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RNA sequencing (RNA-seq) has become an exemplary technology in modern
biology and clinical science. Its immense popularity is due in large part to the
continuous efforts of the bioinformatics community to develop accurate and
scalable computational tools to analyze the enormous amounts of transcriptomic
data that it produces. RNA-seq analysis enables genes and their corresponding
transcripts to be probed for a variety of purposes, such as detecting novel exons or
whole transcripts, assessing expression of genes and alternative transcripts, and
studying alternative splicing structure. It can be a challenge, however, to obtain
meaningful biological signals from raw RNA-seq data because of the enormous
scale of the data as well as the inherent limitations of different sequencing
technologies, such as amplification bias or biases of library preparation. The
need to overcome these technical challenges has pushed the rapid
development of novel computational tools, which have evolved and diversified
in accordance with technological advancements, leading to the current myriad of
RNA-seq tools. These tools, combined with the diverse computational skill sets of
biomedical researchers, help to unlock the full potential of RNA-seq. The purpose
of this review is to explain basic concepts in the computational analysis of RNA-
seq data and define discipline-specific jargon.
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1 Introduction

High-throughput DNA sequencing technologies, including
next-generation sequencing and the newly emerging third-
generation sequencing, enable the gene sequences of living
organisms to be probed in a cost-effective manner (Shendure
and Ji, 2008). These sequencing technologies have also been
adapted for RNA sequencing (RNA-seq), which enables the

10.3389/fgene.2023.997383

expression of various RNA populations, including mRNA and
total RNA, to be detected and quantified. RNA-seq has reshaped
biomedical research by expanding researchers’ ability to analyze
a vast range of biological data (Kukurba and Montgomery,
2015). To derive biological insights from RNA-seq data,
researchers need to understand the steps involved in RNA-
seq analysis and select appropriate tools to answer their

research question.
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FIGURE 1

Overview of RNA-seq. RNA-seq is a process of creating short sequencing reads from RNA molecules. The steps consist of first converting the RNA
(A) into cDNA (B), then (optionally) amplifying the cDNA by PCR (C), and finally fragmenting the cDNA into short pieces (known as fragments). After the

sequencing library (D) is prepared, the fragments are used as input for nex

t-generation sequencing (E). The resulting sequence reads contained in FASTQ

files are then aligned to a reference sequence (F). Modern high-throughput sequencing machines can generate up to 150 million reads per run. The

reference sequence, shown as a pink line, is known. The goal of the align
each read. Reads are shown to align to the specific positions/locations
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ment is to find the locus in the reference sequence with the greatest match to
and these mapped locations are recorded.
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Biomedical researchers are often tasked with using computational
methods for RNA-seq analysis, which are typically available wrapped as
software tools and packages. In this review, we provide an overview of
diverse methodologies for RNA-seq analyses that can be used to detect
novel exons and transcripts, quantify gene expression and alternative
splicing, and study alternative splicing structure. We discuss the steps
from the generation of raw data using sequencing technologies to the
effective interpretation and visualization of RNA-seq data using
mapping and quantification techniques. By summarizing the
of RNA-seq data
generation, analysis, and software development, we hope this review

biological and computational foundations

will lead to a more deliberate use of existing computational tools.

2 RNA sequencing

RNA-seq uses high-throughput sequencing of nucleic acids to
determine the nucleotide sequence of RNA molecules as well as the
quantities of specific RNA species within populations of RNA
molecules. RNA-seq analysis requires specialized computational tools
that can account for the shortcomings of sequencing technologies,
including the generation of sequencing errors (Le et al,, 2013), length
biases (Oshlack and Wakefield, 2009), and fragmentation (Tuerk et al.,
2017). Computational analysis of RNA-seq data has led to many
scientific advances, including novel therapeutic discoveries, detailed
understanding of genetic regulatory regions, and identification of
biomarkers and pathogenic mutations (Han et al., 2015).

Preparation of an RNA-seq library starts with extraction and
isolation of RNA from a biological sample, such as a cell line or a
frozen tissue sample. For RNA-seq performed with short-read
sequencing (see Section 2.1), the isolated RNA is reverse-
transcribed and converted into cDNA, which is then amplified by
polymerase chain reaction (PCR) and fragmented into short
sequences (either before or after PCR) (Prakash and Haeseler,
2017) (Figure 1). After the RNA molecules are processed, the
RNA-seq library becomes the input for a sequencing platform
(Kukurba and Montgomery, 2015), which generates reads
(ie., the sequenced fragments from the RNA-seq library).

2.1 High-throughput RNA-seq technologies

High-throughput sequencing techniques can derive millions of
nucleotide sequences from an individual transcriptome (Stark et al,
2019). These nucleotide sequences provide multifold coverage of the
whole transcriptome. High-resolution RNA-seq can identify which genes
are actively transcribed in a sample and quantify the levels at which
alternative transcripts of a gene are transcribed (Gerstein et al., 2007). The
reads generated by different sequencing technologies have lengths
ranging from hundreds of base pairs (usually referred to as short
reads) to thousands of base pairs (referred to as long reads)
(Shendure and Ji, 2008; Haas and Zody, 2010; Pollard et al, 2018).
Illumina, Nanopore, and PacBio are among the most commonly used
high-throughput sequencing platforms (Ye et al, 2015).

Mlumina sequencing, considered a next-generation sequencing
technology, is based on sequencing-by-synthesis chemistry and was
first commercialized in 2006 (Shen and Shen, 2019). For Illumina
RNA-seq, isolated RNAs are reverse-transcribed into single-
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stranded c¢cDNA, which is then ligated to synthetic adapters,
immobilized on a solid surface, and amplified by PCR. Then, a
reaction mixture is added containing primers, DNA polymerase,
and modified nucleotides. The modified nucleotides have a
fluorescent label that serves as both a reversible terminator of
DNA synthesis and an indicator of which nitrogenous base the
nucleotide contains. As a new strand of DNA is synthesized using
the immobilized cDNA as a template, each incorporated nucleotide
is detected with a charge-coupled device (CCD) camera and identified
by the color of the fluorescent label. The fluorescent label is then
removed, and the next nucleotide is added in a new round of DNA
synthesis. This cycle is repeated until each base in the cDNA is
identified. The sequences of more than 10 million cDNA fragments
can be simultaneously determined in parallel using the Illumina
platform, giving rise to higher sequencing throughput compared
with other sequencing platforms (Morganti et al., 2019; Workflows
for RNA Sequencing, 2023).

Nanopore sequencing, which serves as the basis for the MinION,
GridIOn, and PromethION platforms, was first introduced in
2014 by Oxford Nanopore Technologies. Nanopore sequencing
can produce short or long reads from native DNA and RNA
fragments of any length. Nanopores are very small holes in a
membrane that can be created by pore-forming proteins or by
The
simultaneously sends an ionic current and a single strand of

non-biological means. Nanopore sequencing method
DNA or RNA through a nanopore. As the ionic current passes
through each nucleotide that successively occupies the nanopore, it
undergoes disruptions that are unique to the nitrogenous base. The
patterns of disruption in the current can be interpreted to identify
each base in the DNA or RNA strand that passes through the
nanopore. Whereas short-read sequencing technologies such as
Mumina require chemical modification or PCR amplification,
Nanopore technology is capable of sequencing DNA or RNA
without these additional steps, making it a third-generation
sequencing technology (Bharagava et al., 2019).

PacBio sequencing, also known as SMRT (single-molecule, real-
time) sequencing, was introduced in 2010 and generates full-length
cDNA sequences (i.e., long reads) that characterize transcripts of
targeted genes or across entire transcriptomes. Long reads generated
by PacBio are accurate at the scale of a single molecule because they
are generated by a process of circular consensus sequencing, in
which the same ¢cDNA is effectively read many times (Eid et al,
2009; Vierra et al, 2021). The comparatively high sensitivity of
PacBio can be limited by external factors. For example, PacBio can
produce full-length ¢cDNA during the library preparation step;
however, it can only generate high-quality reads if the target
cDNA is short enough to be sequenced in multiple passes.

Each sequencing technology has inherent advantages and limitations,
so no technology is best suited for all types of RNA-seq analysis (Box 1).
Short-read technologies can generate data with a lower error rate and
higher throughput than long-read technologies; however, the short-read
length makes reconstruction and quantification of the transcriptome
challenging (Korf, 2013; The RGASP Consortium et al, 2013a; The
RGASP Consortium et al., 2013b; Amarasinghe et al,, 2020). Long-read
sequencing improves the accuracy of assembly (concatenation of individual
reads to reassemble the transcriptome), or can even eliminate the need for
assembly, as each read can cover an entire transcript. Long-read sequencing
can also be used to produce complete, unambiguous information about
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FIGURE 2

Alternative splicing and RNA-seq technologies. The flow of genetic information begins with DNA, which consists of introns and exons. DNAis
transcribed into pre-mRNA and then further processed into mature mRNA by splicing out the introns and leaving the exons glued together. The
mRNA is then translated into a protein. Transcripts with different arrangements of exons can be formed in a process called alternative splicing or
exon skipping. An RNA-seq read is a short sequence sampled from a transcript. Reads are generated using sequencing technologies such as

(A) the Illumina platform, which produces short reads, and the (B) Nanopore and PacBio platforms, which produce long reads. The figure depicts
two scenarios in which uniquely mapped reads are aligned to a reference transcriptome (C) and a reference genome (D), respectively. A few of the
reads are multicolored, indicating that when aligned, they span across an exon-exon junction. Some of the shorter reads (single-colored) are
aligned only to a single exon and do not span across the junction. TSS, transcription start site; TES, transcription end site.
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Box 1 | Advantages and limitations of short and long reads

i. Error rate—Short read sequencing technologies have a lower error rate when compared to long read sequencing technologies (a, b).
ii. Throughput—The throughput of long read sequencing technologies is typically lower than the throughput of short read sequencing

technologies (c).

ii. Alignment—Short reads suffer from multi-mapping issues, whereas longer reads, by nature of having more information, can be more accurately
mapped to its origin. Due to a high error rate, pairwise alignment between the read, the reference transcriptome, and/or genome is more challenging for

long reads compared to short reads.

iv. Assemble novel transcripts—Longer reads are preferred for de novo assembly, because they make the assembly step efficient. Most short reads do
not span the shared region or shared exon junction, making the assembly step ambiguous. Full-length transcript sequencing eliminates the need for

assembly.

v. Estimate transcripts and gene expression—Shorter reads are preferred for quantification of transcripts due to their higher throughput. However,
assigning short reads to the transcripts requires more advanced probabilistic and statistical approaches. Longer reads have lower throughput, but they
can usually cover the entire transcript and make determination of the transcript for each read a straightforward process.

A HIGH Read length

Error rate c

Throughput

o I

® llumina

alternative splicing, gene structure, regulatory elements, and coding regions.
Long-read sequencing currently has a higher error rate and lower
throughput compared with short-read sequencing, however (Figure 2)
(Sedlazeck et al., 2018; De Maio et al,, 2019; Mahmoud et al,, 2019). Hybrid
approaches that combine long reads and short reads can eliminate the
limitations of each separate approach and can be used to accurately
quantify and assemble known and novel transcripts (De Maio et al,
2019; Amarasinghe et al,, 2020; Berbers et al, 2020), but they also have
higher costs and more material requirements. Data gathered using
Nlumina, Nanopore, and PacBio sequencing technologies can be used
to address a wide range of research areas, including transcriptome analysis,
population-scale analysis, and clinical research (Wang et al,, 2021).

3 RNA-seq data science: From raw data
to effective interpretation

RNA-seq is multifaceted and can be used to uncover and
expound new insights on, for example, a dysregulated gene or
defective protein that has a downstream effect leading to a
disease state (Costa et al., 2010). Computational analysis of RNA-
seq data is central to decoding the biological complexities in the
transcriptomes of living organisms, including humans (Costa et al.,
2010). Here, we describe the major steps of computational analysis
of RNA-seq data, beginning from the processing of raw data to the
uncovering of biological insights.

3.1 Quality control of raw data

During the sequencing process, errors are introduced into reads
that can bias the results of downstream analyses. Read trimming and
data quality control to filter and assess the quality of raw reads (Yang

et al., 2013) are therefore essential after the reads have been
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generated. Read trimming removes adapter sequences and
portions of reads with low accuracy, as indicated by a low
PHRED quality score (Martin, 2011; Dodt et al., 2012; Bolger
et al,, 2014). In addition, computational error correction can be
applied to reduce the number of sequencing errors (Lima et al., 2020;
Mitchell et al., 2020).

4 Read alignment

Read alignment is an essential step in RNA-seq downstream
analysis. RNA-seq data typically lack information about the order
and origin of the reads, including the specific part, homolog, or
strand of the genome from which they originate. Computational
alignment of the reads to an annotated reference transcriptome
can establish where on the genome the reads originated (Figure 1)
(Brown, 2002). Alignment of the reads to a reference sequence
also reveals how many reads overlap each position on the
reference sequence, which is known as the coverage. There are
several bioinformatics tools (e.g., GenomeScope (Vurture et al.,
2017), 2020), and
Merqury (Rhie et al,, 2020)) that can estimate the coverage

Smudgeplot (Ranallo-Benavidez et al,

without mapping the reads to a reference sequence (Ranallo-
Benavidez et al., 2020; Rhie et al., 2020), as most of the overlap
between reads is preserved with or without the reference
sequence (Vurture et al., 2017) (Figure 1).

Alignment of RNA-seq reads to a complementary reference
sequence can help determine which transcripts are expressed and
the degree to which they are expressed, but the alignment
approach is ill-equipped to discover transcripts that are
missing from the reference sequence. Furthermore, even the
human reference transcriptome remains incomplete (Nellore
2016). Novel
performing de novo assembly of RNA-seq reads to generate an

et al, transcripts can be discovered by
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entire transcriptome without alignment to a reference sequence;
however, this can be challenging and requires large amounts of
computational time and resources (Grabherr et al., 2011) As an
alternative, RNA-seq reads can be aligned to curated databases of
known transcripts such as RefSeq (Pruitt et al., 2007), UCSC
genome browser, Ensembl, GENCODE (GENCODE, 2022), and
AceView (Larsson et al., 2005), and reads that fail to align to
known transcripts can then be aligned to a reference genome to
identify novel transcripts.

One computational challenge in aligning RNA-seq reads to a
reference genome is the handling of spliced junctions, where one
part of the read maps to the end of one exon and the rest of the
read maps to another exon, which may be located thousands of
base pairs away from the first exon. Spliced junctions are the
result of the removal of non-coding parts of a gene, called introns,
and the splicing together of the coding parts of the gene, called
exons. Genes can generate multiple mRNA transcripts through
alternative splicing. As a result, exons are combined or skipped in
different ways and have alternative start/end sites. These varying
combinations create different transcripts, known as isoforms,
from the same gene. As a biological process, alternative
splicing is evolutionarily advantageous, because it enables the
production of different protein variants from the same genetic
information (Figure 2). When genome annotations are available,
existing exon structures can be used to map reads across known
splice junctions; however, this knowledge-guided approach may
be biased towards mapping only known junctions while failing to
discover novel ones.

In cases where reads align to multiple transcripts, it might not be
possible to discern from which transcript the reads originate. Splice
alignment software packages (Wang et al., 2010; Dobin et al., 2013;
Kim et al, 2019) are designed to minimize multi-mapping by
correctly aligning reads across the exon-intron junctions of the
reference genome (Figure 2). This can be a crucial first step of
reference-guided assembly, wherein transcripts that are present in
the sample but not annotated in the reference are assembled using
the spliced read alignments to the reference.

In some instances, reads do not perfectly align with the
reference sequence but instead contain mismatches, which can
be caused either by sequencing errors or by biological variation
such as mutations (Mitchell et al., 2020). RNA-seq alignment
tools are typically equipped with a customizable threshold for
tolerating mismatches in the alignment; however, it is important
to distinguish between sequencing errors and real variation
and the
Specialized computational tools (Abate et al., 2014; Fernandez-

between the transcripts reference  sequence.
Cuesta et al., 2015) can identify and classify genes using strategies
such as de novo assembly (assembly of reads without alignment to
a reference sequence), identification of reads that span fusion
junctions, and filtering of gene fusion candidates based on

various criteria.

5 Quantitative analysis of gene
expression

RNA-seq enables quantitative analysis of gene expression at the
level of alternative transcripts. The sequence fragments derived from
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mRNA can reveal which genes are expressed and how strongly they
are expressed. Additionally, differential expression (DE) analysis can
show how expression levels change under different conditions or
between different populations.

5.1 Estimation of transcript and gene
expression

Computational methods can estimate expression levels of
genes and transcripts by counting the number of reads that
match individual reference transcripts. Tools like HT-Seq-
count, Rcount, and featureCounts (Liao et al., 2014; Anders
et al.,, 2015; Schmid and Grossniklaus, 2015) are highly robust
and widely used for such analyses; however, counting-based
tools are ill-equipped to estimate the expression levels of
different isoforms of expressed genes using short reads, as
the majority of isoforms share a large percentage of exons
and cannot be uniquely assigned to individual transcripts
(Figure 2). The shorter the reads, the greater the probability
that they will match multiple transcripts. A conservative
approach to tackle this challenge is to consider only the
reads that uniquely map to a single transcript (e.g., reads
that map to transcript-specific splicing junctions or exons)
(Conesa et al., 2016). An alternative approach that utilizes a
larger fraction of the RNA-seq reads is to probabilistically
assign reads to the isoforms from which they likely
originated (Li and Dewey, 2011; Nicolae et al., 2011; Trapnell
et al., 2012; Pertea et al., 2015).

A number of approaches quantify gene expression using
complete read alignment, which requires large amounts of
computational power and time to compare each read to
reference sequences base-by-base. Pseudoalignment methods
have been developed as an alternative approach that has a
much smaller computational burden. These methods forgo the
base-by-base and determine an
approximate alignment of the reads on the genome, which is

accuracy of alignment

still ~sufficiently accurate to quantify gene expression.
Pseudoalignment algorithms leverage a pre-compiled library of
unique k-mers (exact substrings of length k) contained in known
transcripts and assign reads to transcripts by counting the k-mer
occurrences in the reads, thus achieving up to 100 times faster
quantification compared with alignment-based methods (Bray
et al.,, 2016). Sailfish (the pioneer of pseudoalignment) (Patro
etal., 2014), Salmon (Patro et al., 2017), and Kallisto (Bray et al.,
2016) each utilize pseudo-alignment-based algorithms to
quantify the isoforms of expressed transcripts (Alser et al.,
2020), each providing comparable accuracy in expression
quantification. A more detailed explanation of these tools can

be found in Supplementary Material S2.

5.2 Differential gene expression analysis

After gene and transcript expression levels are estimated,
statistical approaches are employed to detect differences in
expression levels across experimental groups (e.g., different
exposed to different environmental

sexes or cohorts
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conditions) (Conesa et al., 2016). Expression levels measured for
the same gene under different conditions cannot be directly
compared, as each experiment represents a statistical sample,
giving only the relative mRNA levels in comparison to the other
mRNAs present in the sample. In addition, mRNA levels change
over time, and reads can align to multiple places, making exact
quantitation difficult. The purpose of statistical testing is to
ensure that an observed change in mRNA levels is due to an
actual difference in expression between experimental
conditions.

To test whether the expression of a given gene is different
between two groups, measurements are repeated in multiple
replicates of the same experiments, and then a statistical test is
applied. Through this process, the variation in expression between
different conditions can be compared to the variation within
replicates of the same condition. Each statistical test is based on
a null hypothesis that the gene expression is the same between
groups, which is usually true for the majority of genes. The value that
indicates whether there is likely to be a true difference between
groups is called the p-value, which gives the probability of observing
a particular difference, or a more extreme difference, assuming that
the null hypothesis is true. Small p-values give strong evidence
against the null hypothesis. Genes with low p-values are considered
to be differentially expressed, and the null hypothesis is rejected for
those genes. The typical threshold for rejection of a null hypothesis is
a p-value less than 0.05, but this cutoff is arbitrary and might need to
be altered depending on how noisy the data are (Liu et al., 2006;
Glaus et al., 2012; Shastry et al., 2020).

There are two types of error associated with statistical tests: Type
I error and Type IT error. A Type I error occurs if a test rejects a true
null hypothesis. A Type II error occurs if a test accepts a false null
hypothesis. The p-value indicates the probability of making a Type I
error in a given test. For example, if the p-value threshold is set at
0.05 (i.e., 5%), and 20,000 genes are being tested, then 1,000 genes
(5% - 20,000) will be wrongly considered to be differentially
expressed because of Type I errors. There are two approaches to
control Type I errors, also referred to as false positives. One
approach is to control the family-wise error or the probability
that there is at least one Type I error among all the rejected null
hypotheses. The other approach is to control the false discovery rate,
or the proportion of Type I errors among all the rejected null
hypotheses. Both approaches involve calculation of an adjusted
p-value (p-adj) for each gene, which can then be used for further
analysis (Jafari and Ansari-Pour, 2018).

It is important to account for noise which includes sources of
variation that are unrelated to the experimental variable of interest,
when performing differential expression analysis. For example,
batch effects, or confounding factors arising from samples being
tested on different days, by different laboratory technicians, or in
different laboratories (technical batch effects), can result in
unwanted differences in measured values. In addition, variation
due to intrinsic factors such as high GC content or gene body
coverage evenness (biological batch effects) can affect the
quantification of technical replicates of a sample. Existing
statistical methods can effectively detect and adjust for hidden
confounding factors (Li et al., 2014).

Other approaches to differential expression analysis that can
produce more accurate results than conventional p-adj values use
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different metrics such as the minimum significant difference or
the generalized linear model (GLM) framework (McCarthy et al.,
2012), where a combination of p-values and log fold changes is
applied to identify the genes or transcripts with the most
Another
approach is the probability of positive log ratio (PPLR) (Liu

significant differences in expression. alternative
et al, 2006), which was initially developed for microarray
analysis and subsequently adjusted for RNA-seq data (Glaus
et al., 2012). The PPLR uses a Bayesian hierarchical model to
express the probability that the ratio of expression levels between
two conditions is positive (i.e., the expression is upregulated in
the second condition relative to the first). A PPLR value close to
1 means there is a very high probability that a given transcript is
upregulated in the second condition (Liu et al., 2006). When the
PPLR value is close to 0, there is a very low probability of
upregulation, and consequently a high probability of
downregulation, in the second condition relative to the first.
There is no direct relation between PPLRs and p-values, as they
look at the problem from different perspectives (i.e., in the
probabilistic approach an uncertainty propagation between
successive stages of analysis is possible and desired). Both
approaches are capable of identifying large numbers of
differentially expressed genomic features. If the number of
differentially expressed features is too large, a more stringent
cutoff for statistical significance can be applied to make the
analysis more manageable.

Depending on the type of normalization performed on RNA-
seq data, machine-learning approaches can be used to identify
differentially expressed genes with classification models based on
Machine learning
approaches have been used to manage, model, and categorize

discrete or continuous distributions.
biological data, enabling high-impact discoveries in the field of
biomedicine (Shastry et al., 2020). RNA-seq data are discrete in
nature. The two most common ways to normalize RN A-seq data
for machine learning-based differential expression analysis are to
model the data as a Poisson or negative binomial distribution or
transform the data to be similar to a distribution of microarray
data. The Bioconductor MLSeq (Goksuluk et al., 2019) package is
of different

normalization and machine-learning methods for RNA-seq

a comprehensive source of combinations
analysis. After the data are normalized, genes or alternative
transcripts (features) can be ranked, or standard sample
classification can be performed, and the features that make the
strongest contributions to the assignment of samples to
particular groups can be extracted (Goksuluk et al., 2019).
With a deep learning approach, it is also possible to predict
differences in gene expression from histone modification signals
(Sekhon et al., 2018).

Differential expression analysis can be complemented by
expression quantitative trait loci (eQTL) analysis, which
formally compares the expression levels of a given gene
between groups with different copy numbers (0, 1, or 2) of the
minor allele. Each read alignment technique produces different
results, which may impact which genes are identified as
differentially expressed (Castel et al., 2015). The power to
detect differentially expressed genes and eQTLs depends on
allele

the sequencing depth of the sample, the minor

frequency of the gene being tested, the expression level of the

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.997383

Deshpande et al.

gene, and the length of the gene (McKenna et al., 2010). The
magnitude of the eQTL can be quantified by the log allelic fold
change (Hu et al., 2015), and its significance is tested using a
binomial distribution or over-dispersed generalizations
(Kumasaka et al., 2016; Knowles et al.,, 2017; Mohammadi
et al., 2019; Zou et al,, 2019; Wang et al., 2020). Some of the
popular approaches to detect eQTLs use transformation and
linear regression models (Shabalin, 2012; Ongen et al.,, 2016;
Taylor-Weiner et al., 2019).

The results of differential expression analyses can be validated
using independent techniques such as quantitative PCR (qPCR),
which is statistically assessable (Skelly et al., 2011). Measurements of
gene expression obtained by qPCR are relatively similar to
measurements obtained by RNA-seq analysis, where a value can
be calculated for the concentration of a target region in a given
sample (Harvey et al., 2015; Romanel et al., 2015; Xie et al., 2019).
Additional information about quantification of RNA splicing and
splicing QTL (sQTL) analyses can be found in Supplementary
Material S3.

6 Measurement of allele-specific
expression

RNA-seq can measure allele-specific expression (ASE or
allelic expression) to uncover the cis-regulatory effects of
genetic variants (McKenna et al., 2010; Castel et al.,, 2015;
Raghupathy et al., 2018). ASE represents gene expression
measured independently for the paternal and maternal alleles
of a gene. In a typical RNA-seq experiment, ASE can be measured
only in genes that contain a heterozygous single-nucleotide
polymorphism (SNP) within the transcribed region. This SNP,
referred to as the aseSNP, can be used as a tag to identify reads
that originate from each copy of the gene (Figure 3).

Allelic imbalance—the ratio between paternal and maternal
allele expression—identifies genetic cis-regulatory differences
between two haplotypes. The log allelic fold change can also
be calculated to quantify the magnitude of allelic imbalance (Hu
et al., 2015). An aseSNP is not itself a regulatory variant and
should not induce an imbalanced ASE signal. However, there can
be a bias in ASE data that falsely suggests that the haplotype
carrying the reference allele for the aseSNP has slightly higher
expression across all genes. This issue, known as allelic bias or
reference bias, can be mitigated in two ways: by aligning the
RNA-seq reads to a personalized reference genome that excludes
likely biased sites (Dobin et al., 2013; van de Geijn et al., 2015;
Gao and Zhao, 2018; Kristensen et al., 2019; Ferraro et al., 2020),
or by aggregating the ASE signal from multiple aseSNPs in each
gene (Chen et al,, 2021). ASE data can also be used to improve
statistical power for identifying eQTLs (Gao and Zhao, 2018;
Kristensen et al., 2019; Zou et al., 2019; Ferraro et al., 2020) and
to map the causal regulatory variants in eQTL data (Kim and
Salzberg, 2011; Gao et al., 2018; Haas et al., 2019). Furthermore,
ASE data are inherently robust to noise, so they are useful for
identifying gene-by-environment interaction effects (Li, 2013)
or the effects of rare genetic variants on gene expression to
improve diagnostic accuracy for Mendelian diseases (Hoffmann
et al,, 2014; Ji et al., 2019).
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RNA-seq reads

FIGURE 3

Measuring allele-specific expression with RNA-seq. RNA-seq can

be used to generate allele-specific expression (ASE) data for genes
with a heterozygous single-nucleotide polymorphism in the
transcribed region (aseSNP). The aseSNP enables sequencing

reads to be mapped to the haplotype from which they originate.
Imbalance in ASE data is a functional indicator of a cis-regulatory
difference between the two haplotypes that is driven by heterozygous
regulatory variants. Data from multiple aseSNPs can be aggregated to
improve ASE data quality. The non-coding regulatory variant depicted
here has two alleles inducing higher (H) and lower (L) expression of the
target gene.

7 Profiling circular RNA with RNA-seq

Circular RNA (circRNA) is a large class of RNA molecules
with a covalently closed circular structure that plays important
roles in various biological processes and metabolic mechanisms
(Wuetal.,, 2020). In recent years, a variety of computational tools
have been developed for circRNA study (Gao and Zhao, 2018;
Chen et al., 2021). Identification of circRNAs is based on
detection of reads spanning the circle junction, termed the
back-splice junction (BSJ). Most tools (Cheng et al., 2016;
Zhang et al, 2016; Gao et al, 2018) employ aligners
(Humphreys et al.,, 2019; Wu et al., 2019; Zheng et al., 2019)
to detect putative back-splicing events from fusion reads or split
alignment results, whereas other splice-aware aligners (Wang
et al,, 2010; Zheng and Zhao, 2020) can align circular reads and
detect BSJs directly.

Considering that most circRNAs are derived from exonic
regions (Ji et al., 2019; Wu et al., 2020) where computational
methods cannot accurately distinguish linear and circular reads,
the BSJ read count is the most reliable measurement of circRNA
expression levels. The BS] read count is inferred from alignment
results, and different filters and statistical strategies have been
employed to improve its accuracy and sensitivity (Mangul et al.,
2019; Zhang et al, 2020). Alternative approaches using
pseudoalignment-based tools for circRNA quantification (Li
et al, 2017) can substantially increase the computational
efficiency compared with regular alignment-based methods.
To compare the expression levels of circRNAs and their host
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genes, the junction ratio, defined as the ratio of BSJ reads and
linear reads mapped to the BS] site, is often used for
comparative analysis. Several computational methods have
been developed for accurate estimation of junction ratios
(Reimers and Carey, 2006; The Comprehensive R Archive
Network, 2022). In addition, circRNAs exhibit alternative
splicing patterns, and a number of specific tools have been
developed for circular transcript assembly (Gao et al., 2016;
Zhang et al., 2016; Wu et al., 2019; Zheng et al., 2019), internal
structure visualization (Li et al., 2016; Mose et al., 2016), and
differential expression analysis (Zhang et al., 2020; The
R Archive Network, 2022).
comprehensive databases have been constructed for circRNA

Comprehensive Several

annotation and prioritization analysis (Dong et al., 2018; Xia
et al., 2018; Wu et al., 2020).

8 Discussion

As technology advances, RNA-seq methods have become
increasingly popular and have revolutionized modern biology and
of the
bioinformatics community to develop accurate and scalable

clinical applications, driven by continuous efforts
computational tools. In addition, advancements in sequencing
technologies have provided an unprecedented ability to analyze a
wide range of biological data, enabling new explorations of novel
and existing biological problems. To increase access to RNA-seq
methods among new users and young scientists, we provided an
overview of the fundamentals of RNA-seq and its associated
computational methods and discussed the advantages and
limitations of various applications.

Computational analysis of RNA-seq data can be used to tackle
important biological problems such as estimating gene expression
profiles across various phenotypes and conditions or detecting novel
alternative splicing on specific exons. Specialized analyses of RNA-seq
data can also help to detect changes in the concentration, function, or
localization of transcription factors that affect splicing and can cause the
onset of neurodegenerative diseases and cancers (Ozsolak and Milos,
2011; Szabo and Salzman, 2016). Some recently developed
computational tools (Xu et al., 2014; Bolotin et al.,, 2015; Li et al,
2016; Mose et al,, 2016; Mandric et al,, 2020) are even capable of
repurposing RNA-seq data to characterize the individual adaptive
immune repertoire and microbiome (Varadhan and Roland, 2008).
Additionally, computational deconvolution can be applied to RNA-seq
data to study cell-type compositions in tissue samples (Melsted et al.,
2017; Kang et al., 2019).

The interdisciplinary nature of RNA-seq applications and
related analytic methods and software development introduces a
host of terms that can challenge researchers in the wider scientific
and medical research communities. The literature on RNA-seq
methods has traditionally assumed that readers are familiar with
the fundamental concepts of RNA-seq and related bioinformatics
analyses (Nariai et al., 2013; Srivastava et al., 2016; Zakeri et al.,
2017; Green et al., 2018; Li et al., 2018; Vaquero-Garcia et al,,
2018). These methods may require diverse computational skills
to be used effectively. A lack of computational skills can therefore
limit the ability of biomedical researchers to unlock the full
potential of RNA-seq, highlighting the need for a review that
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explains basic RNA-seq concepts and defines discipline-specific
jargon.
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