formed near the Fermi energy. In such
systems, the exciton becomes dressed by virtual electron-hole "uctuations about the Fermi sea,
producing spectral shifts and broadening the spectral lineshape. Such states are best described
as excitons/polarons whose wave function consists of the bare exciton-hole excitation dressed by
electron-hole "uctuations.

Ordinarily, as in the Bogoliubov treatment of Bose–Einstein condensates (48), one makes the
semiclassical approximation that the condensate population can be taken as macroscopic, and as
a result, one can replace the operators a0 and a†0 with c-number

√
N0. In our case, we continue to

treat the background within the semiclassical limit and replace aq and a†q with
√
Nq and write the

coupling

γ (t ) =
∑

q '=0

Nqγq ≈ γpairN (t ), 22.

where γ pair is the exchange coupling constant and N(t) the net background population at time t.
To pursue the effect of the exciton/polaron formation, we start with the basic form of the

Hamiltonian

H = !ω0(a†a+ 1/2) + !γ (t )(a†a† + aa)/2, 23.

20.16 Li et al.
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Itô identity: if f (x(t))
is a function of a
stochastic variable with
dx = adt + bdW, then
f satis!es the SDE:

d f = f [x(t ) + dx(t )]
− f [x(t )]

= (a f ′ + 1
2 b f

′′ )dt
+ b f ′dW

where γ (t) is the coupling, which we take to be an unspeci!ed stochastic process. One can bring
H into a diagonal form by unitary transformation

H̃ = e−SHeS = !ω̃0(t )
(
ã†ã+ 1/2

)
, 24.

with

ω̃0(t ) =
√

ω2
0 − γ (t )2. 25.

However, because γ (t) is a stochastic process, we need to use the Itô identity to properly derive
the underlying stochastic differential equation (SDE) for the renormalized harmonic frequency,
ω̃0(t ), in order to compute correlation functions.

In the regime of weak paired-excitation interaction, γ /ω0 ! 1, the eigenfrequency can be
approximated as

ω̃0(t ) = ω0
√
1 − (γ /ω0)2

≈ ω0 (1 − z(t )/2), 26.

where z(t ) = γ (t )2/ω2
0. Therefore,

√
z represents the coupling strength of the paired excitations

relative to the excitation frequency. For the moment, we leave the stochastic variable unspeci!ed
and !nd the linear response function

S(1)(t ) = i
!

〈[µ̂(t ), µ̂(0)]ρ(−∞)〉

= i
!

µ2 〈[
ã†(t ), ã0

]
ρ(−∞) − c.c

〉

= 2µ2

!
,

〈
exp(iω0t ) exp

[
− iω0

2

∫ t

0
z(τ )dτ

]〉
27.

= 2µ2

!
,

{

exp(iω0t ) exp

[ ∞∑

n=1

(−iω0/2)n

n!

〈(∫ t

0
z(τ )dτ

)n〉

c

]}

28.

in the form of cumulant expansion, where 〈x n〉〉c denotes the n-th cumulant. According to the the-
orem of Marcinkiewicz (49, 50), the cumulant-generating function is a polynomial of degree no
greater than 2 tomaintain the positive de!niteness of the probability distribution function.There-
fore, we truncate the cumulant expansion to the second order and write the spectral lineshape
functions g1(t) and g2(t) from the !rst cumulant and second cumulant,

g1(t ) =
∫ t

0
〈z(τ )〉dτ 29.

and

g2(t ) =
∫ t

0

∫ t

0
〈z(τ ), z(τ ′ )〉dτdτ ′, 30.

respectively.
We now make the simplifying assumption that γ (t) satis!es the Ornstein–Uhlenbeck process,

corresponding to vacuum "uctuations about bare exciton states,

dγt = −θγtdt + σdWt . 31.

We should emphasize that this is not properly in the regime of quantum "uctuations, since we have
not enforced the bosonic commutation relation within the background inmaking the semiclassical
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ansatz. This is clearly an avenue for future exploration. Applying the Itô identity, we arrive at an
SDE for the exciton frequency,

dzt = 2θ
(

σ 2

2θω2
0

− zt
)
dt + 2σ

ω0

√
ztdWt , 32.

in which the relaxation rate is 2θ and the drift term σ 2/2θω2
0 corresponds to the mean value of the

stationary state. The formal solution, analogous to γ (t) as the solution to the Ornstein–Uhlenbeck
SDE, is

z(t )1/2 = [z(0)]1/2 e−θt + σ

ω0

∫ t

0
e−θ (t−s)dWs 33.

γ (t ) = γ (0)e−θt + σ

∫ t

0
e−θ (t−s)dWs.

Using Itô isometry, we !nd the mean value

〈z(t )〉 = z0e−2θt + σ 2

2ω2
0θ

(
1 − e−2θt), 34.

and the correlation function

〈z(t ), z(s)〉 = σ 2
zoe

−2θ (t+s) + σ 4

2θ2ω4
0

[
e−θ |t−s| − e−θ (t+s)]2 + 2σ 2

θω2
0
z0e−θ (t+s) [e−θ |t−s| − e−θ (t+s)], 35.

which can be used to construct the g1 and g2 cumulants. Here, the initial distribution of z is
determined by the mean z0 = 〈z(0)〉 and the variance σ 2

zo = 〈(z(0) − z0)2〉,

g1(t ) =
∫ t

0
〈z(τ )〉dτ

= σ 2t
2θω2

0
+ 1

2θ

(
z0 − σ 2

2θω2
0

) (
1 − e−2θt). 36.

The !rst cumulant of the model produces a red shift that is more complex than the counterpart
in the simpler model, where interactions between paired excitations are neglected. The initial
frequency shift z0ω0/2 agrees with the Anderson–Kubo theory but converges to σ 2/4θω0 rather
than decaying to zero (see the sidebar titled Implications from the Exciton/Exciton Exchange
Term).The !rst term can then be considered as a correction term that accounts for the interaction
of exchange terms and leads to a constant red shift of σ 2/4θω0.

IMPLICATIONS FROM THE EXCITON/EXCITON EXCHANGE TERM

1. The model produces the lineshape function given by the Anderson–Kubomodel in the stationary limit, albeit
with twice the coherence time.

2. The model captures the formation of exciton/polarons as the steady-state/long time limit and gives an ex-
citon/polaron reorganization energy of σ 2/4θω0, which re"ects the coupling and spectral density of the
background.

20.18 Li et al.
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The second cumulant, g2(t), evaluates to

g2(t )=
∫ t

0

∫ t

0
〈z(τ ), z(τ ′ )〉dτdτ ′

=
σ 2
zo

4θ2

(
1 − e−2θt)2 + σ 4

8θ4ω4
0

(
e−4θt + 8θte−2θt + 4e−2θt + 4θt − 5

)

+ σ 2

2θ3ω2
0
z0

(
1 − 4θte−2θt − e−4θt). 37.

If we compare this to the spectral function derived above,

gEID2 (t ) =
σ 2

γo

θ2

(
1 − e−θt)2 + σ 2

2θ3

(
2θt + 4e−θt − e−2θt − 3

)
, 38.

the !rst term is recovered; however, the present model provides a more sophisticated description
of the dependency on the initial average z0. In the limiting case of the stationary state, where
σ 2

γo
= σ 2/2θ , the second cumulant in the present model turns into

g2(t ) = σ 4

4θ4ω4
0

(
e−2θt + 2θt − 1

)
+ σ 2γ 2

0

θ3ω4
0
(e2θt − 2θt − 1)e−2θt , 39.

in which the !rst term reproduces the Anderson–Kubo lineshape but with half the correlation
time τ c = (2θ )−1 compared with that of the Anderson–Kubo theory θ−1. Furthermore, the second
term gives the line broadening due to the initial average of the background exciton population,
γ 2
0 , which results only in a frequency shift in our previous model.

3.5.1. Contributions to 2D spectroscopy. The inhomogeneous and homogeneous contribu-
tions to the lineshape can be separated using 2D coherent spectroscopic methods (35, 42, 43,
51, 52). In most molecular applications of 2D spectroscopy, the evolving background plays little
to no role in the spectral dynamics. However, the evolving background does affect the spectral
lineshape by mixing absorptive and dispersive features in the real and imaginary spectral com-
ponents. Generally speaking, systems lacking background dynamics exhibit absorptive lineshapes,
and dispersive lineshapes are a consequence of many-body correlations (37), consistent with the
analysis of similar measurements in semiconductor quantum wells (22). Furthermore, it is useful
to compare the model presented here, which pertains to the exciton/exciton exchange coupling,
with our previous model, which did not include this term and only considered the direct (Hartree)
interaction. For this, we compute the third-order response S(3) under the impulsive/rotating-wave
approximation. One easily !nds that the responses for the various Liouville-space pathways take
the form

Rα (τ3, τ2, τ1) =
(
i
!

)3

µ4

〈

exp



i
3∑

j=1

(±) j
∫ τ j

0
ω̃0(τ )dτ




〉

, 40.

where the angular brackets denote averaging over the stochastic noise term and the (±)j corre-
sponds to whether the time step involves an excitation (+) or deexcitation (−) of the system. The
time ordering of the three optical pulses in the experiment and phase-matching conditions de!ne
the speci!c excitation pathways, based on which photon echo (ks = −k1 + k2 + k3) and virtual
echo (ks = +k1 − k2 + k3) signals can be obtained by heterodyne detection (the fourth pulse) (43).
Equivalently, in the experiments using colinear phase-modulated pulses, rephasing [−(φ43 − φ21)]
and nonrephasing [−(φ43 + φ21)] signals can be measured. In the rephasing experiment, the pulse
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Figure 10
Rephasing (top) and nonrephasing (bottom) spectra at a population time of 100 fs based on the stochastic differential equation in
Equation 31. Panels a and d are the real part, panels b and e are the imaginary part, and panels c and f are the norm of the spectra. The
parameters used in the simulation are as follows: !ω0 = 2.35 eV, σ = 0.05 fs−3/2, θ = 0.01 fs−1, and γ 0 = 0.5 fs−1. The black dashed
lines mark the bare exciton energy !ω0; the red dashed lines mark the shifts of ω0z0/4 + σ 2/(8θω0) and −σ 2/(4θω0) from ω0 in the
absorption and emission frequencies, respectively.

sequence is such that the phase evolution of the polarization after the !rst pulse and that after
the third pulse are of opposite sign, while in the nonrephasing experiment, they are of the same
sign. Equation 40 can be evaluated by cumulant expansion and the full expressions are given in the
Supplemental Appendix. Because the ω̃0(τ ) corresponds to a nonstationary process, the lineshape
functions g1 and g2 contribute to the output signal.

Figure 10 presents the 2D rephasing and nonrephasing spectra corresponding to a single quan-
tum state dressed by the paired-excitation terms. Focusing on the effect of interactions of paired
excitations rather than on that of the initial condition, we set σ 2

γo
= σ 2/(2θ ) so that the initial "uc-

tuation is the same as that of the Wiener process (47). The initial distribution of z0 is given by
that of γ 0:

ω2
0z0 = σ 2

γo
+ γ 2

0 , 41a.

ω4
0σ

2
zo = 2σ 4

γo
+ 4σ 2

γo
γ 2
0 . 41b.

The dispersive lineshape is observed in the real spectra for both rephasing and nonrephasing
pulse sequences, which is a clear indication of the EID. The center of the peak deviates from
the bare exciton energy !ω0 = 2.35 eV due to the coupling between exciton pairs. Both the ab-
sorption and emission energies shift toward lower energies because z(t) is positive by de!nition
(Equation 26). Although the Hamiltonian is diagonal after the exciton/polaron transformation
using matrix S, the diagonal peaks are off the diagonal. Noting Equations 26 and 34, we !nd that

20.20 Li et al.
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the emission frequency shifts from ω0 by −σ 2/(4θω0), as long as the timescale of the experiment is
greater than the relaxation time (2θ )−1. Indeed, this energy discrepancy attributed to the stationary
state of z(t) can be considered as the exciton/polaron dressing energy. Regarding the absorption
frequency measured by the !rst two pulses, because the system may not have suf!cient time to
relax, we can estimate from Equation 34 that the shift ranges between ω0z0/2 and σ 2/(4θω0). The
median ω0z0/4 + σ 2/(8θω0) for absorption is shown.

3.5.2. Comparison to the Anderson–Kubo model. The well-known Anderson–Kubo theory
describes the lineshape broadening with regard to the stationary state of a random variable (usually
the frequency "uctuation, zt here) characterized by an Ornstein–Uhlenbeck process. The expan-
sion of the linear optical response function leads to the !rst cumulant gAK1 (t ) = βt, in which β is
the drift term (i.e., the long-term mean value), and the second cumulant

gAK2 (t ) = σ 2

2θ3

(
e−θt + θt − 1

)
. 42.

In the short time limit θ t ! 1, the !rst cumulant in Equation 36 turns to g1(t) ≈ z0t, which
has the same linear form as gAK1 (t ). It also agrees with our previous model (see Equation 15 in
Section 3.4.1) (37, 47),

gEID1 (t ) = z0
2θ

(
1 − e−2θt) ≈ z0t. 43.

Note that the relaxation rate here is 2θ instead of θ , because γ (t)2, rather than γ (t) characterized
by the rate θ , is the stochastic process of interest. For the deterministic initial condition, we obtain
z0 = γ 2

0 /ω2
0. The !rst cumulant g1(t) results in a red shift of z0ω0/2 in the linear spectrum in the

short time limit, which is determined by the initial average of the stochastic process z(t).
When the initial "uctuation of γ (t) obeys the same Ornstein–Uhlenbeck process, we con-

clude that σ 2
γo

= σ 2/2θ from the stationary state corresponding to the long time limit, where
Equation 34 turns into Var[γ (t)] = σ 2/2θ . Considering Equation 41a, we recast Equation 36 as

g1(t ) = σ 2

2θω2
0
t + γ 2

0

2θω2
0

(
1 − e−2θt), 44.

in which the second term looks similar to the gEID1 (t ) function in Equation 43. However, z0 =
γ 2
0 /ω2

0 is true only for the deterministic initial condition, which is not the case in the above equa-
tion. Equation 43 given in our previous model leads to a time-dependent red shift that eventually
vanishes after a suf!ciently long time. The !rst term then can be considered as a correction term
that accounts for the interaction of paired excitations and leads to a constant red shift of σ 2/4θω0.

Therefore, the !rst cumulant of the present model produces the red shift similar to but more
complex than the counterpart in our previous model, where interactions between paired excita-
tions are neglected. The initial frequency shift z0ω0/2 agrees with the Anderson–Kubo theory but
converges to σ 2/4θω0 rather than decaying to zero as in the previous model.

3.6. Inverting Spectral Lineshape to Obtain Underlying Dark State Dynamics
The practical utility of any spectroscopic method is to extract information about the system or
sample being interrogated. However, any attempt to invert the physical signal depends on the
model used for the input spectra and the model used to describe the coupling between the system
and its environment. Here, we consider the case in which the lineshape function follows from the
Anderson–Kubo model, but the underlying background process is due to the paired-"uctuation
terms. In other words, the spectral "uctuations given by z(t) follow from an Ornstein–Uhlenbeck
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process, but the underlying coupling is given by the transformed process γ (t ) = ω0
√
z(t ). Using

the Itô lemma and integrating the resulting SDE, one has

γ (t ) = ±ω0σ
1/2

[∫ t

0
e−θ (t−τ )dWτ

]1/2

45.

and uses this to construct the spectral density of the underlying many-body dynamics:

S()) =
∫ +∞

−∞
dt〈γtγ0〉e−i)t . 46.

However, since this involves taking averages over the Wiener process, we cannot directly use the
Itô identity dW 2

t = dt to perform the integration. We can, however, !nd the upper limit of the
covariance according to Jensen’s inequality, which relates the value of a convex function of an
integral to the integral of the convex function (53). Here, taking X as a random variable and ϕ as
a convex function, Jensen’s inequality gives

φ(E[X ]) ≤ E[φ(X )]. 47.

This is essentially a statement that the secant line of a convex function lies above the graph of the
function itself. As a corollary, the inequality is reversed for a concave function such as

√
x. In cases

of a stationary state or of γ (0) = 0, we have

〈γ (t )〉 ≤ ω0σ
1/2

〈∫ t

0
e−θ (t−τ )dWτ

〉1/2
= 0, 48.

which indicates that 〈γ (t)〉 = 0. The difference between the left and right sides of the inequality is
termed the Jensen gap. Employing the inequality over a small integration range &t, we obtain

〈γ (t + &t )γ (t )〉 ≤ σω2
0√

2θ
e−θ |&t|/2. 49.

This then implies a spectral density of

S()) =
∫ +∞

−∞
dt〈γtγ0〉e−i)t ≤ 2

√
2θσω2

0

θ2 + )2 . 50.

that can be well approximated by a Lorentzian in the limit that the Jensen inequality becomes an
equality. Since the Lorentzian spectral density implies an underlyingOrnstein–Uhlenbeck process
for γ t, in this limit the two cases considered here become identical. The equality is satis!ed only
when the convex (or concave) function is nearly linear over the entire given range of integration,
which implies that θ&t " 1 in Equation 50, corresponding to homogeneous or lifetime limited
broadening.Wemust also conclude that the Jensen inequality can be applied only in one direction,
since starting from the assumption that γ t is a mean-reverting Ornstein–Uhlenbeck process gives
the results presented in Section 3.5.The curious observation then is that the lineshape for themore
complex process appears to be bound by the Lorentzian form; that is, it must be more narrow than
what one expects for exponential decay.

If we specify the initial value of the coupling γ (0) at t = 0, we can use Jensen’s inequality to
compute an upper limit of the covariance as

〈γ (t ), γ (s)〉 ≤ σω2
0√

2θ

[
e−θ |t−s| − e−θ (t+s)] 1

2 . 51.

If we take both t and s at some later times so that the memory of the initial condition is lost and
take &t = t − s, we recover Equation 49 as the stationary covariance.

In the nonstationary limit, however, the time evolution of the mean [and hence g1(t)] is very
different. Using Mathematica, we were able to arrive at an analytical expression for 〈γ (t)〉. Unlike
its counterpart in Section 3.5, it does not relax exponentially to a stationary value and the resulting
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long time value is far more complex. This suggests that one needs to look at both the lineshape
and its temporal evolution to correctly extract the background dynamics.

4. PERSPECTIVE
Stochastic models have a long and important history in the !eld of chemical physics because
they allow one to incorporate a trajectory-based viewpoint directly into the dynamics. The
Anderson–Kubo model was an early attempt at providing a physical rationalization of how fre-
quency "uctuations contribute to the absorption and emission lineshapes of molecules in contact
with a thermal environment (32, 33, 54). The models have been continuously improved upon over
the years, notably including more detailed descriptions of the bath and the actual coupling mecha-
nisms between the system and the environment that lead to the frequency "uctuations (44, 55–58).
As we have repeatedly pointed out, such approaches assume that the environment is in a stationary
(e.g., thermal) state at time t = 0 and does not interact with any external stimulus over the course
of the dynamics of the system. We argue here that in many cases one cannot ignore the fact that
the broadband excitation pulses used in contemporary ultrafast experiments can create a back-
ground gas of excitons that can interact with an optical bright state, leading to "uency-dependent
dynamics that can be manifest in terms of spectral shifts and tails even in linear absorption spec-
tra. We conclude that these details can be further revealed through 2D coherent spectroscopy,
especially when paired with a theoretical approach that accounts for the nonstationary evolution
of the background.

Here, we have reviewed our approach based on a stochastic many-body treatment of the back-
ground and have provided several principal results and some technical details of our theoretical
models. Throughout, we have used the Itô calculus when integrating over stochastic variables.
This mathematical method provides us with a powerful avenue for obtaining analytical expressions
for the various cumulants and correlation functions needed to compute the spectral responses.
Fortunately, the current release of Mathematica (version 10 or higher) has a powerful stochastic
calculus module that can be harnessed to evaluate both formally and numerically the cumulants
and correlation functions for simple and complex transformed processes.Work remains to extend
the approach toward both fermionic baths and strongly quantized baths such as those encountered
in cavity quantum electrodynamics systems.
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