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ABSTRACT

We develop a novel connection between discrepancy minimization

and (quantum) communication complexity. As an application, we

resolve a substantial special case of the Matrix Spencer conjecture.

In particular, we show that for every collection of symmetric 𝑛 × 𝑛
matrices 𝐴1, . . . , 𝐴𝑛 with ∥𝐴𝑖 ∥ ⩽ 1 and ∥𝐴𝑖 ∥𝐹 ⩽ 𝑛1/4 there exist
signs 𝑥 ∈ {±1}𝑛 such that the maximum eigenvalue of

∑
𝑖⩽𝑛 𝑥𝑖𝐴𝑖

is at most 𝑂 (
√
𝑛). We give a polynomial-time algorithm based on

partial coloring and semidefinite programming to find such 𝑥 .

Our techniques open a new avenue to use tools from communica-

tion complexity and information theory to study discrepancy. The

proof of our main result combines a simple compression scheme for

transcripts of repeated (quantum) communication protocols with

quantum state purification, the Holevo bound from quantum in-

formation, and tools from sketching and dimensionality reduction.

Our approach also offers a promising avenue to resolve the Matrix

Spencer conjecture completely ś we show it is implied by a natural

conjecture in quantum communication complexity.
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1 INTRODUCTION

In this paper we study discrepancy minimization for matrices. To set

up our main problem, let us begin with the classic result of Spencer,

łsix standard deviations suffice.ž Let 𝑣1, . . . , 𝑣𝑛 ∈ R𝑚 have ∥𝑣𝑖 ∥∞ ⩽ 1.

The goal is to assign signs 𝑥1, . . . , 𝑥𝑛 ∈ {±1} to the vectors so

as to minimize ∥∑
𝑖⩽𝑛 𝑥𝑖𝑣𝑖 ∥∞. As a shorthand, we often call the

latter quantity the discrepancy of 𝑥 . For some intuition, note that if
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the vectors 𝑣𝑖 ∈ {0, 1}𝑚 then, treating them as incidence vectors,

they define a set system with 𝑛 atoms and 𝑚 subsets. The goal

then becomes to assign 𝑥1, . . . , 𝑥𝑛 so as to minimize the maximum

difference between the number of +1’s and −1’s in each set.

Choosing 𝑥1, . . . , 𝑥𝑛 at random presents a natural benchmark

ś in this case, E𝑥∼{±1}𝑛 ∥∑
𝑥𝑖𝑣𝑖 ∥∞ ⩽ 𝑂 (

√︁
𝑛 log𝑚), by a Cher-

noff/union bound argument. While many similar applications of the

union bound in combinatorics give tight results, Spencer’s result

remarkably shows that for any 𝑣1, . . . , 𝑣𝑛 , this bound can in fact be

beaten.

Theorem 1.1 ([32]). For all 𝑣1, . . . , 𝑣𝑛 ∈ R𝑚 with ∥𝑣𝑖 ∥∞ ⩽

1, there exist 𝑥1, . . . , 𝑥𝑛 ∈ {−1, 1} such that ∥∑
𝑖⩽𝑛 𝑥𝑖𝑣𝑖 ∥∞ ⩽

𝑂 (
√︁
𝑛 log(𝑚/𝑛)).

In particular, if𝑚 = 𝑂 (𝑛), Spencer’s result shows that a signing
of discrepancy 𝑂 (

√
𝑛) always exists.1 Spencer’s original result was

nonconstructive, but a following a breakthrough by Bansal [4],

several polynomial-time algorithms are now known to find such a

signing, e.g. [14, 22, 31].

Matrix Discrepancy. We generalize the preceding setting by re-

placing the vectors 𝑣1, . . . , 𝑣𝑛 with symmetric matrices𝐴1, . . . , 𝐴𝑛 ∈
R
𝑚×𝑚 having spectral norms ∥𝐴𝑖 ∥ ⩽ 1.2 Now the goal is to find

𝑥1, . . . , 𝑥𝑛 to minimize the spectral norm ∥∑
𝑖⩽𝑛 𝑥𝑖𝐴𝑖 ∥. Note that

we can recover the vector case by taking the 𝐴𝑖s to be diagonal, or

more generally, commuting.

The matrix Chernoff bound of Ahlswede and Winter shows

that, as in the vector setting, randomly choosing 𝑥 gives a signing

of discrepancy ∥∑
𝑖⩽𝑛 𝑥𝑖𝐴𝑖 ∥ ⩽ 𝑂 (

√︁
𝑛 log𝑚) [1]. This inequality

and its generalizations have become crucial tools in mathematics

and theoretical computer science, including in applications of the

probabilistic method, for instance in spectral graph theory and

unsupervised learning, e.g. [18, 33]. It is a natural question to ask

whether it, too, can be improved by careful choice of 𝑥 ś this is the

content of the Matrix Spencer conjecture:

Conjecture 1.2 (Matrix Spencer [25, 35]). For all𝐴1, . . . , 𝐴𝑛 ∈
R
𝑚×𝑚 with ∥𝐴𝑖 ∥ ⩽ 1 there exists 𝑥 ∈ {±1}𝑛 such that

∥∑
𝑖⩽𝑛 𝑥𝑖𝐴𝑖 ∥ ⩽ 𝑂 (

√︁
𝑛 log(𝑚/𝑛)).

Despite significant effort, this conjecture has remained largely

open for a decade, with partial progress in the block-diagonal and

rank-one cases [21, 23, 30]. Thus, resolving Matrix Spencer (even

in a substantial special case) seems likely to lead to new techniques

in discrepancy.

1And, in fact, the constant in the big-𝑂 is at most 6, hence the name.
2We expect that the main results in this paper continue to hold if R is replaced by C.
Furthermore, if the matrices𝐴𝑖 are not symmetric/Hermitian, they can be replaced

by their łHermition dilationsž

(
0 𝐴𝑖

𝐴⊤
𝑖 0

)
without changing any of the asymptotic

bounds in this paper.

This work is licensed under a Creative Commons Attribution-

NonCommercial 4.0 International License.
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1.1 Results

We resolve theMatrix Spencer conjecture in the case that𝐴1, . . . , 𝐴𝑛
have moderate rank. More formally, in addition to the assumption

∥𝐴𝑖 ∥ ⩽ 1, we additionally assume that ∥𝐴𝑖 ∥𝐹 ⩽ 𝑛1/4, where ∥ · ∥𝐹
is the Frobenius norm.

Theorem 1.3 (Moderate-Rank Matrix Spencer). Let

𝐴1, . . . , 𝐴𝑛 ∈ R𝑚×𝑚 have ∥𝐴𝑖 ∥ ⩽ 1 and ∥𝐴𝑖 ∥𝐹 ⩽ 𝑛1/4. Then
there exists 𝑥 ∈ {±1}𝑛 such that ∥∑

𝑖⩽𝑛 𝑥𝑖𝐴𝑖 ∥ ⩽ 𝑂 (
√︁
𝑛 log(𝑚/𝑛)).

Furthermore, such an 𝑥 can be found in polynomial time.

Even in the presence of the łmoderate rankž assumption

∥𝐴𝑖 ∥𝐹 ⩽ 𝑛1/4, our result captures settings where the looser bound
𝑂 (

√︁
𝑛 log𝑚) is un-improvable for randomly-chosen𝑥 ś for instance,

if the 𝐴𝑖 ’s are all diagonal with nonzero entries in the first
√
𝑛 diag-

onal entries.3 Thus, our result captures a novel improvement over

the matrix Chernoff bound.

To prove Theorem 1.3, we introduce a new approach to discrep-

ancy minimization using (one-way) communication complexity. In

the matrix case, this connection leads us to quantum communica-

tion. For starters, we give a new proof of Spencer’s theorem: after

translation into a (classical) communication problem, Spencer’s

theorem can be proved using a simple compression scheme for

repeated communication protocols. To prove our moderate-rank

Matrix Spencer theorem, we combine a quantum analogue of this

compression scheme with several other tools, including quantum

state purification, sketching/dimensionality reduction, and conse-

quences of the Holevo bound from quantum information theory.

Discrepancy bounds proved using our techniques are automati-

cally algorithmic. In the vector (Spencer) case, our arguments give

a new analysis of the randomized linear programming approach

first analyzed by Eldan and Singh [14]. In the matrix case, we give

an analogous algorithm based on semidefinite programming. (This

algorithm uses a very different semidefinite program than Bansal’s

original use of semidefinite programming in the vector case.)

The 𝑂 (
√
𝑛) discrepancy bound is tight even for the case of

rank one matrices. This is witnessed by considering the matri-

ces (1, 𝑒𝑖 ) (1, 𝑒𝑖 )⊤ where 𝑒𝑖 are the standard basis vectors. Note

that it cannot be tight for diagonal matrices under this assump-

tion, since 𝑛 vectors in R𝑛 with ℓ2 norms 𝑛1/4 have discrepancy at

most 𝑂̃ (𝑛1/4) (the Komlós setting) [3]. This suggests a number of

interesting questions beyond Matrix Spencer: are there matrix ana-

logues of other discrepancy bounds for vectors, for instance under

ℓ2 assumptions (as in the Komlós setting) or ℓ2 and ℓ∞ assumptions

(like the Beck-Fiala setting)?

We hope that opening the way to use communication complexity

techniques to prove results in discrepancy leads to future progress.

As an illustration, we show that our techniques offer a promising

avenue to fully resolve the Matrix Spencer conjecture ś we now de-

scribe a natural conjecture in quantum communication complexity

which would imply it.

To describe the conjecture we need a small amount of notation.

Let index : {−1, 1}𝑛×[𝑛] → {−1, 1} be the index function, given by
index(𝑥, 𝑖) = 𝑥𝑖 . The index function induces the following one-way

communication problem between two players, Alice and Bob. Alice

receives 𝑥 ∈ {−1, 1}𝑛 and Bob receives 𝑖 ∈ [𝑛]. Alice sends Bob
3We thank Tselil Schramm and Boaz Barak for pointing this out.

a message 𝑎, after which Bob must output a bit 𝑏 (𝑎, 𝑖) ∈ {−1, 1};
their goal is to jointly compute index(𝑥, 𝑖).

The main question in one-way communication complexity is:

how long must Alice’s message be? This could depend on several

things:

• The nature of Alice’s message ś classical or quantum.

• The probability of success P(𝑏 (𝑎, 𝑖) = 𝑥𝑖 ) (where the proba-
bility is over randomness in the protocol).

• The distribution of Alice and Bob’s inputs ś they could be

uniformly random, worst-case, or something else.

Later, we will thoroughly discuss the one-way communication com-

plexity of the index function, after which the following conjecture

will be less mysterious. For now, we state the conjecture as an il-

lustration of the surprising connection between discrepancy and

communication.

Conjecture 1.4 (Quantum One-Way Communication Com-

plexity in the Small-Advantage Regime). Suppose Alice’s mes-

sage 𝜌 consists of 𝑞 qubits, and Bob has 𝜀 advantage over random

guessing in computing 𝑥𝑖 for a large set of indices 𝑖 , in the following

sense. For each 𝑥 there is a set of coordinates 𝑆𝑥 ⊆ [𝑛] with |𝑆𝑥 | ⩾
(1 − 𝛿)𝑛 such that E𝑥∼{−1,1}𝑛 min𝑖∈𝑆𝑥 P(𝑏 (𝜌, 𝑖) = 𝑥𝑖 ) ⩾ 1/2 + 𝜀.
Then for every small-enough 𝛿 > 0, if 𝜀 ≫ 1/

√
𝑛, Alice must send

𝑞 ⩾ log(1/𝜀2) + Ω(𝜀2𝑛) qubits.

Note that Conjecture 1.4 remains interesting even if 𝛿 = 0; indeed,

this special case is most interesting from a quantum communication

point of view, and we expect that it already contains most of the

challenge in proving the conjecture.

Using the same argument as for Theorem 1.3 but substituting the

communication lower bound in Conjecture 1.4 for a weaker version

we prove in the course of proving Theorem 1.3, our techniques

show:

Theorem 1.5. Suppose Conjecture 1.4 is true. Then the Matrix

Spencer conjecture holds, and there is a polynomial-time algorithm

based on semidefinite programming to find the signing it promises.

The classical analogue of Conjecture 1.4 is true; we record a proof

in this paper, although we believe it is probably known implicitly in

the literature. In fact, using our techniques, the classical analogue

gives a new algorithmic proof of Spencer’s theorem. Our proof of

Theorem 1.3 establishes a special case of Conjecture 1.4 where Alice

must send a pure state, from which (with some work) we are able

to deduce our moderate-rank Matrix Spencer theorem.

1.2 Techniques

1.2.1 From Discrepancy to Communication.

Discrepancy Is Exactly Average-Bob One-Way Communication

Complexity. To build intuition, we start with the following sim-

ple observation. Let 𝑅worst,unif = 𝑅worst,unif (𝑛, 𝜀) be the minimum

length of a message 𝑎 that Alice must send to Bob in a one-way

classical protocol for the 𝑛-bit index function in order to achieve

min
𝑥∈{±1}𝑛

E
𝑖∼[𝑛]

P(𝑏 (𝑎, 𝑖) = 𝑥𝑖 ) ⩾
1

2
+ 𝜀 .

Here, the subscript łworst,unifž denotes that Alice’s input is worst-

case over 𝑥 ∈ {±1}𝑛 and Bob’s is uniform in [𝑛]. Similarly, define
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𝑄worst,unif for quantum one-way communication. The following

claim shows that lower bounds on 𝑅worst,unif and 𝑄worst,unif imply

upper bounds on discrepancy for vectors and matrices.

Claim 1.6. For every integer𝑚 > 0, if 𝑅worst,unif (𝑛, 𝜀) > log𝑚 +
𝑂 (1) then for 𝑣1, . . . , 𝑣𝑛 ∈ R𝑚 with ∥𝑣𝑖 ∥∞ ⩽ 1 there exists

𝑥 ∈ {−1, 1}𝑛 such that ∥∑
𝑖⩽𝑛 𝑥𝑖𝑣𝑖 ∥∞ ⩽ 2𝜀𝑛. Conversely, if

𝑅worst,unif (𝑛, 𝜀) < log𝑚 − 𝑂 (1), then there exist 𝑣1, . . . , 𝑣𝑛 ∈
R
𝑚 with ∥𝑣𝑖 ∥∞ ⩽ 1 such that for all 𝑥 ∈ {±1}𝑛 we have

∥∑
𝑖⩽𝑛 𝑥𝑖𝑣𝑖 ∥∞ ⩾ 2𝜀𝑛. Furthermore, the same holds if we replace 𝑅

by 𝑄 and the 𝑣s by matrices 𝐴1, . . . , 𝐴𝑚 ∈ R𝑚×𝑚 with ∥𝐴𝑖 ∥ ⩽ 1.

Proof. We show one direction of the proof in the classical case;

the other direction and the quantum case are similar. Suppose

𝑣1, . . . , 𝑣𝑛 ∈ R𝑚 have ∥𝑣𝑖 ∥∞ ⩽ 1 but for every 𝑥 ∈ {±1}𝑛 we have

∥∑
𝑖⩽𝑛 𝑥𝑖𝑣𝑖 ∥∞ > 2𝜀𝑛. Then for each 𝑥 we may associate a standard

basis vector 𝑦𝑥 ∈ R𝑚 such that |⟨𝑦𝑥 ,
∑
𝑖⩽𝑛 𝑥𝑖𝑣𝑖 ⟩| > 2𝜀𝑛. This in-

duces a log𝑚 + 𝑂 (1) bit communication protocol as follows. On

input 𝑥 , Alice sends Bob the name of the coordinate 𝑗 represented

by 𝑦𝑥 , as well as the sign 𝑠 of ⟨𝑦𝑥 ,
∑
𝑖⩽𝑛 𝑥𝑖𝑣𝑖 ⟩. Bob outputs a biased

random bit 𝑏 ( 𝑗, 𝑖) with expectation 𝑠 · 𝑣𝑖 ( 𝑗). Then for each 𝑥 we

can compute:

E
𝑖
[P(𝑏 ( 𝑗, 𝑖) = 𝑥𝑖 )] = E

𝑖

[
1

2
+ 𝑠 · 𝑥𝑖 ·

𝑣𝑖 ( 𝑗)
2

]
>

1

2
+ 𝜀 .

For the other direction, observe that a protocol for the index func-

tion where there are𝑚 possible messages Alice may send induces

a set of vectors 𝑣1, . . . , 𝑣𝑛 ∈ {±1}𝑚 by writing out Bob’s outputs.

The success probability of this protocol gives a lower bound on the

discrepancy of 𝑣1, . . . , 𝑣𝑛 . □

In spite of its simplicity, we do not know how to use this connec-

tion between discrepancy and 𝑅worst,unif and 𝑄worst,unif to prove

any interesting discrepancy upper bounds. The difficulty is that in

the regime of interest for (Matrix) Spencer-type theorems,𝑚 ≈ 𝑛
and 𝜀 ≈ 1/

√
𝑛. That is, Bob has very tiny advantage over oblivious

random guessing in determining index(𝑥, 𝑖), and Alice is sending

just a logarithmic number of (qu)bits. We are not aware of any

direct techniques to lower bound 𝑅worst,unif, let alone 𝑄worst,unif

in this regime. (Of course, an indirect argument is available for

𝑅worst,unif by appealing to Spencer’s discrepancy result.)

Trading Average Bob for Average Alice. Our first key techni-

cal contribution is another connection between discrepancy and

communication, but for 𝑅unif,worst and 𝑄unif,worst rather than

𝑅worst,unif, 𝑄worst,unif ś that is, now Alice’s input will be random,

but Bob’s will be worst-case. While this difference may seem small,

the requirement that (for typical 𝑥) Bob has nontrivial advantage

over random guessing in computing 𝑥𝑖 for all 𝑖 makes it much easier

to prove lower bounds ś we will see why momentarily. (Actually,

our lower bounds will apply even when Bob has nontrivial advan-

tage for, say, 0.9𝑛 coordinates 𝑖 ∈ [𝑛] ś this technical improvement

is important for the connection to discrepancy, but we will mainly

ignore it for simplicity in this introduction.)

We now discuss the key lemma we prove connecting commu-

nication and partial coloring, starting with the following standard

definition:

Definition 1.7 (Partial coloring). A partial coloring of matrices

𝐴1, . . . , 𝐴𝑛 with discrepancy Δ > 0 is a vector 𝑥 ∈ [−1, 1]𝑛 such

that |𝑥𝑖 | = 1 for a constant fraction of coordinates 𝑖 ∈ [𝑛], and
∥∑

𝑖⩽𝑛 𝑥𝑖𝐴𝑖 ∥ ⩽ Δ.4 (A similar definition applies for the case of

vectors 𝑣1, . . . , 𝑣𝑛 .)

It is a standard result that Spencer-style discrepancy theorems

can be proved by alternately finding partial colorings and removing

vectors/matrices which have been fully colored (i.e., they have

|𝑥𝑖 | = 1), so it suffices to prove the existence of partial colorings

with small discrepancy.

For simplicity in this introduction, we restrict attention to the

setting where the number of vectors/matrices is the same as the

dimension ś i.e. 𝐴1, . . . , 𝐴𝑛 ∈ R𝑛×𝑛 or 𝑣1, . . . , 𝑣𝑛 ∈ R𝑛 ś in which

case we are looking for partial colorings of discrepancy 𝑂 (
√
𝑛).

And, for now, we drop algorithmic considerations and worry only

about the existence of partial colorings.

Lemma 1.8 (Special case of the Compress or Color Lemma

(Lemma 3.2), informal). Suppose𝐴1, . . . , 𝐴𝑛 ∈ R𝑛×𝑛 with ∥𝐴𝑖 ∥ ⩽ 1

lack a partial coloring with discrepancy𝑂 (
√
𝑛). Then there is a quan-

tum one-way communication protocol for the 𝑛-bit index function of

the following form. Alice sends a log𝑛 +1 qubit message 𝜌 . If Bob gets

input 𝑖 , he measures 𝜌 in the eigenbasis of the matrix

(
𝐴𝑖 0

0 −𝐴𝑖

)
,

receiving an eigenvalue 𝜆𝑖 as an outcome; then he outputs a random

bit 𝑏 (𝜌, 𝑖) with bias 𝜆𝑖 . This protocol has the following guarantee: for

every 𝑥 ∈ {±1}𝑛 there is a set 𝑆𝑥 ⊆ [𝑛] with |𝑆𝑥 | ⩾ 0.99𝑛 such that

E
𝑥∈{±1}𝑛

min
𝑖∈𝑆𝑥
P(𝑏 (𝜌, 𝑖) = 𝑥𝑖 ) =

1

2
+ 𝜀, 𝜀 ≫ 1

√
𝑛
.

From this lemma we can see the origin of Conjecture 1.4 and

Theorem 1.5. It also shows that to prove our moderate-rank Matrix

Spencer theorem, it suffices to rule out log𝑛-qubit protocols for the

index function with advantage 𝜀 ≫ 1/
√
𝑛 where Bob’s measure-

ment matrices have ∥𝐴𝑖 ∥𝐹 ⩽ 𝑛1/4.
We make a few more remarks about the Compress or Color

Lemma (Lemma 3.2) before we move on to communication lower

bounds, since we think the general version of the lemma is of

independent interest.

General norms In full generality, the lemma says that for any col-

lection of vectors 𝑣1, . . . , 𝑣𝑛 and any norm ∥ · ∥, either 𝑣1, . . . , 𝑣𝑛
admit a small-∥ · ∥-discrepancy partial fractional coloring (i.e. a

coloring where ∥∑
𝑖⩽𝑛 𝑥𝑖𝑣𝑖 ∥ is small) or 𝑣1, . . . , 𝑣𝑛 induce a certain

kind of compression of the hypercube {±1}𝑛 into the dual ball of

∥ · ∥. In the case that ∥ · ∥ is ℓ∞, this compression turns out to be a

classical communication protocol. When ∥ · ∥ is the spectral norm,

the result is a quantum communication protocol.

Rademacher width Second, the proof of the lemma goes via study-

ing the Rademacher width of the set of partial colorings. The

Rademacher width of a set K ⊆ R𝑛 is E𝑔∼{±1}𝑛 max𝑥∈K ⟨𝑔, 𝑥⟩ ś it

is a standard measure of the size ofK . A long-established technique

in discrepancy is to study the Gaussian volume of the partial col-

orings. By studying width instead, we can prove the lemma using

tools from convex programming, in particular strong duality. Gauss-

ian width was previously studied in the context of discrepancy by

Eldan and Singh and by Reis and Rothvoss [14, 29]; we borrow some

tools from Eldan and Singh in the proof of the Compress or Color

4This is often called a łfractionalž partial coloring in the literature; since all partial
colorings in this paper are fractional we drop the modifier.
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Lemma. (The switch from Gaussian to Rademacher width ś that is,

using ±1-valued coordinates in 𝑔 ś is just a technical convenience.)

Polynomial-time consequences Finally, since the heart of the Com-

press or Color Lemma is a convex program, it also has algorithmic

consequences when that convex program is efficiently solvable. In

particular, our proof of the contrapositive of the above statement,

that communication lower bounds imply the existence of partial

colorings, actually proves something stronger: such a partial col-

oring can be found (with high probability) by drawing a random

𝑔 ∼ {±1}𝑛 and maximizing ⟨𝑔, 𝑥⟩ over partial colorings 𝑥 with low

discrepancy. Note that this is a convex program ś in particular, for

the matrix discrepancy setting, it is a semidefinite program.

1.2.2 Communication Lower Bounds in the Small-Advantage Regime.

Now that we have seen that communication lower bounds imply

the existence of partial colorings, we need to prove some commu-

nication lower bounds.

Classical. To build some intuition, we start with the classical

case. According to Lemma 1.8 (instantiated with diagonal matrices),

to prove that a partial coloring of any 𝑣1, . . . , 𝑣𝑛 ∈ R𝑛 with ∥𝑣𝑖 ∥∞ ⩽
𝑂 (

√
𝑛) exists it will suffice to rule out log𝑛-bit one-way protocols

for the 𝑛-bit index function where Alice’s input is random, Bob’s

is worst case, and they have advantage 𝜀 ≫ 1/
√
𝑛 over oblivious

random guessing. (To avoid technicalities, for now we consider

protocols where Bob has this advantage on all inputs 𝑖 ∈ [𝑛], rather
than just 0.99𝑛 of them.)

To see the subtlety of the lower bound we need to establish,

let us first consider what we could get from naive information-

theoretic arguments. By directly analyzing the mutual information

between Alice’s input and Bob’s output, we could show that Alice

must send at least (1 − 𝐻 (1/2 + 𝜀))𝑛 bits, where 𝐻 is the binary

entropy function. For small 𝜀, we have (1 − 𝐻 (1/2 + 𝜀))𝑛 ≈ 𝜀2𝑛 ś

this lower bound degrades to just 𝑂 (1) when 𝜀 ≈ 1/
√
𝑛, while we

need a bound larger than log𝑛.

Indeed, if Bob’s input is also random, there is actually an 𝑂 (1)-
bit protocol achieving advantage 𝜀 ≫ 1/

√
𝑛. Even with worst-case

inputs, there is a log𝑛 +𝑂 (1)-bit protocol based on Hadamard ma-

trices which achieves advantage 𝜀 ⩾ Ω(1/
√
𝑛). (For both protocols,

see Section ??.) This shows that we must use worst-case-ness of

Bob’s input in our lower bound, and even when we do, our ar-

gument must be tight up to additive constants. We now sketch a

simple argument satisfying both of these requirements.

Lemma 1.9. Any classical protocol for the 𝑛-bit index function

achieving advantage 𝜀 ≫ 1/
√
𝑛 when Alice’s input is uniformly

random and Bob’s is worst-case requires Alice to send more than log𝑛

bits. That is, 𝑅unif,worst (𝑛, 𝜀) > log𝑛 when 𝜀 ≫ 1/
√
𝑛.

Proof sketch. Suppose for contradiction that a log𝑛 bit pro-

tocol exists with advantage 𝜀 ≫ 1/
√
𝑛. By repeating the protocol

𝑂 (1/𝜀2) ≪ 𝑛 times, the players can amplify their success proba-

bility to 0.9. Concretely, in this amplified protocol, Alice receives 𝑥

and makes 𝑂 (1/𝜀2) independent draws from the distribution over

messages she would send on input 𝑥 in the original protocol. She

sends all of these messages to Bob, who computes all of the outputs

he would compute in the original protocol and takes a majority

vote. (Note that this amplification relies on Bob having a worst-

case input ś otherwise, Bob might already have success probability

0.9 on a few inputs and exactly 1/2 on the rest, in which case the

amplification does not have the desired effect.)

Naively, Alice is now sending Ω(log𝑛/𝜀2) ≫ 𝑛 bits, but we claim

that her message in the amplified protocol can be compressed down

to 𝑛/10 bits (for appropriate 𝜀 ≫ 1/
√
𝑛). This leads to a contradic-

tion, since she is sending Bob at least 𝑛/2 bits of information.

To see this, observe that it actually suffices for Alice to send

a histogram of her 𝑂 (1/𝜀2) messages from the original-protocol

distribution, since Bob does not need to know the ordering of the

𝑂 (1/𝜀2) messages. Since Alice’s individual messages are log𝑛 bits,

there are only 𝑛 possible messages in the original protocol, so she

is sending multi-subset/histogram of [𝑛] of size 𝑂 (1/𝜀2). A simple

counting argument shows that there are approximately
( 𝑛
𝑂 (1/𝜀2 )

)
such histograms (this is exactly the number if there are no repeated

messages, but repeated messages do not change the asymptotics).

Since 1/𝜀2 ≪ 𝑛, Alice can now send just log
( 𝑛
𝑂 (1/𝜀2 )

)
≪ 𝑛 bits. □

Carrying out this argument carefully actually shows the follow-

ing quantitative bounds, which may be independently interesting:

• If 𝜀 ≫ 1/
√
𝑛, then 𝑅unif,worst (𝑛, 𝜀) ⩾ log(1/𝜀2) + Ω(𝜀2𝑛).

• If 𝜀 ≪ 1/
√
𝑛, then 𝑅unif,worst (𝑛, 𝜀) ⩾ log𝑛 − log log(1/𝜀2) −

𝑂 (1).
This means that even for very small 𝜀, like 2−𝑛

0.99
, Alice still must

send Ω(log𝑛) bits. Using our discrepancy-to-communication tech-

nique, this łmicroscopic 𝜀ž bound implies discrepancy bounds for

set systems with many more atoms than sets ś with 𝑛 atoms and

𝑚 sets, discrepancy 𝑂 (
√
𝑚) is achievable. (There are also generic

reductions from 𝑛 ≫𝑚 to 𝑛 =𝑚, using linear programming.)

Quantum. We turn to the case of quantum communication lower

bounds, which we need for the matrix discrepancy setting. To prove

the (unrestricted) matrix Spencer conjecture, we would like to prove

a quantum analogue of Lemma 1.9. Unfortunately, the histogram-

based compression used in the argument above seems inherently

classical, so another idea is needed.

To prove moderate-rank matrix Spencer, our second key techni-

cal contribution is a quantum analogue of Lemma 1.9 when Bob’s

measurement matrices have ∥𝐴𝑖 ∥𝐹 ⩽ 𝑛1/4. By Lemma 1.8, this

shows that partial colorings exist for every family of 𝐴1, . . . , 𝐴𝑛 ∈
R
𝑛×𝑛 with ∥𝐴𝑖 ∥ ⩽ 1 and ∥𝐴𝑖 ∥𝐹 ⩽ 𝑛1/4.
For simplicity in this introduction, consider the case that each

matrix𝐴𝑖 has all eigenvalues in {−1, 0, 1}, with at most
√
𝑛 nonzero

eigenvalues. Alice gets a randomly chosen 𝑥 ∈ {±1}𝑛 and sends

Bob a log𝑛-qubit mixed state, represented by a density matrix

𝜌 = 𝜌𝑥 . Given any input 𝑖 , Bob measures 𝜌𝑥 with 𝐴𝑖 , getting back

an eigenvalue. If he receives−1 or 1, he outputs the result; otherwise
he outputs −1 or 1 uniformly at random. We want to show:

Lemma 1.10. Alice and Bob cannot achieve success probability

1/2 + 𝜀 for 𝜀 ≫ 1/
√
𝑛 by the above protocol.

We now sketch the proof of Lemma 1.10, which takes several

ingredients.

Ruling out pure-state protocols The first step is to prove a lower

bound against pure state protocols with (potentially) full-rank mea-

surements. That is, we consider the case that Alice actually sends a

pure state 𝑎𝑥 ∈ R𝑛 , and Bob is allowed to use any measurements
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𝑀𝑖 ∈ R𝑛×𝑛 with ±1 eigenvalues. In this case, we can use a simi-

lar amplify-then-compress approach as in the classical case. We

sketch the proof here ś for details, see Theorem 5.4 for the commu-

nication lower bound and Lemma 3.4 for a version adapted to the

discrepancy bound we need to prove.

In a little bit more detail, to amplify from success probabil-

ity 1/2 + 𝜀 to 0.9, Alice sends 𝑂 (1/𝜀2) copies of her message;

Bob makes his measurement independently on each of them and

takes a majority vote. Naively, this requires Alice to send around

log𝑛/𝜀2 ≫ 𝑛 qubits, but the state that Alice sends, 𝑎
⊗𝑂 (1/𝜀2 )
𝑥 , actu-

ally lies in the symmetric subspace of (R𝑛)⊗𝑂 (1/𝜀2 ) . This subspace,
span{𝑎⊗𝑂 (1/𝜀2 ) : 𝑎 ∈ R𝑛}, has dimension roughly

( 𝑛
𝑂 (1/𝜀2 )

)
by the

same counting argument as we used in the classical case, which

means that Alice can compress her message into log
( 𝑛
𝑂 (1/𝜀2 )

)
≪ 𝑛

qubits. As in the classical case, this argument crucially uses that

Bob succeeds on any (worst-case) input 𝑖 ∈ [𝑛].
Since Alice is sending a quantum state, this situation is no longer

ruled out by classical information theory. However, a known conse-

quence of the Holevo bound from quantum information says that

Alice cannot communicate the 𝑛 classical bits 𝑥 without sending

Ω(𝑛) qubits. This is not a trivial consequence of the Holevo bound,

since Bob cannot necessarily read more than one of the bits of 𝑥

without collapsing the state he is sent in a way which prevents

reading any of the remaining bits. This situation has been con-

sidered before, however: a result of Ambainis, Nayak, Ta-Shma,

and Vazirani on quantum random access codes shows that it is still

impossible for Alice to send ≪ 𝑛 qubits even if Bob can only read

one coordinate of 𝑥 (so long as he may choose this coordinate at

will) [2].

Reduction from moderate-rank to pure-state protocols We now

sketch an argument that if there is a protocol of the type described

in Lemma 1.10, where Alice may be sending a mixed state 𝜌𝑥 , then

there is also a pure-state protocol of the sort we just ruled out. We

call this the purify-then-sketch transformation (Lemma 3.3).

First, we may assume that Alice’s mixed states 𝜌𝑥 ∈ R𝑛×𝑛 have

rank at most
√
𝑛 ś this is because we can take them to be extremal

solutions to a semidefinite program involving 𝑛 linear constraints,

one for each matrix 𝐴𝑖 [9, 27]. Using this bound on the rank of the

𝜌𝑥 ’s, we can use quantum state purification to replace them with

pure states 𝑎𝑥 of dimension R𝑛
3/2
; when Bob measures the purified

states he uses measurement matrices𝐴𝑖⊗𝐼 , where 𝐼 is identity in
√
𝑛

dimensions. This gives a pure-state protocol with the same success

probability as the protocol we started with (since the outcomes

of Bob’s measurements will have exactly the same distributions

as before), but now Alice has to send 3
2 log𝑛 qubits, so we cannot

apply the above lower bound against pure-state protocols.

To fix this, Alice replaces 𝑎𝑥 with a random sketch 𝑎𝑥 = 𝑆𝑎𝑥
of it down to 𝑛 dimensions, and hence log𝑛 qubits. (Here 𝑆 is a

random sketching matrix). Bob replaces 𝐴𝑖 ⊗ 𝐼 with 𝑆 (𝐴𝑖 ⊗ 𝐼 )𝑆⊤.
We argue that so long as 𝐴𝑖 has at most

√
𝑛 nonzero eigenvalues this

sketching matrix preserves the success probability 1/2 + 𝜀 when
𝜀 ≫ 1/

√
𝑛. To give a tight analysis of quantities like the variance of

the outcomes of the protocol after sketching ś i.e., second-moment

quantities like ⟨(𝑆𝑎𝑥 ) (𝑆𝑎𝑥 )⊤, 𝑆 (𝐴𝑖 ⊗ 𝐼 )𝑆⊤⟩2 ś we use a combinato-

rial moment-method argument, which crucially uses our bounds

on ∥𝐴𝑖 ∥𝐹 . We also employ a number of tools from random matrix

theory ś decoupling inequalities, net-based arguments, and the

Hansen-Wright inequality. For details, see Section 6.

At the end, we arrive at a log𝑛-qubit pure-state protocol with

advantage ≫ 1/
√
𝑛, which we have already showed is impossible.

This completes the proof sketch of Lemma 1.10, which in turn

completes our proof sketch of the moderate-rank Matrix Spencer

theorem.

1.3 Related Work

Discrepancy. Discrepancy theory is rich andwell explored area of

combinatorics with connections to many areas of mathematics and

theoretical computer science. It has found applications in diverse

areas such as approximation algorithms, differential privacy and

probability theory. For a more thorough introduction, see [11, 24].

Classical results in combinatorial discrepancy are often based on

linear dependencies (see [8]) and counting arguments (e.g. Beck’s

partial coloring method and Spencer’s entropy method). Spencer’s

six standard deviations theorem was initially proved by combining

partial coloring and counting arguments [32]. Another proof of

this theorem was given by [16, 17] by making connections between

existence of partial colorings and convex geometry. This theorem

gave natural conditions to find partial colorings in general convex

bodies.

Successful as they were, these techniques were all non-

constructive and thus did not provide algorithmic insights on con-

structing colorings. In a breakthrough result, [5] gave the first

algorithm to find the signs promised by Spencer’s theorem. The

algorithm was based on semidefinite programming but needed to

assume the existence of a good coloring in the analysis. [22] gave a

random walk-based algorithm whose analysis does not appeal to

Spencer’s theorem. [31] gave an elegant algorithm that produces

the partial colorings in convex sets guaranteed by Gluskin’s theo-

rem. [14] provide an alternative algorithm for this problem using

linear programming by providing connections to the width of the

convex set ś our SDP-based algorithm is a direct descendent of

theirs.

Another line of work in algorithmic discrepancy is constructing

algorithms for the Beck-Fiala and Komlós settings, where additional

assumptions on the vectors 𝑣1, . . . , 𝑣𝑛 lead to tighter discrepancy

bounds. Here obtaining tight bounds remains an open problem, even

non-algorithmically. The best known non-constructive bounds are

obtained using a technique introduced by [3] which also draws from

connections to convex geometry. A recent line of work resolved the

question of algorithmically matching Banaszczyk’s bound [6, 7, 12].

For an overview of this line of work, see [15].

Matrix discrepancy and spectral graph theory. Another line of

work that is closely related to discrepancy is the construction of

sparsifiers for graphs. [10] construct linear sized (weighted) spar-

sifiers for graphs that approximate the Laplacian of the graph. In

a celebrated work, [23] use a novel technique based on interlac-

ing polynomials to resolve the KadisonśSinger conjecture, which

can be interpreted as a tight discrepancy bound for signed sums

of rank-one matrices 𝑎1𝑎
⊤
1 , . . . , 𝑎𝑛𝑎

⊤
𝑛 in isotropic position. This is

also related to constructing unweighted sparsifiers for graphs. It

remains an excellent open problem to find algorithms matching the

bounds of [23].
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The Matrix Spencer conjecture is a natural matrix generalization

of the Spencer theorem, asking if we can improve upon the matrix

Chernoff bound to get a bound similar to the one guaranteed by

Spencer’s theorem. It was popularized in a blog post by RaghuMeka.

This bound was also conjectured in [35]. [30] provide an algorithm

gives a discrepancy bound of 𝑂
(√︁
𝑛 log𝑞

)
for matrices that are

block diagonal with block size 𝑞. A result by [21] uses techniques

from [23] to resolve the conjecture for rank one matrices. [29] bring

together techniques from the convex geometric approach of [16, 17]

for constructing algorithms for graph sparsification problems akin

to [10] towards potentially using these ideas to resolve the matrix

Spencer conjecture.

Independent and concurrent work: In independent and concur-

rent work, [13] provide an different framework based on cover-

ing numbers and mirror descent to make progress on the Matrix

Spencer conjecture. In the low rank setting, they show that the

discrepancy ∥∑𝑖⩽𝑛 𝑥𝑖𝐴𝑖 ∥ ⩽
√︁
𝑛 log(min(𝑟𝑚/𝑛, 𝑟 )) where 𝑟 is the

rank, 𝑚 is the dimension and 𝑛 is the number of matrices. This

bound on the rank is stronger than the one required in our result.

For example, when 𝑚 = Θ(𝑛), this reduces to the constant rank

case. In addition, they also show that their framework can be used

to address related questions in matrix discrepancy such as the Ma-

trix Spencer conjecture for block diagonal matrices and Schatten

norms.

Communication complexity and quantum random access codes.

Lower bounds in one-way communication complexity are widely

used to prove lower bounds in other settings: data structures and

streaming algorithms, to name just two. See [28] for a modern

introduction to communication complexity. The index function, in

particular, plays a central role in one-way communication, see e.g.

[20]. It is a folklore result that the one-way constant-error classical

communication complexity of the 𝑛-bit index function is Ω(𝑛).
Quantum protocols for the index function also go by the name

quantum random access codes, which have been studied intensively

in the physics literature, including experimental demonstrations of

quantum protocols whose success probabilities are strictly better

than those achievable by classical protocols for small 𝑛, e.g. [34].

[2] show that the one-way constant-error quantum communication

complexity of the 𝑛-bit index function is Ω(𝑛). This argument was

simplified and refined in [26].

2 PRELIMINARIES

For vectors 𝑥,𝑦 ∈ R𝑑 , let ⟨𝑥,𝑦⟩ denote the standard inner product∑
𝑖 𝑥𝑖𝑦𝑖 . For matrices 𝐴, 𝐵, this inner product also corresponds to

⟨𝐴, 𝐵⟩ = Tr (𝐴𝐵). Let ∥𝑥 ∥2 =
√︃∑

𝑖 𝑥
2
𝑖 denote the ℓ2 norm, ∥𝑥 ∥∞ =

max𝑖 |𝑥𝑖 | denote the ℓ∞ norm and ∥𝑥 ∥1 =
∑
𝑖 |𝑥𝑖 | denote the ℓ1 norm.

For a matrix 𝐴 ∈ R𝑑×𝑑 , denote by ∥𝐴∥𝐹 =
√︁
Tr (𝐴⊤𝐴) the

Frobenius norm, by ∥𝐴∥ = sup∥𝑥 ∥=1∥𝐴𝑥 ∥ the operator or spectral
norm and by ∥𝐴∥1 = Tr

(√
𝐴⊤𝐴

)
, the nuclear or the trace norm.

For matrices 𝐴, 𝐵, 𝐴 ⪯ 𝐵 if 𝐵 −𝐴 is a positive semidefinite matrix.

A convex setK is said to be centrally symmetric if 𝑥 ∈ K implies

−𝑥 ∈ K . For any convex set K , denote by 𝑝K the Minkowski

functional defined by 𝑝K (𝑥) = inf {𝑟 > 0 : 𝑥 ∈ 𝑟K}. We say that

a convex set has non-empty interior if there is an 𝜀 > 0 such that

for all 𝑥 such that ∥𝑥 ∥2 ⩽ 𝜀, 𝑥 ∈ 𝐾 . A compact, convex set set

with non-empty interior is referred to as a convex body. If K is a

symmtric convex body, 𝑝K corresponds to a norm which we denote

by ∥·∥K . Furthermore, any norm can be seen as the Minkowski

functional of its unit ball.

For any norm ∥·∥, define the dual norm ∥·∥∗ by ∥𝑧∥∗ =

sup {⟨𝑥, 𝑧⟩ : ∥𝑥 ∥ ⩽ 1}. For any convex body K with 0 ∈ K , de-

fine the polar as 𝐾∗
=

{
𝑦 : sup𝑥∈K ⟨𝑥,𝑦⟩ ⩽ 1

}
. For any symmetric

convex body, the dual norm of ∥·∥K is given by ∥·∥K∗ . The dual

norm of ∥·∥2 is itself, while the dual norm of ∥·∥∞ is ∥·∥1 (and vice

versa). For matrix norms, the dual of ∥·∥𝐹 is itself, while the dual

norm of ∥·∥ is ∥·∥1 (and vice versa).

For any random variable 𝑋 , let E𝑋 denote its expectation (if

it exists) and let V (𝑋 ) = E𝑋 2 − (E𝑋 )2 denote the variance (if it
exists). For any 𝜇 ∈ R𝑑 and Σ ⪰ 0, denote by N (𝜇, Σ), the normal

distribution with mean 𝜇 and covariance Σ.

We also record here some notation from quantum information.

A density matrix 𝜌 is a positive semidefinite matrix with trace one

i.e. 𝜌 ⪰ 0 and tr𝜌 = 1. Measurements in quantum information are

specified by POVMs which are PSD matrices𝐴𝑖 such that
∑
𝑖 𝐴𝑖 = 𝐼

(POVMs are more general than this, but for the context of this paper

it suffices to consider this definition). For any density matrix, upon

measuring 𝜌 with respect to the POVM {𝐴𝑖 }, one gets outcome

𝑖 with probability tr𝜌𝐴𝑖 . For any density matrix, define the von

Neumann entropy as 𝑆 (𝜌) = −tr (𝜌 log 𝜌).

3 PROOF OF MAIN THEOREM

In this sectionwe prove the followingmain partial coloring theorem.

Then in Section 3.1 we use it to deduce Theorem 1.3. Theorem 1.5

can then be proved by a simple modification of the proof of Theo-

rem 1.3.

Theorem 3.1 (Main Partial Coloring Theorem). Let

𝐴1, . . . , 𝐴𝑛 ∈ R𝑑×𝑑 be symmetric. There is a partial fractional color-

ing 𝑥 ∈ [−1, 1]𝑛 such that Ω(𝑛) indices 𝑖 have |𝑥𝑖 | = 1 and
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Furthermore, there is a randomized polynomial time algorithm which

finds such a coloring with high probability.

It is a folklore observation5 that if 𝑛 ≫ 𝑑2 one can find a partial

coloring with zero discrepancy by linear programming, so Theo-

rem 3.1 is interesting when 𝑛 ≪ 𝑑2.

We now assemble our main tools for the proof of Theorem 3.1.

Our first lemma shows that if a low-discrepancy partial fractional

coloring of 𝐴1, . . . , 𝐴𝑛 does not exist then 𝐴1, . . . , 𝐴𝑛 induce a

scheme to compress a large subset of {±1}𝑛 into the 𝑑 × 𝑑 nu-

clear norm ball. The nuclear norm appears because it is dual to

the norm in which we are measuring discrepancy, namely spectral

norm. Using convex duality, in Section 4 we actually prove the

following more general statement which applies to any norm and

its dual, in hope that it is useful in future work.

5Thanks to Raghu Meka for making us aware of this.
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Lemma 3.2 (Compress or Color). Let K be a symmetric convex

body in R𝑚 and let ∥ · ∥K be its associated norm. Let 𝑣1, . . . , 𝑣𝑛 ∈ R𝑚 .

For every 𝜀,Δ > 0, either

• there is a partial fractional coloring 𝑥 ∈ [−1, 1]𝑛 such that |{𝑖 :

|𝑥𝑖 | = 1}| ⩾ 𝜀𝑛 and ∥∑
𝑖⩽𝑛 𝑥𝑖𝑣𝑖 ∥K ⩽ Δ, and, furthermore,

with probability Ω(1/𝑛) over uniformly random choice of 𝑔 ∈
{±1}𝑛 such a coloring is given by optimizer of the following

convex program:

max
𝑥

⟨𝑥,𝑔⟩ such that







∑︁
𝑖⩽𝑛

𝑥𝑖𝑣𝑖







K
⩽ Δ and 𝑥 ∈ [−1, 1]𝑛 , or,

• for at least 2𝑛/2 choices of𝑔 ∈ {±1}𝑛 there is a vector𝑦𝑔 ∈ R𝑚
with ∥𝑦𝑔 ∥K∗ = 1, a set 𝐼𝑔 ⊆ [𝑛] with |𝐼𝑔 | ⩽ 𝜀𝑛, and for

𝑖 ∈ [𝑛] \ 𝐼𝑔 numbers Δ𝑖𝑔 ⩾ Ω(Δ) such that ⟨𝑦𝑔, 𝑣𝑖 ⟩ =
Δ𝑖𝑔

𝑛 𝑔𝑖 .

In light of Lemma 3.2, to show in the proof of Theorem 3.1 that

there is a partial fractional coloring with discrepancy Δ, we can

instead rule out a mapping from 𝑔 ∈ {±1}𝑛 to matrices 𝑌𝑔 with

∥𝑌𝑔 ∥1 = 1 (since the nuclear norm is dual to the spectral norm)

such that ⟨𝑌𝑔, 𝐴𝑖 ⟩ ≈ Δ

𝑛 · 𝑔𝑖 for at least (1 − 𝜀)𝑛 indices 𝑖 ∈ [𝑛].
By a simple transformation of the 𝑌𝑔s and 𝐴𝑖s, we can assume

𝑌𝑔 ⪰ 0, and hence that 𝑌𝑔 is a 𝑑-dimensional density matrix, and

that Tr𝐴𝑖 = 0. We can then interpret {𝑌𝑔}𝑔∈{±1}𝑛 as a strategy for

Alice in a one-way quantum protocol for the 𝑛-bit index function,

where Bob’s measurements are the 𝐴𝑖 ’s. In our discussion of such

protocols so far, we have always assumed that ∥𝐴𝑖 ∥ ⩽ 1; note that

we do not make this assumption here. It turns out that the weaker

assumption on
∑
𝑖⩽𝑛 𝐴

2
𝑖 suffices to build the repeated protocol we

need to prove our communication lower bound.

Since our communication lower bounds only apply to protocols

where Alice communicates a pure state, we use following lemma to

round {𝑌𝑔}𝑔∈{±1}𝑛 to pure states {𝑦𝑔}𝑔∈{±1}𝑛 . The cost is that the
fluctuations in this randomized rounding scheme are governed by

Tr
∑
𝑖⩽𝑛 𝐴

2
𝑖 =

∑
𝑖⩽𝑛 ∥𝐴𝑖 ∥2𝐹 in addition to ∥∑

𝑖⩽𝑛 𝐴
2
𝑖 ∥. The assump-

tion ∥𝐴𝑖 ∥𝐹 ⩽ 𝑛1/4 is needed to control the first term.

Lemma 3.3 (Purify then sketch). Let 𝑛,𝑑, 𝛿 > 0. Let

𝐴1, . . . , 𝐴𝑛 ∈ R𝑑×𝑑 have Tr𝐴𝑖 = 0 and 𝐴 =
∑𝑛
𝑖=1𝐴

2
𝑖 . Let

{𝑌𝑔}𝑔∈{±1}𝑛 be density matrices.

For every integer 𝑟 > 0, there exist symmetric matrices

𝐵1, . . . , 𝐵𝑛 ∈ R𝑟×𝑟 such that





𝑛∑︁
𝑖=1

𝐵2𝑖






 ⩽ 𝑂𝛿

(
∥𝐴∥ + min(

√
𝑛,𝑑) · Tr𝐴
𝑟

)

and such that for at least 3
4 · 2𝑛 of 𝑔 ∈ {±1}𝑛 there exists an 𝑟 -

dimensional pure state 𝑦𝑔 (i.e. a vector 𝑦𝑔 ∈ R𝑟 with ∥𝑦𝑔 ∥ = 1) and a

number 𝑐𝑔 ⩾ Ω𝛿 (1) such that for at least (1 − 𝛿)𝑛 indices 𝑖 ∈ [𝑛],
���⟨𝑦𝑔𝑦⊤𝑔 , 𝐵𝑖 ⟩ − 𝑐𝑔 ⟨𝑌𝑔, 𝐴𝑖 ⟩��� ⩽ 𝑂𝛿

(
∥𝐴∥
𝑛𝑟

+ min(
√
𝑛,𝑑) Tr𝐴
𝑛𝑟2

)1/2
.

Lastly, we prove the following lemma using tools from quantum

information and communication complexity ś see Section 5 for a

more thorough discussion.

Lemma 3.4. There is a universal constant 𝛿 > 0 such that the

following holds for all integers 𝑛,𝑚 > 0. Let S ⊆ {±1}𝑛 have size at

least 2𝛿𝑛 . Suppose that {𝑦𝑔}𝑔∈S is a collection of𝑚-qubit pure states

such that for some symmetric matrices 𝐴1, . . . , 𝐴𝑛 , subsets 𝐼𝑔 ∈
( 𝑛
𝛿𝑛

)
and numbers {𝜂𝑖𝑔 > 0}𝑔∈S,𝑖∈[𝑛]\𝐼𝑔 , for all 𝑖 ∈ [𝑛] \ 𝐼𝑔 it holds that
⟨𝑦𝑔𝑦⊤𝑔 , 𝐴𝑖 ⟩ = 𝜂𝑖𝑔 · 𝑔𝑖 . Let

𝜂2 =
E𝑔∼S,𝑖∼[𝑛]\𝐼𝑔 𝜂

2
𝑖𝑔

∥ E𝑖∼[𝑛] 𝐴2
𝑖 ∥

.

If 𝜂 ⩾ 𝐶/
√
𝑛 for some universal 𝐶 > 0, then

𝑚 ⩾ log
1

𝜂2
+ Ω(𝜂2 · 𝑛) .

With our tools in hand, we can prove Theorem 3.1.

Proof of Theorem 3.1. Let

Good Compression(Δ): for 2𝑛/2 choices of 𝑔 ∈
{±1}𝑛 there is a matrix 𝑌𝑔 with ∥𝑌𝑔 ∥1 = 1, a set

𝐼𝑔 ⊆ [𝑛] with |𝐼𝑔 | ⩽ 𝜀𝑛, and numbers {Δ𝑖𝑔}𝑖∈[𝑛]\𝐼𝑔
with Δ𝑖𝑔 ⩾ Δ such that ⟨𝑌𝑔, 𝐴𝑖 ⟩ =

Δ𝑖𝑔

𝑛 𝑔𝑖 for 𝑖 ∈ [𝑛]\𝐼𝑔
By the Compress or Color Lemma 3.2, it is enough to show that

for a small-enough constant 𝜀 > 0, if Good Compression(Δ)
occurs, then

Δ ⩽







∑︁
𝑖⩽𝑛

𝐴2
𝑖







1/2

·

𝑂
©­
«
min



√√
1 + log

Tr
∑
𝑖⩽𝑛 𝐴

2
𝑖√

𝑛


∑

𝑖⩽𝑛 𝐴
2
𝑖



 ,
√︁
𝑛 · 2−Ω (𝑛/𝑑2 )



ª®
¬
. (3.1)

In that case, if Δ is larger than in (3.1), then with probability Ω(1/𝑛)
over choice of 𝑔 ∼ {±1}𝑛 , the semidefinite program

max
𝑥∈[−1,1]𝑛

⟨𝑥, 𝑔⟩ such that







∑︁
𝑖⩽𝑛

𝑥𝑖𝐴𝑖






 ⩽ Δ

finds a fractional partial coloring with 𝜀𝑛 integer entries and dis-

crepancy at most Δ.

Suppose Good Compression(Δ) occurs, for some Δ > 0. Let

𝑌+
𝑔 ⪰ 0 be the positive semidefinite part of 𝑌𝑔 and 𝑌 −

𝑔 ⪯ 0 the

negative definite part, so that 𝑌𝑔 = 𝑌+
𝑔 + 𝑌 −

𝑔 . By replacing 𝑌𝑔 and

𝐴𝑖 with the following block matrices:

𝑌𝑔 →
(
𝑌+
𝑔 0

0 −𝑌 −
𝑔

)
and 𝐴𝑖 →

(
𝐴𝑖 0

0 −𝐴𝑖

)
,

(and replacing 𝑑 with 2𝑑) we may assume that𝑌𝑔 ⪰ 0with Tr𝑌𝑔 = 1

and Tr𝐴𝑖 = 0. Note that ⟨𝑌𝑔, 𝐴𝑖 ⟩ and ∥∑
𝑖⩽𝑛 𝐴

2
𝑖 ∥ are preserved by

this transformation, and Tr
∑
𝑖⩽𝑛 𝐴

2
𝑖 grows by a factor of 2.

Let 𝐴 =
∑
𝑖⩽𝑛 𝐴

2
𝑖 . By the Purify-then-Sketch lemma 3.3, for any

choice of integer 𝑟 > 0 and any 𝛿 > 0 there are symmetric matrices

𝐵1, . . . , 𝐵𝑛 ∈ R𝑟×𝑟 such that





∑︁
𝑖⩽𝑛

𝐵2𝑖






 ⩽ 𝑂𝛿

(
∥𝐴∥ + min(

√
𝑛,𝑑) Tr𝐴
𝑟

)

and for at least 3
4 · 2𝑛 choices of 𝑔 ∈ {±1}𝑛 there is a pure state

𝑦𝑔 ∈ R𝑟 and a number 𝑐𝑔 ⩾ Ω𝛿 (1) such that for at least (1 − 𝛿)𝑛
indices 𝑖 ∈ [𝑛],���⟨𝑦𝑔𝑦⊤𝑔 , 𝐵𝑖 ⟩ − 𝑐𝑔 ⟨𝑌𝑔, 𝐴𝑖 ⟩��� ⩽ 𝑂𝛿

(
∥𝐴∥
𝑛𝑟

+ min(
√
𝑛,𝑑) Tr𝐴
𝑛𝑟2

)1/2
.
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Now, if

Δ
2
⩾ 𝑂𝛿 (1) · ∥𝐴∥ ·max

(
𝑛

𝑟
,
𝑛

𝑟
· min(

√
𝑛,𝑑) Tr𝐴
𝑟

)
, (3.2)

then for at least 2𝑛/4 choices of 𝑔 there is a subset 𝐼𝑔 ⊆ [𝑛] with
|𝐼𝑔 | ⩽ (𝜀 + 𝛿)𝑛 such that for 𝑖 ∈ [𝑛] \ 𝐼𝑔 ,

⟨𝑦𝑔𝑦⊤𝑔 , 𝐵𝑖 ⟩ =
Δ𝑖𝑔

𝑛
· 𝑔𝑖

where Δ𝑖𝑔 ⩾ Ω(Δ). Let us call this set of 𝑔’s S.
Let

𝜂2 =
E𝑔∼S,𝑖∼[𝑛]\𝐼𝑔 (Δ𝑖𝑔/𝑛)2

E𝑖∼[𝑛] 𝐵2𝑖 

 .

Henceforth taking 𝛿 to be a small-enough universal constant, by

Lemma 3.4, either 𝜂 ⩽ 𝑂 (1/
√
𝑛) or 𝑟 ⩾ 2Ω (𝜂2𝑛) · 1

𝜂2
. We treat the

two cases separately.

Case 1A: 𝜂 ⩽ 𝑂 (1/
√
𝑛) Using Δ𝑖𝑔 ⩾ Ω(Δ), in this case we have

Δ
2
⩽





 E
𝑖∼[𝑛]

𝐵2𝑖





 ⩽ 𝑂
(
∥𝐴∥ + min(

√
𝑛,𝑑) Tr𝐴
𝑟

)

Case 1B: 𝑟 ⩾ 2Ω (𝜂2𝑛) · 1
𝜂2

Using the definition of 𝜂, we have

log

(
𝑟 ·
E𝑔∼S,𝑖∼[𝑛]\𝐼𝑔 (Δ𝑖𝑔/𝑛)2

E𝑖∼[𝑛] 𝐵2𝑖 



)
⩾ Ω(𝑛) ·

E𝑔∼S,𝑖∼[𝑛]\𝐼𝑔 (Δ𝑖𝑔/𝑛)2

E𝑖∼[𝑛] 𝐵2𝑖 


This rearranges to

log

(
𝑟

𝑛
·
E𝑔∼S,𝑖∼[𝑛]\𝐼𝑔 Δ

2
𝑖𝑔

∑

𝑖⩽𝑛 𝐵
2
𝑖




)
⩾ Ω(1) ·

E𝑔∼S,𝑖∼[𝑛]\𝐼𝑔 Δ
2
𝑖𝑔

∑

𝑖⩽𝑛 𝐵
2
𝑖




which gives

log
𝑟

𝑛
⩾ Ω(1) ·

E𝑔∼S,𝑖∼[𝑛]\𝐼𝑔 Δ
2
𝑖𝑔

∑

𝑖⩽𝑛 𝐵
2
𝑖



 ,

so, rearranging and using our bound on ∥∑
𝑖⩽𝑛 𝐵

2
𝑖 ∥, and that Δ𝑖𝑔 ⩾

Ω(Δ), we get

Δ
2
⩽ 𝑂

(
∥𝐴∥ + min(

√
𝑛,𝑑) Tr𝐴
𝑟

)
· log 𝑟

𝑛
.

Now let us choose

𝑟 = max

(
𝑛,

min(
√
𝑛,𝑑) Tr𝐴
∥𝐴∥

)
,

so that putting together (3.2) with cases 1A and 1B, we find

Δ
2
⩽ 𝑂 (∥𝐴∥)max

(
1, log

min(
√
𝑛,𝑑) Tr𝐴
𝑛∥𝐴∥

)
. □

3.1 Matrix Spencer for Moderate-Rank Matrices

In this section we use Theorem 3.1 to prove the following theorem.

Theorem 3.5. Let 𝑑 ⩾ 𝑛 and 𝐴1, . . . , 𝐴𝑛 ∈ R𝑑×𝑑 be symmetric

matrices with ∥𝐴𝑖 ∥ ⩽ 1 and ∥𝐴𝑖 ∥2𝐹 ⩽
√
𝑑 for all 𝑖 ∈ [𝑛]. There is a

coloring 𝑥 ∈ {±1}𝑛 such that





∑︁
𝑖⩽𝑛

𝑥𝑖𝐴𝑖






 ⩽ 𝑂 ©­«
√︄
𝑛 log

(
𝑑

𝑛

)ª®¬
.

Furthermore, there is a (randomized) polynomial time algorithm

which finds such a coloring with high probability.

Proof. We will get a full coloring for this setting by iteratively

applying Lemma 3.1. Consider the first round of partial coloring.

Note that since ∥𝐴𝑖 ∥ ⩽ 1, we have


∑

𝑖⩽𝑛 𝐴
2
𝑖



 ⩽ 𝑛. From Lemma 3.1,

we get that there is a partial coloring 𝑥 with 𝑐𝑛 co-ordinates such

that 𝑥𝑖 ∈ {−1, 1} and





∑︁
𝑖⩽𝑛

𝑥𝑖𝐴𝑖






 ⩽






∑︁
𝑖⩽𝑛

𝐴2
𝑖







1/2

·𝑂 ©­
«
√√
1 + log

Tr
∑
𝑖⩽𝑛 𝐴

2
𝑖√

𝑛


∑

𝑖⩽𝑛 𝐴
2
𝑖



 ª®¬
.

By hypothesis on ∥𝐴𝑖 ∥2𝐹 = Tr𝐴2
𝑖 , we have Tr

∑
𝑖⩽𝑛 𝐴

2
𝑖 ⩽ 𝑛 · 𝑑1/2.







∑︁
𝑖⩽𝑛

𝑥𝑖𝐴𝑖






 ⩽ 𝑂
(






∑︁
𝑖⩽𝑛

𝐴2
𝑖







)1/2

·

√√
log

2
√
𝑑𝑛

∑

𝑖⩽𝑛 𝐴
2
𝑖



 .
Since 𝑥 log(2

√
𝑑𝑛/𝑥) ⩽ 𝑂 (𝑛 log(𝑑/𝑛)) for 0 ⩽ 𝑥 ⩽ 𝑛, we get a

partial coloring with discrepancy 𝑂
(√︁
𝑛 log(𝑑/𝑛)

)
.

Given a partial coloring 𝑥 , we move to the next round of partial

coloring by replacing 𝐴𝑖 by

𝐴′
𝑖 = sign (𝑥𝑖 ) · (1 − |𝑥𝑖 |)𝐴𝑖 .

We ignore the co-ordinates corresponding to zero matrices. Since

(1 − |𝑥𝑖 |) ⩽ 1, the new matrices still satisfy the requirements on

the spectral norm and Frobenius norm. Furthermore, since 𝑐𝑛 co-

ordinates we integral, the number of matrices is now (1 − 𝑐) 𝑛. Thus,
we get a partial coloring with 𝑦 such that




∑︁𝑦𝑖𝐴
′
𝑖




 ⩽






∑︁
𝑖

𝐴
′2
𝑖







1/2

𝑂

(
1 + log

Tr
∑
𝑖 𝐴

′2
𝑖√︁

(1 − 𝑐) 𝑛


∑

𝑖 𝐴
′2
𝑖




)
.

Arguing as before, noting that Tr
∑
𝑖 𝐴

′2
𝑖 ⩽ (1 − 𝑐) 𝑛

√
𝑑 , we get




∑︁𝑦𝑖𝐴
′
𝑖




 ⩽ 𝑂 ©­«
√︄
(1 − 𝑐) 𝑛 log

(
𝑑

(1 − 𝑐)𝑛

)ª®¬
.

Then, consider the partial coloring with co-ordinates 𝑧𝑖 =

𝑥𝑖 + sign(𝑥𝑖 ) (1 − |𝑥𝑖 |) 𝑦𝑖 . First note that we have 𝑐 + (1 − 𝑐) 𝑐/2
co-ordinates that are integral. To see this note that for half the inte-

gral co-ordinates in 𝑦, we must have sign (𝑦𝑖 ) = 1 (replacing 𝑦 with

−𝑦 if necessary). For such 𝑦𝑖 , we have 𝑥𝑖 + sign (𝑥𝑖 ) (1 − |𝑥𝑖 |) 𝑦𝑖 =
sign (𝑥𝑖 ) which is integral. Furthermore,






∑︁
𝑖

𝑧𝑖𝐴𝑖






 ⩽






∑︁
𝑖

𝑥𝑖𝐴𝑖






 +






∑︁
𝑖

𝑦𝑖𝐴
′
𝑖







⩽ 𝑂

©­«
√︄
𝑛 log

(
𝑑

𝑛

)
+

√︄
(1 − 𝑐) 𝑛 log

(
𝑑

(1 − 𝑐)𝑛

)ª®¬
.

Iterating this inductively, we get that the discrepancy is bounded

by

𝑂

(
√
𝑛
∑︁
𝑖

(1 − 𝑐)𝑖/2
√︄
log

(
𝑑

(1 − 𝑐)𝑖 𝑛

))
= 𝑂

©­
«
√︄
𝑛 log

(
𝑑

𝑛

)ª®
¬

as required.

□
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4 COMPRESS OR COLOR

In this section we prove Lemma 3.2. For this, we would like to

understand the optimizers of the program given by max𝑥 ⟨𝑥, 𝑔⟩ for
𝑥 in the set of low discrepancy vectors for a set of vectors 𝑣1, . . . 𝑣𝑛
under some norm and 𝑔 ∈ {−1, 1}𝑛 . Lemma 3.2 follows from the

following proposition which connects optimizers to such programs

with few integral coordinates to unit vectors under the dual norm

whose inner products with 𝑣𝑖 correlate well with the coordinates

of 𝑔.

Lemma 4.1. Let 𝑣1 . . . 𝑣𝑛 ∈ R𝑚 and ∥·∥ be a norm. Let 𝜀 ∈ (0, 1)
and Δ > 0. Then, for any 𝑔 ∈ {−1, 1}𝑛 such that any optimizer to the

program

max
𝑥∈[−1,1]𝑛

⟨𝑥, 𝑔⟩






∑︁
𝑖

𝑥𝑖𝑣𝑖






 ⩽ Δ

has less than 𝜀𝑛 coordinates in {−1, 1}, there exists a𝑦𝑔 with ∥𝑦𝑔 ∥∗ = 1

and 𝐼𝑔 ⊆ [𝑛] with |𝐼𝑔 | ⩽ 𝜀𝑛 such that

⟨𝑦𝑔, 𝑣𝑖 ⟩𝑔𝑖 ⩾
Δ

𝑛

for all 𝑖 ∉ 𝐼𝑔 .

Proof. Let 𝑔 ∈ {−1, 1}𝑛 as in the statement of the lemma i.e.

such that any optimizer to the program

max
𝑥∈[−1,1]𝑛

⟨𝑥, 𝑔⟩






∑︁
𝑖

𝑥𝑖𝑣𝑖






 ⩽ Δ

has less than 𝜀𝑛 coordinates in {−1, 1}. Let 𝑥𝑔 such an opti-

mizer. Denote by 𝑇 (𝑥) the set {𝑖 ∈ [𝑛] : |𝑥𝑖 | = 1}. Note that we

have |𝑇 (𝑥) | ⩽ 𝜀𝑛. Denote by 𝐾Δ = {𝑥 : ∥∑𝑖 𝑥𝑖𝑣𝑖 ∥ ⩽ Δ} and

[−1, 1]𝑇 (𝑥 )
= {𝑥 : |𝑥𝑖 | ⩽ 𝑖 ∀𝑖 ∈ 𝑇 (𝑥)} and 𝑄 = 𝐾Δ ∩ [−1, 1]𝑇 (𝑥 ) .

Note that the following convex program

max
𝑥∈𝑄

⟨𝑥,𝑔⟩

has the same optimizer and value as the original program. This

is due to the fact that removing non-tight constraints in a convex

program does not change the optimum and optimizer.

Further, observe that ⟨𝑥𝑔, 𝑔⟩ ⩽ 𝑛 since 𝑥𝑔, 𝑔 ∈ [−1, 1]𝑛 . Thus,
max𝑥∈𝑄 ⟨𝑥, 𝑔⟩ ⩽ 𝑛, which implies that 𝑔/𝑛 ∈ 𝑄∗, the polar body of

𝑄 . Thus, we have𝑔/𝑛 = 𝜆𝑦1+(1 − 𝜆) 𝑦2 with 𝜆 ∈ (0, 1), and𝑦1 ∈ 𝐾∗
Δ

and 𝑦2 ∈ 𝐵𝑇 (𝑥 )
1 . Here 𝐵

𝑇 (𝑥 )
1 = {𝑦 : 𝑦𝑖 = 0 ∀𝑦𝑖 ∉ 𝑇 (𝑥),

∑
𝑖 |𝑦𝑖 | = 1}

which is the polar body of [−1, 1]𝑇 (𝑥 ) . Since 𝑦2 has only zero

coordinates for 𝑖 ∉ 𝑇 (𝑥), we have 𝑔𝑖/𝑛 = (𝜆𝑦2)𝑖 . But note that

𝐾∗
Δ

= Δ
−1 {(⟨𝑣1, 𝑦⟩, . . . , ⟨𝑣𝑛, 𝑦⟩) : ∥𝑦∥∗ ⩽ 1}. Thus, we get the re-

quired result. □

5 ONE-WAY COMMUNICATION IN THE

SMALL-ADVANTAGE REGIME

In this section we study (quantum) communication complexity

of the index function. We adopt terminology from the quantum

information literature, where a one-way protocol for the index

function is called a (quantum) random access code.

Definition 5.1 (Random Access Code). A (𝑚,𝑛, 𝜀) random access

code is a map from messages 𝑔 ∈ {±1}𝑛 to distributions over𝑚-

bit codewords 𝑦𝑔 together with a family of decoding procedures

𝐷1, . . . , 𝐷𝑛 : {±1}𝑚 → {±1} such that for all 𝑔 and all 𝑖 , the

decoding procedure 𝐷𝑖 run on input 𝑦𝑔 outputs 𝑔𝑖 with probability

at least 1 − 𝜀 (over the random choice of encoding of 𝑔).

Definition 5.2 (Quantum random access code). A quantum ran-

dom access code is a map from message 𝑔 to quantum states

{𝑦𝑔}𝑔∈{±1}𝑛 together with a family of quantum decoding proce-

dures 𝐷1, . . . , 𝐷𝑛 : {±1}𝑚 → {±1}. We call the code pure if 𝑦𝑔 is a

pure state; otherwise it may be a mixed state. The decoding proce-

dure 𝐷𝑖 have the property that for all 𝑔 and all 𝑖 , 𝐷𝑖 run on input

𝑦𝑔 outputs 𝑔𝑖 with probability at least 1 − 𝜀, where the probability
is over any classical randomness in the possibly mixed state 𝑦𝑔 as

well as the randomness in the outcomes of measurements made by

𝐷𝑖 .

In the regime that 𝜀 is a constant independent of 𝑛,𝑚, classical

information theory shows that𝑚 ⩾ Ω(𝑛) for classical codes. This
is not so obvious for the quantum case, since the decoding proce-

dure 𝐷𝑖 may destroy the state 𝑦𝑔 and make other bits unreadable.

Nonetheless, a clever application of the Holevo bound together

with an inductive argument shows that𝑚 ⩾ Ω(𝑛) in quantum case

as well [2].

For applications to discrepancy, we are interested in the case

that 𝜀 is close to 1/2 ś i.e. 𝜀 = 1/2 − 𝜂 for some 𝜂 = 𝜂 (𝑛) → 0.

Of particular interest is the regime 𝜂 = Θ(1/
√
𝑛) ś this is the

most relevant regime for Spencer-style discrepancy bounds, and

it also turns out to be interesting from the perspective of random

access codes, whose behavior is rather different for 𝜂 ≫ 1/
√
𝑛 and

𝜂 ≪ 1/
√
𝑛.

To carry out our application to discrepancy, we need lower

bounds for somewhat weaker notions of random access codes.

Definition 5.3 (Weakness). A (𝑚,𝑛, 𝜀) random access code is called

(𝛿, 𝑡)-weak (for a subset S ⊆ {±1}𝑛) if it contains messages 𝑦𝑔
only for 𝑔 ∈ S, where log|S| ⩾ 𝑛 − 𝑡 , and if for each 𝑔 at least a

(1 − 𝛿) fraction of the decoding procedures 𝐷𝑖 yield the bit 𝑔𝑖 with

probability 1 − 𝜀. (So for each 𝑔 there may be as many as 𝛿𝑛 bad

coordinates which are not decoded by their corresponding decoding

procedures.)

We prove the following main result for both classical and pure

quantum random access codes. Adapting the same proof, afterwards

we prove Lemma 3.4.

Theorem 5.4 (Lower Bound for Low-Signal (Pure) Random

Access Codes). Let {𝑦𝑔}𝑔∈{±1}𝑛 be an (𝑚,𝑛, 12−𝜂) classical random
access code or pure quantum random access code. Then

𝑚 ⩾ log𝑛 − log log
1

𝜂2
−𝑂 (1) .

Furthermore, if 𝜂 ⩾ 10/
√
𝑛,

𝑚 ⩾ log
1

𝜂2
+ Ω(𝜂2𝑛) .

Furthermore, the same inequalities hold if {𝑦𝑔} is (𝛿, 𝑡)-weak, so long
as 𝛿 ⩽ 𝛿0 and 𝑡 ⩽ 𝑡0𝑛 for some universal constants 𝛿0, 𝑡0.
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We conjecture that the same bounds as in Theorem 5.4 hold also

for general quantum random access codes, where𝑦𝑔 may be amixed

state ś such bounds would imply the Matrix Spencer conjecture.

The proof of Theorem 5.4 has two parts. First, we generalize the

argument of [2] to the case of weak quantum random access codes

(requiring only a slight adaptation of the arguments of [2]). Then,

we prove Theorem 5.4 by applying the resulting lemma not to the

random access code we start with, but instead to the code we get

by amplifying the success probability by repeating the code.

Lemma 5.5 (Lower bound for WQRACs, adapted from [2]).

If there exists an (𝑚,𝛿, 𝜀)-WQRAC for a subset S ⊂ {±1}𝑛 with

log |S| = 𝑛 − 𝑡 , then

𝑚 ⩾ (1 − 𝐻 (𝛿) − 𝐻 (𝜀)) · 𝑛 − 𝑡 .

Now we prove Theorem 5.4 and its refinement Lemma 3.4, de-

ferring the proof of Lemma 5.5 to the end of this section.

Proof of Theorem 5.4. Let 𝑟 > 0 be an integer. Consider the

amplified random access code which uses

• 𝑟 independent draws 𝑦1𝑔, . . . , 𝑦𝑟𝑔 from the distribution of mes-

sages encoding 𝑔, in the classical case, and

• 𝑦⊗𝑟𝑔 , that is, 𝑟 copies of the state 𝑦𝑔 , in the quantum case,

as the encoding of 𝑔. To decode the bit 𝑖 , run the decoding pro-

cedure 𝐷𝑖 on each copy and take a majority vote. This gives a

(𝛿, 𝑡)-weak random access code for S with failure probability

𝜀′ = P(Bin(𝑟, 1/2 + 𝜂) < 𝑟/2) ⩽ exp(−𝑟𝜂2). Take 𝑟 = 1/𝜂2, so
that this is at most 1/𝑒 .

We claim that in classical case, the message 𝑦1𝑔, . . . , 𝑦
𝑟
𝑔 can be

expressed using just

log

(
2𝑚 + 1/𝜂2

1/𝜂2

)
⩽ min

(
2𝑚,

1

𝜂2

)
· log

©­­«
𝑒 ·

2𝑚 + 1
𝜂2

min
(
2𝑚, 1

𝜂2

) ª®®¬
(5.1)

bits, and similarly with at most the above number of qubits for the

pure quantum case.

Classical: The majority-vote decoding procedure only needs

to know the frequency of each of the 2𝑚 possible messages among

𝑦1𝑔, . . . , 𝑦
1/𝜂2
𝑔 . By a łstars and barsž argument, the number of such

frequency-counts is at most
(2𝑚+1/𝜂2

1/𝜂2
)
.

Quantum: The state 𝑦
⊗1/𝜂2
𝑔 lies in the symmetric subspace,

span{𝑥⊗1/𝜂2 : 𝑥 ∈ R2𝑚 }. This subspace has dimension at most(2𝑚+1/𝜂2
1/𝜂2

)
[19] (by the same stars and bars argument).

Applying Lemma 5.5 to this amplified code gives us the following

bound.

min

(
2𝑚,

1

𝜂2

)
· log

©­­«
𝑒 ·

2𝑚 + 1
𝜂2

min
(
2𝑚, 1

𝜂2

) ª®®¬
(5.2)

⩾ (1 − 𝐻 (𝛿) − 𝐻 (1/𝑒))𝑛 − 𝑡 (5.3)

⩾
𝑛

2
. (5.4)

where we have used the hypotheses on 𝛿 and 𝑡 .

Suppose first that we take the bound

2𝑚 log

(
𝑒 · 2

𝑚 + 1/𝜂2
2𝑚

)
⩾ 𝑛/2 .

Then we have

2𝑚 ·
(
log

1

𝜂2
+𝑂 (1)

)
⩾
𝑛

2
.

Hence,

𝑚 ⩾ log𝑛 − log log
1

𝜂2
−𝑂 (1)

as desired.

Now, suppose that 𝜂 ⩾ 10/
√
𝑛. Let 𝑐 = log 1/𝜂2 −𝑚, so that

2𝑚 = 2−𝑐/𝜂2. Suppose 𝑐 ⩾ 0, so that 2𝑚 ⩽ 1/𝜂2. Then we have

2𝑚
(
log

1

𝜂22𝑚
+ 3

)
⩾
𝑛

2
.

By definition of 𝑐 , we get 2𝑚 (𝑐 + 3) ⩾ 𝑛/2, which gives 𝑚 ⩾

log𝑛 + log(1/(𝑐 + 3)) − 1. On the other hand, by hypothesis 2𝑚 =

2−𝑐/𝜂2 so 𝑚 ⩽ log(1/𝜂2) − 𝑐 . By hypothesis on 𝜂, this means

𝑚 ⩽ log𝑛 − log(100) − 𝑐 . This is a contradiction for 𝑐 ⩾ 0; we must

have 𝑐 < 0.

Put differently, we may assume that 1/𝜂2 ⩽ 2𝑚 . Using (5.4) again,

we obtain

1

𝜂2
log

©­
«
𝑒 ·

2𝑚 + 1
𝜂2

1
𝜂2

ª®
¬
⩾ 𝑛/2 .

This gives

2𝑚 + 1
𝜂2

1
𝜂2

⩾ 2𝜂
2𝑛/2−2

and, rearranging:

2𝑚 ⩾
1

𝜂2
· 2𝜂2𝑛/2−2 − 1

𝜂2
=

1

𝜂2
·
(
2𝜂

2𝑛/2−2 − 1
)

Taking logs,

𝑚 ⩾ log
1

𝜂2
+ log

(
2𝜂

2𝑛/2−2 − 1
)
⩾ log

1

𝜂2
+ Ω(𝜂2𝑛)

where we used the assumption 𝜂 ⩾ 10/
√
𝑛 for the second inequality.

□

Proof of Lemma 3.4. The proof is identical to that of Theo-

rem 5.4, except that we construct the decoding procedures for the

amplified code as follows.

Decoding the amplified code: For each 𝑖 , thematrix𝐴𝑖 induces

the following measurement procedure: measure in the eigenbasis

𝑎1, . . . , 𝑎𝑛 of 𝐴𝑖 , and on receiving outcome 𝑗 , output the eigenvalue

of 𝐴𝑖 associated to 𝑎 𝑗 . Given 𝑟 copies of the state 𝑦𝑔 , to decode the

𝑖-th bit, run the aforementioned measurement procedure on each

copy of 𝑦𝑔 and average the results. Output 1 if the sum is positive

and −1 otherwise.
Analysis of decoding: We claim that for some choice of

𝑟 = 𝑂 (∥ E𝑖∼[𝑛] 𝐴2
𝑖 ∥/E𝑔 𝜂

2
𝑔), the above decoding procedure yields

a weak random access code for a subset S′ ⊆ S of size |S′ | ⩾
(1 − 𝛿) |S|, with failure probability at most 1/𝑒 . After this is es-
tablished, the proof can proceed as in Theorem 5.4, with 𝜂 =

Θ(
√︃
E𝑔 𝜂

2
𝑔/∥ E𝑖∼[𝑛] 𝐴2

𝑖 ∥).
In decoding the 𝑖-th bit, the decoding procedure produces a

sum of i.i.d. random variables 𝑋1, . . . , 𝑋𝑟 , each with mean 𝜂𝑔𝑔𝑖 and

646



Matrix Discrepancy fromQuantum Communication STOC ’22, June 20ś24, 2022, Rome, Italy

variance ⟨𝑦𝑔𝑦⊤𝑔 , 𝐴2
𝑖 ⟩. The average 𝑋 =

∑𝑟
𝑖=1 𝑋𝑖/𝑟 has E𝑋 = 𝜂𝑔𝑔𝑖

and variance V(𝑋 ) = ⟨𝑦𝑔𝑦⊤𝑔 , 𝐴2
𝑖 ⟩/𝑟 . By Chebyshev’s inequality, for

fixed 𝑖 and 𝑔, the probability of incorrectly decoding the bit 𝑔𝑖 is at

most

P
(
|𝑋 − E𝑋 | > 𝜂𝑔

)
⩽

𝜂2𝑔

⟨𝑦𝑔𝑦⊤𝑔 , 𝐴2
𝑖 ⟩/𝑟

.

This is at most 1/𝑒 so long as 𝑟 ⩾ 𝑒 · ⟨𝑦𝑔𝑦⊤𝑔 , 𝐴2
𝑖 ⟩/𝜂

2
𝑔 . By Markov’s

inequality, for any 𝛿 > 0, if we choose 𝑟 ⩾ 𝐶 (𝛿)∥ E𝑖∼[𝑛] 𝐴2
𝑖 ∥/E𝑔 𝜂

2
𝑔 ,

we will have 𝑟 ⩾ 𝑒 · ⟨𝑦𝑔𝑦⊤𝑔 , 𝐴2
𝑖 ⟩/𝜂

2
𝑔 for at least a (1 − 𝛿) fraction of

pairs (𝑔, 𝑖) for which the assumptions of the theorem apply. □

5.1 Proof of Lemma 5.5

To prove Lemma 5.5, we use the entropy coalescence lemma of [2],

which is itself a corollary of the Holevo bound.

Lemma 5.6 (Entropy Coalescence Lemma, [2]). Let 𝜌−1 and 𝜌1
be two density matrices and let 𝜌 = (1 − 𝛽) · 𝜌−1 + 𝛽 · 𝜌1 be their
mixture for some 𝛽 ∈ (0, 1). If there is a measurement with outcome

−1 or 1 such that making the measurement on 𝜌𝑏 yields the bit 𝑏 with

probability at least 𝑝 , then

𝑆 (𝜌) ⩾ (1 − 𝛽) · 𝑆 (𝜌−1) + 𝛽 · 𝑆 (𝜌1)) + (𝐻 (𝛽) − 𝐻 (𝑝))

where 𝐻 is the binary entropy function and 𝑆 is the von Neumann

entropy.

Now we can prove Lemma 5.5 essentially by following the argu-

ment of [2] while throwing out the 𝜀-fraction of 𝑔’s where 𝑌𝑔 is not

decodable to 𝑔.

Proof of Lemma 5.5. For each 𝑔 ∈ S, there is a set of at most

𝛿 · 𝑛 bad coordinates 𝑖 ∈ [𝑛] for which the corresponding decoding

procedures 𝐷𝑖 do not produce the bit 𝑔𝑖 with probability 1 − 𝜀. Let
𝐼𝑔 ∈

( 𝑛
𝛿𝑛

)
denote this subset. Let 𝐼 ∈

( 𝑛
𝛿𝑛

)
denote the subset that is

the bad set for the largest number of strings 𝑔 ∈ S, and let

S𝐼 = {𝑔 ∈ S|𝐼𝑔 = 𝐼 }

Clearly, |S𝐼 | ⩾ |S|/
( 𝑛
𝛿𝑛

)
.

Without loss of generality, let us assume that the set 𝐼 consists of

the last 𝛿𝑛 coordinates, i.e., 𝐼 = {(1 − 𝛿)𝑛, . . . , 𝑛}. Let Θ denote the

uniform distribution over 𝑔 ∈ S𝐼 . Let 𝑔 ∈ {±1}𝑛 denote a random

sample from the distribution Θ. For every 𝐿 < (1 − 𝛿) · 𝑛, let Θ𝐿

denote the marginal distribution of Θ over the first 𝐿 coordinates.

For every 𝛼 ∈ {±1}𝐿 , let us define

𝜌𝛼 = E
𝑔∼Θ

[𝑌𝑔 |𝑔𝐿 = 𝛼]

By definition, we can write

𝜌𝛼 = P[𝑔𝐿+1 = +1|𝑔𝐿 = 𝛼] · 𝜌𝛼,+1 + P[𝑔𝐿+1 = −1|𝑔𝐿 = 𝛼] · 𝜌𝛼,−1
Applying the entropy coalescence lemma Lemma 5.6, we get that

𝑆 (𝜌𝛼 ) ⩾ P[𝑔𝐿+1 = +1|𝑔𝐿 = 𝛼] · 𝑆 (𝜌𝛼,+1) + P[𝑔𝐿+1 = −1|𝑔𝐿 = 𝛼] · 𝑆 (𝜌𝛼,−1)
+ 𝐻 (P[𝑔𝐿+1 = +1|𝑔𝐿 = 𝛼]) − 𝐻 (𝜀)

Averaging the above inequality over 𝛼 drawn from the distribu-

tion Θ𝐿 ,

E
𝛼∼Θ𝐿

[𝑆 (𝜌𝛼 )] ⩾ E
𝛼 ′∼Θ𝐿+1

[𝑆 (𝜌𝛼 ′ )] + 𝐻 (𝑔𝐿+1 |𝑔𝐿) − 𝐻 (𝜀)

Summing up the above inequality over 𝐿 = 0, . . . , (1 − 𝛿)𝑛 − 1,

𝑆 (𝜌∅)] ⩾ E
𝛼∼Θ

[𝑆 (𝜌𝛼 )] +
𝑛∑︁

𝐿=1

𝐻 (𝑔𝐿+1 |𝑔𝐿) − (1 − 𝛿)𝑛 · 𝐻 (𝜀)

⩾ E
𝛼∼Θ

[𝑆 (𝜌𝛼 )] + 𝐻 (𝑔) − (1 − 𝛿)𝑛 · 𝐻 (𝜀)

⩾ 0 + 𝐻 (𝑔) − (1 − 𝛿)𝑛 · 𝐻 (𝜀)
⩾ log |S𝐼 | − (1 − 𝛿)𝑛 · 𝐻 (𝜀)

The lower bound follows by observing that 𝑆 (𝜌∅) ⩽ 𝑚 and
( 𝑛
𝛿𝑛

)
⩽

2𝐻 (𝛿 ) ·𝑛 . □

6 SKETCHING

In this section, we will present a random sketch that preserves

evaluations of a set of quadratic forms. Fix a set of symmetric

matrices 𝐴1, . . . , 𝐴𝑛 ∈ R𝐷×𝐷 and a point 𝑦 ∈ R𝐷 . Consider the
linear sketch that samples a random matrix 𝑆 ∈ R𝑑×𝐷 with entries

in N(0, 1/𝑑) and maps,

𝐴𝑖 ∈ R𝐷×𝐷 → 𝑆𝐴𝑖𝑆
⊤ ∈ 𝑅𝑑×𝑑

and

𝑦 ∈ R𝐷 → 𝑆𝑦 ∈ R𝑑

We will show that this sketch approximately preserves the value

of the quadratic forms 𝑦⊤𝐴𝑖𝑦 with good probability. The rest of

this section is devoted to bounds on the expectation, variance of

the sketched quadratic forms and the spectral norm of sketched

matrices. These guarantees are captured by the following lemma.

Lemma 6.1 (Main sketching lemma). Let 𝐴1, . . . , 𝐴𝑛 ∈ R𝐷×𝐷

be symmetric with Tr𝐴𝑖 = 0. Let 𝐴 =
∑𝑛
𝑖=1𝐴

2
𝑖 . Let 𝑦 ∈ R𝐷 be a

unit vector. Finally, let 𝑑 > 0 and let 𝑆 ∈ R𝑑×𝐷 have iid entries from

N(0, 1/𝑑). Then the following all hold:

(1) Expectation: For all 𝑖 , E⟨(𝑆𝑦) (𝑆𝑦)⊤, 𝑆𝐴𝑖𝑆⊤⟩ =(
1 + 1

𝑑

)
⟨𝑦𝑦⊤, 𝐴𝑖 ⟩,

(2) Variance: The average variance across 𝑖 = 1, . . . , 𝑛 is bounded:

𝑛∑︁
𝑖=1

V
[
⟨(𝑆𝑦) (𝑆𝑦)⊤, 𝑆𝐴𝑖𝑆⊤⟩

]
⩽ 𝑂

(
∥𝐴∥
𝑑

+ Tr𝐴

𝑑2

)
, and

(3) Spectral norm: The following matrix has bounded spectral

norm:

E







𝑛∑︁
𝑖=1

(𝑆𝐴𝑖𝑆⊤)2





 ⩽ 𝑂

(
∥𝐴∥ + Tr𝐴

𝑑

)
.

The proof of the main sketching lemma may be found in the full

version of the paper.

6.1 Purify then Sketch

With Lemma 6.1 in hand we can prove Lemma 3.3. We will need the

following fact about the rank of solutions to semidefinite programs.

Theorem 6.2 (Barvinok [9], Pataki [27]). Any compact spec-

tahedron {𝑌 : ⟨𝑌,𝐴1⟩ = 𝑏1, . . . , ⟨𝑌,𝐴𝑚⟩ = 𝑏𝑚, 𝑌 ⪰ 0} contains 𝑌
such that rank𝑌 ⩽ 4

√
𝑚.

Proof of Lemma 3.3. Without loss of generality, by Theo-

rem 6.2, we may assume that 𝑡 = max𝑔 rank𝑌𝑔 ⩽ min(6
√
𝑛,𝑑).

To produce 𝑦𝑔 , we use the following algorithm:
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(1) Purify: Let 𝑦′𝑔 ∈ R𝑑 ⊗ R𝑡 be a purification of 𝑌𝑔 . Let 𝐴
′
𝑖 =

𝐴𝑖 ⊗ Id𝑡×𝑡 , so that (𝑦′𝑔)⊤𝐴′
𝑖𝑦

′
𝑔 = ⟨𝑌𝑔, 𝐴𝑖 ⟩.

(2) Sketch: Let 𝑆 ∈ R𝑟×𝑑𝑡 be a sketching matrix with iid entries

from N(0, 1/𝑟 ). Let 𝑦𝑔 = 𝑆𝑦′𝑔/∥𝑆𝑦′𝑔 ∥ and let 𝐵𝑖 =
𝑑

𝑑+1𝑆𝐴
′
𝑖𝑆

⊤.

Now we apply the main sketching lemma 6.1. Noting that∑
𝑖⩽𝑛 (𝐴′

𝑖 )
2
=

∑
𝑖⩽𝑛 𝐴

2
𝑖 ⊗ Id𝑡×𝑡 = 𝐴 ⊗ Id𝑡×𝑡 , this gives for each

𝑔 ∈ {±1}𝑛 and each 𝑖 ⩽ 𝑛,

E
𝑆

𝑛∑︁
𝑖=1

(
⟨(𝑆𝑦′𝑔) (𝑆𝑦′𝑔)⊤, 𝐵𝑖 ⟩ − ⟨𝑌𝑔, 𝐴𝑖 ⟩

)2
⩽ 𝑂

(
∥𝐴∥
𝑟

+ 𝑡 Tr𝐴
𝑟2

)
. (6.1)

For some constant 𝐶 we will choose shortly, let us call 𝑔 good if

there are at least (1 − 𝛿)𝑛 indices 𝑖 ∈ [𝑛] such that

���⟨(𝑆𝑦′𝑔) (𝑆𝑦′𝑔), 𝐵𝑖 ⟩ − ⟨𝑌𝑔, 𝐴𝑖 ⟩
��� ⩽ 𝐶 ·

(
∥𝐴∥
𝑛𝑟

+ 𝑡 Tr𝐴
𝑛𝑟2

)1/2
,

and, additionally, (1/𝐶) ⩽ ∥𝑆𝑦′𝑔 ∥2 ⩽ 𝐶 . By (6.1), there is 𝐶 =

𝐶 (𝛿) such that for each 𝑔 we have P(𝑔 is good) ⩾ 3/4. Therefore,
E𝑆 E𝑔∼{±1}𝑛 I(𝑔 is good) ⩾ 3/4, and hence there is a choice of 𝑆

such that 3
4 · 2𝑛 𝑔’s are good. We can obtain the pure state 𝑦𝑔 as

𝑆𝑦′𝑔/∥𝑆𝑦′𝑔 ∥.
The remaining claim then follows byMarkov’s inequality applied

to ∥∑
𝑖⩽𝑛 𝐵

2
𝑖 ∥ (using the bound on E ∥

∑
𝑖⩽𝑛 𝐵

2
𝑖 ∥ in Lemma 6.1) and

a union bound. □
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