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ABSTRACT

We develop a novel connection between discrepancy minimization
and (quantum) communication complexity. As an application, we
resolve a substantial special case of the Matrix Spencer conjecture.
In particular, we show that for every collection of symmetric n X n
matrices Ay, ..., A, with ||A;]| < 1and ||A;||F < n'/* there exist
signs x € {+1}" such that the maximum eigenvalue of }};¢,, xiA;
is at most O(+/n). We give a polynomial-time algorithm based on
partial coloring and semidefinite programming to find such x.

Our techniques open a new avenue to use tools from communica-
tion complexity and information theory to study discrepancy. The
proof of our main result combines a simple compression scheme for
transcripts of repeated (quantum) communication protocols with
quantum state purification, the Holevo bound from quantum in-
formation, and tools from sketching and dimensionality reduction.
Our approach also offers a promising avenue to resolve the Matrix
Spencer conjecture completely — we show it is implied by a natural
conjecture in quantum communication complexity.
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1 INTRODUCTION

In this paper we study discrepancy minimization for matrices. To set
up our main problem, let us begin with the classic result of Spencer,
“six standard deviations suffice” Let vy, .
The goal is to assign signs x1,...,x, € {£1} to the vectors so
as to minimize || }};<, Xivillco. As a shorthand, we often call the
latter quantity the discrepancy of x. For some intuition, note that if
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the vectors v; € {0, 1} then, treating them as incidence vectors,
they define a set system with n atoms and m subsets. The goal
then becomes to assign xi, . . ., X, so as to minimize the maximum
difference between the number of +1’s and —1’s in each set.

Choosing x1,...,xp at random presents a natural benchmark
— in this case, Ex_(11}n || X xivillo < O(y/nlogm), by a Cher-
noff/union bound argument. While many similar applications of the
union bound in combinatorics give tight results, Spencer’s result
remarkably shows that for any o1, ..., v, this bound can in fact be
beaten.

THEOREM 1.1 ([32]). For all vy,...,u, € R™ with ||vj|lec <
1, there exist x1,...,xn € {—1,1} such that || X;<p Xivillo <

O(x/nlog(m/n)).

In particular, if m = O(n), Spencer’s result shows that a signing
of discrepancy O(+/n) always exists.! Spencer’s original result was
nonconstructive, but a following a breakthrough by Bansal [4],
several polynomial-time algorithms are now known to find such a
signing, e.g. [14, 22, 31].

Matrix Discrepancy. We generalize the preceding setting by re-
placing the vectors vy, . . ., v with symmetric matrices Ay, ..., Ap €
R™*™ having spectral norms ||A;|| < 1.2 Now the goal is to find
X1, ..., Xp to minimize the spectral norm || ;<, x;A;||. Note that
we can recover the vector case by taking the A;s to be diagonal, or
more generally, commuting.

The matrix Chernoff bound of Ahlswede and Winter shows
that, as in the vector setting, randomly choosing x gives a signing
of discrepancy || X;<p, xiAil| < O(y/nlogm) [1]. This inequality
and its generalizations have become crucial tools in mathematics
and theoretical computer science, including in applications of the
probabilistic method, for instance in spectral graph theory and
unsupervised learning, e.g. [18, 33]. It is a natural question to ask
whether it, too, can be improved by careful choice of x - this is the
content of the Matrix Spencer conjecture:

CONJECTURE 1.2 (MATRIX SPENCER [25, 35]). ForallAy,...,A, €
R™*M™M ith ||A;ll < 1 there exists x € {*+1}" such that

| Zi<n xidill < O(ynlog(m/n)).

Despite significant effort, this conjecture has remained largely
open for a decade, with partial progress in the block-diagonal and
rank-one cases [21, 23, 30]. Thus, resolving Matrix Spencer (even
in a substantial special case) seems likely to lead to new techniques
in discrepancy.

!And, in fact, the constant in the big-O is at most 6, hence the name.
2We expect that the main results in this paper continue to hold if R is replaced by C.
Furthermore, if the matrices A; are not symmetric/Hermitian, they can be replaced

by their “Hermition dilations” ( f;)T AO’) without changing any of the asymptotic
i

bounds in this paper.
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1.1 Results

We resolve the Matrix Spencer conjecture in the case that Ay, ..., A,
have moderate rank. More formally, in addition to the assumption
lA;]| < 1, we additionally assume that [|A;||r < n'/%, where || - ||
is the Frobenius norm.

THEOREM 1.3 (MODERATE-RANK MATRIX SPENCER). Let
At,...,Ap € R™M have ||A;ll < 1 and ||Aillp < n'/%. Then

there exists x € {+1}" such that || X;<, xiA;|| < O(y/nlog(m/n)).

Furthermore, such an x can be found in polynomial time.

Even in the presence of the “moderate rank” assumption
lAillF < n/4, our result captures settings where the looser bound
O(+/nlog m) is un-improvable for randomly-chosen x - for instance,
if the A;’s are all diagonal with nonzero entries in the first v/n diag-
onal entries.®> Thus, our result captures a novel improvement over
the matrix Chernoff bound.

To prove Theorem 1.3, we introduce a new approach to discrep-
ancy minimization using (one-way) communication complexity. In
the matrix case, this connection leads us to quantum communica-
tion. For starters, we give a new proof of Spencer’s theorem: after
translation into a (classical) communication problem, Spencer’s
theorem can be proved using a simple compression scheme for
repeated communication protocols. To prove our moderate-rank
Matrix Spencer theorem, we combine a quantum analogue of this
compression scheme with several other tools, including quantum
state purification, sketching/dimensionality reduction, and conse-
quences of the Holevo bound from quantum information theory.

Discrepancy bounds proved using our techniques are automati-
cally algorithmic. In the vector (Spencer) case, our arguments give
a new analysis of the randomized linear programming approach
first analyzed by Eldan and Singh [14]. In the matrix case, we give
an analogous algorithm based on semidefinite programming. (This
algorithm uses a very different semidefinite program than Bansal’s
original use of semidefinite programming in the vector case.)

The O(+/n) discrepancy bound is tight even for the case of
rank one matrices. This is witnessed by considering the matri-
ces (1,¢;) (1,e;)T where e; are the standard basis vectors. Note
that it cannot be tight for diagonal matrices under this assump-
tion, since n vectors in R” with £ norms n'/* have discrepancy at
most O(n'/*) (the Komlés setting) [3]. This suggests a number of
interesting questions beyond Matrix Spencer: are there matrix ana-
logues of other discrepancy bounds for vectors, for instance under
£p assumptions (as in the Komlos setting) or £ and £ assumptions
(like the Beck-Fiala setting)?

We hope that opening the way to use communication complexity
techniques to prove results in discrepancy leads to future progress.
As an illustration, we show that our techniques offer a promising
avenue to fully resolve the Matrix Spencer conjecture — we now de-
scribe a natural conjecture in quantum communication complexity
which would imply it.

To describe the conjecture we need a small amount of notation.
Letindex : {—1,1}"x[n] — {-1,1} be the index function, given by
index(x, i) = x;. The index function induces the following one-way
communication problem between two players, Alice and Bob. Alice
receives x € {—1,1}" and Bob receives i € [n]. Alice sends Bob

3We thank Tselil Schramm and Boaz Barak for pointing this out.
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a message a, after which Bob must output a bit b(a,i) € {-1,1};
their goal is to jointly compute index(x, i).

The main question in one-way communication complexity is:
how long must Alice’s message be? This could depend on several
things:

o The nature of Alice’s message — classical or quantum.
o The probability of success P(b(a, i) = x;) (where the proba-
bility is over randomness in the protocol).
e The distribution of Alice and Bob’s inputs — they could be
uniformly random, worst-case, or something else.
Later, we will thoroughly discuss the one-way communication com-
plexity of the index function, after which the following conjecture
will be less mysterious. For now, we state the conjecture as an il-
lustration of the surprising connection between discrepancy and
communication.

CONJECTURE 1.4 (QUANTUM ONE-WAY COMMUNICATION COM-
PLEXITY IN THE SMALL-ADVANTAGE REGIME). Suppose Alice’s mes-
sage p consists of q qubits, and Bob has ¢ advantage over random
guessing in computing x; for a large set of indices i, in the following
sense. For each x there is a set of coordinates Sy C [n] with |Sx| >
(1 = 8)n such that By (_; 1yn minjes, P(b(p,1) = x;) > 1/2 +e.
Then for every small-enough § > 0, if e > 1/+/n, Alice must send
q > log(1/€%) + Q(¢%n) qubits.

Note that Conjecture 1.4 remains interesting even if § = 0; indeed,
this special case is most interesting from a quantum communication
point of view, and we expect that it already contains most of the
challenge in proving the conjecture.

Using the same argument as for Theorem 1.3 but substituting the
communication lower bound in Conjecture 1.4 for a weaker version
we prove in the course of proving Theorem 1.3, our techniques
show:

THEOREM 1.5. Suppose Conjecture 1.4 is true. Then the Matrix
Spencer conjecture holds, and there is a polynomial-time algorithm
based on semidefinite programming to find the signing it promises.

The classical analogue of Conjecture 1.4 is true; we record a proof
in this paper, although we believe it is probably known implicitly in
the literature. In fact, using our techniques, the classical analogue
gives a new algorithmic proof of Spencer’s theorem. Our proof of
Theorem 1.3 establishes a special case of Conjecture 1.4 where Alice
must send a pure state, from which (with some work) we are able
to deduce our moderate-rank Matrix Spencer theorem.

1.2 Techniques

1.2.1  From Discrepancy to Communication.

Discrepancy Is Exactly Average-Bob One-Way Communication
Complexity. To build intuition, we start with the following sim-
ple observation. Let Ryorst unif = Rworst,unif(7, €) be the minimum
length of a message a that Alice must send to Bob in a one-way
classical protocol for the n-bit index function in order to achieve

1
i i) =x;) > - +e.
xer?irll}niN]Fn]]P(b(a,l) Xi) 2+£

Here, the subscript “worst,unif” denotes that Alice’s input is worst-
case over x € {+1}" and Bob’s is uniform in [n]. Similarly, define
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Oworst,unif for quantum one-way communication. The following
claim shows that lower bounds on Ry;qyst unif and Qworst unif imply
upper bounds on discrepancy for vectors and matrices.

Claim 1.6. For every integer m > 0, if Ryorst unif(n,€) > logm +
O(1) then for vy,...,05, € R™ with [|vj]lce < 1 there exists
x € {=1,1}" such that || X<, Xivillo < 2en. Conversely, if
Ryorstunif(n, &) < logm — O(1), then there exist vy,...,0, €
R™ with ||vj]le < 1 such that for all x € {x1}" we have
| 2Zi<n xivilloo > 2en. Furthermore, the same holds if we replace R
by Q and the vs by matrices Ay, ..., Ay € R™™ with ||A;]| < 1.

Proor. We show one direction of the proof in the classical case;
the other direction and the quantum case are similar. Suppose
01,...,0n € R™ have ||vj||c0 < 1 but for every x € {£1}" we have
| 2i<n Xivillo > 2en. Then for each x we may associate a standard
basis vector yy € R™ such that [(yx, 2i<pn xivi)| > 2¢n. This in-
duces a log m + O(1) bit communication protocol as follows. On
input x, Alice sends Bob the name of the coordinate j represented
by yx, as well as the sign s of (yx, X.;<, xivi). Bob outputs a biased
random bit b(j, i) with expectation s - v;(j). Then for each x we

can compute:
1
> -+
2

For the other direction, observe that a protocol for the index func-
tion where there are m possible messages Alice may send induces
a set of vectors vy, ...,0, € {£1}™ by writing out Bob’s outputs.
The success probability of this protocol gives a lower bound on the
discrepancy of v, . . O

E[P(b(j,i) =xi)] =E Ui;j)

1
_+s.xi.
2

.y Up.

In spite of its simplicity, we do not know how to use this connec-
tion between discrepancy and Ryorst unif ad Quworstunif to prove
any interesting discrepancy upper bounds. The difficulty is that in
the regime of interest for (Matrix) Spencer-type theorems, m ~ n
and ¢ ~ 1/+/n. That is, Bob has very tiny advantage over oblivious
random guessing in determining index(x, i), and Alice is sending
just a logarithmic number of (qu)bits. We are not aware of any
direct techniques to lower bound Ry,orst unif; 1et alone Quworst unif
in this regime. (Of course, an indirect argument is available for
Ryorst.unif by appealing to Spencer’s discrepancy result.)

Trading Average Bob for Average Alice. Our first key techni-
cal contribution is another connection between discrepancy and
communication, but for Rypnifworst and Qunifworst rather than
Ryorst unifs Qworst.unif — that is, now Alice’s input will be random,
but Bob’s will be worst-case. While this difference may seem small,
the requirement that (for typical x) Bob has nontrivial advantage
over random guessing in computing x; for all i makes it much easier
to prove lower bounds — we will see why momentarily. (Actually,
our lower bounds will apply even when Bob has nontrivial advan-
tage for, say, 0.9n coordinates i € [n] - this technical improvement
is important for the connection to discrepancy, but we will mainly
ignore it for simplicity in this introduction.)

We now discuss the key lemma we prove connecting commu-
nication and partial coloring, starting with the following standard
definition:

Definition 1.7 (Partial coloring). A partial coloring of matrices
A1, ..., A, with discrepancy A > 0 is a vector x € [—1,1]" such
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that |x;| = 1 for a constant fraction of coordinates i € [n], and
|| Sicn xiAill < A* (A similar definition applies for the case of
vectors vy, . ..,0p.)

It is a standard result that Spencer-style discrepancy theorems
can be proved by alternately finding partial colorings and removing
vectors/matrices which have been fully colored (i.e., they have
|xi| = 1), so it suffices to prove the existence of partial colorings
with small discrepancy.

For simplicity in this introduction, we restrict attention to the
setting where the number of vectors/matrices is the same as the
dimension - i.e. Aq,..., A, € R orovy,...,0, € R® — in which
case we are looking for partial colorings of discrepancy O(v/n).
And, for now, we drop algorithmic considerations and worry only
about the existence of partial colorings.

LEMMA 1.8 (SPECIAL CASE OF THE COMPRESS OR COLOR LEMMA
(LEMMA 3.2), INFORMAL). Suppose A1, ..., Ap € R with||A;|| < 1
lack a partial coloring with discrepancy O(+/n). Then there is a quan-
tum one-way communication protocol for the n-bit index function of
the following form. Alice sends alogn+1 qubit message p. If Bob gets
A; 0

0 —Ai)’
receiving an eigenvalue A; as an outcome; then he outputs a random
bit b(p, i) with bias A;. This protocol has the following guarantee: for
every x € {1}" there is a set Sy C [n] with |Sx| > 0.99n such that

input i, he measures p in the eigenbasis of the matrix (

1
E> — .

1
E  minP(b(p,i) =xi) = - +¢,
2 n

xe{+1}mi€Sy

From this lemma we can see the origin of Conjecture 1.4 and
Theorem 1.5. It also shows that to prove our moderate-rank Matrix
Spencer theorem, it suffices to rule out log n-qubit protocols for the
index function with advantage ¢ > 1/+/n where Bob’s measure-
ment matrices have ||4; || < n!/%.

We make a few more remarks about the Compress or Color
Lemma (Lemma 3.2) before we move on to communication lower
bounds, since we think the general version of the lemma is of
independent interest.

General norms In full generality, the lemma says that for any col-
lection of vectors vy, ...,v, and any norm || - ||, either vy,...,0,
admit a small-|| - ||-discrepancy partial fractional coloring (i.e. a
coloring where || X<, x;0;|| is small) or vy, ..., v, induce a certain
kind of compression of the hypercube {+1}" into the dual ball of
[| - |I. In the case that || - || is feo, this compression turns out to be a
classical communication protocol. When || - || is the spectral norm,
the result is a quantum communication protocol.

Rademacher width Second, the proof of the lemma goes via study-
ing the Rademacher width of the set of partial colorings. The
Rademacher width of a set K’ C R" is B (11)n max,cq(g, x) — it
is a standard measure of the size of K. A long-established technique
in discrepancy is to study the Gaussian volume of the partial col-
orings. By studying width instead, we can prove the lemma using
tools from convex programming, in particular strong duality. Gauss-
ian width was previously studied in the context of discrepancy by
Eldan and Singh and by Reis and Rothvoss [14, 29]; we borrow some
tools from Eldan and Singh in the proof of the Compress or Color

4This is often called a “fractional” partial coloring in the literature; since all partial
colorings in this paper are fractional we drop the modifier.
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Lemma. (The switch from Gaussian to Rademacher width - that is,
using +1-valued coordinates in g - is just a technical convenience.)
Polynomial-time consequences Finally, since the heart of the Com-
press or Color Lemma is a convex program, it also has algorithmic
consequences when that convex program is efficiently solvable. In
particular, our proof of the contrapositive of the above statement,
that communication lower bounds imply the existence of partial
colorings, actually proves something stronger: such a partial col-
oring can be found (with high probability) by drawing a random
g ~ {£1}"" and maximizing (g, x) over partial colorings x with low
discrepancy. Note that this is a convex program - in particular, for
the matrix discrepancy setting, it is a semidefinite program.

1.2.2  Communication Lower Bounds in the Small-Advantage Regime.
Now that we have seen that communication lower bounds imply
the existence of partial colorings, we need to prove some commu-
nication lower bounds.

Classical. To build some intuition, we start with the classical
case. According to Lemma 1.8 (instantiated with diagonal matrices),
to prove that a partial coloring of any vy, ..., v, € R" with [|v;[|c <
O(+/n) exists it will suffice to rule out log n-bit one-way protocols
for the n-bit index function where Alice’s input is random, Bob’s
is worst case, and they have advantage ¢ > 1/+/n over oblivious
random guessing. (To avoid technicalities, for now we consider
protocols where Bob has this advantage on all inputs i € [n], rather
than just 0.99n of them.)

To see the subtlety of the lower bound we need to establish,
let us first consider what we could get from naive information-
theoretic arguments. By directly analyzing the mutual information
between Alice’s input and Bob’s output, we could show that Alice
must send at least (1 — H(1/2 + ¢))n bits, where H is the binary
entropy function. For small ¢, we have (1 — H(1/2 + ¢))n ~ £%n -
this lower bound degrades to just O(1) when ¢ ~ 1/+/n, while we
need a bound larger than log n.

Indeed, if Bob’s input is also random, there is actually an O(1)-
bit protocol achieving advantage ¢ > 1/+/n. Even with worst-case
inputs, there is a log n + O(1)-bit protocol based on Hadamard ma-
trices which achieves advantage ¢ > Q(1/+/n). (For both protocols,
see Section ??.) This shows that we must use worst-case-ness of
Bob’s input in our lower bound, and even when we do, our ar-
gument must be tight up to additive constants. We now sketch a
simple argument satisfying both of these requirements.

LEMMA 1.9. Any classical protocol for the n-bit index function
achieving advantage ¢ > 1/+/n when Alice’s input is uniformly
random and Bob’s is worst-case requires Alice to send more thanlogn
bits. That is, Rynifsworst(n, €) > logn when e > 1/+/n.

PROOF SKETCH. Suppose for contradiction that a logn bit pro-
tocol exists with advantage ¢ > 1/+/n. By repeating the protocol
0O(1/€%) < n times, the players can amplify their success proba-
bility to 0.9. Concretely, in this amplified protocol, Alice receives x
and makes O(1/¢?) independent draws from the distribution over
messages she would send on input x in the original protocol. She
sends all of these messages to Bob, who computes all of the outputs
he would compute in the original protocol and takes a majority
vote. (Note that this amplification relies on Bob having a worst-
case input — otherwise, Bob might already have success probability
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0.9 on a few inputs and exactly 1/2 on the rest, in which case the
amplification does not have the desired effect.)

Naively, Alice is now sending Q(log n/¢%) > n bits, but we claim
that her message in the amplified protocol can be compressed down
to n/10 bits (for appropriate £ > 1/+/n). This leads to a contradic-
tion, since she is sending Bob at least n/2 bits of information.

To see this, observe that it actually suffices for Alice to send
a histogram of her O(1/¢?) messages from the original-protocol
distribution, since Bob does not need to know the ordering of the
0O(1/£?) messages. Since Alice’s individual messages are log n bits,
there are only n possible messages in the original protocol, so she
is sending multi-subset/histogram of [n] of size O(1/¢2). A simple
counting argument shows that there are approximately (O(ln/ f2))
such histograms (this is exactly the number if there are no repeated
messages, but repeated messages do not change the asymptotics).
Since 1/¢? < n, Alice can now send just log (0(1”/62)) < nbits. O

Carrying out this argument carefully actually shows the follow-
ing quantitative bounds, which may be independently interesting:

o If & > 1/+/n, then Rynifworst (. €) > log(1/€?) + Q(e%n).
o If ¢ < 1/+/n, then Runitworst (%, €) > logn — loglog(1/e?) —
0(1).

This means that even for very small ¢, like 2’"0'99, Alice still must
send Q(log n) bits. Using our discrepancy-to-communication tech-
nique, this “microscopic ¢” bound implies discrepancy bounds for
set systems with many more atoms than sets — with n atoms and
m sets, discrepancy O(+/m) is achievable. (There are also generic
reductions from n > m to n = m, using linear programming.)

Quantum. We turn to the case of quantum communication lower
bounds, which we need for the matrix discrepancy setting. To prove
the (unrestricted) matrix Spencer conjecture, we would like to prove
a quantum analogue of Lemma 1.9. Unfortunately, the histogram-
based compression used in the argument above seems inherently
classical, so another idea is needed.

To prove moderate-rank matrix Spencer, our second key techni-
cal contribution is a quantum analogue of Lemma 1.9 when Bob’s
nl/4, By Lemma 1.8, this
LAp €

measurement matrices have ||A;j||p <
shows that partial colorings exist for every family of A, ..
R™" with ||A;]| < 1and ||A;]|f < n'/4.

For simplicity in this introduction, consider the case that each
matrix A; has all eigenvalues in {—1, 0, 1}, with at most 4/n nonzero
eigenvalues. Alice gets a randomly chosen x € {+1}" and sends
Bob a log n-qubit mixed state, represented by a density matrix
p = px. Given any input i, Bob measures pyx with A;, getting back
an eigenvalue. If he receives —1 or 1, he outputs the result; otherwise
he outputs —1 or 1 uniformly at random. We want to show:

LEMMA 1.10. Alice and Bob cannot achieve success probability
1/2 + ¢ for e > 1/+/n by the above protocol.

We now sketch the proof of Lemma 1.10, which takes several
ingredients.
Ruling out pure-state protocols The first step is to prove a lower
bound against pure state protocols with (potentially) full-rank mea-
surements. That is, we consider the case that Alice actually sends a
pure state ax € R", and Bob is allowed to use any measurements
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M; € R™" with +1 eigenvalues. In this case, we can use a simi-
lar amplify-then-compress approach as in the classical case. We
sketch the proof here - for details, see Theorem 5.4 for the commu-
nication lower bound and Lemma 3.4 for a version adapted to the
discrepancy bound we need to prove.

In a little bit more detail, to amplify from success probabil-
ity 1/2 + ¢ to 0.9, Alice sends O(1/e?) copies of her message;
Bob makes his measurement independently on each of them and

takes a majority vote. Naively, this requires Alice to send around
2
log n/e? > n qubits, but the state that Alice sends, afo(l/g )
ally lies in the symmetric subspace of (R")‘g’o(l/sz). This subspace,
®0(1/£%)

, actu-
span{a : a € R}, has dimension roughly (O({; 52)) by the
same counting argument as we used in the classical case, which
means that Alice can compress her message into log (O(lr;gz)) <n
qubits. As in the classical case, this argument crucially uses that
Bob succeeds on any (worst-case) input i € [n].

Since Alice is sending a quantum state, this situation is no longer

ruled out by classical information theory. However, a known conse-
quence of the Holevo bound from quantum information says that
Alice cannot communicate the n classical bits x without sending
Q(n) qubits. This is not a trivial consequence of the Holevo bound,
since Bob cannot necessarily read more than one of the bits of x
without collapsing the state he is sent in a way which prevents
reading any of the remaining bits. This situation has been con-
sidered before, however: a result of Ambainis, Nayak, Ta-Shma,
and Vazirani on quantum random access codes shows that it is still
impossible for Alice to send < n qubits even if Bob can only read
one coordinate of x (so long as he may choose this coordinate at
will) [2].
Reduction from moderate-rank to pure-state protocols We now
sketch an argument that if there is a protocol of the type described
in Lemma 1.10, where Alice may be sending a mixed state py, then
there is also a pure-state protocol of the sort we just ruled out. We
call this the purify-then-sketch transformation (Lemma 3.3).

First, we may assume that Alice’s mixed states py € R™ " have
rank at most /n - this is because we can take them to be extremal
solutions to a semidefinite program involving n linear constraints,
one for each matrix A; [9, 27]. Using this bound on the rank of the
Px’s, we can use quantum state purification to replace them with

pure states dy of dimension R"w; when Bob measures the purified
states he uses measurement matrices A; ®1, where I is identity in vn
dimensions. This gives a pure-state protocol with the same success
probability as the protocol we started with (since the outcomes
of Bob’s measurements will have exactly the same distributions
as before), but now Alice has to send % log n qubits, so we cannot
apply the above lower bound against pure-state protocols.

To fix this, Alice replaces dy with a random sketch ay = Sax
of it down to n dimensions, and hence logn qubits. (Here S is a
random sketching matrix). Bob replaces A; ® I with S(A; ® I)S™.
We argue that so long as A; has at most \/n nonzero eigenvalues this
sketching matrix preserves the success probability 1/2 + ¢ when
£ > 1/+/n. To give a tight analysis of quantities like the variance of
the outcomes of the protocol after sketching - i.e., second-moment
quantities like {(Sdyx)(Sdx)T,S(A; ® )ST)? - we use a combinato-
rial moment-method argument, which crucially uses our bounds
on ||A;j||r. We also employ a number of tools from random matrix
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theory — decoupling inequalities, net-based arguments, and the
Hansen-Wright inequality. For details, see Section 6.

At the end, we arrive at a log n-qubit pure-state protocol with
advantage > 1/+/n, which we have already showed is impossible.
This completes the proof sketch of Lemma 1.10, which in turn
completes our proof sketch of the moderate-rank Matrix Spencer
theorem.

1.3 Related Work

Discrepancy. Discrepancy theory is rich and well explored area of
combinatorics with connections to many areas of mathematics and
theoretical computer science. It has found applications in diverse
areas such as approximation algorithms, differential privacy and
probability theory. For a more thorough introduction, see [11, 24].

Classical results in combinatorial discrepancy are often based on
linear dependencies (see [8]) and counting arguments (e.g. Beck’s
partial coloring method and Spencer’s entropy method). Spencer’s
six standard deviations theorem was initially proved by combining
partial coloring and counting arguments [32]. Another proof of
this theorem was given by [16, 17] by making connections between
existence of partial colorings and convex geometry. This theorem
gave natural conditions to find partial colorings in general convex
bodies.

Successful as they were, these techniques were all non-
constructive and thus did not provide algorithmic insights on con-
structing colorings. In a breakthrough result, [5] gave the first
algorithm to find the signs promised by Spencer’s theorem. The
algorithm was based on semidefinite programming but needed to
assume the existence of a good coloring in the analysis. [22] gave a
random walk-based algorithm whose analysis does not appeal to
Spencer’s theorem. [31] gave an elegant algorithm that produces
the partial colorings in convex sets guaranteed by Gluskin’s theo-
rem. [14] provide an alternative algorithm for this problem using
linear programming by providing connections to the width of the
convex set — our SDP-based algorithm is a direct descendent of
theirs.

Another line of work in algorithmic discrepancy is constructing
algorithms for the Beck-Fiala and Komlds settings, where additional
assumptions on the vectors vy, . .., v, lead to tighter discrepancy
bounds. Here obtaining tight bounds remains an open problem, even
non-algorithmically. The best known non-constructive bounds are
obtained using a technique introduced by [3] which also draws from
connections to convex geometry. A recent line of work resolved the
question of algorithmically matching Banaszczyk’s bound [6, 7, 12].
For an overview of this line of work, see [15].

Matrix discrepancy and spectral graph theory. Another line of
work that is closely related to discrepancy is the construction of
sparsifiers for graphs. [10] construct linear sized (weighted) spar-
sifiers for graphs that approximate the Laplacian of the graph. In
a celebrated work, [23] use a novel technique based on interlac-
ing polynomials to resolve the Kadison-Singer conjecture, which
can be interpreted as a tight discrepancy bound for signed sums
of rank-one matrices a1a/, ..., ana, in isotropic position. This is
also related to constructing unweighted sparsifiers for graphs. It
remains an excellent open problem to find algorithms matching the
bounds of [23].
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The Matrix Spencer conjecture is a natural matrix generalization
of the Spencer theorem, asking if we can improve upon the matrix
Chernoff bound to get a bound similar to the one guaranteed by
Spencer’s theorem. It was popularized in a blog post by Raghu Meka.
This bound was also conjectured in [35]. [30] provide an algorithm

gives a discrepancy bound of O (w/nlog q) for matrices that are

block diagonal with block size g. A result by [21] uses techniques
from [23] to resolve the conjecture for rank one matrices. [29] bring
together techniques from the convex geometric approach of [16, 17]
for constructing algorithms for graph sparsification problems akin
to [10] towards potentially using these ideas to resolve the matrix
Spencer conjecture.

Independent and concurrent work: In independent and concur-
rent work, [13] provide an different framework based on cover-
ing numbers and mirror descent to make progress on the Matrix
Spencer conjecture. In the low rank setting, they show that the
discrepancy ||3;<, xiAi|l < y/nlog(min(rm/n,r)) where r is the
rank, m is the dimension and n is the number of matrices. This
bound on the rank is stronger than the one required in our result.
For example, when m = ©(n), this reduces to the constant rank
case. In addition, they also show that their framework can be used
to address related questions in matrix discrepancy such as the Ma-
trix Spencer conjecture for block diagonal matrices and Schatten
norms.

Communication complexity and quantum random access codes.
Lower bounds in one-way communication complexity are widely
used to prove lower bounds in other settings: data structures and
streaming algorithms, to name just two. See [28] for a modern
introduction to communication complexity. The index function, in
particular, plays a central role in one-way communication, see e.g.
[20]. It is a folklore result that the one-way constant-error classical
communication complexity of the n-bit index function is Q(n).

Quantum protocols for the index function also go by the name
quantum random access codes, which have been studied intensively
in the physics literature, including experimental demonstrations of
quantum protocols whose success probabilities are strictly better
than those achievable by classical protocols for small n, e.g. [34].
[2] show that the one-way constant-error quantum communication
complexity of the n-bit index function is Q(n). This argument was
simplified and refined in [26].

2 PRELIMINARIES

For vectors x,y € R?, let (x, y) denote the standard inner product
i xiy;. For matrices A, B, this inner product also corresponds to

(A,B) = Tr (AB). Let ||x]|2 = ,lzixiz denote the £, norm, ||x||c =
max;|x;| denote the £, norm and ||x||; = }};|x;| denote the £; norm.

For a matrix A € R%*4 denote by ||Allp VTr (ATA) the
Frobenius norm, by ||A]| = SUP)||x[|=1 ||Ax|| the operator or spectral
norm and by ||A]l; = Tr (VATA), the nuclear or the trace norm.

For matrices A, B, A < B if B — A is a positive semidefinite matrix.

A convex set K is said to be centrally symmetric if x € K implies
—x € K. For any convex set K, denote by pg the Minkowski
functional defined by py (x) = inf {r > 0 : x € rK}. We say that
a convex set has non-empty interior if there is an € > 0 such that
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for all x such that ||x|2 < & x € K. A compact, convex set set
with non-empty interior is referred to as a convex body. If K is a
symmtric convex body, pg corresponds to a norm which we denote
by ||||4. Furthermore, any norm can be seen as the Minkowski
functional of its unit ball.

For any norm |[|-||, define the dual norm |||« by |z]«
sup {(x,z) : ||x|| < 1}. For any convex body K with 0 € K, de-
fine the polar as K* = {y : sup,.cg(x,y) < 1}. For any symmetric
convex body, the dual norm of ||-||« is given by ||-||#+. The dual
norm of ||-||2 is itself, while the dual norm of ||| is ||-||1 (and vice
versa). For matrix norms, the dual of ||-|| is itself, while the dual
norm of ||-|| is ||-||1 (and vice versa).

For any random variable X, let EX denote its expectation (if
it exists) and let V (X) = EX? — (EX)? denote the variance (if it
exists). For any p € R and T > 0, denote by N (i, %), the normal
distribution with mean p and covariance X.

We also record here some notation from quantum information.
A density matrix p is a positive semidefinite matrix with trace one
i.e. p > 0 and trp = 1. Measurements in quantum information are
specified by POVMs which are PSD matrices A; such that }; A; = I
(POVMs are more general than this, but for the context of this paper
it suffices to consider this definition). For any density matrix, upon
measuring p with respect to the POVM {A;}, one gets outcome
i with probability trpA;. For any density matrix, define the von
Neumann entropy as S (p) = —tr (p log p).

3 PROOF OF MAIN THEOREM

In this section we prove the following main partial coloring theorem.
Then in Section 3.1 we use it to deduce Theorem 1.3. Theorem 1.5
can then be proved by a simple modification of the proof of Theo-
rem 1.3.

THEOREM 3.1 (MaIN PARTIAL COLORING THEOREM). Let
Al ...,Ap € R pe symmetric. There is a partial fractional color-
ing x € [—1,1]" such that Q(n) indices i have |x;| = 1 and

1/2
P2 B DI e Jl+log

i<n i<n
Furthermore, there is a randomized polynomial time algorithm which
finds such a coloring with high probability.

Tr Y icn A?
Va|Zicn A7l )

<

It is a folklore observation® that if n > d? one can find a partial
coloring with zero discrepancy by linear programming, so Theo-
rem 3.1 is interesting when n < d?.

We now assemble our main tools for the proof of Theorem 3.1.
Our first lemma shows that if a low-discrepancy partial fractional
coloring of Aj,..., A, does not exist then Aj,..., A, induce a
scheme to compress a large subset of {+1}" into the d X d nu-
clear norm ball. The nuclear norm appears because it is dual to
the norm in which we are measuring discrepancy, namely spectral
norm. Using convex duality, in Section 4 we actually prove the
following more general statement which applies to any norm and
its dual, in hope that it is useful in future work.

SThanks to Raghu Meka for making us aware of this.
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LEmMA 3.2 (CoMPRESS OR COLOR). Let K be a symmetric convex
body inR™ and let || - || g be its associated norm. Let vy, . .., v, € R™.
For every e, A > 0, either

o there is a partial fractional coloring x € [—1,1]" such that |{i :
|xi| = 1}| > en and || Xi<n xivillgc < A, and, furthermore,
with probability Q(1/n) over uniformly random choice of g €
{£1}" such a coloring is given by optimizer of the following
convex program:

invi < Aandx € [-1,1]", or,

i<n

max(x, gy such that
X

K
o foratleast2™ /2 choices of g € {+1}" there is a vectoryy € R™
with |lygllae- = 1, a set Iy C [n] with |Ij] < en, and for

i € [n] \ Iy numbers Ajg > Q(A) such that (yg,v;) = %gi.

In light of Lemma 3.2, to show in the proof of Theorem 3.1 that
there is a partial fractional coloring with discrepancy A, we can
instead rule out a mapping from g € {+1}" to matrices Y; with
IYgll1 = 1 (since the nuclear norm is dual to the spectral norm)
such that (Y, A;) ~ % - g; for at least (1 — ¢)n indices i € [n].

By a simple transformation of the Y;s and A;s, we can assume
Yy = 0, and hence that Yyisa d-dimensional density matrix, and
that Tr A; = 0. We can then interpret {Ys} ¢ (+1)» as a strategy for
Alice in a one-way quantum protocol for the n-bit index function,
where Bob’s measurements are the A;’s. In our discussion of such
protocols so far, we have always assumed that ||A;|| < 1; note that
we do not make this assumption here. It turns out that the weaker
assumption on <, Al? suffices to build the repeated protocol we
need to prove our communication lower bound.

Since our communication lower bounds only apply to protocols
where Alice communicates a pure state, we use following lemma to
round {Yg}ye (x1}n to pure states {yg}se (+1)n. The cost is that the
fluctuations in this randomized rounding scheme are governed by
Tr ZisnA,Z =Yi<n ||Ai||fT in addition to || X;<p A?H. The assump-
tion ||A;|| < n'/4 is needed to control the first term.

LEmmA 3.3 (PURIFY THEN SKETCH). Let n,d,6 > 0. Let
Al,...,Apn € RI% pave TrA; = 0 and A ?:1A§' Let
{Yg}ge(x1)n be density matrices.

For every integer r > 0, there exist symmetric matrices
Bi,...,B, € R™ such that

n
2B
i=1

and such that for at least % - 2" of g € {£1}" there exists an r-
dimensional pure state y, (i.e. a vector yg € R” with ||yyl| = 1) and a
number cq > Qs5(1) such that for at least (1 — §)n indicesi € [n],

min(+/n, d) TrA)l/2

min(+/n,d) - TrA
s%@m+—4Qe——)

nr2

LAl
‘(ygy;—,Bi) - Cg(Yg,Ai>| < Og (7 +
Lastly, we prove the following lemma using tools from quantum
information and communication complexity — see Section 5 for a

more thorough discussion.

LEMMA 3.4. There is a universal constant § > 0 such that the
following holds for all integersn,m > 0. Let S C {+1}" have size at
least 29" Suppose that {Yg}ges is a collection of m-qubit pure states
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such that for some symmetric matrices Ay, . .., Ap, subsets Iy € (6nn)
and numbers {nig > 0}g€5’i€[n]\1y,for alli € [n] \ I, it holds that

(Ygyq > Ai) = Nig - gi- Let
2
Egs.i~[n1\1, Mig
| Eifn] A7
Ifn > C/~/n for some universal C > 0, then

n’=

1
m>log—2+Q(q2-n).
n

With our tools in hand, we can prove Theorem 3.1.

Proor oF THEOREM 3.1. Let
Good Compression(A): for 2" /2 choices of g €
{1}" there is a matrix Y; with ||[Yyll; = 1, a set
Iy € [n] with |Ij| < en, and numbers {Aig}ie[n]\lg
with Ajg > A such that (Y, A;) = A—,iggi fori € [n]\,
By the Compress or Color Lemma 3.2, it is enough to show that

for a small-enough constant ¢ > 0, if Good Compression(A)
occurs, then

1/2
A< Al
i<n
Tr Y, A2
O| min 1+log Zl—gnlz Vn - 2-Q(n/d?) 3.1)
‘/EHZKnAi ”

In that case, if A is larger than in (3.1), then with probability Q(1/n)
over choice of g ~ {+1}", the semidefinite program

Z xiAi

i<n

max <A

(x, g) such that
xe[-1,1]"

finds a fractional partial coloring with ¢n integer entries and dis-
crepancy at most A.

Suppose Good Compression(A) occurs, for some A > 0. Let
Y; > 0 be the positive semidefinite part of Y; and Y~ < 0 the
negative definite part, so that Y; = Y; +Y, . By replacing Y; and
A; with the following block matrices:

Y, — ( Yg+ 0
g 0 -y

(and replacing d with 2d) we may assume that Y; > 0 with Tr Y; = 1
and Tr A; = 0. Note that (Y, A;) and || X<, A?H are preserved by
this transformation, and Tr ;¢ Al? grows by a factor of 2.

Let A=} icn A?. By the Purify-then-Sketch lemma 3.3, for any
choice of integer r > 0 and any § > 0 there are symmetric matrices
Bi,...,Bn € R™*" such that

>

i<n

Aj 0

)andAi—>( 0 —A;

min(y/n,d) Tr A
< 03y + OB OTEA)

and for at least % - 2" choices of g € {+1}" there is a pure state
yg € R” and a number ¢; > Qs(1) such that for at least (1 — )n
indices i € [n],

nm+mmﬁ@nﬂ”

<05(?

[ugug . Bid — (¥, A1) =
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Now, if

n n min(y/n,d) TrA
> 05(1) - [|All - max P E

A? (3.2)

then for at least 2" /4 choices of g there is a subset Iy C [n] with
|yl < (¢+6)n such that for i € [n] \ I,

Aig
<ygyg,B>—— 9gi

where Ajg > Q(A). Let us call this set of g’s S.
Let
- Eg-s,i~[n]\I, (Aig/n)°
! s Bl
Henceforth taking § to be a small-enough universal constant, by
O(1/+n) or r > 290" n) . # We treat the

Lemma 3.4, either n <

two cases separately.

Case 1A: 1 < O(1/+/n) Using Ay >
min(+/n,d) TrA
o (||A|| B —

Q(A), in this case we have

A% <

E B
i~[n]

Case 1B:r > 29(72”) . # Using the definition of 1, we have

log (r .

) o Brsetenattale!
B Bl
This rearranges to

E,.Si- A2
log | 7.~ T ["]\;9 91> 0.
||Zi<nBi”

Eg s i~[n]\1, (Dig/n)
|[Ei~ 1 B

Eg~s,i~[nl\I, A%,
[ Zi<n BE

which gives

Eg-s.i~[n]\l, Dy
[ Zi<n BEl

so, rearranging and using our bound on || X;<, B? ||, and that Ay >
Q(A), we get

Q1) - :

log£ >
n

A2<o (||A|| . min(y/n, d) TrA) r
r

-1
ogn

Now let us choose
min(y/n, d) Tr A
T) ’
so that putting together (3.2) with cases 1A and 1B, we find
min(+y/n, d) Tr A
n||All ) ’

r = max (n,

A? < O(||All) max (1,log o

3.1 Matrix Spencer for Moderate-Rank Matrices

In this section we use Theorem 3.1 to prove the following theorem.

THEOREM 3.5. Letd > nand Ay,...,An € RY%d pe symmetric

1 and ||A,-||§7 < \/Efor alli € [n]. Thereis a

< O|4[nlog (i)
n

Furthermore, there is a (randomized) polynomial time algorithm
which finds such a coloring with high probability.

matrices with ||A;|| <
coloring x € {+1}" such that

ZX,’A,’

i<n
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Proor. We will get a full coloring for this setting by iteratively
applying Lemma 3.1. Consider the first round of partial coloring.
Note that since ||A;|| < 1, we have ”Z,<nA ” n.From Lemma 3.1,
we get that there is a partial coloring x with cn co-ordinates such

that x; € {-1,1} and
1/2
-0 J 1+log

Z xiA; Z A

<

Tr Zi<nA,?
Vi ||Zicn AL

i<n i<n
By hypothesis on ||A,~||fv = TrAl?, we have Tr Y;, A2 < n - d'/2.
1/2
2Vd
inA, <o( ZA,? ) : logan.
i<n i<n HZKnAi H
Since xlog(ZV%/x) O (nlog(d/n)) for 0 < x < n, we get a

partial coloring with discrepancy O (\/n log(d/n )

Given a partial coloring x, we move to the next round of partial
coloring by replacing A; by

A; = sign (x;) - (1 — |x;]) A;.

We ignore the co-ordinates corresponding to zero matrices. Since
(1 —|x;]) < 1, the new matrices still satisfy the requirements on
the spectral norm and Frobenius norm. Furthermore, since cn co-
ordinates we integral, the number of matrices is now (1 — ¢) n. Thus,
we get a partial coloring with y such that

[

Arguing as before, noting that Tr }\; A:? < (1 -c) n\/z, we get

uzymn<O(J“-°“°g(ﬁ))'

Then, consider the partial coloring with co-ordinates z; =
x; + sign(x;) (1 — |x;]) y;. First note that we have ¢ + (1 —c¢) ¢/2
co-ordinates that are integral. To see this note that for half the inte-
gral co-ordinates in y, we must have sign (y;) = 1 (replacing y with
—y if necessary). For such y;, we have x; + sign (x;) (1 — |xi|) yi =
sign (x;) which is integral. Furthermore,

’Z ziA; Z yiA;
i i

<0 \/nlog(g)+\/(l—c)nlog( —dc)n))'

Iterating this inductively, we get that the discrepancy is bounded

by
d d
(“Z“ o\ = ]| = e )

as required.

12 TrZAZ

1+log ——

-co)n

<

szt

(1
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4 COMPRESS OR COLOR

In this section we prove Lemma 3.2. For this, we would like to
understand the optimizers of the program given by maxy (x, g) for
x in the set of low discrepancy vectors for a set of vectors vy, ... vy
under some norm and g € {-1, 1}"”. Lemma 3.2 follows from the
following proposition which connects optimizers to such programs
with few integral coordinates to unit vectors under the dual norm
whose inner products with v; correlate well with the coordinates
of g.

LEMMA 4.1. Letvy...v, € R™ and ||| be a norm. Let ¢ € (0,1)
and A > 0. Then, for any g € {—1,1}" such that any optimizer to the
program

max (x,g)
xe[-1,1]"

2.

i

<A

has less than en coordinates in {1, 1}, there exists ayg with ||yg|l. = 1
and Iy C [n] with |Iy| < en such that

(Yg,vi)gi >

S| >

foralli ¢ Iy.

Proor. Let g € {—1,1}" as in the statement of the lemma i.e.
such that any optimizer to the program

max  (x,g)
xe[-1,1]"

2.

i

<A

has less than en coordinates in {-1,1}. Let x4 such an opti-
mizer. Denote by T (x) the set {i € [n] : |x;| = 1}. Note that we
have |T (x)| < én. Denote by Ko = {x:||X; xjvil| < A} and
[-1,1]7™) = {x: x| <i VieT(x)}and Q = Kp N [-1,1]T®).
Note that the following convex program

;neaédx, 9

has the same optimizer and value as the original program. This
is due to the fact that removing non-tight constraints in a convex
program does not change the optimum and optimizer.

Further, observe that (x4, g) < n since x4,9 € [-1,1]". Thus,
maxyeo{x, g) < n, which implies that g/n € Q*, the polar body of
Q. Thus, we have g/n = Ay1+(1 - A) y2 with A € (0,1),and y; € K,

andyy € BIT(X), Here BIT(X) ={y:yi=0 Vy; ¢ T(x),>;lyil =1}

which is the polar body of [-1, 117™) Since y2 has only zero
coordinates for i ¢ T(x), we have g;/n = (Ayz);. But note that
K, = Ay ..., (o)) : llyll« < 1}. Thus, we get the re-
quired result. o

5 ONE-WAY COMMUNICATION IN THE
SMALL-ADVANTAGE REGIME

In this section we study (quantum) communication complexity
of the index function. We adopt terminology from the quantum
information literature, where a one-way protocol for the index
function is called a (quantum) random access code.
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Definition 5.1 (Random Access Code). A (m, n, ¢) random access
code is a map from messages g € {+1}" to distributions over m-
bit codewords y, together with a family of decoding procedures
Dy,...,Dp : {£1}™ — {+£1} such that for all g and all i, the
decoding procedure D; run on input y4 outputs g; with probability
at least 1 — ¢ (over the random choice of encoding of g).

Definition 5.2 (Quantum random access code). A quantum ran-
dom access code is a map from message g to quantum states
{yg}ge(+1)n together with a family of quantum decoding proce-
dures Dy, ...,Dp : {+1}™ — {£1}. We call the code pure if y, is a
pure state; otherwise it may be a mixed state. The decoding proce-
dure D; have the property that for all g and all i, D; run on input
yg outputs g; with probability at least 1 — £, where the probability
is over any classical randomness in the possibly mixed state y, as
well as the randomness in the outcomes of measurements made by
D;.

In the regime that ¢ is a constant independent of n, m, classical
information theory shows that m > Q(n) for classical codes. This
is not so obvious for the quantum case, since the decoding proce-
dure D; may destroy the state y; and make other bits unreadable.
Nonetheless, a clever application of the Holevo bound together
with an inductive argument shows that m > Q(n) in quantum case
as well [2].

For applications to discrepancy, we are interested in the case
that ¢ is close to 1/2 — i.e. ¢ = 1/2 — n for some n = n(n) — 0.
Of particular interest is the regime n = ©(1/4/n) - this is the
most relevant regime for Spencer-style discrepancy bounds, and
it also turns out to be interesting from the perspective of random
access codes, whose behavior is rather different for 5 > 1/+/n and
n < 1/+/n.

To carry out our application to discrepancy, we need lower
bounds for somewhat weaker notions of random access codes.

Definition 5.3 (Weakness). A (m, n, ) random access code is called
(8, t)-weak (for a subset S C {+1}") if it contains messages v
only for g € S, where log|S| > n —t, and if for each g at least a
(1 - 0) fraction of the decoding procedures D; yield the bit g; with
probability 1 — ¢. (So for each g there may be as many as én bad
coordinates which are not decoded by their corresponding decoding
procedures.)

We prove the following main result for both classical and pure
quantum random access codes. Adapting the same proof, afterwards
we prove Lemma 3.4.

THEOREM 5.4 (LOWER BOUND FOR Low-SIGNAL (PURE) RANDOM
Access CopEs). Let {yglge(+1)n bean (m,n, %—ry) classical random
access code or pure quantum random access code. Then

1
m > logn —loglog I]_Z -0(1).
Furthermore, ifn > 10/+/n,

1
m> log? +Q(n%n).

Furthermore, the same inequalities hold if {yy} is (6, t)-weak, so long
as d < &y and t < ton for some universal constants dy, to.
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We conjecture that the same bounds as in Theorem 5.4 hold also
for general quantum random access codes, where y; may be a mixed
state — such bounds would imply the Matrix Spencer conjecture.

The proof of Theorem 5.4 has two parts. First, we generalize the
argument of [2] to the case of weak quantum random access codes
(requiring only a slight adaptation of the arguments of [2]). Then,
we prove Theorem 5.4 by applying the resulting lemma not to the
random access code we start with, but instead to the code we get
by amplifying the success probability by repeating the code.

LEMMA 5.5 (LOWER BOUND FOR WQRACS, ADAPTED FROM [2]).
If there exists an (m, 8, €)-WQRAC for a subset S C {x1}" with
log|S|=n—t, then

m> (1-H(8)—H(¢)) -n—t.

Now we prove Theorem 5.4 and its refinement Lemma 3.4, de-
ferring the proof of Lemma 5.5 to the end of this section.

ProoF oF THEOREM 5.4. Let r > 0 be an integer. Consider the
amplified random access code which uses

e r independent draws y;, .-+, Yq from the distribution of mes-
sages encoding g, in the classical case, and
. y!;@r , that is, r copies of the state yg, in the quantum case,

as the encoding of g. To decode the bit i, run the decoding pro-
cedure D; on each copy and take a majority vote. This gives a
(8, t)-weak random access code for S with failure probability
¢ = P(Bin(r,1/2 +n) < r/2) < exp(-ry?). Take r = 1/n?, so
that this is at most 1/e.

We claim that in classical case, the message y;, .-, Yg can be
expressed using just

1 2m 4 L
) < min (Zm, —2) -log|e- - T (5.1)
n

) (2’” +1/n?
og
min (2’", #)

1/n?

bits, and similarly with at most the above number of qubits for the
pure quantum case.

Classical: The majority-vote decoding procedure only needs
to know the frequency of each of the 2™ possible messages among

y;, ey y;/ "2. By a “stars and bars” argument, the number of such
2m41 /;72)
1/n?

Quantum: The state y;b ' lies in the symmetric subspace,
span{x®1/ n*
(2'"+1 /n?

1/n?

Applying Lemma 5.5 to this amplified code gives us the following

bound.

frequency-counts is at most (

: x € RZ"}. This subspace has dimension at most

) [19] (by the same stars and bars argument).

1 2m 4 L
min (2"’, —2) -log|e- 7 (5.2)
n min (2’", %)
n
> (1- H(8) — H(1/e))n — t (53)
> g. (5.4)

where we have used the hypotheses on § and ¢.
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Suppose first that we take the bound

zmlog(e‘gfltllﬂf

o )>n/2.

Then we have
1 n
Hence,
1
m > logn —loglog — — O(1)
n

as desired.
Now, suppose that 7
2™ = 27¢/n?. Suppose ¢

10/+/n. Let ¢ = log1/n% — m, so that
0, so that 2™ < 1/n%. Then we have

2™ (log 21 +3) > -
ne2m 2

By definition of ¢, we get 2™(c + 3) > n/2, which gives m >

logn +1og(1/(c + 3)) — 1. On the other hand, by hypothesis 2 =

27¢/n? so m < log(1/n%) — c. By hypothesis on 7, this means

m < logn —1log(100) — c. This is a contradiction for ¢ > 0; we must
have ¢ < 0.

Put differently, we may assume that 1/7?

Vv

S

< 2™. Using (5.4) again,

we obtain
1 2m 4 L
— log|e T >n/2
§ v
This gives
2m 4 L
7’ S zfyzn/Z—Z
1
I
and, rearranging:
2m > i L on*n/2-2 _ i — i . (2’72”/2*2 _ 1)
2 2 2
n neon

Taking logs,
1 2 1
m > log — +log (Zqz”/z_z - 1) > log — + Q(n%n)
n n

where we used the assumption 7 > 10/+/n for the second inequality.
o

Proor oF LEMMA 3.4. The proof is identical to that of Theo-
rem 5.4, except that we construct the decoding procedures for the
amplified code as follows.

Decoding the amplified code: For each i, the matrix A; induces
the following measurement procedure: measure in the eigenbasis
ai,...,an of A;, and on receiving outcome j, output the eigenvalue
of A; associated to aj. Given r copies of the state y,, to decode the
i-th bit, run the aforementioned measurement procedure on each
copy of y4 and average the results. Output 1 if the sum is positive
and —1 otherwise.

Analysis of decoding: We claim that for some choice of
r=O(|| Ej<[n) A?H/Eg r;é), the above decoding procedure yields
a weak random access code for a subset S’ C S of size |S’| >
(1 - 8)|S|, with failure probability at most 1/e. After this is es-
tablished, the proof can proceed as in Theorem 5.4, with =

O(Eg 15/ | Einn) AZI)-
In decoding the i-th bit, the decoding procedure produces a
sum of i.i.d. random variables Xj, ..., X}, each with mean 199i and
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variance (ygy;,Al?), The average X = Y.7_, X;/r has EX = n4g;
and variance V(X) = (ygygT, Al?) /r. By Chebyshev’s inequality, for
fixed i and g, the probability of incorrectly decoding the bit g; is at
most

g
(ygyq  AZ)/[r
This is at most 1/e so long asr > e - (ygy;,A?)/ryg. By Markov’s

P (X -EX|>ng) <

inequality, for any 6 > 0, if we choose r > C(9)|| E;~ () A?H/Eg 775,
we will haver > e - (ygy;—,A?)/r]é for at least a (1 — 8) fraction of
pairs (g, i) for which the assumptions of the theorem apply. O

5.1 Proof of Lemma 5.5

To prove Lemma 5.5, we use the entropy coalescence lemma of [2],
which is itself a corollary of the Holevo bound.

LEMMA 5.6 (ENTROPY COALESCENCE LEMMA, [2]). Let p_1 and p;
be two density matrices and let p = (1 — p) - p_1 + - p1 be their
mixture for some f§ € (0,1). If there is a measurement with outcome
—1 or1 such that making the measurement on py, yields the bit b with
probability at least p, then

S(p) 2 (1=p)-S(p-1) + B -S(p1)) + (H(p) - H(p))

where H is the binary entropy function and S is the von Neumann
entropy.

Now we can prove Lemma 5.5 essentially by following the argu-
ment of [2] while throwing out the e-fraction of g’s where Yy is not
decodable to g.

ProoF oF LEMMA 5.5. For each g € S, there is a set of at most
0 - n bad coordinates i € [n] for which the corresponding decoding
procedures D; do not produce the bit g; with probability 1 — ¢. Let
Iy € (g,) denote this subset. Let I € () denote the subset that is
the bad set for the largest number of strings g € S, and let

Sy={g9eSly=1I}

Clearly, |St| > |S1/(g,)-

Without loss of generality, let us assume that the set I consists of
the last dn coordinates, i.e., I = {(1 — )n,...,n}. Let © denote the
uniform distribution over g € Sy. Let g € {+1}" denote a random
sample from the distribution ®. For every L < (1 —6) - n, let ©p
denote the marginal distribution of © over the first L coordinates.
For every a € {+1}, let us define

pa= E [Ylgr = a]
g~©
By definition, we can write

Pa =Plgr+1 = +1lgr = @] - pa+1 +Plgr+1 = —1lgr = ] - pa,—1

Applying the entropy coalescence lemma Lemma 5.6, we get that
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Summing up the above inequality over L =0,...,(1-8)n -1,

S(po)l > E [S(pe)] + Y H(gLlgr) = (1= 8)n- He)
L=1

E_[S(pa)] + H(g) = (1= 8)n - H()
0+H(g) — (1-98)n-H(e)
log |Sp| = (1= 8)n- H(e)

v

>
>

The lower bound follows by observing that S(pg) < mand (4)) <
QH(8)n.

6 SKETCHING

In this section, we will present a random sketch that preserves
evaluations of a set of quadratic forms. Fix a set of symmetric
matrices Ay, ..., A, € RP*D and a point y € RP. Consider the
linear sketch that samples a random matrix S € RA*D ith entries

in N(0,1/d) and maps,
A; e RPXD _, gA;8T ¢ Rixd

and

yE RP - Sy € R?
We will show that this sketch approximately preserves the value
of the quadratic forms y' A;y with good probability. The rest of
this section is devoted to bounds on the expectation, variance of
the sketched quadratic forms and the spectral norm of sketched
matrices. These guarantees are captured by the following lemma.

LEMMA 6.1 (MAIN SKETCHING LEMMA). Let Ay, ..., A, € RPXD
be symmetric with TrA; = 0. Let A = Y, A?. Lety € RP bea
unit vector. Finally, letd > 0 and let S € RA*D have iid entries from
N(0,1/d). Then the following all hold:

(1) Expectation: For all i, E{(Sy)(Sy)T,SA;ST) =
(1 + 5) (yy™, Ai),
(2) Variance: The average variance acrossi = 1,...,n is bounded:
n
A TrA
DV Sysy T, 548 <0 (% + %) , and
i=1
(3) Spectral norm: The following matrix has bounded spectral
norm:
n
TrA
E| > (SAsH?| < OlllAll+—] .
;( iST) (n I+ — )

The proof of the main sketching lemma may be found in the full
version of the paper.

6.1 Purify then Sketch

With Lemma 6.1 in hand we can prove Lemma 3.3. We will need the
following fact about the rank of solutions to semidefinite programs.

S(pa) 2Plgr+1 = +1lgr = ] - S(pa,+1) + Plgr+1 = —1lgr = @] - S(pa,—1) THEOREM 6.2 (BARVINOK [9], PATAKI [27]). Any compact spec-

+H(P[gr+1 = +1lgL = «]) — H(e)

Averaging the above inequality over ¢ drawn from the distribu-
tion Op,

E [S(pa)]

> E
a~0Or, a’ ~0

~YL+1

[S(par)] + H(gL+1l9L) — H(e)
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tahedron {Y : (Y,A1) = by, ..
such thatrank Y < 4+y/m.

Y, Ap) = by, Y = 0} contains Y

Proor oF LEMMa 3.3. Without loss of generality, by Theo-
rem 6.2, we may assume that ¢ = maxgrank Y; < min(6vn,d).
To produce y4, we use the following algorithm:
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(1) Purify: Let y; € R? ® R be a purification of ¥,. Let Al =
A; ® Idsx;, so that (y;)TA;y; =Yy, Ap).

(2) Sketch:Let S € R4 be 5 sketching matrix with iid entries
from N'(0,1/r). Let y5 = Sy;/”Sy;H and let B; = #SA;ST.

Now we apply the main sketching lemma 6.1. Noting that

Zign(A;)z = ZKHA? ® Id;xt = A ® Id¢xs, this gives for each
g€ {£1}" and eachi < n,
1 2 Al ¢tTrA
B (S Sy By = (¥, A4p)) < 0 (T e ) - (61)
i=1

For some constant C we will choose shortly, let us call g good if
there are at least (1 — §)n indices i € [n] such that

A
<C-(u+

[((555)(Sup). Bi) = (¥, A)

tTrA\Y?
nr

nr2

and, additionally, (1/C) < [[Syyl|I> < C. By (6.1), there is C =
C(9) such that for each g we have P(g is good) > 3/4. Therefore,
EgEy.{+1)n I(g1is good) > 3/4, and hence there is a choice of S
such that % - 2" g’s are good. We can obtain the pure state y; as

sy /11yl

The remaining claim then follows by Markov’s inequality applied
to || Zicn B? || (using the bound on E || X ;<,, Bl.2 || in Lemma 6.1) and
a union bound. O
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