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Abstract Although for many solar physics problems the desirable or meaningful boundary

is the radial component of the magnetic field Br, the most readily available measurement

is the component of the magnetic field along the line of sight to the observer, Blos. As this

component is only equal to the radial component where the viewing angle is exactly zero,

some approximation is required to estimate Br at all other observed locations. In this study,

a common approximation known as the “µ-correction”, which assumes all photospheric

field to be radial, is compared to a method that invokes computing a potential field that

matches the observed Blos, from which the potential field radial component, B
pot
r is recov-

ered. We demonstrate that in regions that are truly dominated by a radially oriented field

at the resolution of the data employed, the µ-correction performs acceptably if not better

than the potential-field approach. However, it is also shown that for any solar structure that

includes horizontal fields, i.e. active regions, the potential-field method better recovers both

the strength of the radial field and the location of magnetic neutral line.

Keywords Magnetic fields, models · Magnetic fields, photosphere · Active regions,

magnetic fields

1. Introduction

Studies of the solar photospheric magnetic field are ideally performed using the full mag-

netic field vector; for many scientific investigations that may not require the full vector, it is

the radial component Br which is often desired, as is derivable from vector observations. Yet

observations of the full magnetic vector are significantly more difficult to obtain, from the

points of view of both instrumentation and data reduction and analysis, than obtaining maps
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Figure 1 Geometry of projection effects when observing a photospheric magnetic field vector (black) in

the image plane, from two different perspectives. Of note regarding the inferred polarity is that the Blos
component (pointed toward/away from the observer) changes sign between the µ = 1.0 and µ = 0.7 viewing

angles.

exclusively of the line-of-sight component of the magnetic field Blos. Observations consist-

ing of the line-of-sight component can accurately approximate the radial component only

along the Sun–Earth line, that is, where the observing angle θ = 0, or µ = cos(θ) = 1.0.

Away from that line, i.e. at any non-zero observing angle, the line-of-sight component de-

viates from the radial component. Observing exclusively the line-of-sight component of the

solar photospheric magnetic field implies that the observing angle θ imposes an additional

difficulty in interpreting the observations – it is not simply that the full strength and direc-

tion of the magnetic vector is unknown, but the contribution of these unknown quantities

to the Blos signal changes with viewing angle. In other words, when µ = cos(θ) = 1.0, the

line-of-sight component Blos is equal to the radial component Br. Nowhere else is this true.

A common approach to alleviate some of this “projection effect” on the inferred to-

tal field strength is to assume that the field vector is radial everywhere; then by divid-

ing the observed Blos by µ, an approximation to the radial field may be retrieved. This

is the “µ-correction”. Its earliest uses first supported the hypothesis of the overall ra-

dial nature of plage and polar fields, and provided a reasonable estimate of polar fields

for heliospheric and coronal magnetic modeling (Svalgaard, Duvall, and Scherrer, 1978;

Wang and Sheeley, 1992). However, it was evident from very early studies using longitudi-

nal magnetographs and supporting chromospheric imaging that sunspots were composed of

fields that were significantly non-radial, i.e. inclined with respect to the local normal. This

geometry can lead to the notorious introduction of apparent flux imbalance and “false” mag-

netic polarity inversion lines (see Figure 1) when the magnetic vector’s inclination relative

to the line-of-sight surpasses 90◦ while the inclination to the local vertical remains less than

90◦, or vice versa (Chapman and Sheeley, 1968; Pope and Mosher, 1975; Giovanelli, 1980;

Jones, 1985). Although this artifact can be cleverly used for some investigations (Sainz

Dalda and Martínez Pillet, 2005), it generally poses a hindrance to interpreting the inherent

solar magnetic structure present.

The inaccuracies that arise from using Blos are generally assumed to be negligible when

the observing angle θ is smaller than 30◦; if the field is actually radial, the correction is

only a ≈ 13 % error, and introduced false neutral lines generally appear only in the super-

penumbral areas. This is a strong assumption, however, and one known to be inaccurate for

many solar magnetic structures. The estimates of polar radial field strength are especially

crucial for global coronal field modeling and solar wind estimations (Riley et al., 2006,

2014), but these measurements are exceedingly difficult (Tsuneta et al., 2008; Ito et al.,

2010; Petrie, 2015).

The gains afforded by using the full magnetic vector include the ability to better es-

timate the Br component by way of a coordinate transform of the azimuthally disam-
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biguated inverted Stokes vectors (Gary and Hagyard, 1990). However, although there are

instruments now that routinely provide full-disk vector magnetic field data (such as SOLIS,

Keller and The Solis Team, 2001; HMI, Hoeksema et al., 2014), the line-of-sight compo-

nent Blos remains the least noisy, easiest measurement of basic solar magnetic field proper-

ties.

We present here a method of retrieving a different, and in the case of sunspots, demon-

strably better, estimate of the radial field boundary, B
pot
r , the radial component of a potential

field that is constructed from Blos so as to match to the observed line-of-sight component.

This approach was originally described by Sakurai (1982) and Alissandrakis (1981), but is

rarely used in the literature. We demonstrate here its implementation, including in spher-

ical geometry for full-disk data. The method is described in Section 2, the data used are

described in Section 3, and both the planar and spherical results for B
pot
r are evaluated quan-

titatively for active-region and solar polar areas in Sections 4.1 and 4.2. In Section 4.3 we

reflect specifically on the different approximations in the context of “false polarity-inversion

line” artifacts, and in Section 4.4 we investigate the reasons behind both regions of success

and areas of failure.

2. Method

Approaches to computing the potential field that matches the observed line-of-sight compo-

nent are outlined here for two geometries, with details given in Appendices A and B. When

we focus on a limited part of the Sun such that curvature effects are minimal, a planar ap-

proach can be used to approximate the radial field (Section 2.1, Appendix A). The planar

approach is fast and reasonably robust for active-region-sized patches (Section 4.1). When

the desired radial-field boundary is the full disk or covers an extended area of the disk, such

as the polar area, then the spherical extension of the method is the most appropriate (Sec-

tion 2.2, Appendix B); however, depending on the image size of the input, calculating the

radial field in this way can be quite slow.

2.1. Method: Planar Approximation

The line-of-sight component is observed on an image-coordinate planar grid. We avoid hav-

ing to interpolate to a regular heliographic grid by performing the analysis using a uniform

grid in image coordinates, (ξ, η). When we restrict the volume of interest to 0 < ξ < Lx ,

0 < η < Ly and z ≥ 0 and neglect curvature across the field of view, the potential field can

be written in terms of a scalar potential B
pot = ∇Φ , with the scalar potential given by

Φ(ξ,η, z) =
∑

m,n

Amne
[2πimξ/Lx+2πinη/Ly−κmnz] + A0z, (1)

where z is the vertical distance above the solar surface. The value of κmn is determined by

∇
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where cij are the coordinate transformation coefficients given in Gary and Hagyard (1990),

and we choose κmn > 0 so that the field stays finite at large heights. The values of the

coefficients Amn are determined by requiring that the observed line-of-sight component of

the field matches the line-of-sight component of the potential field, which results in

FFT
(

B l
)

= LxLyAjk

[

2πij

Lx

(c11a13 + c12a23) +
2πik

Ly

(c21a13 + c22a23) − κjka33

]

+ LxLya33A0δ0jδ0k, (3)

where aij are the elements of the field component transformation matrix given in Gary and

Hagyard (1990), and FFT(B l) denotes taking the Fourier transform of B l . The value of A0

is determined by the net line-of-sight flux through the field of view.

Placing the tangent point at the center of the presented field of view (corresponding to

evaluating the coordinate transformation coefficients and the field component transformation

matrix at the longitude and latitude of the center of the field of view) is the default, producing

a boundary labeled B
pot,center
z . The resulting radial component estimation is least accurate

near the edges, as expected, and we therefore also present B
pot,all
r , for which the tangent

point is placed at each pixel presented, the field calculated, and only that pixel’s resulting

radial field (for which it acted as the tangent point) is included.

2.2. Method: Spherical Case

The potential field in a semi-infinite volume r ≥ R can be written in terms of a scalar poten-

tial B
pot = −∇Ψ , given by

Ψ = R

∞
∑

n=1

n
∑

m=0

(

R

r

)n+1
(

gm
n cosmφ + hm

n sinmφ
)

P m
n (µ), (4)

where µ = cos θ . Defining the coordinate system such that the line-of-sight direction corre-

sponds to the polar axis of the expansion results in particularly simple expressions for the

coefficients gm
n , hm

n (Rudenko, 2001). However, because observations are only available for

the near side of the Sun, it is necessary to make an assumption about the far side of the Sun.

The resulting potential field at the surface r = R is not sensitive to this assumption except

close to the limb, so for convenience, let Bl(R,π − θ,φ) = Bl(R, θ,φ), where the front side

of the Sun is assumed to lie in the range 0 < θ < π/2.

With these conventions, the coefficients are determined from

gm
n =

{

(2n+3)(n−m)!

2π(n+m+1)!

∫ 2π

0
dφ cosmφ

∫ 1

0
dµP m

n+1(µ)Bl(R,µ,φ) n + m odd

0 n + m even
(5)

and

hm
n =

{

(2n+3)(n−m)!

2π(n+m+1)!

∫ 2π

0
dφ sinmφ

∫ 1

0
dµP m

n+1(µ)Bl(R,µ,φ) n + m odd

0 n + m even
(6)

and the radial component of the field is given by

Br = −
∂Ψ

∂r
=

∞
∑

n=1

n
∑

m=0

(n + 1)

(

R

r

)n+2
(

gm
n cosmφ + hm

n sinmφ
)

P m
n (µ). (7)
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When evaluated at r = R, this produces a full-disk radial field boundary designated B
pot,sph
r

from which extracted HARPs and polar sub-regions are analyzed below. Our implementa-

tion of this approach uses the Fortran 95 SHTOOLS library (Wieczorek et al., 2016) for

computing the associated Legendre functions. The routines in this library are considered

accurate up to degrees of n ≈ 2800. For the results presented here, a value of n = 2048 was

used, corresponding to a spatial resolution of about 2 Mm.

3. Data

For this study we exclusively use the vector magnetic field observations from the Solar

Dynamics Observatory (Pesnell, 2008) Helioseismic and Magnetic Imager (Scherrer et al.,

2012; Hoeksema et al., 2014). Two sets of data were constructed: a full-disk test, and a set

of HMI Active Region Patches (“HARPs”; Hoeksema et al., 2014, Centeno et al., 2014,

Bobra et al., 2014) over five years. To keep comparisons as informative as possible, we

construct line-of-sight component data for both from the vector data by transforming the

magnetic vector components into a Blos map: Blos = B cos(ξ), where ξ is the inclination

of the vector field in the observed plane-of-sky coordinate system, as returned from the

inversion.

The full-disk data target is 2011.03.06_15:48:00_TAI; this date was chosen be-

cause of its extreme B0 angle, which is such that the south pole of the Sun is visible,

and also because of the variety of active regions that are visible at low µ = cos(θ) ob-

serving angle (away from disk center), and because it has a northern extenion of rem-

nent active-region plage. The hmi.ME_720s_fd10 full-disk series was used; data are

available through the JSOC lookdata tool.1 Because the weaker fields do not gener-

ally have their inherent 180◦ ambiguity resolved in that series and we evaluate the B
pot
r

method in poleward areas of weaker field, two customizing steps were taken. First, a cus-

tom noise mask was generated (AMBTHRSH = 0, rather than the default value of 50).

Second, a custom disambiguation was performed using the cooling parameters AMBT-

FCTR = 0.998, AMBNEQ = 200, AMBNGROW = 2, AMBNTX = AMBNTY = 48 (Hoek-

sema et al., 2014). Compared to the default HMI pipeline implementation, these param-

eters provide smaller tiles over which the potential field is computed to estimate dB/dz,

a smaller “buffer” of noisy pixels around well-determined pixels, and slower cooling for

the simulated annealing optimization. Disambiguation results were generated for 10 ran-

dom number seeds. Pixels used for the comparisons shown herein are only those for which

both the resulting equivalent of the CONF_DISAMBIG segment is ≥ 60 and for which

the results from all 10 random number seeds agreed as well. This requirement translates

into 75.3 % of the pixels with CONF_DISAMBIG ≥ 60 and 88.8 % of the pixels with

CONF_DISAMBIG = 90 being included. There is a 0.2 % chance for our data that the

disambiguation solution used results by chance, even in the weak areas (including the

poles).

From this full-disk magnetogram the nine identified HARP areas are extracted using

the keywords HARPNUM, CRPIX1, CRPIX2, CRSIZE1, and CRSIZE2 from the

hmi.Mharp_720s series. Two polar regions were also extracted: a “northern plage area”,

which is an extended remnant field, and a “south pole region” that encompasses the entire

visible polar area. A context image is shown in Figure 2, and summary information for each

sub-area is given in Table 1, including the WCS coordinates for the two non-HARP regions

1 jsoc.stanford.edu/lookdata.html.

http://jsoc.stanford.edu/lookdata.html
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Figure 2 Full-disk image of the line-of-sight component of the solar photospheric magnetic field on 2011

March 6 at 15:48:00_TAI, scaled to ±200 G. The solar limb is indicated, as are the HMI Active Region

Patches labeled with their HARP number, and the additional two polar areas used for this analysis. Addi-

tional small patches of quiet Sun, distributed in µ = cos θ , are indicated as gray boxes that occasionally

overlap. Solar north is up, west to the right, and positive or negative directed field is shown as white or black,

respectively.

for reproducibility. Table 1 also provides summary data for an additional 22 sub-areas, each

2562 pixels in size, which are centered along the midpoints in x, y on the image at a variety

of µ = cos θ positions.

Throughout this study, we distinguish between invoking planar approximations and ac-

counting for curvature by referring to “Bz” and “Br”, respectively. The potential-field ap-

proximation is performed in three ways, as described in Section 2: using a planar approxi-

mation from the center-point coordinates B
pot,center
z of each HARP or extracted sub-region,

using a planar approximation with each point of the extracted region used as the center

point B
pot,all
r , and using the spherical full-disk approach B

pot,sph
r . In addition, we calculate

two common µ-correction approximations for each sub-region: the center point value of

µ = cos(θ) used as a tangent point to obtain Bµ
z = Blos/µ, and second, each pixel’s µ value

is calculated and applied independently for Bµ(s)
r = Blos/µ(s), where (s) is the spatial loca-

tion of the pixel.

The second data set consists of a subset of all HARPs selected over 5.5 years, selected

so as to generally not repeat sampling any particular HARP: on days ending with ‘5’ (5th,

15th, and 25th) of all months 2010.05 – 2015.06, the first ‘good’ (quality flag is 0) HARP

set at :48 past each hour on or after 15:48 was used. HARPs that were defined but for
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Table 1 Extracted area descriptions

I.D. HARP

No.

NOAA

AR No.

Location µ = cos(θ) Description

H392 392 11163 N22 W54 0.54 small plage

H393 393 11164 N32 W39 0.65 large complex active region

H394 394 11165 S17 W59 0.49 small active region

H399 399 N/A N27 W13 0.87 small plage

H401 401 11166 N15 E34 0.79 simple active region

H403 403 11167 N21 W03 0.93 bipolar plage

H407 407 11169 N23 E62 0.43 small active region

H409 409 N/A S17 E58 0.51 small plage

H411 411 N/A N22 E27 0.92 small spot

N.Plage N/A N/A N51 E01 0.63 north remnant plage

CRPIX1 = 1304 CRPIX2 = 344

CRSIZE1 = 1516 CRSIZE2 = 428

S.Pole N/A N/A S60 E01 0.51 south polar area

CRPIX1 = 1199 CRPIX2 = 3527

CRSIZE1 = 1427 CRSIZE2 = 440

QS_E_350 N/A N/A N00 E70 0.35 CRPIX1 = 3709 CRPIX2 = 1921

QS_E_450 N/A N/A N00 E63 0.45 CRPIX1 = 3625 CRPIX2 = 1921

QS_E_550 N/A N/A N00 E57 0.55 CRPIX1 = 3514 CRPIX2 = 1921

QS_E_650 N/A N/A N00 E49 0.65 CRPIX1 = 3370 CRPIX2 = 1921

QS_E_750 N/A N/A N00 E41 0.35 CRPIX1 = 3181 CRPIX2 = 1921

QS_E_850 N/A N/A N00 E32 0.85 CRPIX1 = 2923 CRPIX2 = 1921

QS_E_950 N/A N/A N00 E18 0.95 CRPIX1 = 2511 CRPIX2 = 1921

QS_W_1000 N/A N/A N00 W01 1.00 CRPIX1 = 1874 CRPIX2 = 1921

QS_W_900 N/A N/A N00 W26 0.90 CRPIX1 = 1076 CRPIX2 = 1921

QS_W_800 N/A N/A N00 W37 0.80 CRPIX1 = 761 CRPIX2 = 1921

QS_W_700 N/A N/A N00 W46 0.70 CRPIX1 = 542 CRPIX2 = 1921

QS_W_600 N/A N/A N00 W53 0.60 CRPIX1 = 377 CRPIX2 = 1921

QS_W_500 N/A N/A N00 W60 0.50 CRPIX1 = 251 CRPIX2 = 1921

QS_W_400 N/A N/A N00 W66 0.40 CRPIX1 = 154 CRPIX2 = 1921

QS_W_300 N/A N/A N00 W72 0.30 CRPIX1 = 82 CRPIX2 = 1921

QS_N_375 N/A N/A N68 E01 0.375 CRPIX1 = 1921 CRPIX2 = 143

QS_N_775 N/A N/A N39 E00 0.775 CRPIX1 = 1921 CRPIX2 = 708

QS_N_875 N/A N/A N29 E00 0.875 CRPIX1 = 1921 CRPIX2 = 992

QS_N_975 N/A N/A N13 E00 0.975 CRPIX1 = 1921 CRPIX2 = 1495

QS_S_925 N/A N/A S22 E00 0.925 CRPIX1 = 1921 CRPIX2 = 2650

QS_S_825 N/A N/A S34 E00 0.825 CRPIX1 = 1921 CRPIX2 = 3005

QS_S_725 N/A N/A S44 E00 0.725 CRPIX1 = 1921 CRPIX2 = 3242

which there were no active pixels are skipped. The result is 1819 extracted HARPs without

regard for size, complexity, or location on the disk. Effectively, the hmi.Bharp_720s

series was used, including the standard pipeline disambiguation. The NWRA database ini-
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tially began construction before the pipeline disambiguation was being performed for earlier

parts of the mission, thus for some of the data base, the hmi.ME_720s_fd10 data were

used, the HARP regions extracted, and the disambiguation performed in-house, matching

the implementation performed in the HMI pipeline. All analysis is performed up to 80◦

from disk center, and only points with significant signal-to-noise ratio (S/N) in the relevant

components (S/N > 3 relative to the returned uncertainties from the inversion, and propa-

gated accordingly) are included in the analyses. For this larger data set, all calculations are

performed with a planar approximation. The “answer” is Bz, and the boundary estimates

calculated are Bµ
z = Blos/µ, Bµ(s)

r = Blos/µ(s) (which imparts a spherical accounting as a

result of the variation of µ over the field of view), and B
pot,center
z . B

pot,all
r and B

pot,sph
r are

computationally possible but extremely slow, and are not employed for this second data set.

4. Results

For the results presented here, the “gold standard” is taken to be the radial or normal field as

computed from the vector data, and to this quantity we compare results of different approxi-

mations of the boundary. We do caution that Br data include the observed Btrans component,

which is inherently noisier than the Blos component. Additionally, we stress that the compar-

isons are performed against a particular instrument’s retrieval of the photospheric magnetic

field vector, which may not reflect the true Sun due to influences in polarimetric sensitivity,

spectral finesse, spatial resolution, etc.

4.1. Field Strength Comparisons

To demonstrate the general resulting trends for each of the radial field approximations, we

first present density histograms of the inferred radial field strengths for two representative

sub-regions, NOAA AR 11164 (HARP #393, Figure 3) and the south pole region (Figure 4).

Throughout, we do not indicate the errors for clarity; a 10 % uncertainty in field strength is a

fair approximation overall, and a detailed analysis beyond that level is not informative here.

For both HARP H393 (NOAA AR 11164) and the south pole area, the initial comparison

of Blos to Br (panel (a) in Figures 3 and 4) shows the expected signature of underestimated

field strengths overall. Note that for both regions, but especially for the south pole, there is

a strong underestimation of the radial field strength across magnitudes.

The Bµ(s)
r correction (panel (b) in Figures 3 and 4; the Bµ

z plot is almost identical and

not shown here) shows improvement by eye for both regions, with distributions systemati-

cally deviating less from the x = y line. However, in the case of the H393 corrections, the

stronger-field strengths are often over-corrected, and the opposite-polarity erroneous pixels

are exacerbated in their error. This trend is also true for the south pole area: there is both an

improvement (especially for stronger-field points) and the appearance of a distinct erroneous

opposite-polarity spur in the Bµ(s)
r results.

In the next panel (panel (c) in Figures 3 and 4), a representative potential-field option,

B
pot,center
z , is shown with regard to Br (again, the B

pot,sph
r and B

pot,all
r plots look essentially

identical); the weaker-field strengths appear to be less well corrected than the Bµ(s)
r approx-

imation, although the strong-field approximations for the sunspots in H393 are significantly

better than the Bµ(s)
r correction. There appears to be a small number of points for which the

opposite polarity is retained, but the stronger-field points (generally ≥ 1000 G) lie overall

close to the x = y line. There are still significant deviations from the Br field; this is expected
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Figure 3 (a) – (c) Non-parametric density estimates comparing the distribution of the radial field from the

vector field data Br (x-axis) to the inferred radial field strength estimates using representatives of the different

models discussed in the text (y-axis). Shown here are distributions from NOAA AR 11164 (H393). Contour

levels are equal in log (probability) ranging from [10−3–102], with x = y line included for reference. The

comparisons are for Br against (a) Blos, (b) Blos/µ(s), (c) Bz potential, planar, center-point pivot. Panel

(d) shows, in summary, that the µ-corrected estimates generally show less bias than the Blos fields, but

still have a large random error. The potential-field-corrected fields show larger differences for weak-field

strengths, but less random error. In (d) the scatter plot is between the Blos calculated from the inversion,

and the recovered Blos calculated from the spherical potential vector (Sect. B). While the boundary is thus

fairly well recovered, the disagreement beyond machine-precision differences arises because the spherical

calculation is not performed to a high enough degree to remove all small-scale “ringing”.

at some level since a potential-field model is being imposed, and it cannot be expected that

the solar magnetic fields are in fact potential. Additionally, while a nonlinear force-free field

model may better represent the true field (Livshits et al., 2015), there is insufficient informa-

tion in the Blos boundary with which to construct such a model. For the south pole region,

the strong-field areas are less well corrected than was seen in the Bµ(s)
r plot (Figure 4, pan-

els (c) and (b)), but the distinct incorrect-polarity spur visible for Bµ(s)
r is less pronounced

in the potential-field-based estimate.

For completeness and as a check of the algorithm, the Blos directly attained from the in-

version as Blos = |B| cos(ξ), where ξ is the inclination of the field vector to the line of sight

(and which constitutes the input to the potential-field calculation), is compared with the

B
pot

los derived from the vector field components from the derived potential field (panel (d) in

Figures 3 and 4). These Blos boundaries match well, indicating that there is little if any sys-

tematic bias presented by the potential-field calculation when recovering the input boundary.

The recovery is not, however, within machine precision because of the lower-than-optimal

degree to which the spherical potential field is computed; reproducing the boundary to ma-

chine precision is computationally untenable with this algorithm.
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Figure 4 Same as Figure 3, but

for the south pole area shown in

Figure 2. These panels show in

summary, that the µ-corrected

estimates for the south polar area

show distinct spurs with incorrect

polarity, while the potential-field

estimates have large biases.

The two examples shown in Figures 3 and 4 represent the two extremes of solar magnetic

features to which these approximations would be applied: the south polar region (expected

to sample small, primarily radially-directed concentrations of field) and a large active re-

gion with both plage and sunspots. The distributions of the other sub-regions appear as

hybrids when examined in the same manner, having sometimes stronger fields for which the

µ-correction approach performs the best (e.g., the northern plage area), or having sunspot

areas for which there is an incorrect-polarity spur present in the distributions that is ex-

acerbated by some amount in the µ-corrections and mitigated by some amount with the

potential-field calculations.

To summarize, the performance of these approaches, quantitative metrics of the com-

parisons between Br and the different estimations for the sub-regions on 2011 March 6 are

graphically presented in Figures 5, 6, and 7 for all HARP-based sub-regions plus the north

and south targets considered, and in Figure 8 for the small quiet-Sun extractions. The met-

rics considered are the linear correlation coefficient, the fitted linear regression slope and

constant, a mean signed error, a root-mean-square error, and the percentage of pixels that

show the incorrect sign relative to Br. All well-measured points within each sub-region are

considered in Figure 5 (see Section 3), and in Figures 6 and 7 the results are separated

between strong- and weaker-field areas as well.

It is clear is that there is not a single best approach. In some cases, e.g. for H394 and

H407, by almost all measures the B
pot,sph
r and B

pot,center
z approaches improve upon Blos and

the µ-correction methods. The latter generally show less bias than the uncorrected Blos field,

but still have a large random error. The potential-field-based estimates show larger differ-

ences for weak-field strengths, but less random error. Comparing the weak- and strong-field

results, it is clear that the small correlations and regression slopes in the former are due to the

abundance of weak-field points and their low response to the corrections (see Figure 3 vs. 4).

However, there is a general trend that plage- or weaker-field dominated areas, including the

two polar areas, are better served (under this analysis) by the µ-correction methods, notwith-
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Figure 5 Metrics used to evaluate the performance of radial-field approximations when compared to Br , for

the cut-out areas highlighted in Figure 2. Top to bottom, left: the linear correlation coefficient, the slope of the

linear regression line, the constant (offset) for that fit, and right: the mean error, the root-mean-square error,

the percent of pixels that are of the incorrect sign. In shades of orange, +: Blos , ♦: B
µ
z , △: B

µ(s)
r ; in shades of

purple, �: B
pot,center
z , ×: B

pot,all
r , ©: B

pot,sph
r . These metrics demonstrate some trends (less spread between

methods with increasing µ), but also a mix of results between regions, µ, and methods, indicating no single

best approach.

standing the polarity-sign errors. This is confirmed as a general trend by the quiet-Sun areas

(Figure 8) whose underlying structures – like the polar area and plage areas – are likely pre-

dominantly radial in HMI data. In contrast, when the sub-areas include or are dominated by

sunspots, (e.g., H393, H394, H401, H407), the B
pot,sph
r and B

pot,center
z perform best by

these metrics. The reasons behind this mixed message of success is explored further below.

The quiet-Sun patches are sampled in order to exclusively test the dependence of the ap-

proximations to µ, without the complications of different underlying structure: we assume

these comprise similar samples of small primarily radial magnetic structures. Indeed, Fig-

ure 8 shows clear trends with µ. All models improve with increasing µ by these metrics,

and there is no obvious difference in trends between quadrants (east, north, etc.). There are

outliers that are most likely due to inherent underlying structure. The µ-correction methods

generally better serve these areas, by a small degree in some measures, than the potential-

field methods. However, all regions except those with µ ≈ 1.0 have a higher percentage

of points with the incorrect sign than all of the HARP regions, except for the south polar

area.
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Figure 6 Same as Figure 5, but only for points with total field strengths |B| > 1000 G (note the different

scales from previous figures for some metrics). As some of the sub-regions do not meet the additional re-

striction of having a minimum of 100 such points, they are not included in this plot. Note that compared

with Figure 5, there are in some cases stronger distinctions between the method categories, and much weaker

relationships with µ = cos(θ) for some metrics.

4.2. Total Flux Comparisons

The second test is the total magnetic flux of the sub-regions, where the estimates of the

magnetic flux are computed as
∑

|Bbndry|dA over the acceptable pixels, dA is the area in

Mm2 of each pixel (thus imparting some spherical accounting for the flux, which otherwise

uses a planar approximation), and Bbndry = Blos, Bµ
z , B

pot,center
z or similar, as indicated. The

results are summarized in Figure 9, both for all well-measured pixels and then for strong-

field (sunspot) pixels alone. The results for the regions extracted from the full-disk data are

considered first.

Overall, the total flux estimate using Φ(Br) is always the largest, the estimate using

Φ(Blos) is always the smallest, with other approximations in varying order between. As

demonstrated in Section 4.1, the behaviors can be quite mixed between strong-field sunspot

areas, and plage areas, making the summations over the entire sub-regions (for the total

flux) difficult to interpret. It is also clear that the degree of underestimation of the Blos-based

flux Φ(Blos) is a function of µ, and the flux from the Bµ
z boundaries recover the Φ(Br)

for the same data well overall. The fluxes based on potential-field-based boundaries do not

completely recover Φ(Br) either, even when the area under consideration is restricted to the



Estimates of Br from Blos Page 13 of 26 36

Figure 7 Same as Figure 5, but only for points with Bh < 500 G and |Br| < 500 G (note the different scales

for some metrics). Some metrics once again show a strong relationship with µ, and again there is a weaker

trend between the method categories.

sunspots. The different implementations of each method do not vary significantly between

each other.

Furthermore, a close examination of Figure 9 as compared to Figure 3 shows some-

thing that is slightly confusing: while Figure 3 shows regions of the distribution where

|Blos| > |Br| and certainly |Blos|/µ > |Blos|, in Figure 9 Φ(Br) > Φ(Blos) and indeed

Φ(Br) > Φ(Bµ(s)
r ) always. The differences decrease with increasing µ, as noted above. With

a non-trivial number of points having |Blos| > |Br|, however, the question is why the total

flux would be consistently higher when computed using Br? The answer is that Br includes

the higher-noise component Btrans, whereas any estimation using Blos does not include that

higher-noise component. The impact is much greater in weak-signal areas that dominate the

summation for the total flux when all points are used (Figure 9, left) and the impact is less

when only strong-field points are included (Figure 9, right). This impact of photon noise

on Btrans and its particular influence on the calculation of Φ(Br) vs. Φ(Blos) is confirmed

using model data with varying amount of photon noise (Leka et al., 2009). While in this

context we consider Br the “answer”, it is therefore clear that it instead exclusively repre-

sents an observed estimate against which we compare other estimates, and is likely to be an

overestimate of the true flux.

The larger HARP database is used next to examine the Φ(Bbndry) differences for a large

number of extracted regions (Figure 10). In this plot, the general underestimation of Φ(Br)

by Φ(Blos) is present as expected, and varies with µ = cos(θ); Φ(B
pot,center
z ) also underesti-
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Figure 8 Same as Figure 5, but for the small quiet-Sun extractions at a thorough sampling of µ. The top

label indicates the quadrant from which the extraction originated.

mates the flux relative to Φ(Br) although not as severely, and the consistently larger Φ(Br)

is now understood, from the comments above regarding the inherent influence of noise.

Φ(Bµ(s)
r ) is closer to Φ(Br) for much of the range in observing angle, but it is also capable

of overestimating the total flux, from relatively modest through large observing angles; this

is a property not generally seen when using the B
pot,center
z boundary. Using Φ(Blos) therefore

results in the largest systematic error, while Φ(Bµ(s)
r ) results in the smallest systematic er-

ror, with Φ(B
pot,center
z ) showing an intermediate systematic error relative to Φ(Br). For the

random error, the converse order holds, with Φ(Bµ(s)
r ) resulting in the largest random error,

Φ(Blos) the smallest, with the Φ(B
pot,center
z ) random error comparable to Φ(Blos).

4.3. Magnetic Polarity Inversion Lines

The introduced apparent magnetic polarity changes at the edges of sunspots were very early

signatures that inclined structures are prevalent in active regions. For many solar physics

investigations, however, the location of and character of the magnetic field nearby the mag-

netic polarity inversion line (PIL) is central to the analysis. In particular, magnetic PILs with

locally strong gradients in the spatial distribution of the normal field are often of interest as

an indication of localized very strong electric currents that are associated with subsequent

solar flare productivity (Schrijver, 2007). Incorrect neutral lines introduced by projection

may misidentify limb-ward penumbral areas as being strong-gradient regions of interest.
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Figure 9 A comparison of inferred total magnetic flux Φ =
∑

|Bbndry|dA for each sub-region as a function

of the observing angle, using different radial-field approximations for the Br boundary; for all, dA is the

area in Mm2 of each pixel (thus imparting some spherical accounting for calculations that might otherwise

use a planar approximation). Left: all points in each sub-region, right: only points with total field strengths

over 1000 G (which removes some sub-regions from consideration). For both, the symbols and colors follow

Figure 5 with the addition of ∗: Br (red).

Figure 10 Scatterplot of the

differences in total flux when

computed using Blos, B
µ(s)
r , and

B
pot,center
z as indicated, as a

percentage difference from the

total flux computed using Br

(capped at 100 % difference), as

a function of observing angle

µ = cos(θ) (limited to θ ≤ 80◦

from disk center).

Figure 11 shows images of the observed Br field, then the analogous estimates from Blos,

Bµ
z , and B

pot,center
z for H393 in detail; this sunspot group is fairly large, complex, and quite

close to the limb. In particular, areas of strong-gradient neutral lines are highlighted. The

location of the implied magnetic neutral line clearly does not change at all when the Bµ
z

correction is applied to the Blos boundary, as expected from a simple scaling factor, but the

highlighted areas do change because the magnitude of the gradient increases. The B
pot,center
z

boundary better replicates the Br boundary, almost completely removing the introduced po-

larity lines on the limb-ward sides of the sunspots. However, it is not perfect: there is a slight

decrease in the magnitude of the field in the negative-polarity plage area that extends toward

north/east of the active region. This is in part due to a planar approximation being invoked,

but also due to the introduction of inclined fields by the potential-field model where the

underlying field inferred by HMI is predominantly vertical (see Section 4.4).
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Figure 11 Images of the boundary magnetic field for NOAA AR 11164 (a sub-area of HARP 393; cf.

Figure 2), scaled to ±1 kG, positive or negative (white or black). The inferred strong-gradient PILs are

shown (red contours); also indicated are µ = cos(θ) at 0.1-spaced intervals (teal). Top, left and right: The

radial field Br (with µ contours labeled) and the line-of-sight field Blos . Bottom, left and right: The radial

component of the potential field that matches Blos on the boundary, using a planar approximation B
pot,center
z ,

and the line-of-sight field with the µ-correction B
µ
z .

The recovery of a more appropriate PIL in or near sunspots with polarity errors in

weaker fields was seen earlier in the analysis of the points of incorrect sign in Figures 5 – 7.

The strong-field regions showed a significant decrease in incorrect-polarity fields when a

potential-field-based boundary was used relative to the µ correction boundaries, but in the

weak-field areas the results were mixed, leading to a similarly mixed result when all pixels

were included.

4.4. Analysis of Success and Failure

While it is clear that the location of the magnetic neutral line is better recovered for sunspot

areas away from disk center using a potential-field model than is possible using the Blos

boundary and a multiplicative factor, it is also clear that there are indeed some solar struc-

tures for which the potential-field model does not perform well.
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Figure 12 Variations in expected Blos signal from a magnetic vector with |B| = 1000 G, located at N10, as

a function of inherent azimuthal angle φ, while varying (a) the inclination angle γ (keeping the heliographic

longitude at W10), and (b) varying the heliographic longitude and thus the observing angle (keeping the

inherent inclination angle at 10◦).

We investigate where the different approximations work well and where they do not,

based on the hypothesis that the µ-correction approach should be exactly correct (by con-

struction) for truly radial fields as inferred within the limitations of the instrument in ques-

tion.

First, it behooves us to recall that the Blos component of a magnetic field vector itself can

vary widely for a given magnitude |B| as a function of the observing angle θ , the local incli-

nation angle γ (relative to the local normal), and the local azimuthal angle φ. Conventional

practices of assuming that errors are within acceptable limits when a target Blos is within,

say, 30◦ of disk center, may be surprisingly misleading when the expected Blos magnitude

is so significantly different from the input vector magnitude, as demonstrated in Figure 12.

The impact of the azimuthal angle as well as the inclination angle on the observed Blos ex-

plains some of why the µ-correction based estimates of the radial field may impart greater

errors than might be expected. In other words, one should expect (for example) a 20 % in-

troduced uncertainty in the Blos component relative to the inherent field strengths even at

θ = 30◦ simply because of the unknown azimuthal directions of the underlying horizontal

component of the field – as contrasted to an estimated 13 % error from simply geometric

considerations at this observing angle.

To explore more where the different approaches fail, and how, an analysis of the differ-

ence between the Br approximations and the Bz component from the vector field observa-

tions is performed in detail for one HMI Active Region Patch. HARP 3848, observed by

HMI on 2014 March 15 at 15:48:00 TAI includes NOAA AR 12005 and AR 12007 (Fig-

ure 13), and was centered northeast of disk center; it is one of the regions and days included

in the larger HARP data set, and was chosen because of its location, its relatively simple

main sunspot plus a second sunspot at a different µ value, and because it includes a spread

of plage over a fair range of µ as well. The differences between the observed radial compo-

nent (in this case all using planar approximations) Bz and two different Br approximations,

from Bµ(s)
r and B

pot,center
z are examined for points in very restrictive local inclination ranges

as a function of structure and observing angle. Two representations are shown: the absolute

magnitude (Figure 14), and the fractional difference (Figure 15); the points that resulted in

an erroneous sign change (relative to the Bz boundary) are also indicated. Only points that

have a good disambiguation and have S/N > 5 are included.

Summarizing both plots, for γ < 10◦, the Bµ(s)
r approximation is systematically closer

to Bz than the B
pot,center
z results; this is especially true in plages for the Bµ(s)

r model, which

also shows no sign-error points, whereas there are a few sign-error points in the B
pot,center
z

model. For 20◦ < γ < 30◦, slightly inclined fields, the bulk of the points are less different
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Figure 13 HARP 3848 (NOAA AR 12005, 12007), obtained at 2014 March 15 at 15:48:00 TAI. Top: con-

tinuum intensity, bottom: radial field Bz , positive and negative polarity as white and black and scaled to

±2 kG; red contours indicate 0.9 times the median of the continuum intensity and indicate the sunspots, red

dashed contours delineate µ = [0.3,0.4,0.5,0.6,0.7,0.8]; for reference to Figure 14.

between the two boundaries, but it is most striking that the Bµ(s)
r approximation is beginning

to show significant differences in the sunspots, whereas the B
pot,center
z sunspot areas continue

to display fairly small errors. The latter do, however, show a greater number of plage points

that have introduced an erroneous polarity difference, whereas Bµ(s)
r only shows these errors

at the more extreme µ values. When we examine only points within 40◦ < γ < 50◦ range –

significantly inclined, but not horizontal – the errors in the spot become very large in Bµ(s)
r ,

but stay consistent and small in the B
pot,center
z boundary. More points in the former are also of

the incorrect sign, including many with quite large field-strength differences. The B
pot,center
z

boundary in fact performs better for both plage and spots at these larger inclination angles

than Bµ(s)
r .

The appropriateness of a µ-correction in the context of vertical fields is shown thus to be

true, but surprisingly limited to a very small degree of deviation away from truly vertical. By

20◦ from vertical, the results are mixed. For more inclined fields, the Bµ(s)
r is clearly prob-

lematic, particularly in sunspots (in part due to the (unknown) inherent azimuthal angle), but

also in inclined weak-field areas. One must note, however, that what are inferred to be weak-

field inclined points may be predominantly a product of noise in the vector field data at these

larger observing angles. The B
pot,center
z boundary is demonstrably better for all inclinations

within sunspots, and is susceptible to polarity errors in weak-field areas at all inclinations

but at a somewhat more consistent, lower level. In this particular case, the percentage of

plage-area pixels with incorrect sign (over all inherent inclination angles) is lower for the
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Figure 14 Top: absolute difference between Bz and B
µ(s)
r (left), and B

pot,center
z (right), as a function of

µ = cos(θ), only for points with a local inclination angle γ smaller than 10◦ from radial. Points that lie within

the spots are indicated by an asterisk (red). Pixels for which the model resulted in a different sign of the field

are further highlighted by overplotting the squares in blue. Middle: the same, but for points 20◦ < γ < 30◦;

bottom: the same, but for points with 40◦ < γ < 50◦ .

B
pot,center
z boundary than the Bµ(s)

r (6.1 % vs. 11 %, respectively), and the former appears to

perform quantitatively better for both plage and spot areas in this example.

5. Conclusions

A method was developed, based on earlier publications (Sakurai, 1982; Alissandrakis,

1981), and was tested here for its ability to produce an estimate of the radial field distribution

from line-of-sight magnetic field observations of the solar photosphere. Comparisons were

made between the line-of-sight component calculated from the vector-field observations,

the inferred radial-directed component from same, and different implementations of two ap-

proaches for estimating the radial component from line-of-sight observations: one approach

based on the common µ-correction, and one based on using the radial field component from
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Figure 15 Same as Figure 15, but each difference is normalized by |Bz| to show the fractional change.

Points with a sign error (blue square overplot) therefore all show a change of at least 100 %.

a potential field constructed so as to match the line-of-sight input. The potential-field con-

structs impose, of course, significant assumptions regarding the underlying structure. The

µ-correction approach imposes a single much stronger assumption: that the underlying field

is always directed normal to the local surface.

We find that answering the question of which approach better recovers a target quantity

differs according to said target’s underlying magnetic field structure, as would be inferred by

the instrument at hand. Structures that abide by the radial-field assumption are well recov-

ered by µ-correction approaches. This may, with caution, be extended to structures whose

inherent inclination is up to a few tens of degrees, but with an uncertain worsening error

as a function of increasing observing angle. Magnetic structures that would be observed to

be inherently more inclined by that instrument are generally poorly served by µ-correction

approaches.

Most active regions comprise a mix of structures, and making general performance state-

ments is therefore dangerous. While sunspot field strengths are far better recovered using

the potential-field constructs, tests on polar or high-latitude areas that should be primarily

plage tell a mixed story: higher field strengths are recovered more reliably using some form
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of µ-correction, but the results also indicate that a significant subset of the measurements

are returned with the incorrect magnetic polarity. That being said, the total magnetic flux,

an extensive quantity that often encompasses all structures within an active region, can be

better recovered by µ-correction approaches if the target is dominated by a field that would

be expected to be inferred as radial by the instrument involved.

Blos images of sunspots often have pronounced “false” magnetic polarity inversion lines;

because the µ-correction approaches involve multiplying by a simple scaling factor, they

cannot relocate incorrect PILs and instead enhance incorrect-polarity field strengths. This

is a particular problem when strong-gradient PILs need to be identified. The potential-field

approaches can mitigate the false-PIL problem; the impact was demonstrated on a near-limb

active region, but PIL displacement can occur at any location where µ �= 1.0.

Of course it can be argued that the potential field is not appropriate for magnetically com-

plex active regions, and that linear or nonlinear extrapolations would perform even better.

Unfortunately, without crucial additional constraints, there is no unique linear or nonlinear

force-free field solution to the Blos boundary, whereas the potential field provides a unique

solution.

The most general conclusions are that first, any correction improves upon the naive

Blos = Br approach. Second, the µ-corrections recover field strengths in areas inherently

comprised of vertical structures (as would be inferred by the instrument), but introduce ran-

dom errors whose magnitude can be surprisingly large given a sunspot’s proximity to disk

center, and these corrections exacerbate the influence of projection-induced sign errors. Last,

while the potential-field reconstructions will introduce systematic errors, generally underes-

timating field strengths and introducing new polarity-sign errors in weaker and more radially

directed fields, it recovers well both the radial-component field strengths in sunspots and the

locations of the magnetic polarity inversion lines.
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Appendix A: Method: Planar Approximation

The line-of-sight component is observed on an image-coordinate planar grid. To avoid hav-

ing to interpolate to a regular heliographic grid, consider a hybrid (non-orthogonal) co-

ordinate system, (ξ, η, zh), consisting of the transverse image components, (ξ, η) and the

heliographic normal component, zh.

Following the convention of Gary and Hagyard (1990), the coordinates ξ , η are defined

in the zh = 0 plane in terms of heliographic coordinates by

(

ξ

η

)

=

(

c11 c12

c21 c22

)(

xh

yh

)

, (8)

thus the new coordinate system is related to helioplanar coordinates by

⎛

⎝

ξ

η

zh

⎞

⎠ =

⎛

⎝

c11 c12 0

c21 c22 0

0 0 1

⎞

⎠

⎛

⎝

xh

yh

zh

⎞

⎠ . (9)
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Hence, the calculations are performed in the coordinate system (ξ, η, z), which is not the

same as the image coordinates, except at z = 0. As such, there will be three coordinate

systems under consideration, related as follows. The heliographic and image coordinates

are related by the standard transform given in Gary and Hagyard (1990):

⎛

⎝

xh

yh

zh

⎞

⎠ =

⎛

⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠

⎛

⎝

xi

yi

zi

⎞

⎠ , (10)

while the new coordinate system is related to the originals by

⎛

⎝

ξ

η

z

⎞

⎠ =
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⎝

c11 c12 0

c21 c22 0

0 0 1

⎞

⎠

⎛

⎝

xh

yh

zh

⎞

⎠ ,

=

⎛

⎝

c11a11 + c12a21 c11a12 + c12a22 c11a13 + c12a23

c21a11 + c22a21 c21a12 + c22a22 c21a13 + c22a23

a31 a32 a33

⎞

⎠

⎛

⎝

xi

yi

zi

⎞

⎠ . (11)

Henceforth, the superscript on the heliographic components is dropped, but retained on the

image components.

The volume of interest is restricted to 0 < ξ < Lx , 0 < η < Ly and z ≥ 0. Assuming that

cij is constant (that is, neglecting curvature across the field of view), this transformation is

linear and the solution to Laplace’s equation should still be of the form

Φ(ξ,η, z) =
∑

m,n

Amne
[2πimξ/Lx+2πinη/Ly−κmnz] + Aξξ + Aηη + A0z, (12)

with the value of κmn determined by ∇
2Φ = 0, namely

∇
2Φ(ξ,η, z) =

∂2Φ

∂ξ 2
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and we choose κmn > 0 so that the field decreases with height. We also choose Aξ = Aη = 0

so that the constant field is purely vertical. This is equivalent to specifying the boundary

condition at large heights.

The line-of-sight component of the field is thus given by

Bl =
∂

∂xl

{

∑

m,n

Amne
2πimξ/Lx+2πinη/Ly−κmnz + A0z

}

= a33A0 +
∑

m,n

Amne
2πimξ/Lx+2πinη/Ly−κmnz

×

[

2πim

Lx

(c11a13 + c12a23) +
2πin

Ly

(c21a13 + c22a23) − κmna33

]

. (14)

We solve for the coefficients Amn by taking the Fourier transform of the line-of-sight com-

ponent of the field at the surface

FFT
(

B l
)

=
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dξ
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0
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2πij
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]

+ LxLya33A0δ0jδ0k. (15)

When the coefficients are known, the vertical component of the field is then given by

Bz(ξ, η,0) =
∂

∂z

{

∑

m,n

Amne
2πimξ/Lx+2πinη/Ly−κmnz + A0z

}∣

∣

∣

∣

z=0

= A0 −
∑

m,n

κmnAmne
2πimξ/Lx+2πinη/Ly . (16)

Appendix B: Method: Spherical Case

Following the derivation given in Altschuler and Newkirk (1969), but also see Bogdan

(1986), the potential field in a semi-infinite volume r ≥ R can be written in terms of a

scalar potential given by

Ψ = R

∞
∑

n=1

n
∑

m=0

(

R

r

)n+1
(

gm
n cosmφ + hm

n sinmφ
)

P m
n (µ), (17)
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where µ = cos θ , in terms of which the heliographic components of the field are given by

Br = −
∂Ψ

∂r

=

∞
∑

n=1

n
∑

m=0

(n + 1)

(

R

r

)n+2
(

gm
n cosmφ + hm

n sinmφ
)

P m
n (µ), (18)

Bθ = −
1

r

∂Ψ

∂θ

=
1

sin θ

∞
∑

n=1

n
∑

m=0

(

R

r

)n+2
(

gm
n cosmφ + hm

n sinmφ
)

×
[

(n + 1)µP m
n (µ) − (n − m + 1)P m

n+1(µ)
]

(19)

Bφ = −
1

r sin θ

∂Ψ

∂φ

=
1

sin θ

∞
∑

n=1

n
∑

m=0

m

(

R

r

)n+2
(

gm
n sinmφ − hm

n cosmφ
)

P m
n (µ). (20)

Following Rudenko (2001), we define the coordinate system such that the line-of-sight

direction corresponds to the polar axis of the expansion. With this choice, the line-of-sight

component of the field is given by

Bl = Br cos θ − Bθ sin θ

=

∞
∑

n=1

n
∑

m=0

(n − m + 1)

(

R

r

)n+2

P m
n+1(µ)

[

gm
n cosmφ + hm

n sinmφ
]

. (21)

To determine the coefficients in the expansion, we first multiply both sides of Equation (21)

by cosmθ , and integrate over the surface of the sphere of radius R:

∫ π

0

sin θdθ

∫ 2π

0

dφ cosmφP m
n+1(µ)Bl(R, θ,φ)

=

∞
∑

n′=1

n′
∑

m′=0

∫ π

0

sin θdθ

∫ 2π

0

dφ cosmφ
(

n′ − m′ + 1
)

P m
n+1(µ)P m′

n′+1(µ)

×
[

gm′

n′ cosm′φ + hm′

n′ sinm′φ
]

=
4πgm

n

2n + 3

(n + m + 1)!

(n − m)!
, (22)

which determines gm
n . Next, we multiply both sides of Equation (21) by sinmθ , and again

integrate over the surface of the sphere of radius R:

∫ π

0

sin θdθ

∫ 2π

0

dφ sinmφP m
n+1(µ)Bl(R, θ,φ)

=

∞
∑

n′=1

n′
∑

m′=0

∫ π

0

sin θdθ

∫ 2π

0

dφ sinmφ
(

n′ − m′ + 1
)

P m
n+1(µ)P m′

n′+1(µ)
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×
[

gm′

n′ cosm′φ + hm′

n′ sinm′φ
]

=
4πhm

n

2n + 3

(n + m + 1)!

(n − m)!
(23)

to determine hm
n .

Because observations are only available for the near side of the Sun, to implement this,

it is necessary to make an assumption about the far side of the Sun. In order to ensure a

zero monopole moment, it is convenient to make the field antisymmetric in some form. One

convenient way to do this is to let Bl(R,π − θ,φ) = Bl(R, θ,φ), where the front side of the

Sun is assumed to lie in the range 0 < θ < π/2. The associated Legendre functions have the

property

P m
n (−x) = (−1)(n+m)P m

n (x), (24)

from which the expressions for the coefficients become

gm
n =

(2n + 3)(n − m)!

4π(n + m + 1)!

∫ 2π

0

dφ cosmφ

×

{∫ 0

−1

dµP m
n+1(µ) +

∫ 1

0

dµP m
n+1(µ)

}

Bl(R,µ,φ)

=
(2n + 3)(n − m)![1 + (−1)n+m+1]

4π(n + m + 1)!

×

∫ 2π

0

dφ cosmφ

∫ 1

0

dµP m
n+1(µ)Bl(R,µ,φ), (25)

and similarly,

hm
n =

(2n + 3)(n − m)![1 + (−1)n+m+1]

4π(n + m + 1)!

×

∫ 2π

0

dφ sinmφ

∫ 1

0

dµP m
n+1(µ)Bl(R,µ,φ). (26)

Note that the terms with n+m even have gm
n = hm

n = 0. This is a consequence of the bound-

ary condition imposed for the far side of the Sun, which effectively reduces the number of

independent terms by a factor of two.
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