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pyTCR: A comprehensive and
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T cell receptor (TCR) studies have grown substantially with the advancement in
the sequencing techniques of T cell receptor repertoire sequencing (TCR-Seq).
The analysis of the TCR-Seq data requires computational skills to run the
computational analysis of TCR repertoire tools. However biomedical
researchers with limited computational backgrounds face numerous
obstacles to properly and efficiently utilizing bioinformatics tools for
analyzing TCR-Seq data. Here we report pyTCR, a computational notebook-
based solution for comprehensive and scalable TCR-Seq data analysis.
Computational notebooks, which combine code, calculations, and
visualization, are able to provide users with a high level of flexibility and
transparency for the analysis. Additionally, computational notebooks are
demonstrated to be user-friendly and suitable for researchers with limited
computational skills. Our tool has a rich set of functionalities including various
TCR metrics, statistical analysis, and customizable visualizations. The
application of pyTCR on large and diverse TCR-Seq datasets will enable the
effective analysis of large-scale TCR-Seq data with flexibility, and eventually
facilitate new discoveries.
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Introduction

T cell receptor (TCR) repertoire is a collection of all unique
TCRs in an individual, which is formed through the process of V
(D)J recombination after exposure to antigens and the activation
of the adaptive immune response. With the growing
understanding of TCR repertoire, researchers are able to
leverage detailed TCR-Seq datasets to reveal the changes of
TCR repertoires in a variety of human disease states such as
cancer (1, 2), autoimmune diseases (3, 4), infectious diseases
(5, 6), and neurodegenerative diseases (7, 8). Thus, these have
helped the biomedical community to deepen the understanding
of the roles of the adaptive immune system and adaptive
immune responses. For example, studies have shown the usage
and diversity of TCR repertoires could be utilized to help select
the most suitable immunotherapy for cancer patients (9, 10).
Thus, effective TCR profiling and analysis are informative to
guide certain cancer treatments, which ultimately enables
precision and personalized medicine.

With the rapid development of high-throughput sequencing
techniques in the past decades, TCR-Seq has enabled researchers
to effectively characterize TCR repertoires across various tissue
types and diseases with high specificity and sensitivity by
targeting TCR loci. Even with the available TCR profiling
methods, TCR repertoire metrics such as diversity, gene usage,
and motif enrichment cannot be easily interpreted directly from
TCR-Seq data after initial TCR profiling. Post-analysis is
required to calculate, visualize, and compare the sample level
or population level TCR repertoire characteristics.

Existing bioinformatics tools for TCR repertoire post-
analysis are available as R packages such as VDJTools (11),
Immunarch (12), and HTML programs such as VisTCR (13)
and Vidjil (14). These tools enable biomedical researchers to
analyze TCR-Seq data, however, multiple barriers and
limitations exist. First, as in any R package, users follow the
instructions to enter commands in the command-line interface
and the output will be presented in the summarized tables or
figures. The analytical methods used for the particular step of the
analysis are isolated, which can result in a limited understanding
of the details of the analysis. This also increases the probability of
human errors. Relying on the documentation of the tool is often
not a reliable solution as it typically lacks details, has unclear and
ambiguous wording, and can be outdated for future users.
Second, the existing TCR-Seq analysis tools need to be
installed and utilized with the command-line interface which
can be a challenge for biomedical researchers who lack the
required computational skill sets (15). Third, the output files
are generated as individual files. Biomedical researchers need to
work between different files and tools to finish the post-analysis,
which leads to high chances of creating manual mistakes. Last,
none of the existing tools cover all aspects of the TCR-Seq
analysis. For example, researchers need to use multiple packages
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or additional tools for statistical analysis, which adds an
additional burden for biomedical researchers.

Here, we present pyTCR (python TCR analysis), an easy-
to-use, interactive, and scalable solution with a wider range
of functionalities compared to existing tools. pyTCR utilizes
interactive computational notebooks to facilitate reproducibility
and rigor of performed TCR-Seq analysis. The availability of
well-documented code, visualization, and results of the analysis
in a single notebook will facilitate transparency and
reproducibility of performed analysis, make the users more
aware of the details of the metrics and thresholds being used
in the analysis, as well as minimize the possibility of manual
mistakes and misinterpretation of the TCR-Seq data analysis
results. Notably, pyTCR provides statistical analysis for the first
time in a TCR-Seq analysis tool, which is not available in the
existing tools. We have demonstrated the utility of pyTCR by
applying it to the COVID19-BWNW dataset containing 46
TCR-Seq samples. Additionally, we have compared the
scalability of our tool with the existing tools and have
demonstrated substantial improvement in running time.

Results

pyTCR: a comprehensive and scalable
solution for TCR-seq data analysis

pyTCR, an open-source, user-friendly tool that addresses the
issues mentioned above, offers broader and more comprehensive
TCR repertoire analysis with an increased number of types of
analyses compared to the existing tools. Six types of analysis are
contained in the pyTCR, which include basic analysis, clonality
analysis, diversity analysis, overlap analysis, gene usage analysis,
and motif analysis (Table 1). TCR repertoire metrics,
visualization, and statistical analysis are included in all types of
analyses (Figure 1, Table 1). Our tool for TCR-Seq data analysis
uses interactive computational notebooks for post analysis and
visualization of TCR-Seq data with a rich set of functionalities.
Notably, we have used Google Colaboratory (Google Colab) to
provide the cloud option, which is free to use and provides
different subscriptions based on users” needs. No installation of
the software to the local computers is required if the users choose
to use the Google Colaboratory. However, large files can’t be run
on Google Colab if the users do not subscribe to Google Colab.
The use of computational notebooks enables users to execute
analysis and produce tabular output and customizable
visualization so that users can use the desired features in their
datasets to generate results.

The users can clone the GitHub repository to their local
computer and utilize the pyTCR notebooks locally via Jupyter
Notebook (16). Users who choose to use Google Colab (cloud
option of pyTCR) can upload the data files from local
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TABLE 1 TCR repertoire analysis functions in pyTCR.

Metric

Basic analysis
Read count
Clonotype count

Mean frequency

Geometric mean frequency

Mean length of CDR3 nucleotide
sequence

Convergence

Spectratype

Clonality analysis

The most or the least frequent
clonotype

1-Pielou index

Clonal proportion

Relative abundance (in all repertoire,
top clonotypes, rare clonotypes)
Diversity analysis

Shannon-Wiener index

Normalized Shannon-Wiener index

Inverse Simpson index

Gini Simpson index

D50 index

Chaol estimate

Gini coefficient

Gene usage analysis
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Description

Number of reads in a sample

Number of clonotypes in a sample

Mean of clonotype frequency in a sample
i(pi) +n

xpi1= frequency of clonotype i

n = number of unique clonotype in the sample

Geometric mean of clonotype frequency in a sample

I e

1

pi = frequency of clonotype i

n = number of unique clonotype in the sample

Mean length of CDR3 nucleotide sequence, weighted by clonotype frequency, in a sample
S (len(nt) x pi)

i=1

pi = frequency of clonotype i

n = number of unique clonotype in the sample
len(nt) = length of CDR3 nucleotide sequence

Mean of unique CDR3 nucleotide sequences that code for the same CDR3 amino acid sequence

Frequency of clonotypes based on CDR3 nucleotide lengths
The most or the least frequent clonotype

The evenness of the distribution of the clonotypes 1 + nE[(pi x In(pi))] /In(n)
=1

pi= frequency of clonotype i

n = number of unique clonotype in the sample

The number of distinct clonotypes that accounts for greater than or equal to percentage
(customizable) of the total of sequencing reads

The proportion of repertoire account for clonal groups with specific abundances in a sample

i — (pi x In(pi)

o

pi= frequency of clonotype i
n = number of unique clonotype in the sample

shannon-wiener index +In(n) = number of unique clonotype in the sample
n
Simpson index D = z‘lpi2

i=1
Inverse Simpson index: 1/D

Gini Simpson index: 1-D

The percentage of distinct clonotypes that accounts for greater than or equal to 50% of the total of
sequencing reads

1(f1-1
Chaol estimate = Chaol estimate = S +‘L
22+ 1)
1 1
Variation of Chaol estimate = Variation of Chaol estimate = f2 [0.5*(%)2 + (;—2)3 +

Sl
0.25
)"
f1 = number of clonotypes with read of 1

2 = number of clonotypes with read of 2
S = number of clonotypes

The ratio of the area that lies between the line of equality and the Lorenz curve over the total area
under the line of equality

(Continued)
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TABLE 1 Continued

Metric

V,D,J gene weighted usage

V,D,J gene unweighted usage

Overlap analysis

Morisita-Horn index

Jaccard index

Overlap coefficient

Tversky index

Cosine similarity

Pearson correlation of clonotype
frequencies

Relative overlap diversity

Geometric mean of relative overlap
frequencies

Clonotype-wise sum of geometric mean

frequencies
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Description

Mean of gene frequency weighted by clonotype frequency

Mean of gene frequency by the number of the reads

s
(Z*Exiyi)

_ i=1
Ch=——F— s,
>xit Syi

(B + 55Xy
x;: the number of reads clonotype i is represented in the total number of reads X from one sample
yi: the number of reads clonotype i is represented in the total number of reads Y from another
sample

S: the index of overlapped clonotypes

ANB

AUB

A: sample A, B: sample B

Number of clonotypes that is in both samples divided by the number of clonotypes that is in either
sample

ANB

A
A: sample A (the sample with a smaller clonotype count), B: sample B

Number of clonotypes that is in both samples divided by the number of clonotypes that is in the
sample with a smaller clonotype count
BothAB
oonlyA + BxonlyB + botyhAB
0o=P=0.5 (Serensen-Dice coefficient)
Both AB, number of clonotypes that is in both sample A and B, only A: number of clonotypes that
is only in sample A, only B: number of clonotypes that is only in sample B

.
SAB,
i=1

oL
i=1 i=1

A;: the frequency of clonotype i in sample A
B;: the frequency of clonotype i in sample B
n: the index of overlapped clonotypes

S (ik - 3 - 9k - &)

k=1

N . T2 N . T2
> (¢ik - ¢i)” = > (9jk - 9j)
k=1

k=1

Rij =

@ik: the frequency of clonotype k in sample i
@ik: the frequency of clonotype k in sample j
N: the index of overlapping clonotypes

_ _di

 dixdj

dij: the number of clonotypes that is in both samples

Dij

di: the number of clonotypes that is in sample i
dj: the number of clonotypes that is in sample j

Fij = \/fijfji

N
fij =3 @ik :the total frequency of clonotypes that overlap between samples i and j in sample i
k=1

N
fii = @jk :the total frequency of clonotypes that overlap between samples i and j in sample j
k=1

N
F2ij = S\/@ k@ jk

k=1
@ik:the frequency of clonotype k in sample i

@jk:the frequency of clonotype k in sample j
N: the index of overlapped clonotypes
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(Continued)

frontiersin.org


https://doi.org/10.3389/fimmu.2022.954078
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Peng et al.

TABLE 1 Continued

Metric

- i N
Jensen-Shannon divergence Pi-Y NGO

k=1
KL(P.Q)=Si lo oy

Q=30 log2i

10.3389/fimmu.2022.954078

Description

pi: the sum of overlapped variable segment (V) frequencies in sample 1
qi:the sum of overlapped variable segment (V) frequencies in sample 2

Motif analysis

Amino acid spectratype

Amino acid motif analysChaol estimateis

Nucleotide sequence motif analysis

Frequency of clonotypes based on CDR3 amino acid lengths

Number of counts of the
amino acid motifs

Number of counts of the nucleotide sequence motifs

We documented the name of the metrics (indicated in the column “Metric”) and the description of the corresponding metrics (indicated in the column “Description”).

computers, web-based drives, or GitHub repositories. The
results can be downloaded and stored locally or into web-
based drives by the code provided. pyTCR is capable of
converting results from pre-processing software such as
MiXCR and ImmunoSEQ to the pyTCR analysis format. The
minimal clonotype information should include the counts of
reads, clonotype frequency, CDR3 nucleotide sequence, CDR3
amino acid sequence, and the inferred V, D, and | genes in the
input data files. pyTCR provides conversion to the
corresponding format which consists of the columns of counts
of reads (#count), frequency (freq), CDR3 sequence (cdr3nt),
CDR3 amino acids (cdr3aa), V gene (v), D gene (d), J gene (j),
features (if provided), sample name. These should be already
filtered for the non-coding CDR3 by the upstream tools. If the
metadata is not available, a notebook for combining individual
files to a metadata file should be executed prior to any TCR-Seq
analysis to reduce the burden of analyzing individual data files
separately. In order to achieve this, all the sample files should be
stored or uploaded in one folder prior to generating the
metadata file. The notebook that combines individual sample
data files to a metatable with all the files is provided.

pyTCR is able to perform basic analysis
to characterize the TCR repertoire

The focus of the basic analysis is to group and provide the
most fundamental TCR repertoire metrics in one place. The
basic analysis performed by pyTCR estimates provides the
number of reads, clonotype counts, mean clonotype
frequency, the geometric mean of clonotype frequency, mean
length of CD3 nucleotide sequence, convergence, spectratype
as TCR repertoire metrics. The visualization is available for all
the metrics (except for spectratype) in the basic analysis at the
individual sample level and group level. The available plot
types are violin plot, strip plot, swarm plot, box plot, boxen
plot, point plot, and bar plot (Figure 1A, Supplementary
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Figure 1). We were able to detect that the mean reads count
in the hospitalization group was lower than that in the non-
hospitalization group (480844.1 and 554580.3, respectively; t-
test: p = 0.229), and the mean clonotype count in the
hospitalization group was lower than in the non-
hospitalization group (271777.6 and 328980.1, respectively; t-
test: p = 0.136) in the COVID19-BWNW dataset.

pyTCR is able to perform clonality
analysis to assess the evenness of
distribution of TCR clonotypes

The clonality analysis offers the measurements of clonality,
which has been used to assess the evenness of distribution of the
clonotypes based on the relative abundance of clonotypes in the
sample. The metrics include the list of the most or the least
frequent clonotypes, 1-Pielou index for evenness measure (0
means no evenness, 1 means complete evenness), clonal
proportion, and the distribution of clonotype groups based on
relative abundance. Specifically, clonal proportion presents the
number of clonotypes that consist of a certain percentage of the
clonotypes in the repertoire. In the COVID19-BWNW dataset,
the number of clonotypes that counts for 10% of the clonotypes
in the repertoire was smaller in the hospitalization group than in
the non-hospitalization group (49.5 and 459, respectively;
Wilcoxon rank-sum test, p = 0.596), the corresponding plots
were presented in various types (Supplementary Figure 2).
Additionally, the distribution of clonotype groups based on
clonotype frequency or count in each sample can be presented
in bar plots across all the clonotypes, the top clonotypes, and the
rare clonotypes (Supplementary Figure 3). We presented the
distribution of five clonotype groups (hyperexpanded, large,
medium, small, and rare) across all clonotypes in Figure 1C,
this categorization is similarly done in other existing tools. The
users have full control of the thresholds of the clonotype groups
in our tool.
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Visualization of TCR repertoire metrics generated using pyTCR. (A) The clonotype counts of each sample grouped by hospitalization status were
presented as a box plot and strip plot. (B) The normalized Shannon-Wiener index of each sample grouped by hospitalization status was presented
as a violin plot. (C) The distribution of clonotype groups in each sample was presented as a stacked bar plot. The clonotypes were categorized into
five groups based on the clonotype frequencies. Hyperexpanded clonotypes were the clones with frequencies between 0.01 to 1, large clonotypes
were the clones with frequencies between 0.001 to 0.01, medium clonotypes were the clones with frequencies between 0.0001 to 0.001, small
clonotypes were the clones with frequencies between 0.00001 to 0.0001, rare clonotypes were the clones with frequencies between 0 to
0.00001. (D). The V-J combinations with V and J gene frequencies in sample 1445BW were presented as a Sankey plot.
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pyTCR is able to perform gene usage
analysis to detect over and
underrepresented TCR genes across
the samples

Gene usage analysis provides the weighted and unweighted V/
D/] gene usage calculations. For gene usage analysis, V gene usage,
D gene usage, and J gene usage, both weighted (which is based on
clonotype frequency) and unweighted (which is based on
clonotype count) are provided as TCR repertoire metrics.
Heatmap and hierarchically clustered heatmap are the available
visualizations (Supplementary Figure 4A, B). Sankey plot is also
available to visualize the V-J combinations (Figure 1D,
Supplementary Figure 4C), this is not provided by other existing
tools. We observed higher V gene weighted usage of TRBVO05-
05*01 (0.0084 and 0.0066, respectively) and TRBV13-01*01
(0.0069 and 0.0042, respectively) in the non-hospitalization
group. In comparison, we observed higher V gene weighted
usage of TRBV20 (0.0638 and 0.0588, respectively) in the
hospitalization group in the COVID19-BWNW dataset. We also
observed higher V gene unweighted usage of TRBV18-01*01
(0.035 and 0.031) and TRBV30-01*01 (0.025 and 0.019)
in the hospitalization group. After the Bonferroni correction to
account for the multiple comparisons, according to the
adjusted p values, the differences mentioned above were not
statistically significant.

pyTCR is able to assess the diversity of
TCR repertoires

Diversity analysis offered by pyTCR includes all the widely
adopted indices to characterize the diversity of TCR repertoire,
which contains Shannon-Wiener index, normalized Shannon-
Wiener index, inverse Simpson index, Gini Simpson index, D50
index, Chaol estimate, Gini coefficient (Table 1). High Shannon-
Wiener index, low normalized Shannon-Wiener index, high
inverse Simpson index, high Gini Simpson index, high Chaol
estimate, and high Gini coefficient represent high clonal diversity.
Additionally, the D50 index represents the percentage of unique
clonotypes that account for greater than 50% of the total number of
sequences. The visualization is available for all the diversity metrics
at the sample or group level as violin plot, strip plot, swarm plot,
box plot, boxen plot, point plot, and bar plot (Figure 1B,
Supplementary Figure 5). In the COVID19-BWNW dataset, the
median Shannon-Wiener index, the median inverse Simpson
index, and the median Gini Simpson index were all lower in the
hospitalization group than in the non-hospitalization group. Even
though none of the diversity indices was statistically significant,
most of the diversity indices showed the trend that patients in the
non-hospitalization group have more diverse TCR clonotypes than
patients in the hospitalization group. This finding was consistent
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with the results observed in the previously published studies, that
severe COVID-19 patients had reduced TCR diversity than
moderate COVID-19 patients (17, 18).

pyTCR is able to effectively compare
clonotypes and motifs across samples

The overlap analysis offers a comprehensive list of overlap
metrics for comparing the clonotype frequencies between two
samples. These metrics include the Jaccard index, overlap
coefficient, Morisita-Horn index, Tversky index, Cosine similarity,
Pearson correlation of clonotype frequencies, relative overlap
diversity, the geometric mean of relative overlap frequencies, the
clonotype-wise sum of geometric mean frequencies, and Jensen-
Shannon divergence. For overlap analysis, the visualization is shown
in the heatmaps (Supplementary Figure 6). Currently, existing tools
only accept one sample per file for overlap comparisons which can
be difficult to manage if the data already contains multiple samples
per file. pyTCR allows for an unlimited amount of samples per file
which enables more flexibility and less file management.

Motif analysis provides enriched nucleotide and amino acid
motif discovery with customized length. For motif analysis, the
amino acid motif counts and nucleotide motif counts in each
sample are provided. The users are able to customize the length of
the motif and visualize the distribution of the motifs in each
sample or each group. In the COVIDI9-BWNW dataset, we
observed amino acid motifs NTEAFF, YNEQFF, CASSLG,
TDTQYF, NQPQHF, TGELFF, SYEQYF were the most
abundant ones in both the hospitalization and non-
hospitalization groups (Supplementary Figure 7A). We also
observed nucleotide motifs such as TCTGTG, CTGTGC,
TGTGCC, GTGCCA, TGCCAG, GCCAGC, CCAGCA,
CAGCAG were the most abundant ones in both hospitalization
and non-hospitalization groups (Supplementary Figure 7B).

pyTCR offers several advantages
compared to the existing tools

pyTCR provides more comprehensive functionalities
compared with VDJtools, Immunarch, and VisTCR
(Supplementary Table 1). Notably, pyTCR includes several
innovations that have not been implemented in the VDJtools,
Immunarch, or VisTCR before.. First, statistical analyses for
TCR-Seq datasets are embedded in pyTCR computational
notebooks. No additional software or platform is needed for
statistical analysis. Second, pyTCR has the most comprehensive
list of overlap indices, which enable the thorough comparison
between clonotypes across samples. Third, pyTCR offers
enriched motif detection for both amino acid sequences as
well as nucleotide sequences. Furthermore, we have compared
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the results produced by pyTCR with VDJtools on the types of
analysis that are provided by VD]Jtools on the COVIDI9-
BWNW dataset. The results are consistent across our tool
and VDJtools.

We also evaluated the scalability of pyTCR by varying the
number of samples in the TCR-Seq data input files. After
subsampling the COVID19-BWNW dataset into data files
containing 2 to 46 samples, we recorded the central processing
unit (CPU) time and memory usage required by pyTCR,
VDJtools, and Immunarch when running overlap analysis. We
observed that pyTCR required a significantly less amount of
CPU time across all the subsamples compared to VDJtools and
Immunarch (Figure 2A). For example, on average, pyTCR used
5 minutes and 25 seconds to process the overlap analysis for 46
samples, while Immunarch used 1 hour 49 minutes and 46
seconds to process the same number of samples. In terms of
memory usage, pyTCR had reduced memory usage for most of
the subsamples (Figure 2B). According to our benchmark
results, we observe that pyTCR has up to 22 times faster
performance than existing TCR-seq analysis tools, especially
for datasets with larger numbers of samples.

Discussion

We have presented pyTCR, a comprehensive and scalable
computational notebook-based solution for TCR-Seq analysis
and visualization with a rich set of functionalities. For the cloud-
based version, we use Google Colaboratory (Google Colab).
Google Colab, as a user-friendly, free with no installation
needed prior to use service for Google account holders, is
suitable for biomedical researchers with a limited
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computational background. Using interactive computational
notebooks promotes high transparency for biomedical
researchers because the steps of analyzing and visualizing are
recorded and saved, which are easy to be shared with the
scientific community. The goal of pyTCR is to provide
straightforward scripts for useful analysis which can be easily
modified and complemented by users instead of stand-alone
software tools with well-structured code. The availability of the
code as part of the notebook allows the users to document all the
steps of the analysis and share them in a reproducible and
transparent way.

pyTCR offers several advantages compared to the existing
tools. First, pyTCR includes more comprehensive
measurements than existing tools to analyze TCR-Seq data.
The enriched measurements can provide users with more
options to effectively characterize TCR repertoires and
compare across various phenotypes. Furthermore, pyTCR
provides code and analysis jointly together. Users can
understand the definition of measurements and interpret
results easily with pyTCR, as the explanation of the code and
the math equations are available in the notebooks.
Additionally, pyTCR allows users to adjust parameters easily
and directly in the notebooks. Unlike other traditional
bioinformatics tools, changing parameters that generate
separate files which leads to high error rates by analyzing
across different files, pyTCR provides all the analysis to be
performed in the cloud where the files are automatically saved
with the updated parameters and no generation of different
files is needed. Last, our tool is more scalable as it requires less
computational time for analysis.

We recognized that there are other tools available for TCR-
Seq analysis, however, these tools may not share the same
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Central Processing Unit (CPU) time (A) and Memory usage (B) for subsamples of the COVID19-BWNW dataset for overlap analysis. Each dot on
the line plot represented the average of 10 runs for different input sizes.
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purposes as pyTCR. For example, both VisTCR (13) and Vidjil
(14) are web-based tools for TCR-Seq analysis that uses fastq
files as input files. While pyTCR utilizes the tsv or csv files
generated by pre-processing tools such as MiXCR to conduct
post-analysis. The sample files that we used in the manuscript
were generated by Adaptive Biotechnologies, unfortunately, the
users do not have access to the raw sequencing data per user
policy. VDJviz is a web-based tool as well and it uses VDJtools as
a back-end.

However, there are limitations of pyTCR including the
possibility of accidentally modifying the code resulting in
generating errors, limited available types of analysis, and
storage and processing speed limits from the Google Colab
platform. For example, users with limited experience with
Python scripting may be prone to generate errors with the
availability of code and results in interactive notebooks.
Additionally, pyTCR cannot be used directly on raw
sequencing files (such as fastq format).

In conclusion, our tool offers broader and more powerful
functions in TCR repertoire research. We expect the
computational notebook-based tool to be adopted by the
broad biomedical community as it carries benefits that are
superior or comparable to R packages.

Method
TCR-Seq data

We used the COVID19-BWNW dataset from the Adaptive
ImmuneRace study to demonstrate the functionality of pyTCR.
COVID19-BWNW dataset contains 46 convalescent COVID-19
patient samples collected at Bloodworks Northwest.
Demographic and clinical features including age, gender,
smoking status, ICU admit status, birth year, blood type, CMV
at donation, days from the last symptom to sample date,
ethnicity, race, height, weight, and hospitalization status are
reported. The extracted genomic DNA was sequenced based on
Multiplex PCR and only for the TCR beta chain by using the
MiSeq platform.

TCR-Seq data preprocessing

We downloaded 46 TCR-Seq data samples and the
file containing demographic and clinical features in the
tab-separated values (tsv) format. All the demographic and
clinical features were listed in the sample_tags column in the
file. The features were split into one in each column for
further analysis.
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Statistical analysis

The statistical analysis is available for comparing numerical
values across two groups. We first examine whether the datasets
are normally distributed. If the dataset is normally distributed,
we use the student’s t-test to evaluate the statistical significance.
Otherwise, we use Wilcoxon rank-sum test to evaluate the
statistical significance. Bonferroni correction is also included
to count for the multiple comparisons across different genes.

Jupyter notebooks

Jupyter notebooks (https://jupyter.org) is a web-based
interactive computing platform that contains code, markdown
text, and visualizations. These features enable users to conduct
reproducible and transparent data analysis. We develop pyTCR
based on Jupyter notebooks. In each Jupyter cell, we include
code for either calculation for analysis or visualization. Users can
easily change the parameters in the code to generate the results
of their interests. Markdown text is used for instructions
and explanations.

pyTCR data structure and software
implementation

The individual input data file can be text files, tab-separated
values (tsv) files, or comma-separated values (csv) files. pyTCR
uses a small suite of robust open-source python libraries to
facilitate complex data analysis and visualizations. Python
libraries including Pandas, Numpy, Matplotlib, Seaborn, and
Scipy are used to provide rich functionality with limited
amounts of code. Pandas is used to convert tabularly
formatted TCR-Seq data into python data frames for
notebooks to utilize. Numpy is used to perform complex
mathematical operations across python data frames.
Matplotlib and Seaborn are then used in tandem to generate
rich data visualizations from the resultant data.

One critical component of pyTCR functionality is the
overlap analysis between two samples. Such operations are
unavoidably expensive in terms of computing power. Yet,
pyTCR employs multiple different technical optimizations by
default to provide the most optimal performance for researchers.
In the case of any piecewise comparison between two samples,
we first index and group the data into a key-value pair hash table
for instantaneous look-up time. We then uniquely merge
samples for comparison and index them using a hash table in
the same manner. By utilizing this method, we are able to negate
a large amount of computing time that would otherwise be
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associated with searching for the correct samples in the data set.
This method allows us to instantly retrieve the required samples
for future look-ups which shifts most of the computing time
from slow searches, back onto the piecewise comparisons.

Comparison with other methods

We used the COVID19-BWNW dataset to compare pyTCR
to VDJtools and Immunarch for benchmarking purposes. We
subsampled the COVID19-BWNW dataset to files containing 2,
4,6, 8,10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40,
42, 44, 46 TCR-Seq samples. We then ran the overlap analysis of
each tool ten times and computed the average CPU time and
RAM usage for each. For the comparison, we utilized a high-
performance computing cluster (HPCC) to acquire the most
accurate benchmarking results. However, in the comparison of 2
TCR-Seq samples for VDJtools and Immunarch, the HPCC was
unable to record the results due to the short nature of the task.
That is, the benchmark ended too quickly for the HPCC to
accurately record the results. Thus, the results for 2 TCR-Seq
samples were not taken with the average of ten runs. Instead, we
recorded the results once by introducing an artificial stall in the
benchmark such that the HPCC had time to record, and then we
subtracted the artificial stall time from the final CPU time. The
RAM usage remains unchanged with this workaround.
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SUPPLEMENTARY FIGURE 1

The clonotype counts were shown in groups by hospitalization status. The
patients that were not hospitalized were shown in blue while the patients
that were hospitalized were shown in orange. Different types of plots were
shown as follows: (A) violin plot (B) strip plot (C) swarm plot (D) box plot
(E) boxen plot (F) point plot (G) bar plot.

SUPPLEMENTARY FIGURE 2

Clonal portion grouped by hospitalization status. The y-axis presented the
number of clonotypes that counted for 10% of all the clonotypes in the
repertoire. The patients that were not hospitalized were shown in blue
while the patients that were hospitalized were shown in orange. Different
types of plots were shown as follows: (A) violin plot (B) strip plot (C) swarm
plot (D) box plot (E) boxen plot (F) point plot (G) bar plot.

SUPPLEMENTARY FIGURE 3

The distribution of clonotype groups in each sample. (A) The distribution
of clonotype groups was based on the clonotype frequency across all the
clonotypes. Hyperexpanded clonotypes (blue) were the clones with
frequencies between 0.01 to 1, large clonotypes (orange) were the
clones with frequencies between 0.001 to 0.01, medium clonotypes
(green) were the clones with frequencies between 0.0001 to 0.001,
small clonotypes (red) were the clones with frequencies between
0.00001 to 0.0001, rare clonotypes (purple) were the clones with
frequencies between 0 to 0.00001. (B) The distribution of clonotype
groups based on the clonotype count across the top 100 clonotypes. The
clonotypes with clone counts between 1001-5000 were presented in
blue, the clonotypes with clone counts between 101-1000 were resented
in orange, and the clonotypes with clone counts between 11-100 were
presented in green. (C) The distribution of clonotype groups based on the
clonotype count across the rare 100 clonotypes. The clonotypes with
clone count of 1 were presented in blue.

SUPPLEMENTARY FIGURE 4

Heatmap of the weighted V gene usage in each sample and the Sankey
plot for V-J combinations. (A) The heatmap of V gene weighted usage (B)
The hierarchically-clustered heatmap of V gene weighted usage. x-axis
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