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Relative to a growing body of knowledge about the negative consequences
of freshwater salinization, little is known about how aquatic insects respond
to progressively ion-poor conditions. Here, we examined life-history and
physiological acclimation in Neocloeon triangulifer by rearing nymphs from
1-day post-egg hatch to adulthood across a gradient of decreasing Na con-
centrations (15, 8, 4, 2 and 1 mg l−1 Na). We found no significant changes
in survival, growth, development time and whole-body Na content across
these treatments. Radiotracer data revealed that nymphs acclimated to
their dilute exposures by increasing their rates of Na uptake and were
able to maintain a relatively narrow range of uptake rates (±s.e.m.) of
38.5 ± 4.2 µg Na g−1 h−1 across all treatments. By contrast, the Na uptake
rates observed in naive nymphs were much more concentration dependent.
This acclimatory response is partially explained by differences in ionocyte
counts on the gills of nymphs reared under different salinities. Acclimated
nymphs were surprisingly less retentive of their sodium composition
when subjected to deionized water challenge. By contrasting our findings
with a previous N. triangulifer salinity acclimation study, we show a physio-
logical affinity for dilute conditions in this emerging mayfly model.
1. Introduction
Freshwater ecosystems range widely in salinity, from practically deionized to
ion-rich [1] as a function of geology, and can fluctuate with rainfall, evaporation
and hyporheic influences [2,3]. It is currently unclear how natural freshwater
salinity regimes shape aquatic communities and affect local biodiversity. More-
over, the relatively recent awareness that human activities (e.g. road deicing)
negatively affect biodiversity via changes in the ionic composition of fresh-
waters requires that we deepen our understanding of how these changes
affect the physiology and fitness of aquatic organisms [4–7]. While most atten-
tion is centered on increasing salinization, changes in precipitation, acid
deposition and weathering are actually decreasing the major ion content of
some freshwater systems [8,9]; [10, p. 296]; [11].

Aquatic insects are ecologically important and relied upon to make infer-
ences about water quality and ecological conditions [12,13]; [14, p. 200]; [15].
Aquatic insects can be impacted by changes in freshwater salinity [6,16,17],
which plays a role in determining where species can thrive [18,19]. While the
response of aquatic insects to anthropogenically elevated ions in the field
[6,16] has stimulated several laboratory-based efforts [17,20,21] to understand
physiological mechanisms, relatively little is known about how insects cope
with dilute conditions (but see [22]). Other studies have found lower abun-
dances of taxa richness associated with low ionic concentration [23–25].
While some observations have suggested these patterns were caused by pH
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and nutrient availability [25,26], more recent studies in
aquatic insects and fish suggest the cause may be the concen-
tration of total dissolved solids [19,27–30].

Most aquatic insects are known to regulate a constant
haemolymph osmolality despite the salinity of their external
environment [31–33] via the constant turnover of ions. This
maintenance affects the energy budgets of aquatic insects in
waters with highly elevated major ions (leading to develop-
mental delays and reduced growth) [34], which suggests
reallocation of energy to maintain homeostasis [32,33,35,36].
As ion transport against concentration gradients is energy-
intensive [37], similar reallocation could also be expected in
extremely dilute water. Growth and reproduction in fresh-
water invertebrates [38,39] and fish [40] have been observed
to increase at moderate salinities (compared to low salinities).
This observation could be partly due to the high costs of
osmoregulation in hyposaline waters. Most aquatic insects
have mitochondria-rich osmoregulatory structures (such as
ionocytes) on their body surface [31], which are used to take
up ions from the surrounding water [35]. Ionocytes (also
known as chloride cells) are sites of ion uptake on the body
surfaces (especially tracheal gills) of nymphs [41]. Little is defi-
nitively known about how salinity impacts the density of
ionocytes of aquatic insects [42–45].

To understand how changes in salinity affect the physi-
ology and fitness of aquatic organisms, it is important to ask
how well aquatic organisms can acclimate to changing salinity
regimes. This question has been studied in daphnids [46,47]
and mayflies [48,49], but only in terms of increasing salinity.
Studies with the baetid mayfly, Neocloeon triangulifer (which
has been recently established as a useful model for ecological
[50], toxicological [51–56] and physiological [20,57,58] studies)
have provided evidence of ion-specific physiological plasticity
and ion-specific toxicity mechanisms in high-salinity waters
[49]. However, we know little about the ability ofN. triangulifer
to acclimate to extremely dilute waters.

Here, we used N. triangulifer to ask how exposure to
decreased major ions affects physiological responses and
life-history outcomes across a gradient of dilute ionic con-
ditions. We used a radiotracer approach to ask if Na
transport rates of acclimated versus naive nymphs differed
over a 15-fold range of Na concentrations. We also asked if
changes to cuticular Na permeability resulted from prior
exposure history by measuring the loss rates of 22Na from
nymphs subjected to a deionized water challenge. Finally,
ionocyte density was assessed for nymphs reared in dilute,
standard and ion-rich waters to assess whether physiological
differences (e.g. modified flux rates) may be due, in part, to
observed morphological changes.
2. Methods
(a) Mayfly husbandry and water preparation
Neocloeon triangulifer (WCC-2 clone) was originally isolated for
culture from White Clay Creek (WCC), Chester County, PA,
USA, (240 µS cm−1), and rearing methods were developed at
the Stroud Water Research Center (SWRC; Avondale, PA) [50].
This clonal line of N. triangulifer has been maintained in artificial
soft water (ASW) for several generations. Because N. triangulifer
occupies habitats that are not typically sampled in biomonitoring
programs, its salinity preferences are largely unknown. However,
different clones of the species have been observed and collected
ranging from 57 to 340 µS cm−1 (Dave Funk, 25 May 2022, per-
sonal communication), which is not as dilute as some of the
treatments we used (table 1). N. triangulifer nymphs were
reared in 1.8 l glass jars at room temperature (21–23°C) and a
14 : 10 h light : dark photoperiod. Seven replicate jars (with
about 25 N. triangulifer nymphs each) for each condition were
set-up and randomly spaced out on the bench top. Food was pro-
vided as periphyton grown on an acrylic plate (gifted by
collaborators at SWRC). Periphyton plates were grown by allow-
ing fresh stream water from WCC, PA to flow over the plates
continuously for 2–4 weeks (as described previously by [59]
and [60]). Then, one periphyton plate was immediately added
to each treatment water, and a second supplementary plate
was added two weeks into rearing. All jars were gently aerated
for the entire experiment to maintain oxygen saturation.

ASW is our routine culture media and was the control water,
as well as the base water diluted for these experiments. To create
more dilute waters, ASW was diluted using reverse-osmosis
deionized water to create the desired concentration (table 1).
The ‘high-salinity’ water was prepared as in [49] and only used
in rearing for ionocyte staining.
(b) Life-history outcomes
We designated four of the seven replicate jars to be used for col-
lecting life-history data (survival, final subimago weight and
development time). Exposures lasted 24–33 days, with subima-
gos emerging over a 9-day period for all conditions. As they
emerged in the late afternoon, subimagos were collected into a
mesh-lined collection lid. Subimagos were immediately col-
lected, placed in clean, labelled 1.5 ml microcentrifuge tubes,
and stored frozen (−20°C) before wet weights were obtained.
Life-history outcomes were compared among groups as the
mean value of each response variable from each jar using a
one-way ANOVA with Tukey’s multiple comparisons test using
GRAPHPAD PRISM (v6, GraphPad Software, La Jolla, CA, USA).
All data were also analysed for normality.
(c) Whole-body sodium content
We collected nymphs (around 22–24 days old) to be analysed for
their whole-body sodium content. Nymphs were dried overnight
at 60°C and subsequently weighed. Dried nymphs were micro-
wave digested (CEM MARSXpress) in 1 ml Omnitrace Ultra
High Purity Nitric Acid (EMD Chemicals, Darmstadt, Germany).
NC State University’s Environmental and Agriculture Testing
Services Lab analysed samples via ICP-OES (Department of
Soil Science, North Carolina State University, Raleigh, NC,
USA) to determine the whole-body concentration of sodium.
Quality control blanks were below Na detection limits. Measured
sodium concentrations in certified reference material (freeze-
dried NIST 2976-mussel tissue) were within 10% of the expected
concentrations. Whole-body sodium measurements were com-
pared among groups using a one-way ANOVA with Tukey’s
multiple comparisons test using GRAPHPAD PRISM. All data were
also analysed for normality.
(d) Ion flux experiments
We used nymphs from three of the seven replicate jars for ion
flux experiments. Nymphs were 21 days old for all 22Na
uptake experiments and 23 days old for all 22Na loss exper-
iments. Radioactive experimental waters were made with ASW,
and appropriate dilutions spiked with 22NaCl (PerkinElmer,
Billerica, MA, USA). Exposure activities ranged from 135 to
220 Bq ml−1. Exposures were measured with PerkinElmer
Wallac Wizard 1480 Automatic Gamma Counter (Shelton, CT)
immediately before the experiments began.



Table 1. Water chemistry for all experimental waters. Conductivity is reported in µS cm−1. Ions and TDS are all reported in mg l−1. All waters were sampled,
filtered and verified by NC State University’s Environmental and Agriculture Testing Services Lab (ICP-EATS). Measured values (when available) are reported in
parentheses beside nominal values. Concentrations were within 15% of nominal values, except for measurements marked by an asterisk, which had between 18
and 33% error.

treatment conductivity pH TDS Na total S (as SO4) Ca Mg K Cl CO3

high salinity 777 7.6 552.5 157 (152) 7.8 12.7 3.4 1.4 255 42.6

control (ASW) 131 7.4 131.3 15.0 (15.5) 7.8 (7.3) 12.7 (10.8) 3.4 (3.1) 1.4 14.1 42.6

½ control 67.8 7.4 59.8 7.5 (7.9) 3.9 (4.5) 6.4 (4.5)* 1.7 (1.9) 0.7 7.1 21.3

¼ control 34.4 7.2 33.2 3.8 (4.0) 1.9 (2.6)* 3.2 (3.6) 0.9 (1.1)* 0.4 3.5 10.7

1/8 control 18.9 7.2 18.9 1.9 (1.9) 0.9 (0.8) 1.6 (1.6) 0.4 (0.6)* 0.2 1.8 5.3

1/16 control 9.8 7.1 10.4 0.9 (0.9) 0.5 (0.4) 0.8 (0.9) 0.2 (0.3)* 0.1 0.9 2.7

DI 1.1 7.0 0.5 −(<0.1) −(<0.1) −(<0.02) −(<0.01) — — —
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Uptake and loss rates were calculated using the slopes of
linear regression analysis using GRAPHPAD PRISM. Mass-specific
calculations were based on wet weights. Only measurements
with counting errors less than 10% were used in analyses. Flux
rates were compared among groups using a one-way ANOVA
with Tukey’s multiple comparisons test using GRAPHPAD PRISM.
Data were also analysed for normality.

(i) Uptake rate
Individual nymphs were placed into 24 100 ml high-density
polyethylene beakers with 15 ml of radioactive exposure water.
All experiments had eight spatially randomized replicates per
3, 6, and 9 h time point. All beakers were gently aerated and
sealed with ParaFilm for the entire experiment. At each time
point, nymphs were removed from the radioactive exposure
waters by gently pipetting them into a mesh strainer (collecting
any residual radioactive water in a waste container) and gently
blotting dry. The nymphs were then rinsed in two consecutive
water baths of the corresponding unlabeled exposure water to
remove loosely adsorbed ions from the exoskeleton. Each indi-
vidual nymph was then placed in a 20 ml glass vial with 3 ml
of the corresponding unlabelled exposure water, and counted
with the PerkinElmer Wallac Wizard 1480 Automatic Gamma
Counter (Shelton, CT) for 3 minutes. After counting the 3- and
6 h time points, nymphs were returned to their original exper-
imental cup, so that we could serially measure uptake in the
same nymph across the full experiment.

(ii) Sodium loss rates
To assess whether the acclimation response included changes in
the retentiveness of ions (either through enhanced resorption of
ions from urine in the hindgut or reduced permeability of the
cuticle), we measured the loss of 22Na from nymphs exposed
to deionized water challenge. Nymphs (21 days old) were labeled
with 22Na by placing them in a 200 ml high-density polyethylene
beaker with 25 ml radioactive experimental water (correspond-
ing with their unlabeled rearing water) for 48 h to acquire a
strong 22Na signal (average 14 Bq per mg insect wet weight).
All beakers were gently aerated for the entire experiment and
sealed with ParaFilm. At 48 h, nymphs were removed from the
radioactive exposure waters by gently pipetting into a mesh strai-
ner (collecting any residual radioactive water in a waste
container) and blotting dry. The nymphs were then rinsed in
two consecutive water baths of the corresponding exposure
water to remove loosely adsorbed ions from the exoskeleton,
before being placed in a 20 ml glass vial with 3 ml of deionized
water and counted with the PerkinElmer Wallac Wizard 1480
Automatic Gamma Counter (Shelton, CT) for 3 min. Each
nymph was then placed in a 100 ml high-density polyethylene
beaker with 100 ml of deionized water. At 3 and 9 h, nymphs
were removed from the experimental cup by gently pipetting
into a 20 ml glass vial with 3 ml of deionized water and counted
with the PerkinElmer Wallac Wizard 1480 Automatic Gamma
Counter (Shelton, CT) for 3 min. The experimental cups were
refreshed with 100 ml of fresh deionized water, while the
nymphs were counted to minimize re-uptake of lost ions. The
individual nymphs were followed across the full experiment.

(e) Ionocyte staining
A 2% AgNO3 solution was applied to a single live N. triangulifer
nymph. After resting in direct light for 5 min, gills originating
from abdominal segments four or five were plucked off the live
nymph and imaged immediately on a Leica MZ 16 F stereoscope.
The size of each gill was measured using Lecia Application Suite
X (LAS X) for Life Science. The number of ionocytes was
manually counted for each gill by looking for dark spots approxi-
mately 32 µm in diameter and making a mark through each
counted ionocyte to ensure none were counted more than once.
3. Results
(a) Life history
Life-history outcomes (table 2) were not significantly impacted
by chronic exposure to dilute water. Across all exposure
conditions, mean days to emergence was 26.4 ± 0.2, mean
survival was 88.6 ± 2.2%, and mean subimago wet weight
was 4.0 ± 0.1 mg (mean ± s.e.m.).

(b) Whole-body sodium content
Sodium concentrations were not different between rearing
conditions. Sodium concentrations were 5.9 ± 0.16 (mean ±
s.e.m.) across all rearing conditions (table 2).

(c) Ion flux
(i) Uptake rates
Sodium uptake rates were concentration dependent for naive
nymphs (reared in control water prior to acute exposures to
dilute waters) (figure 1a). For example, naive nymphs had a
sodium uptake rate of 38.4 ± 2.5 µg Na g−1 h−1 in control
water, but a smaller sodium uptake of 14.6 ± 4.6 µgNa
g−1 h−1 in 0.9 mg l−1 sodium water (figure 1a). Sodium
uptake rates were markedly increased in nymphs chronically



Table 2. Summary of life-history outcomes (including mean days to emergence, mean per cent survival, mean subimago weights (mg) and mean whole-body
sodium (±s.e.m.).

exposure condition
(mg l −1 Na)

mean days to
emergence

mean
survival (%)

mean subimago
mass (mg)

mean whole-body sodium
(μg Na mg dry wt−1)

15 27 ± 0.2 86 ± 3.3 4.1 ± 0.1 (n = 84) 6.0 ± 0.4 (n = 16)

8 27 ± 0.2 83 ± 3.8 4.0 ± 0.1 (n = 68) 6.2 ± 0.2 (n = 9)

4 26 ± 0.2 87 ± 2.8 4.4 ± 0.1 (n = 72) 5.5 ± 0.3 (n = 10)

2 26 ± 0.2 91 ± 3.0 3.6 ± 0.2 (n = 68) 5.5 ± 0.8 (n = 8)

1 26 ± 0.2 96 ± 1.6 3.8 ± 0.1 (n = 70) 6.2 ± 0.4 (n = 8)
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Figure 1. Sodium uptake rates were calculated from 9 h time course experiments. (a) Sodium uptake rates in naive N. triangulifer nymphs (black bars) and ‘accli-
mated’ nymphs reared under different water conditions (dotted bars). (b). Sodium uptake rates of ‘acclimated’ nymphs transferred to standard condition water
(15 mg l−1) (mean ± s.e.m.). Asterisks represent significant differences between groups ( p = 0.0001–0.0140).
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reared under more dilute conditions relative to naive reared
nymphs. For example, acclimated nymphs had an approxi-
mately 50% higher uptake rate than naive nymphs in the
lowest sodium water (0.9 mg l−1) ( p = 0.0004) (figure 1a).
These elevated Na transport rates in acclimated nymphs
were within 24% of the uptake rates in control nymphs.
When acclimated nymphs were transferred to control water,
we observed a marked increase in Na transport. For example,
nymphs reared in 0.9 mg l−1 water had a 2.4-fold higher
sodium uptake rate in 15 mg l−1 water than in 0.9 mg l−1

water (figure 1b).
rearing condition (mg Na l–1)

Figure 2. Sodium loss rates of N. triangulifer nymphs reared under different
water conditions over 9 h exposure to deionized water (mean ± s.e.m.).
Asterisks represent significant differences between groups (p = 0.0188).
(ii) Sodium loss rates
We found that the rate of Na loss from nymphs subjected to
deionized water challenge was differed by exposure history.
For example, naive nymphs reared in 15 mg Na l−1 water
had a loss rate of 19.0 ± 1.4 µg Na g−1 h−1 in deionized
water, whereas nymphs chronically reared in 0.9 mg l−1 had
a loss rate of 27.9 ± 2.5 µg Na g−1 h−1 (p = 0.0188) (figure 2).
(d) Ionocyte staining
The number of ionocytes on N. triangulifer gills varied with
Na concentration (figure 3a) [49]. Nymphs reared in 15 mg
Na l−1 had 676 ± 40.5 ionocytes per gill, nymphs reared in
1 mg Na l−1 had 794 ± 37.9 ionocytes per gill, and nymphs
reared in 153 mg Na l−1 had 382 ± 32.9 ionocytes per gill
(mean ± s.e.m.). A positive relationship was observed
between the number of ionocytes per gill and the Na
uptake rates of nymphs exposed to standard condition
water (15 mg Na l−1) (R2 = 0.96) (figure 3b). A two-tailed
unpaired t-test showed no significant difference between
the number of ionocytes on gills from abdominal segments
four or five, regardless of treatment. The sizes of the gills
did not differ significantly based on treatment. See electronic
supplementary material, figure S1 for the full complement of
gill images.
4. Discussion
Remarkably little is known about the osmoregulatory physi-
ology of aquatic insects. Since aquatic insects are routinely
used as bio-indicators in natural systems [12–15], it is impera-
tive that we develop a more robust understanding of the
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physiological determinants of realized salinity niches. In
streams with lower ionic concentrations, some taxa are
more prevalent than others [29]. Some suggest these patterns
in distribution were caused by pH and nutrient availability
[25,26], but later studies suggest the cause may be the concen-
tration of total dissolved solids [19,29,30], though none
exclude either hypothesis. This natural complexity has led
us to do controlled physiological experiments to study how
insects respond to salinity [21,34,35,61]. Only recently have
we begun to explore the importance of acclimation and
physiological plasticity in these responses [49]. Here we
show, for the first time, a basis for physiological affinity
(via acclimation) to dilute conditions.

Our finding suggests that N. triangulifer nymphs are
strong regulators and tightly control whole-body sodium
content, even in ion-poor rearing waters (table 2). This find-
ing is commensurate with other studies in N. triangulifer,
where total body sulfur [34] and sodium [61] content were
strongly regulated across a gradient of increased sulfate and
sodium concentrations, respectively. Further, Patrick et al.
[62] showed that the mosquitoes Aedes aegypti (Linnaeus
1762) and Culex quinquefasciatus (Say 1823) both maintained
high haemolymph NaCl concentrations despite being
reared in dilute media for multiple generations. However, it
is important to note that all ions in ASW were diluted, so
any effects can thus not necessarily be assigned exclusively
to Na concentration.

Additionally, N. triangulifer nymphs exhibited no differ-
ence in their growth rates, development time and survival
across a 15-fold gradient of sodium concentrations (table 2).
This finding differs from other studies in freshwater invert-
ebrates [38,39,63] and fish [40], where growth and survival
rates were negatively influenced by lower salinities. We note,
however, that these other species are not known to be typically
abundant in ion-poor water (IPW), whereas many EPT species
typically thrive in such conditions. This suggests that
N. triangulifer is physiologically adaptable to dilute conditions.

We provide two lines of evidence for physiological
acclimation in N. triangulifer which allowed the nymphs to
maintain fitness over a wide range of salinities. First, when
nymphs were subjected to as much as a 15-fold decrease in
ambient sodium concentrations, acclimated animals had
uptake rates that were only 24% lower than controls. By con-
trast, naive nymphs were 62% different from controls
(figure 1a). Second, when we performed the reciprocal cross
of dilute-acclimated animals to control conditions, we
observed a 40% increase in sodium uptake rates (figure 1b).
Both results demonstrate that the acclimation process
includes a significant ability to upregulate sodium transport.
Nguyen & Donini [22] showed that acute exposure to IPW in
a larval midge, Chironomus riparius, increased the uptake of
Na+, Cl− and H+ by the anal papillae, whereas long-term
exposure to IPW resulted in increased anal papillae size but
no increase in ion uptake. Another study in Aedes aegypti
found that transport by the anal papillae in mosquito
larvae is based on external salinity (Na+ and Cl− uptake
decrease with higher salinities, relative to lower salinities)
[64]. Durant et al. [65] showed that Daphnia survival in low
Ca lakes may be managed by limiting Ca loss and increasing
Ca2+ uptake to maintain free ionic Ca2+ in the haemolymph.
Harris & Santos [66] showed that the mangrove crab Ucides
cordatus increased Na uptake relative to controls after acclim-
ation to a hypo-osmotic medium. Other studies have found
that increased salinity impacts the uptake rates of sulfate in
freshwater mussels [67], and calcium in rainbow trout, [68]
and tilapia [69].

These findings complement a previous study [49], where
N. triangulifer reared in water with elevated major ion concen-
trations were able to decrease sodium and sulfate uptake
rates relative to naive nymphs. That study demonstrated that
nymphs reared under ion-rich conditions attempted to evade
excessive ion uptake, as they had markedly lower uptake
rates than naive nymphs. Since the present study uses animals
from the same biological population as Orr et al., we can for the
first time provide insights into the relative acclimation poten-
tial of a mayfly to both dilute and ion-rich conditions. Orr
et al. report that nymphs acclimated to a 10.2-fold increase in
ambient Na reduced their Na uptake by about 50% relative
to naive animals [49]. In our present study, nymphs acclimated
to a 15-fold decrease in Na increased their Na uptake by about
49% relative to naive animals (figure 1a). While the magnitude
of the acclimatory response is similar in this comparison, the
flux rates resulting from those changes are quite different.
On the dilute end of the spectrum, the sodium uptake rate of
acclimated animals was only 24% lower than control animals
(figure 1a) whereas on the ion-rich end of the spectrum,
acclimated animals had flux rates that were 47% higher than
controls. Thus, acclimated nymphs maintain influx rates
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closer to those associated with control conditions under dilute
scenarios than they do after acclimation to ion-rich conditions.

One possibility is that the dilute-acclimated nymphsmain-
tain a sufficiently positive net Na influx (see electronic
supplementary material, figure S2) to meet the physiological
demands associated with the life-history outcomes observed
here (table 2). Another possibility is that if the differences in
apical influx rates between control nymphs and dilute-accli-
mated nymphs are somehow detrimental physiologically,
then it must be offset by either (i) reduced turnover (efflux)
or (ii) by enhanced dietary acquisition of Na from periphyton.
For this latter possibility to be true, the acclimated nymphs
would have to enhance their dietary assimilation of Na from
periphyton, and the periphyton itself would have to maintain
somewhat consistent Na concentrations under very dilute
scenarios. Regardless of which of the above possibilities is cor-
rect, it is clear that the enhanced apical Na uptake observed
here in dilute-acclimated nymphs plays a key role in their abil-
ity to better tolerate ion-poor than ion-rich conditions.
Together, these observations provide a physiological expla-
nation for why some species perform better under dilute
conditions, relative to salinized conditions.

We hypothesized that part of the acclimatory response to
extremely dilute conditions could be enhanced ion retention.
This hypothetically could occur via cuticular changes to
reduce the diffusive loss of ions, or via enhanced resorption
(rescue) of ions from the dilute urine (see [41]). Because phys-
iological loss of sodium (or other ions) is commensurate with
uptake rates in tightly regulating organisms [61], we sub-
jected the nymphs to deionized water to obtain an
unbiased comparison of Na retention. Since our measure-
ments of whole-body sodium did not differ across
treatments, the concentration gradients between the
nymphs and deionized water were the same across treatment
groups. We were surprised that nymphs reared under ion-
poor conditions were less retentive (lost sodium faster) in
deionized water than nymphs reared in control water
(figure 2). Thus, our hypothesis was not supported by our
data. Other studies in ion-poor conditions have found that
decreasing paracellular permeability is key in reducing pas-
sive loss of ions in both goldfish [70] and euryhaline
teleosts [71]. It is possible that differences in the sodium
loss rates we observed are related to ionocyte numbers.

Though we only counted ionocytes in nymphs reared
under three different conditions, we observed a marked nega-
tive association between salinity and ionocyte numbers
(figure 3a). Our results agree with previous observations
from Wichard et al. [45] where prolonged exposure to dilute
freshwater in the laboratory resulted in more ionocytes than
those reared in concentrated or normal freshwater in the
mayfly Callibaetis coloradensis. These cells were more widely
distributed along the whole gill than those in the other con-
ditions. The same study found a similar relationship in
Callibaetis floridanus nymphs field collected from fresh and
brackish water [45]. Exposure to ion-rich water resulted in
degeneration of ionocytes in the stonefly Paragnetina media,
suggesting a morphological response to the ion-rich water
[72]. Kefford et al. [73] showed that the surface area of
the anal papillae was impacted by salinity treatments in
Chironomus oppositus larvae; however, it was found that
factors other than salinity impacted the size of the anal
papillae in other larval chironomids. Other studies have not
observed differences in ionocyte numbers as a function of
environmental conditions. For example, Nowghani et al.
found no impact of similar but sub-lethal levels of NaCl
on ionocyte density in the mayfly Hexagenia rigida [74]; how-
ever, this study was conducted on a relatively shorter
timescale (7 days). Berrill et al. [75] did not observe differ-
ences in ionocyte densities in a variety of mayfly species
associated with pH stress. It is important to note the limit-
ations associated with counting the ionocytes by hand, as it
is not possible to distinguish between cells that are on the sur-
face and exposed to the external environment, and those that
are not [31]. Further, this technique does not allow us to
assess whether the surface area of each ionocyte may have
changed due to other conditions. Overall, we think that
while the count of ionocytes is imperfect, it nonetheless pro-
vides insight into a morphological change associated with
physiological acclimation.

Together, our data suggest that N. triangulifer nymphs
have a strong ability to acclimate to dilute conditions. This
acclimation is largely driven by plasticity in ion uptake
rates and is supported by a proliferation of ionocytes. We sus-
pect that the ability to thrive in extremely dilute conditions
requires the maintenance of uptake rates that exceed the
loss via cuticular leakiness and insufficient rescue of ions
from dilute urine [41,76] (see electronic supplementary
material, figure S1). Through acclimation, N. triangulifer can
maintain a relatively narrow range of ion transport rates
even under extremely dilute conditions. By comparing our
results to those of Orr et al. [49], we also see that this organ-
ism is physiologically more likely to thrive in dilute
environments than in ion-rich environments. How broadly
this applies to other taxa is yet to be explored.
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