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Abstract
We study extreme values of group-indexed stable random fields for discrete groups
G acting geometrically on spaces X in the following cases: (1) G acts properly dis-
continuously by isometries on a CAT(-1) space X , (2) G is a lattice in a higher rank
Lie group, acting on a symmetric space X , and (3) G is the mapping class group of a
surface acting on its Teichmüller space. The connection between extreme values and
the geometric action is mediated by the action of the group G on its limit set equipped
with the Patterson–Sullivan measure. Based on motivation from extreme value theory,
we introduce an invariant of the action called extremal cocycle growth which mea-
sures the distortion of measures on the boundary in comparison to the movement of
points in the space X and show that its non-vanishing is equivalent to finiteness of
the Bowen–Margulis measure for the associated unit tangent bundle U (X/G) pro-
vided X/G has non-arithmetic length spectrum. As a consequence, we establish a
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dichotomy for the growth-rate of a partial maxima sequence of stationary symmetric
α-stable (0 < α < 2) random fields indexed by groups acting on such spaces. We also
establish analogous results for normal subgroups of free groups.

Keywords Stable random field · Extreme value theory · Rosiński representation ·
Patterson–Sullivan measure · Bowen–Margulis measure · CAT(-1) space · Higher
rank symmetric space · Teichmüller space · geodesic flow · Ergodicity and mixing

Mathematics Subject Classification 20F65 · 20F67 · 60B15 · 60J50 (Primary);
11K55 · 20F69 · 28A78 · 28A80 · 37A · 57M (Secondary)

1 Introduction

Let G be a discrete finitely generated group acting and properly discontinuously by
isometries on a space X in one of the following situations:

(1) G acts properly discontinuously by isometries on a CAT(-1) space X ,
(2) G is a lattice in a higher Lie group G, acting on its symmetric space X .
(3) G is the mapping class group of a surface acting on its Teichmüller space.

Let �G ⊂ ∂X denote the limit set–the collection of accumulation points of an(y)
orbit on the boundary ∂X .

The aim of this paper is to establish a connection between three perspectives on the
action of G on �G pertaining to three different themes as mentioned below:

(1) maxima of stationary symmetric α-stable (SαS) random fields indexed by G (
Probability Theory),

(2) extreme values of cocycles given by Radon–Nikodym derivatives of Patterson–
Sullivan measures induced by the quasi-invariant action of G on its limit set
�G ⊂ ∂X ( Ergodic Theory),

(3) extrinsic geometry of the orbit ofG on X in terms of whether the Bowen–Margulis
measure is finite or not ( Non-positively curved and Hyperbolic Geometry).

The relation between (1) and (2) has been studied in probability in the context of
abelian G and free G. The relation between (2) and (3) on the other hand has been
studied thoroughly in the context of pairs (X ,G) as above. However the connection
between (1) and (3) is unexplored territory for pairs (X ,G) as above. We achieve this
connection in the present paper via the mediation of ergodic theoretic techniques (2),
which play a key role in the proofs of our main results. One of the main tools we
use from ergodic theory is mixing of the geodesic flow with respect to the Bowen–
Margulis measure. The basic test case where G is a free group and X its Cayley graph
with respect to a standard generating set had been dealt with in [40]; however this
example is somewhat orthogonal to the main thrust of the present paper and examples
explored therein, as geodesic flow is notmixing in the case of the free group. To address
this largely excluded case of the free group, we devote a final subsection to normal
subgroups of free (or more generally hyperbolic) groups, where the Bowen–Margulis
measure is used and we recover the corresponding theorem from [40].
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Stable random fields, Patterson–Sullivan... 683

The connection between the probabilistic and the ergodic theoretic perspectives ((1)
and (2) in the above list) is, in the general form that constitutes the background of this
paper, due essentially to Rosiński [34–36] (see also the encyclopedic monograph [41]
and the recent survey [37]). The study of stationary SαS random fields (i.e., stochastic
processes indexed by G such that each finite linear combination follows an SαS
distribution) is important in probability theory because such fields appear as scaling
limits of regularly varying random fields having various dependence structures. These
randomfields comenaturally equippedwith aRosiński representation, thus connecting
with measurable dynamical systems in a canonical manner. The naturality of SαS
random fields in the context of dynamical/ergodic-theoretic applications is in fact a
consequence of the exact correspondence, furnished by the Rosiński representation,
between such stochastic processes and quasi-invariant (or nonsingular) group actions,
and hence dynamical cocycles. We outline the connection in Sect. 2 and summarize
the discussion as follows (for details, see Theorem 2.4).

Given a standard measure space (S, μ) equipped with a quasi-invariant (i.e.,
measure-class preserving) group action {φg}g∈G , a ±1-valued cocycle {cg}g∈G (that
is,

cgh(s) = ch(s) + cg(φh(s))

for {φg} and a function f ∈ Lα(S, μ), there exists a stationary SαS random field {Yg}
indexed by G admitting an integral representation (known as the Rosiński represen-
tation):

Yg
d=

∫
S
cg(x)

(
d(μ ◦ φg)

dμ
(x)

)1/α

f ◦ φg(x)dM(x), g ∈ G, (1.1)

where the above integral iswith respect to an SαS randommeasureM on Swith control
measure μ. We recall that a random measure M is called an SαS random measure
with control measure μ if for each set A with μ(A) < ∞, the random variable M(A)

follows an SαS distribution with scale parameter (μ(A))1/α; see, for example, [41].
Conversely, given a stationary SαS random field {Yg} indexed by G, there exist a

standard measure space (S, μ) equipped with a quasi-invariant group action {φg}g∈G ,
a ±1-valued cocycle {cg}g∈G and a function f ∈ Lα(S, μ) such that Yg admits a
Rosiński representation given as above.

When μ is a probability measure (often the case in this paper), we shall use � to
denote the space S (as our probability measures will be typically supported on limit
sets �). With this change of notation, the basic probabilistic question we address in
this paper is:

Question 1.1 Find sufficient conditions on a non-singular conservative action of G
on a probability measure space (�,S, μ) to ensure that the growth of partial maxima
of the associated stationary SαS random field indexed by G is like the i.i.d. case.

When G = Z
d and X is a Cayley graph of G with respect to a standard generating

set, this can never happen [38, 39]. There is only one recent example giving a positive
answer to Question 1.1: G = Fd is free, X is a Cayley graph of G with respect to
a standard generating set, and � is the Cantor-set boundary of Fd equipped with the
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Patterson–Sullivan measure [40]. In this paper we prove that there is a large class of
examples, geometric in origin, giving a positive answer to Question 1.1 (see Theorem
6.1):

(1) Non-elementary Gromov-hyperbolic groups G acting on a Cayley graph X = �G

(with respect to a finite generating set) and on the boundary � = ∂G, equipped
with the Patterson–Sullivan measure class. This directly generalizes the main
theorem of [40].

(2) Groups G acting on proper CAT(-1) spaces X with limit set � ⊂ ∂X equipped
with the Patterson–Sullivan measure class, and satisfying the following:

• The length spectrum of X/G is non-arithmetic,
• the associated Bowen–Margulis measure on the unit tangent bundle UM of

M = X/G is finite.

(3) A lattice G in a higher rank lie group, acting on the symmetric space X and its
Furstenberg boundary � = ∂X equipped with the Patterson–Sullivan measure
class.

(4) The mapping class group G acting geometrically on Teichmüller space X and
measurably on the Thurston boundary � = ∂X equipped with the Thurston
measure.

For groups G acting on proper CAT(-1) spaces X with limit set� ⊂ ∂X (as in Item
(2) above), finiteness of the Bowen–Margulis measure μBM of UM in fact provides
a new phase transition boundary for the behavior of the growth of partial maxima.
The growth of partial maxima is like the i.i.d. case if and only if the Bowen–Margulis
measure μBM ofUM is finite (Theorem 6.1 Item(2) and Theorem 6.3). An important
technical tool that we use in the proofs of the main Theorems 6.1 and Theorem 6.3 is
mixing of the geodesic flow (in cases (2), (3), (4) above). Mixing of the geodesic flow
in turn is used to count the number of orbit points inside an n−ball.

Mixing, in this strong form, fails for Gromov hyperbolic groups equipped with
the word metric [4]. However, for infinite normal subgroups of infinite index in such
groups, we establish a slightly weaker counting technique for the number of orbit
points. This allows us to obtain Theorem 6.7: the behavior of partial maxima for a
normal subgroup H of a hyperbolic group G is i.i.d. -like if and only if H is of finite
index inG. In the setup of hyperbolic groups, the latter provides the analog of Theorem
6.3 – the μBM (UM) = ∞ case for CAT(-1) spaces.

A key aim in this paper is to bring into focus the geometry underpinning Ques-
tion 1.1. We replace the default word metric of earlier works on the subject [38–40]
by a general proper geodesic metric space (X , d). Apart from Roblin’s fundamental
dichotomy on the behavior of the Poincaré series [33], the tools we bring in to answer
Question 1.1 are also from the more geometric aspects of ergodic theory: mixing of
the geodesic flow and equidistribution of spheres. We introduce an invariant called
extremal cocycle growth incorporating both the geometry of the action of G on (X , d)

as well as the quasi-invariant action of G on (�,S, μ) whose asymptotic qualitative
behavior determines the answer to Question 1.1. This invariant records the appropri-
ately normalized maximal distortion of the measure μ at a point ξ ∈ � with respect
to actions of group elements g which move a fixed point o ∈ X a bounded amount.
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1.1 Densities and extremal cocycle growth

1.1.1 Horofunction boundary and Busemann function

Throughout (X , d) will be a proper geodesic metric space.

Definition 1.2 [14] Let Ĉ(X) = C(X)/ ∼ denote the compact set of 1-Lipschitz
functions with the topology of convergence on compact subsets, where f ∼ g if
f − g is a constant. Embed X in Ĉ(X) via i : x → dX (x, ·). The closure i(X)

is called the horofunction-compactification of X and ∂h X = i(X) \ i(X) is the
horofunction-boundary of X .

Given a (parameterized) geodesic ray γ ⊂ (X , d), the Busemann function based
at x for γ is given by

βγ (x) = lim
t→∞ (d(x, γ (t)) − t) .

If X is CAT(0), i(X) = X equals the usual visual compactification X and ∂h X
is the visual boundary. If X = T eich(S) is the Teichmüller space, i(X) gives the
Gardiner–Masur compactification (see [23] and references therein).

If (X , d) isGromov-hyperbolic and ξ is an endpoint of a geodesicγ , the equivalence
class of βγ ’s with γ (∞) = ξ will be denoted as βξ . Also, if (X , d) is Gromov-
hyperbolic, quotienting ∂h X further by bounded functions we obtain the Gromov
boundary ∂g X [6,Section 2.5]. The pre-image of ξ (under this further projection) are
the elements of the equivalence class βξ . To get a well-defined Busemann function in
this case, instead of an equivalence class, we shall define

βξ (p, q) := lim sup
z→ξ

(d(p, z) − d(q, z)). (1.2)

In all three cases (CAT(0), Teichmüller, or Gromov-hyperbolic) we shall choose a
base-point o and normalize Busemann functions such that βξ (o) = 0. If in addition
X is a Cayley graph of a hyperbolic group, o will be the identity.

1.1.2 Quasiconformal density

Now suppose G acts properly discontinuously by isometries on X .

Definition 1.3 [9,p. 721] Let M(∂h X) denote the collection of positive finite Borel
measures on ∂h X . A G−invariant conformal density of dimension v (v ≥ 0) on ∂h X
is a continuous G−equivariant map X → M(∂h X) sending x → μx such that

dμx

dμo
(ξ) = exp(−vβξ (o, x)).

For X Gromov-hyperbolic, letM(∂g X) denote the collection of positive finite Borel
measures on ∂g X . A G−equivariant map X → M(∂g X) sending x → μx is said to
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be a C−quasiconformal density of dimension v (v ≥ 0), for some C ≥ 1, if

1

C
exp(−vβξ (y, x)) ≤ dμx

dμy
(ξ) ≤ Cexp(−vβξ (y, x)) (1.3)

for all x, y ∈ X , ξ ∈ ∂X ; in particular,

1

C
exp(−vβξ (o, g.o)) ≤ dμg.o

dμo
(ξ) ≤ Cexp(−vβξ (o, g.o)),

for all g ∈ G.

If Eq. 1.3 holds for some C > 0 and all x, y ∈ X , ξ ∈ ∂X we shall simply write

dμx

dμy
(ξ) 
 exp(−vβξ (y, x)),

omitting the specific value of C .

Setup 1.4 The setup for the rest of the paper is as follows. (G, X ,�) will denote one
of the following:

(1) X is a proper CAT(-1) space, G a non-elementary discrete group acting properly
discontinuously by isometries on X (recall that G is non-elementary means that
its limit set is infinite), and � the limit set.

(2) X is a properGromov-hyperbolic space, G anon-elementary discrete group acting
properly discontinuously by isometries on X, and � the limit set.

(3) X is the Teichmüller space T eich(S) of a closed surface S, G = MCG(S) acting
on T eich(S), and � the Thurston Boundary PMF(S).

(4) X is a symmetric space for a Lie group G of higher rank, G is a lattice in G, and
� the Furstenberg boundary of X.

We shall use the convention that ∂X stands for the horofunction boundary ∂h X in
cases 1, 3, 4. and the Gromov boundary ∂g X in Case 2.

In all the cases μ will denote a conformal or quasiconformal density on � ⊂ ∂X
(see Sect. 3.1 for existence).

1.1.3 Extremal cocycle growth (ECG)

Let (X ,G,�) be as in Setup 1.4. Let x → μx be a G-invariant conformal or quasi-
conformal density of dimension v. Define

Vn = exp(vn). (1.4)

Let B(o, n) denote the n−ball about o ∈ X and

Bn = {g ∈ G|g.o ∈ B(o, n)}.
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Sinceμx , μy are absolutely continuouswith respect to each other by Eq. 1.3, they have
the same support. Let � denote this support. In the cases that we shall be interested
in, μo(�) is finite and hence without loss of generality, we can assume that μo is a
probability measure. For ξ ∈ (�,μ) we evaluate the point-wise partial maxima of the
Radon–Nikodym derivatives and let

An(ξ) := max
g∈Bn

[
dμg.o

dμo
(ξ)

]
. (1.5)

To simplify notation, we letμo = μ, so thatμg.o = g∗μo, i.e.μg.o(A) = μo(g−1(A))

and

An(ξ) := max
g∈Bn

[
dg∗μ
dμ

(ξ)

]
.

This An(ξ) is the maximal distortion of the reference measure μ at the point ξ under
group elements g which move the basepoint o at most distance n. Let

An :=
∫

�

An(ξ)dμ(ξ) (1.6)

be the expectation of the point-wise partial maxima An(ξ). We shall call An the
extremal value of the cocycle dg∗μ

dμ
. Finally define the normalized extremal cocycle

Cn := An

Vn
. (1.7)

We shall refer to the asymptotics ofCn (as n → ∞) as extremal cocycle growth. More
precisely,

Definition 1.5 We shall say that the action of G on (�,μ)

(1) has vanishing extremal cocycle growth (vanishing ECG for short) if

lim
n→∞Cn = 0,

i.e. the limit exists and equals zero;
(2) has non-vanishing extremal cocycle growth (non-vanishing ECG for short) if

lim inf
n→∞Cn > 0.

It follows from Definition 1.3 that

An 

∫

�

max g ∈ Bn
(
exp(vβξ (o, g.o))

)
dμ(ξ)

Cn 
 1

Vn

∫
�

max
g∈Bn

(
exp(v βξ (o, g.o))

)
dμ(ξ) (1.8)
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In this paper we shall be interested in the dichotomy given by zero and non-zero
extremal cocycle growth. It will suffice therefore to estimate the asymptotics of the
RHS of Eq. (1.8).

1.1.4 A brief example

A common inspiration for many of the settings we study in this paper is the action
of the group SL(2, Z) on the hyperbolic plane X = H

2. The limit set of SL(2, Z) is
R∪∞, and the action on the boundary (and onH

2) is given by fractional linear maps,

φg(ξ) = aξ + b

cξ + d
,

where g =
(
a b
c d

)
. The Lebesgue measure class is preserved, and if we choose stan-

dard Lebesgue measure as our reference measure μ, the Radon–Nikodym derivative

dg∗μ
dμ

(ξ) = 1

(cξ + d)2
.

If we take, for example our basepoint o in X = H
2 as i , and our radius n = log 3,

there are 5 elements of SL(2, Z) (we are eliding the issue of elements that stabilize i ,
here) which have

d(g.o, 0) ≤ n,

namely the identity, and the matrices

(
1 ±1
0 1

)
,

(
1 0

±1 1

)
.

If we take ξ = 2 as our reference point on the boundary, we have that the Radon–
Nikodym derivatives

1

(2c + d)2

which takes on the values 1 and 1/3 at the matrices above, so Alog 3(2) = 1, in this
formulation. The group SL(2, Z) can also be viewed as acting on its Cayley graph,
which gives a different interpretation which is also generalized in our work.

1.1.5 Free groups

We point out here that the free group on 2 generators F2 provides us with examples
to which both Theorems 6.1 and 6.3 apply. The group G = F2 thus furnishes three
kinds of examples of non-singular conservative actions.
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(1) F2 acting on its own boundary equipped with the Patterson–Sullivan measure.
Here, extremal cocycle growth is non-vanishing and hence the growth of partial
maxima of the associated SαS random field is like the i.i.d. case.

(2) F2 may be identified with an index 6 subgroup of PSL(2, Z) (the second congru-
ence subgroup). Hence, as in Sect. 1.1.4, it acts on the circle R ∪ ∞, equipped
with the Lebesgue measure. This corresponds to an action where the associated
Bowen–Margulis measure of the unit tangent bundle of H2/F2 is finite. Again,
extremal cocycle growth is non-vanishing (by Theorem 6.1) and hence the growth
of partial maxima of the associated SαS random field is like the i.i.d. case.

(3) F2 arises as a normal subgroup of the fundamental group of the figure eight knot
complement M . The 3-manifold M admits a hyperbolic structure [44]. Hence F2
acts onH3 freely, properly discontinuously by isometries. The limit set in this case
turns out to be the whole boundary ∂H3 = S2. The sphere S2 is again equipped
with the Lebesgue measure class, which is preserved by the F2−action. It turns
out that extremal cocycle growth is vanishing (Theorem 6.3) and the growth of
partial maxima of the associated SαS random field is not like the i.i.d. case.

The above examples illustrate that the growth of partial maxima of the associated
SαS random field does not depend on the group G alone but rather on the geometry of
the space X onwhich it acts, and via this action, on the specific nature of the associated
probability measure space (�,S, μ) on which G admits a non-singular action.

1.1.6 Outline of the paper

In Sect. 2, we give a brief review of group indexed SαS-random fields {Xg}g∈G and
deduce a basic criterion (Theorem 2.6) in terms of non-vanishing or vanishing of
ECG (Definition 1.5) that determines whether the partial maxima of {Xg}g∈G exhibits
i.i.d. -like behavior or not. This reduces the purely probabilistic question 1.1 to the
following question lying at the interface of geometry, dynamics and probability:

Question 1.6 Find sufficient conditions on triples (G, X ,�) such that ECG is non-
vanishing.

In Sect. 3, we recall various theorems from the literature that show that Patterson–
Sullivan measures in the context of Setup 1.4 give quasiconformal densities. We also
recall work of Furman [13] and Bader–Furman [4] on Bowen–Margulis measures. In
Sect. 4 we recall results on mixing of the geodesic flow and establish consequences
on convergence of spherical averages. In the special case of the mapping class group
acting on Teichmüller space, the corresponding result (Theorem 4.4) appears here
for the first time. Section 5 is the technical core of the paper and relates spherical
averages to ECG. In Sect. 6 we prove the main Theorems of the paper. Theorem 6.1
establishes non-vanishing of ECG in the four cases mentioned at the beginning of the
Introduction and Theorem 6.3 establishes vanishing of ECG for CAT(-1) examples
with infinite Bowen–Margulis measure. Normal subgroups of hyperbolic (e.g. free)
groups are treated in Sect. 6.3.
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2 Group-indexed stable random fields

We shall use (S,S, μ) to denote a σ -finite general Borel measure space and (�,S, μ)

to denote a probability measure space.

Definition 2.1 A (real-valued) random variable Y is said to follow a symmetric α-
stable (SαS) distribution with tail parameter α ∈ (0, 2] and scale parameter σ > 0 if
it has characteristic function of the form E(eiθY ) = exp {−σα|θ |α}, θ ∈ R.

The value of the tail parameter equal to two corresponds to the Gaussian case. Here
we shall largely focus on α ∈ (0, 2), i.e. the non-Gaussian case (see [41] for a detailed
treatment of α-stable (0 < α < 2) distributions).

Definition 2.2 Let G be a finitely generated infinite group with identity element e. A
random field (that is, a collection of random variables) Y = {Yg}g∈G indexed by G is
called an SαS randomfield if for all k ≥ 1, g1, g2, . . . , gk ∈ G and c1, c2, . . . , ck ∈ R,
the linear combination

∑k
i=1 ciYgi follows an SαS distribution.

Integral Representations Any such random field has an integral representation of the
type

Yg
d=

∫
S
fg(x)M(dx), g ∈ G, (2.1)

where M is an SαS random measure on some σ -finite standard Borel space (S,S, μ),
and fg ∈ Lα(S, μ) for all g ∈ G; see Theorem 13.1.2 of [41]. This simply means that
each linear combination

∑k
i=1 ciYgi follows an SαS distribution with scale parameter

‖∑k
i=1 ci fgi ‖α . We shall always assume, without loss of generality, that

⋃
g∈G

{x ∈ S : fg(x) �= 0} = S

modulo μ. That is, for μ-a.e. x ∈ S, there is a g ∈ G so that fg(x) �= 0.

Definition 2.3 The field {Yg}g∈G is called left-stationary if {Yg} d= {Yhg} for
all h ∈ G, i.e. the joint distributions of the k−tuples (Yg1 ,Yg2 , · · · ,Ygk ) and
(Yhg1 ,Yhg2 , · · · ,Yhgk ) are equal for all k and all k−tuples (g1, g2, · · · , gk).

We shall simply write stationary to mean left-stationary throughout this paper.

Theorem 2.4 (Rosiński Representation)[34–36] Given a standard measure space
(S, μ) equipped with a quasi-invariant group action {φg}g∈G, a ±1-valued cocy-
cle {cg}g∈G for {φg}, and an f ∈ Lα(S, μ), there exists a stationary SαS random
field indexed by G admitting an integral representation (known as the Rosiński repre-
sentation):

fg(x) = cg(x)

(
d(μ ◦ φg)

dμ
(x)

)1/α (
f ◦ φg

)
(x), g ∈ G. (2.2)
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Conversely, given a stationary SαS random field {Yg} indexed by G, there exist a
standardmeasure space (S, μ) equipped with a quasi-invariant group action {φg}g∈G,
a ±1-valued cocycle {cg}g∈G and an f ∈ Lα(S, μ) such that Yg admits a Rosiński
representation given by (2.2).

The stationary random field indexed by G corresponding to the standard measure
space (S, μ), the quasi-invariant group action {φg}g∈G , the±1-valued cocycle {cg}g∈G
and an f ∈ Lα(S, μ) is denoted as

Yg := Yg(S, μ, {φg}, {cg}, f ), g ∈ G.

In the special case that f ≡ 1 (here we must have μ(S) < ∞), we simplify the
notation to

Yg := Yg(S, μ, {φg}, {cg}, 1) = Yg(S, μ, {φg}, {cg}), g ∈ G.

If (S, μ) is a probability measure space, we shall replace S by �.
In this work, we are interested in the rate of growth of the partial maxima sequence

Mn = max
g∈Bn

|Yg|

as n increases to ∞. It was shown in [38, 39] that when G = Z
d , the rate of growth

of Mn is like the i.i.d. case if and only if the action of Z
d on (S, μ) in Theorem 2.4

above is not conservative. In general, the rate of growth of Mn is controlled by that of
the deterministic sequence

bn =
(∫

S
max
g∈Bn

| fg(x)|αμ(dx)

)1/α

.

See, for example, Section 3 of [39]. The following proposition relates this sequence
with the extremal value of the cocycle defined in (1.6).

Proposition 2.5 Let (X ,G, ∂X) be as in Setup 1.4. Let

Yg := Yg(�,μ, {φg}, {cg}), g ∈ G,

be a stationary SαS random field indexed by G where μ is a quasiconformal measure

supported on � ⊂ ∂X. Then bn = An
1/α

, where An is as in (1.6).

Proof Incorporating the form of Rosiński representation in bn , we get

bn =
(∫

�

max
g∈Bn

| fg(x)|αμ(dx)

)1/α

=
(∫

�

max
g∈Bn

[
| f ◦ φg(x)|α dμ ◦ φg

dμ
(x)

]
μ(dx)

)1/α

.
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692 J. S. Athreya et al.

Therefore, for Yg := Yg(�,μ, {φg}), g ∈ G,

bn =
(∫

�

max
g∈Bn

[
dμ ◦ φg

dμ
(x)

]
μ(dx)

)1/α

. (2.3)

Hence from Eq. 1.6, bn = An
1/α

. ��

A sufficient condition for i.i.d. -like behavior

The purpose of the rest of this section is to show that if the action of G on (�,μ)

has non-vanishing extremal cocycle growth (Definition 1.5), then the growth of partial
maxima of the associated G−indexed SαS random field (via the Rosiński representa-
tion Theorem 2.4) behaves like an i.i.d. random field (see Definition 2.7 and Theorem
2.6 below for a precise statement). This may be done by recasting the proof of The-
orem 4.1 of [39] in our setup. We present a sketch below along with the relevant
modifications.

Theorem 2.6 Consider a G-indexed stationary SαS random field {Yg} with

Yg := Yg(�,μ, {φg}, {cg}, 1) = Yg(�,μ, {φg}, {cg}), g ∈ G,

as in Proposition 2.5. Let

Mn = max
g∈Bn

|Yg|.

Then the following dichotomy holds:

(1) If the action of G on (�,μ) has non-vanishing extremal cocycle growth, then
given any subsequence of {Mn}, there exists a further subsequence {Mnk } such
that

Mnk

V 1/α
nk

d→ κZα, as n → ∞, (2.4)

where
d→ denotes convergence in distribution. Further, Zα is a Frechét type

extreme value random variable and κ is a positive constant that may depend
on the choice of the subsequence {Mnk }. If further limn→∞Cn exists (and hence

is positive), then Mn/V
1/α
n converges weakly to the limit in (2.4).

(2) If the action of G on (�,μ) has vanishing extremal cocycle growth, then

Mn

V 1/α
n

p→ 0, as n → ∞, (2.5)

where
p→ denotes convergence in probability.
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Definition 2.7 If the sequence of partial maxima of a group indexed stationary random
field {Yg} satisfies Eq. 2.4, we say that {Yg} is i.i.d. -like with respect to the behavior
of partial maxima.

The key ingredient of the proof of Theorem2.6 is the following series representation
(see, for instance, Equation (4.12) of [39]): For all fixed n ≥ 1,

(Yg)g∈Bn
d=

⎛
⎝bnC

1/α
α

∞∑
j=1

ε j�
−1/α
j

fg(U
(n)
j )

maxh∈Bn | fh(U (n)
j )|

⎞
⎠

g∈Bn
, (2.6)

where

(1) “
d=” denotes equality of distribution,

(2) bn’s are given by Eq. (2.3),
(3)

Cα =
(∫ ∞

0
x−α sin xdx

)−1

=
{

1−α
�(2−α) cos(πα/2) if α �= 1,
2
π

if α = 1,

(4) ε j ’s are i.i.d. Bernoulli random variables taking ±1 values with equal probability,

(5) {U (n)
j : j ≥ 1} is an i.i.d. sequence of �-valued random variables with common

law given by

P(U (n)
1 ∈ W ) = b−α

n

∫
W
max
h∈Bn

| fh(x)|αμ(dx), and

(6) for all j ≥ 1, � j = E1 + E2 + · · · E j with E j ’s being i.i.d. exponential random
variables with unit mean.

Note that the right hand side of (2.6) converges almost surely, and the equality of
distribution can be verified for each linear combination of the two sides with the help
of Theorem 1.4.2 of [41].

Sketch of Proof of Theorem 2.6 We split into two cases:
Case 1: ECG is non-vanishing For simplicity, let us assume that limn→∞ Cn exists
(not just the limit inferior) and hence is positive. With this assumption, bn/V

1/α
n =

(An/Vn)1/α converges to a positive constant and as in the proof of Equation (4.9) in
[39] (see for instance the heuristics below), it follows that

Mn

bn

d→ cZα (2.7)

for some c > 0. This completes a (sketch of a) proof of the last statement in Theo-
rem 2.6.

In the general case, lim infn→∞ Cn exists and is positive. Hence given any subse-
quence of {Cn}, there is a further subsequence {Cnk } that converges to a positive limit.
Therefore, applying the argument used above on this subsequence, we obtain (2.4).
Now, by Theorem 3.1 of [40] Case 1 follows.
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694 J. S. Athreya et al.

Case 2: ECG is vanishing The proof of (2.5) relies on a comparison argument given
in [39] (see the proof of Equation (4.3) therein). As in Example 5.4 of [39] and
Example 6.1 of [40], we construct an auxiliary stationary SαS random field {Y ′

g}g∈G
with Rosiński representation given by

Y ′
g

d=
∫
S′
c′
g(x)

(
dμ′ ◦ φ′

g

dμ′ (x)

)1/α

f ′ ◦ φ′
g(x)M

′(dx), g ∈ G,

on a standard probability space (�′, μ′) such that

aV ε
n ≤ b′

n :=
(∫

L ′
max
g∈Bn

| f ′
g(x)|αμ′(dx)

)1/α

= o(V 1/α
n ) (2.8)

for some a > 0 and ε ∈ (0, 1/α). Without loss of generality, we may assume that �

and �′ are disjoint sets.
We consider the stationary SαS random field

Zg = Yg + Y ′
g, g ∈ G,

which has a canonical Rosiński representation on � ∪ �′ with the action being {φg}
restricted to (�,μ) and {φ′

g} restricted to (�′, μ′). Therefore, the {bZn } sequence
corresponding to {Zg} satisfies

aV ε
n ≤ b′

n ≤ bZn = (
bα
n + b′

n
α)1/α = o(V 1/α

n )

because of vanishing of ECG and (2.8). Using the inequality bZn ≥ a|Bn|ε , the series
representation (2.6) and the arguments given in the proof of (4.3) in [39], it follows
that Mn/bZn is stochastically bounded (also known as tight), i.e., given any η ∈ (0, 1)
there exists K = K (η) > 0 such that

inf
n≥1

P

(∣∣∣∣Mn

bZn

∣∣∣∣ ≤ K

)
> 1 − η.

This, together with bZn = o(|B|1/αn ), yields (2.5). ��
Heuristics and idea behind (2.7): Instead of rewriting in detail the proof of Equation
(4.9) in [39], we provide the heuristics behind it. The main tool for verifying (2.7) is,
as expected, the series representation (2.6) mentioned above. The heuristics behind
this are based on the one large jump principle, which can be described as follows. It
can be shown that

P

(∣∣∣∣∣bnC1/α
α ε1�

−1/α
1

fg(U
(n)
1 )

maxh∈Bn | fh(U (n)
1 )|

∣∣∣∣∣ > λ

)
∼ c0λ

−α
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for some c0 > 0 as λ → ∞ whereas

P

⎛
⎝

∣∣∣∣∣∣bnC
1/α
α

∞∑
j=2

ε j�
−1/α
j

fg(U
(n)
j )

maxh∈Bn | fh(U (n)
j )|

∣∣∣∣∣∣ > λ

⎞
⎠ = o(λ−α).

See Pages 26–28 of [41]. According to the discussion on Page 26 of this reference,
the first term of (2.6) is the dominating term that gives the precise asymptotics of its
tail while the rest of the terms provide the “necessary corrections” for the whole sum
to have an SαS distribution.

In light of the above one large jump heuristics, we get that for all λ > 0,

P

(
Mn

bn
> λ

)
= P

⎛
⎝max

g∈Bn

∣∣∣∣∣∣C
1/α
α

∞∑
j=1

ε j�
−1/α
j

fg(U
(n)
j )

maxh∈Bn fh(U
(n)
j )

∣∣∣∣∣∣ > λ

⎞
⎠ ,

≈ P

(
max
g∈Bn

∣∣∣∣∣C1/α
α ε1�

−1/α
1

fg(U
(n)
1 )

maxh∈Bn fh(U
(n)
1 )

∣∣∣∣∣ > λ

)

= P(C1/α
α �

−1/α
1 > λ) = 1 − e−Cαλ−α

.

This computation yields (2.7). The key step (namely, the “≈” above) can be made
precise with the help of (2.6) and the language of Poisson random measures; see
Pages 1454–1455 of [39] for details.

Remark 2.8 Theorem 2.6 above implies that Mn/V
1/α
n is stochastically bounded (also

known as tight) and is “bounded away from zero” as long as ECG is non-vanishing.

3 Patterson–Sullivan–Bowen–Margulis measures

3.1 Existence of quasiconformal densities

Let (X , d) be a proper geodesic metric space with base-point o and equipped with a
properly discontinuous isometric action of a group G.

Definition 3.1 The 2-variable Poincaré series is the sum

Ps(x, y) :=
∑
g∈�

e−sd(x,g(y)).

For x = y = o, Ps(o, o) = P(s) will simply be called the Poincaré series.

In all the cases of interest in this paper, there exists v > 0, called the critical exponent
such that for all s > v, the Poincaré series converges and for all s < v, the Poincaré
series diverges.
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696 J. S. Athreya et al.

3.1.1 Patterson–Sullivan measures for hyperbolic spaces

We refer the reader to [11, 30, 42] for the construction of Patterson–Sullivan measures
when X is Gromov-hyperbolic. The limit set �G(⊂ ∂X) of the group G acting on
X is the collection of accumulation points in ∂G of a G-orbit G.o for some (any)
o ∈ X . The group G acts by homeomorphisms on �G given by φg(x) = g−1 · x . We
shall represent this action as g −→ φg . This is consistent with the action in Eq. 1.5:
μ ◦ φg = μg−1.o.

Theorem 3.2 [11] Let (X , d) be a proper Gromov-hyperbolic metric space equipped
with a properly discontinuous (not necessarily convex cocompact) isometric action of
a group G. Then there exists a quasiconformal density of dimension v (equal to the
critical exponent) supported on the limit set � = �G. Also, v = lim supn

1
n log |Bn|,

where Bn is as in Sect. 1.1.3.

The quasiconformal density constructed by Coornaert in Theorem 3.2 is called the
Patterson–Sullivan density. When Ps(x, y) diverges, the Patterson–Sullivan measure
based at o is obtained as a weak limit of the measures

∑
g∈Bn

e−sd(x,g.y)Diracg.y

normalized by Ps(x, y) (see [6, 9] for details).When PG(s) converges, an extraweight-
ing function is introduced in front of the exponential factors to force the modified
Ps(x, y) to diverge [30]. Note that Vn (Eq. 1.4) can be identified with the volume
growth of balls of radius n in the weak hullCH(�) of� in X , whereCH(�) consists
of the union of geodesics with end-point in �.

3.1.2 Patterson–Sullivan measures for symmetric spaces of higher rank

In this subsection, X will be a symmetric space of noncompact type andG a lattice. The
visual or geometric boundary will be denoted as ∂X , while the Furstenberg boundary
will be denoted as ∂F X . The critical exponent of the Poincaré series is denoted by v

as before. The Furstenberg boundary ∂F X can be naturally identified with the orbit of
the centroid of a Weyl chamber in ∂X . Thus, ∂F X ⊂ ∂X . As before, the action of g
on ∂F X will be denoted by g → φg .

Albuquerque shows (see Definition 1.3):

Theorem 3.3 [2] For (X ,G) as above, there exists a unique conformal density given
by the Patterson–Sullivan measure class {μξ } supported on ∂F X ⊂ ∂X.

3.1.3 Thurston measure for Teichmüller space

In this subsection, X will denote the Teichmüller space T eich(S) of a surface and
G = MCG(S) its mapping class group. The Thurston boundary, or equivalently,
the space PMF(S) of projectivized measured foliations, will be denoted as ∂X . Let
ξ ∈ ∂X be a measured foliation. Let Extξ (x) denote the extremal length at x ∈ X
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of a measured foliation ξ . The Thurston measure on the space of measured foliations
MF(S) is denoted as μ. For ξ ∈ MF(S), [ξ ] will denote its image in PMF(S).
For U ⊂ PMF(S), the authors of [1] define a measure μx with base-point x ∈ X as
follows:

μx (U ) = μ({ξ | [ξ ] ∈ U , Extξ (x) ≤ 1}).

Further, [1,p. 1064]

dμx

dμy
([ξ ]) =

(√
Extξ (y)√
Extξ (x)

)6g−6

.

For [ξ ] ∈ PMF(S), a Busemann-like cocycle βξ : T eich(S) × T eich(S) → R

for the Teichmüller metric is defined as follows:

βξ (x, y) = log

(√
Extξ (x)√
Extξ (y)

)
.

This makes the family {μx }x∈X of probability measures on PMF(S) into a family of
G−invariant conformal densities of dimension v = dim(X) for the cocycle β:

Theorem 3.4 [1] Let (X ,G), μx , v be as above. For all x, y ∈ X and μx−almost
every ξ ∈ ∂X,

dμx

dμy
([ξ ]) = exp(v βξ (y, x)). (3.1)

Further, for g ∈ G, U ⊂ PMF(S)

μg.x (g ·U ) = μx (U ).

We shall refer to any μx above as a Thurston conformal density.

Remark 3.5 As observed at the end of Section 2.3 of [1], it follows from [1,Theorem
2.9] that the family of measures μx give a Patterson–Sullivan density on ∂X .

3.2 Bowen–Margulis measures

We shall recall the construction of Bowen–Margulis measures by Furman [13] and
Bader–Furman [4] for X Gromov-hyperbolic and G acting properly discontinuously
by isometries on it. This is slightly more general than what we need in most of the
applications. We will apply it in particular to CAT(-1) spaces (see [33] for an excellent
treatment in the latter context). Let [μ] be the Patterson–Sullivan measure class of
Theorem 3.2. The square class [μ × μ] is supported on �

(2)
G := {(x, y) ∈ (�G ×

�G)|x �= y}.The authors of [4] state the Proposition below in the context of cocompact
group actions but the proof goes through in the general case.

Let 〈x, y〉o denote the Gromov inner product.

123



698 J. S. Athreya et al.

Proposition 3.6 [13,Proposition 1][4,Proposition 3.3] There exists a G−invariant
Radon measure, denoted μBMS, in the measure class [μ × μ] on �

(2)
G . Moreover,

μBMS has the form

dμBMS(x, y) = eF(x,y) dμ(x) dμ(y)

where F is ameasurable functionon (�
(2)
G , [μ×μ])of the form F(x, y) = 2v 〈x, y〉o+

O(1).

Let L denote the Lebesgue measure on R. Bader and Furman extend the ergodic
G−action on (�

(2)
G , μBMS) to a G−action on (�

(2)
G × R, μBMS × L) as follows. Let

�R denote the R−action on �
(2)
G × R given by �s(x, y, t) = (x, y, t + s).

Proposition 3.7 [4,Proposition 3.5] The G−action on (�
(2)
G , μBMS) of Proposition

3.6 extends to a G−action on (�
(2)
G ×R, μBMS × L) given by (x, y, t) → g · (x, y, t)

satisfying the following:

(1) G preserves the infinite measure μBMS × L.
(2) The G−action commutes with the �R-action.
(3) The G−action commutes with the flip: (x, y, t) �→ (y, x,−t).

The measure-preserving action of G × R on (�
(2)
G × R, μBMS × L) induces a flow

φR on the quotient measure space

(UM, μBM ) := (�
(2)
G × R, μBMS × L)/G.

We call (UM, μBM ) the measurable unit tangent bundle corresponding to the action
of G on X ; and μBM the Bowen–Margulis measure on the measurable unit tangent
bundle UM .

The two variable growth function is given as follows:

VG(x, y, n) = #{g ∈ G : d(x, gy) ≤ n}.

We refer the reader to [33] for an excellent introduction to Patterson–Sullivan and
Bowen–Margulis measures in the context of CAT(-1) spaces. We shall say that a
group action of G on X has non-arithmetic length spectrum if there does not exist
c > 0 such that all translation lengths are integral multiples of c. Roblin [33] proved
the following dichotomy for group actions on CAT (−1) spaces.

Theorem 3.8 [33,Chapter 4] Let G be a discrete non-elementary group of isometries
of a CAT(-1) space X with non-arithmetic length spectrum and critical exponent v.
Then one has one of the following two alternatives:

(1) There exists a function cG : X × X → R+ such that VG(x, y, n) 
 cG(x, y)evn

if the Bowen–Margulis measure of the measurable unit tangent bundle is finite:
μBM (UM) < ∞.

(2) VG(x, y, n) = o(evn) else.
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The proof of Theorem3.8 above depends crucially onmixing of the geodesic flow in
this context [33,Chapter 3]. In this strong form, it fails for hyperbolic groups equipped
with the word metric (see the discussion after [4,Corollary 1.7], where the authors
prove a weaker version of mixing).

4 Mixing and equidistribution of spheres

Let (�,m) be a finite measure space. Let G be a a locally compact topological group
acting on (X ,m) preserving m. The G−action is said to be mixing if, for any pair of
measurable subsets A, B ⊂ �, and any sequence gn → ∞ in G,

ν(A ∩ gn B) → ν(A) ν(B)

ν(�)
.

4.1 CAT(-1) spaces

For this subsection X is a proper CAT(-1) space, and M = X/G. We can construct
the geometric tangent bundle to M as follows:

UgM = (X × ∂X)/G,

where G acts diagonally. In this context, Roblin [33] constructs the Bowen–Margulis
measureμBM onUgM converting it to a space measure-isomorphic to the measurable
unit tangent bundle (UM, μBM ) (described just after Proposition 3.7).

When μBM (UM) < ∞, Roblin [33,Chapter 3] proves that the Bowen–Margulis
measureμBM is mixing under the geodesic flow onUM unless the length spectrum is
arithmetic (see also [18, 32]). Conjecturally, arithmetic length spectrum is equivalent
to the condition that there exists c > 0 such that X is isometric to a tree with all edge
lengths in cN (this has been proven under the additional assumption that the limit set
of G is full, i.e.�G = ∂X in [32]). Let P : UM → M be the natural projection,
so that P−1(p) = Sp may be thought of as the ‘unit tangent sphere’ at p ∈ M .
Sp can be naturally identified with the boundary ∂X equipped with the Patterson–
Sullivan measure μ supported on the limit set �G (see for instance the discussion on
skinning measures in [31,Section 3]). We denote this measure by μp and think of it
as the Patterson–Sullivan measure on �G based at p. Broise-Alamichel, Parkkonen
and Paulin [3, 31] (see also [12]) prove that when X is CAT(-1) and the geodesic flow
is mixing, then μp equidistributes to the Bowen–Margulis measure (see also [28, 29]
where the considerably more general notion of skinning measures was introduced).
Let A ⊂ UM denote any measurable subset and let Ap,t := {x ∈ Sp|gt (x) ∈ A}. We
summarize these results below:

Theorem 4.1 [3, 12, 31, 32] Suppose X is C AT (−1) such that M = X/G has non-
arithmetic length spectrum. For UM as above, suppose μBM (UM) < ∞. Then the
sphere S(p, t) of radius t about a point p ∈ X/G becomes equidistributed as t → ∞
in the following sense. For any measurable subset A ⊂ UM, and p ∈ M,
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μp(Ap,t )

μp(Sp)
→ μBM (A)

μBM (UM)

as t → ∞.

4.2 Symmetric spaces

Using results of Kleinbock–Margulis [15, 16], we will prove the following general
statement:

Theorem 4.2 Let G be a connected semisimple Lie group without compact factors, let
K be a maximal compact subgroup with Haar measure ν, and let G be an irreducible
lattice in G. Let A+ ⊂ A denote the positive Weyl chamber A+ in the Cartan subgroup
A. Let {gt } ⊂ A+ denote a one-parameter subgroupand letμdenote theHaarmeasure
on M = K\G/G inherited from G. Let d denote the distance function on M arising
from a right G-invariant Riemannian metric on K\G (for example, the metric induced
by the Killing form on G). Let π : G → M denote the map π(g) = KgG. Then, for
all g, g0 ∈ G, we have

lim
t→∞

∫
K
d(π(gtkg), π(g0))dν(k) =

∫
M
d(x, y)dμ(y).

Our main tool is the following result of Kleinbock–Margulis

Theorem 4.3 [15,Corollary A.8]: Fix notation as in Theorem 4.2. Let � = G/G, and
φ ∈ L2(�, η), where η is the Haar measure on� Assume that φ is Hölder continuous.
Then

lim
t→∞

∫
K

φ(gtkx)dν(k) =
∫

�

φ(y)dη(y).

Theorem 4.2 is an immediate corollary of this result, since the function φ(g) =
d(π(g), π(g0)) is clearly Hölder continuous on G and therefore on �. To check that
it is in L2, we use [16,§5], which shows that the tails of this distance function in fact
decay exponentially: there are C1,C2 > 0 such that

η{x ∈ � : d(x, π(g0) > t} ≤ C1e
−C2t .

Thus, we have Theorem 4.2. In fact [15] gives a precise estimate on the rate of con-
vergence, linking it to the exponential rate of mixing for the flow gt . In fact, this rate
of convergence can be bounded below for any gt = exp(t z) where z is in the norm
1 subset of the positive Weyl chamber A+, and so by doing an extra integration over
this set, we can get equidistribution of the whole sphere in the space M . See [16,§6]
for more details on describing the geodesic flow on symmetric spaces using the orbits
of one-parameter subgroups, following ideas of Mautner.
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4.3 Teichmüller andmoduli space

For the purposes of this subsection, let X = T eich(S) be the Teichmüller space of
a surface S, G = MCG(S) be its mapping class group, and M = X/G the moduli
space. Let UX (resp. UM) denote the bundle of unit-norm holomorphic quadratic
differentials on X (resp. M). Let π : UM → M denote the natural projection. Let gt
denote the Teichmüller geodesic flow onUM . Masur–Smillie [24] building on earlier
work of Masur [19] and Veech [45] showed that UM carries a unique measure μ (up
to scale) in the Lebesgue measure class such that μ(UM) < ∞ and gt is mixing.
Let η = π∗μ denote push-forward of μ to M . For any x ∈ M , denote the unit-norm
holomorphic quadratic differentials at x by S(x). Identify S(x) with the Thurston
boundary PML(S) of T eich(S) and equip it with the Thurston measure νx based at
x . Let ηt,x = π∗g∗

t νx denote the measure νx pushed forward to the sphere of radius t
{π(gt (x, v))} ⊂ M , i.e.,

dηt,x (π(gt (x, v)) = dνx (v).

Theorem 4.4 Fix x0 ∈ M, For almost all x ∈ M, we have

lim
t→∞

∫
M
d(y, x0)dηt,x (y) = lim

t→∞

∫
S(x)

d(π(gt (x, v)), x0)dνx (v) =
∫
M
d(y, x0)dη(y).

To prove this theorem, fix (x, v) ∈ UM . The group SL(2, R) acts on UX , and its
action commutes with the mapping class group, so it acts on UM . The action of the
group

at =
(
et 0
0 e−t

)

is precisely the geodesic flow gt . The circles {atrθ (x, v) : 0 ≤ θ ≤ 2π}, where

rθ =
(

cos θ sin θ

− sin θ cos θ

)

foliate the sphere of radius t around x ∈ X . Let K = {rθ : 0 ≤ θ < 2π} denote
the maximal compact subgroup of SL(2, R). Let dκ(θ) = 1

2π dθ on K , and let
dκx,v(rθ (x, v)) = dκ(θ),and let κx,v,t = a∗

t κ(x, v).

To prove Theorem 4.4, we will use the following ergodic theorem of Nevo’s [27,
Theorem 1.1], which in our case implies:

Theorem 4.5 [27,Theorem 1.1] Let f ∈ L2(UX) be K -finite, that is, the span of the
set of functions { fθ (x, v) = f (rθ (x, v)) : 0 ≤ θ < 2π} is finite dimensional. Then
for μ-almost every (x, v),

∫
UM

f datν(x, v)
t→∞−−−→

∫
UM

f dμ. (4.1)
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To use this theorem for our result, we note that there is ameasureω on S̃(x) = S(x)/K
so that we can write

dηt,x =
∫
S̃(x)

datν(x, [v])dω([v]).

We also note that the function f (x, v) = d(π(x, v), x0) is K -invariant, and by the
following lemma of Masur [20], in L2(UX , μ). Let �(x, v) denote the length of the
shortest saddle connection of (x, v) (recall that a saddle connection is a geodesic in
the flat metric on S determined by the quadratic differential (x, v) joining two zeroes,
with no zeroes in its interior).

Lemma 4.6 There is a constant C ′ such that for any x0 ∈ M and (x, v) ∈ UM, we
have

d(π(x, v), x0) = d(x, x0) ≤ − log �(x, v) + C ′.

By Masur–Smillie [24],

μ{(x, v) : �(x, v) < ε} ∼ ε2,

which, combined with the lemma, yields that f ∈ L2(UX , μ). To finish the proof
Theorem 4.4, we note that if there was a positive η-measure set of x ∈ M so that the
set of [v] ∈ S̃(x) with

∫
UM

f datν(x, v) �

∫
UM

f dμ

had positive ω-measure, we would have a set of positive μ-measure in UX where
(4.1) fails, a contradiction.

5 Extremal cocycle growth and spherical averages

In this section, we shall establish a connection between extremal cocycle growth as
in Definition 1.5 and the asymptotics of spherical averages. This will, in particular,
allow us to apply the equidistribution theorems of the previous section.

5.1 Averagingmeasures and spherical averages

Let G, X�,μ be as in Setup 1.4 and o ∈ X be a base-point. Let �r (o) = ∂B(o, r)
denote the boundary of the r−ball about o. If X is CAT(0) or T eich(S), there is a
natural family of continuous projection maps πr ,t : �r (o) → �t (o) for r > t sending
x ∈ �r (o) to [o, x] ∩ �t (o). We also have the natural projections πr : �r (o) → ∂X .

Definition 5.1 Let X beCAT(0) or T eich(S). A sequence of probabilitymeasures {μr }
on �r (o) is said to be a sequence of averaging measures with respect to a conformal
density μ supported on � ⊂ ∂X if
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(1) πr ,t∗(μr ) = μt , for r > t ,
(2) there existsC ≥ 1 such that ifμ∞ (ameasure on ∂X ) is anyweak limit ofπr ∗(μr )

up to subsequences, thenμ∞ is supportedon� and1/C ≤ dμ∞
dμ

(ξ) ≤ C, ∀ξ ∈ �.

If C = 1, then {μr } is said to be strongly averaging.

When X is a uniformly proper δ−hyperbolic graph with all edges of length one, πr t

is not well-defined, but only coarsely so. Thus, for x ∈ �r (o), we define πr t (Diracx )
to be the uniform probability distribution on the set

{y ∈ �t (o)|∃ geodesic γ such that o, x, y ∈ γ }.

Note that for r > t , the support of πr t (Diracx ) has diameter at most δ.

Definition 5.2 Let X be a uniformly proper δ−hyperbolic graph with all edges of
length one. A sequence of probability measures {μr } on�r (o) is said to be a sequence
of averaging measures with respect to a quasiconformal density μ supported on � ⊂
∂X if there exists C ≥ 1 such that

(1) 1/C ≤ d(πr ,t∗μr )

dμt
(x) ≤ C, ∀x ∈ �t (o), whenever r > t .

(2) if μ∞ is any weak limit of μr up to subsequences, then μ∞ is supported on �

and 1/C ≤ dμ∞
dμ

(ξ) ≤ C, ∀ξ ∈ �.

Note that in Definitions 5.1 and 5.2, the projections πsr for fixed r and s > r can
be extended to a projection πr : � → �r (o) such that

1/C ≤ d(πr∗μ)

dμr
(x) ≤ C, ∀x ∈ �r (o). (5.1)

Example 5.3 (Examples of averaging measures) We enumerate the examples of inter-
est:

1) For (G, X ,�) as in Item (1) of Setup 1.4, let μ be a Patterson–Sullivan density as
in Theorem 3.2. Assume further that the associated Bowen–Margulis measure is
finite. Letμr be the the conditional of the Bowen–Margulis measure (equivalently,
the Patterson–Sullivan measure on�G based at o) pushed forward by the geodesic
flow for time r .

2) For (G, X ,�) as in Item (2) of Setup 1.4, let μ be a Patterson–Sullivan density as
in Theorem 3.2. Assume further that the associated Bowen–Margulis measure is
finite. Join o to all points p ∈ � by geodesic rays to obtain the cone over the limit
set denoted as QC(�)o. Note that QC(�)o is 2δ−quasiconvex. Let μr be the
uniform distribution on QC(�)o∩�r (o) (the equivalence of the uniformmeasure
and the measures on “cylinder sets” is explicitly stated in [10,Proposition 3.11]).

3) For (G, X ,�) as in Item (3) of Setup 1.4, let μ be the Thurston density as in
Theorem 3.4. Identifying� = PMF(S)with the unit norm quadratic differentials
Q1

o at o, define μr on �r (o) to be μ pushed forward by the Teichmüller geodesic
geodesic flow for time r . Note that by Remark 3.5, μ is a Patterson–Sullivan
density.
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4) For (G, X ,�) as in Item (4) of Setup 1.4, let μ be the Patterson–Sullivan density
as in Theorem 3.3. Let z denote the barycenter of a Weyl chamber at infinity and
[o, z) the geodesic ray from o to z. Let zr ∈ [o, z) be such that d(o, zr ) = r . For
K the maximal compact of the semi-simple Lie group G (with K\G = X ), let μr

be the uniform measure on Kr := zr · K inherited from the Haar measure on K .
Note that Kr ⊂ �r (o).

Proposition 5.4 Let μr , μ be one of the four examples in 5.3. Then {μr } is a sequence
of averaging measures with respect to μ.

Proof Example (1): This follows from the construction of the Bowen–Margulis mea-
sure in Propositions 3.6 and 3.7.
Example (2): This follows from the construction of the Patterson–Sullivan measure
[11] when the Poincaré series diverges. Else |Bn| 
 exp(vn)/g(n) for a subexponen-
tially growing function g. In this case, Patterson’s trick [30, 43] ofmultiplying the terms
of the Poincaré series by g(n) gives back the growth function of QC(�)o ∩ �r (o). A
Patterson–Sullivanmeasure is then obtained as aweak limit of the uniform distribution
on QC(�)o ∩ �r (o).
Example (3): This follows from the construction of the measure μx from the Thurston
measure μ in Sect. 3.1.3 [1].
Example (4): This follows from [2,Theorem C, Proposition D, p. 4]. ��

Definition 5.5 Let (G, X ,�) be one of the four examples 5.3. Let M = X/G and
y0 ∈ M be a base-point. Let f0 : M → R+ be a function. Let f be the lift of f0 to X
and o be a lift of y0. The family of expectations {Er ( f ) = ∫

�r (o)
f dμr } will be called

the spherical averages for the triple (X ,G, f ) with respect to the base-point o.
Let v denote the dimension of the conformal or quasiconformal densityμ on�. For

f0 : M → R+ given by f0(w) = exp(−vdM (y0, w)), fex = exp(−v dX (x,G.o))
will denote the lift of f0 to X . The spherical averages {Er ( fex )} for (X ,G, fex ), given
by

Er ( fex ) =
∫

�r (o)
exp(−v dX (x,G.o))dμr (x) =

∫
�r (o)

fex (x) dμr (x), (5.2)

will be called extremal spherical averages with respect to the base-point o.

Note that the domain of fex is X (and hence it can be integrated over �r (o)).

5.2 A sufficient condition for non-vanishing ECG

Recall that Vr = evr (Eq. 1.4) and Br = {g ∈ G|g.o ∈ B(o, r)}. We write Br .o =
{g.o |g ∈ Br } and define:

fexr (ξ) = exp(−v dX (πr (ξ), Br .o)), ξ ∈ �,

fexr (x) = exp(−v dX (πsr (x), Br .o)), x ∈ X , dX (o, x) = s ≥ r . (5.3)
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The domain of fexr is X ∪∂X and hence it can be integrated over both�s(o) and�G .
Define

Er ( fexr ) =
∫

�r (o)
exp(−v dX (x, Br .o))dμr (x) =

∫
�r (o)

fexr (x) dμr (x), (5.4)

We shall write �(r ,k) = (Br+k .o \ Br .o) to denote the collection of orbit-points in
the shell (B(o, r + k) \ B(o, r)).
Relating fex and fexr :

Lemma 5.6 Let {μr } be averaging measures on �r (o) with respect to μ as in the four
examples 5.3. For any m > 0 and k ∈ N, there exist K , R0 ≥ 1 such that for r ≥ R0,

Kμr ({x ∈ �r (o)|d(x, Br .o) ≤ m}) ≥ μr ({x ∈ �r (o)|d(x, Br+k .o) ≤ m})
≥ μr ({x ∈ �r (o)|d(x, Br .o) ≤ m}).

Proof The second inequality is clear and we need only to prove the first. We use the
fact that the measure μ in all the examples in 5.3 are Patterson–Sullivan densities.
In particular, it follows from the construction of Patterson–Sullivan measures that for
every k ∈ N, there exists C0 ≥ 1 such that if νk is any limit of uniform probability

distributions on the k−shells�(r ,k) as r → ∞, then 1/C0 ≤ dνk

dμ
(ξ) ≤ C for all ξ ∈ �.

Hence the uniform probability distributions on the ‘inner’ k−shell �(r−k,k) and the
‘outer’ k−shell �(r ,k) about �r (o) are close to each other: more precisely any two
limits of uniform distributions on �(r−k,k) and �(r ,k) are absolutely continuous with
respect to each other with pointwise Radon–Nikodym derivative lying in [1/C2,C2].

Now, we use the fact that {μr } is a sequence of averaging measures. We argue by
contradiction. Suppose that for some fixed m, no K ≥ 1 exists as in the conclusion
of the Lemma. We pass to the limit as r → ∞. Extracting subsequential limits
if necessary, there exists a limit μ− of the inner shell measures, a limit μ+ of the
outer shell measures and a measurable subset U ⊂ � such that μ+(U ) = 0 while
μ−(U ) > 0. This contradicts the absolute continuity in the last sentence of the previous
paragraph, proving the Lemma. ��
Corollary 5.7 Let {μr } be averaging measures on �r (o) with respect to μ as in 5.3.
For any ε > 0 there exists K , R0 ≥ 1 such that for r ≥ R0,

Kμr ({x ∈ �r (o)| fexr (x) ≥ ε}) ≥ μr ({x ∈ �r (o)| fex (x) ≥ ε})
≥ μr ({x ∈ �r (o)| fexr (x) ≥ ε}).

Proof Choose k ∈ N such that e−kv ≤ ε < e−(k−1)v and let m = k. For x ∈ �r (o),
fex (x) ≥ ε implies d(x, Br+k .o) ≤ m. The Corollary now follows from Lemma 5.6.

��
We are now in a position to state a sufficient condition guaranteeing non-vanishing

ECG.
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Proposition 5.8 Let (G, X ,�) be as in cases 1,3, or 4 of setup 1.4 with M = X/G
and o ∈ X a base-point. Let P : X → M be the quotient map, P(o) = y0. Let {μr }
be averaging measures on �r (o) with respect to μ as in 5.3. Suppose that there exists
c, R0 > 0 and 1 ≥ α > 0 such that for all r ≥ R0,

μr ({x ∈ �r (o)|dM (P(x), y0) ≤ c}) ≥ α.

Then the action of G on (�,μ) has non-vanishing extremal cocycle growth.

Proof Let ε = e−cv . It follows by hypothesis, that for all r ≥ R0,

μr ({x ∈ �r (o)| fex (x) ≥ ε}) ≥ α.

Hence by Corollary 5.7, there exists K ≥ 1 such that for all r ≥ R0

μr ({x ∈ �r (o)| fexr (x) ≥ ε}) ≥ α/K .

Let �r (o)(ε) := {x ∈ �r (o)| fexr (x) ≥ ε} and let �(r , ε) := {ξ ∈ �|πr (ξ) ∈
�r (o)(ε)}. Since {μr } is a family of averaging measures, there exists K1, R1 ≥ 1 such
that for all r ≥ R1, μ(�(r , ε) ≥ α/K1. Hence, from Eq. 1.8, there exists K2 ≥ 1
such that for all r ≥ R1,

Cr � (α/K2)ε.

Thus, lim infr→∞ Cr > 0; equivalently, the action of G on (�,μ) has non-vanishing
extremal cocycle growth. ��

5.3 ECG for hyperbolic spaces

When X is Gromov-hyperbolic, i.e. Cases 1, 2 of Setup 1.4 we can say more.

Proposition 5.9 Let (G, X ,�) and μ be as in Cases 1, 2 of Setup 1.4. Let {μr } be a
family of averaging measures as in 5.3. Then there exists R0 such that for r ≥ R0,

Cr 

∫

�

fexr (q)dμ(q) 

∫

�r (o)
fexr (x)dμr (x). (5.5)

To prove Proposition 5.9 we shall need the following basic Lemma from hyperbolic
geometry (see, for instance, [22,Lemma 3.3] or [21,Lemma 3.3] for a proof):

Lemma 5.10 Given δ,C ≥ 0 there exists C ′ such that the following holds:
Let X be a δ−hyperbolic metric space and K ⊂ X be C−quasiconvex. For any
p ∈ X \K, letπK (p) denote a nearest point projection of p onto K and let [p, πK (p)]
be the geodesic segment joining p, πK (p). For k ∈ K, let [πK (p), k] be the geodesic
segment joiningπK (p), k. Then [p, πK (p)]∪[πK (p), k] is a (C ′,C ′)−quasigeodesic.
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For q ∈ � and q ′ ∈ [o, q), πr (q ′) being uniformly close to πr (q), we have
the following consequence of Lemma 5.10 using the fact that the balls B(o, r) are
δ−quasiconvex. For q ∈ ∂X and a ∈ X , the geodesic ray from a to q is denoted as
[a, q).

Corollary 5.11 Given δ > 0 there exists C > 0 such that the following holds for any
r > 0: If X is a δ−hyperbolic metric space, Wr = QC(�)o ∩ �r (o), q ∈ � and
k ∈ (QC(�)o∩B(o, r)) ⊂ X, then [k, πr (q)]∪[πr (q), q) is a (C,C)−quasigeodesic
and further, d(πr (q), [k, q) ∩ Wr ) ≤ C.

We restate the last statement of Corollary 5.11 in the form that we shall use, unwind-
ing the definition of the Busemann function βq(o, k) based at q:

Corollary 5.12 Given δ > 0 there exists C > 0 such that the following holds for any
r > 0: if X is a δ−hyperbolic metric space, Wr = QC(�)o ∩ �r (o), q ∈ � and
k ∈ QC(�)o ∩ B(o, r) ⊂ X, then

|βq(o, k) − (r − d(k, πr (q)))| ≤ C .

Proof of Proposition 5.9: By Corollary 5.12 we have,

max
g∈Br

[exp(v βq (o, g.o))] 
 exp(v (r − dX (πr (q), Br .o)).

Since Vr = exp(vr), we have

1

Vr
max
g∈Br

[exp(v βq (o, g.o))] 
 exp(v (−dX (πr (q), Br .o)).

Hence,

Cr 

∫

�

exp(v (−dX (πr (q), Br .o))dμ(q) =
∫

�

fexr (x)dμ(x).

This proves the first asymptotic equality of Proposition 5.9.
A standard argument using the Sullivan shadow lemma (see for instance

[11, Proposition 6.1] or [10, Proposition 3.11]) shows that the projection πr : � →
�r (o) and the shadow map from �r (o) to � may be used as approximate inverses of
each other for large r . Hence, integrals over �r (o), equipped with the averaging mea-
sure μr , converge, up to uniform multiplicative constants, to the integral over (�,μ).
Thus, there exists R0 > 0 such that for r ≥ R0,

Cr 

∫

�r (o)
exp(v (−dX (x, Br .o))dμr (x) =

∫
�r (o)

fexr dμr (x),

completing the proof of Proposition 5.9. ��
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6 Vanishing and non-vanishing ECG

In this section, we shall prove the main theorems of the paper.

6.1 Non-vanishing ECG

Theorem 6.1 The following triples (G, X ,�) have non-vanishing extremal cocycle
growth:

(1) (X , d) is a proper Gromov-hyperbolic metric space equipped with a properly
discontinuous convex cocompact isometric action of a group G. The limit set �

of G is equipped with a Patterson–Sullivan measure μ.
(2) (X , d) is a proper completeCAT(-1) space equippedwith a properly discontinuous

isometric action of a group G such that M = X/G has non-arithmetic length
spectrum. The limit set � of G is equipped with a Patterson–Sullivan measure μ.
Further, assume that for M = X/G, the Bowen–Margulis measure μBM (UM) is
finite.

(3) (X , d) is the Teichmüller space T eich(S), G = MCG(S), � = ∂X = PMF(S)

and μ is the Thurston conformal density based at a generic base-point o ∈ X (i.e.
o belongs to a full measure subset of M = X/G).

(4) (X , d) is a symmetric space of non-compact type equipped with a properly dis-
continuous isometric action of a lattice G. The limit set � is the Furstenberg
boundary ∂F X embedded canonically in ∂X as the K−orbit of the barycenter
of a Weyl chamber at infinity [2]. The limit set � of G is equipped with the
Patterson–Sullivan measure μ.

Hence, in all the above cases, the associated group indexed stationary random fields
(via the Rosiński representation) {Yg := Yg(�,μ, {φg}, {cg}), g ∈ G, } is i.i.d. -like
(see Definition 2.7) with respect to the behavior of partial maxima.

Proof We give a case-by-case argument:
Item 1:This will follow immediately fromProposition 5.9 if we can prove that fexr (x)
is uniformly bounded below point-wise on �r (o) (independent of r ). Since fexr =
exp(−vdX (x, Br .o)), the point-wise lower bound on fexr will follow froma pointwise
upper bound on dX (x, Br .o) for x ∈ �r (o). But this is an immediate consequence of
the fact that G acts on X cocompactly.
Item 2: Let P : (X , o) → (M, y0) denote the based quotient map. Fix r > 0 and
let M0 = {m ∈ M |d(m, y0) ≤ r}. Let UM0 denote the restriction of the bundle UM
to M0. Since μBM is a Borel measure, we can assume that μBM (UM0) > 0. After
normalizing μBM (UM) = 1, we therefore assume that μBM (UM0) = η > 0.
Let Sr ,0 = {x ∈ �r (o)|P(x) ∈ M0}. Also let {μr } be the family of averagingmeasures
in Item (1) of 5.3. Equidistribution of the spheres P(�r (o)) in M , with respect to {μr }
follows from Theorem 4.1. Henceμr (Sr ,0) → η > 0 as r → ∞. Proposition 5.8 now
gives the result.
Item 3: Equidistribution of spheres in the context of T eich(S) is given by Theorem
4.4. Thus, the proof of Item (2) goes through mutatis mutandis, using Theorem 4.4 in
place of Theorem 4.1.
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Item 4: Equidistribution of spheres in the context of symmetric spaces is given by
Theorem 4.2. The proof of Item (2) goes through in this case using Theorem 4.2 in
place of Theorem 4.1.

The last statement of Theorem 6.1 now follows from Theorem 2.6. ��
Remark 6.2 An alternate argument for Item 2 above can be given by directly invoking
Roblin’s Theorem 3.8 for the asymptotics of VG(x, y, n) when μBM (UM) < ∞.
However the proof here generalizes directly to Items 3, 4.

6.2 Vanishing ECG

The purpose of this subsection is to prove:

Theorem 6.3 Let (X , d) be a proper CAT(-1) space equipped with a base-point o and
a properly discontinuous isometric action of a group G. The limit set�(⊂ ∂X) of G is
equipped with a Patterson–Sullivan measure μ. Suppose that the associated Bowen–
Margulis measure μBM (UM) of the unit tangent bundle is infinite. Then the action of
G on (�,μ) has vanishing extremal cocycle growth.

Proof To prove that extremal cocycle growth is zero, it suffices to show the following.
For any C > 0, let GC denote the C−neighborhood of the G.oorbit in QC(�)o. Let
�r (o) = �r (o, X) be the boundary of the r−ball B(o, r) about o in QC(�)o. Note
that |�r (o)| 
 |Br | 
 evr = Vr . Let ∂r (C) denote GC ∩ �r (o). Define

mr (C) := μr (∂r (C))

μr (�r (o))
.

By Roblin’s Theorem 3.8, μBM (UM) = ∞ implies that for all C > 0 μr (∂r (C)) =
o(Vr ). Hence mr (C) → 0 as r → ∞. From Lemma 6.4 below, it follows that ECG
vanishes, i.e. limr→∞ Cr = 0. ��
Lemma 6.4 If mr (C) → 0 as r → ∞, then limr→∞ Cr = 0.

Proof Let fexr be as in Proposition 5.9. Since mr (C) → 0 as r → ∞, it follows
that for all ε > 0, there exists N ∈ N such that for all r ≥ N , mr (C) < ε, and
fexr (x) ≤ e−C for all x ∈ (�r (o) \ ∂r (C)). Hence by Proposition 5.9,

Cr 

∫

�r (o)
fexr (x)dμr (x) ≤ e−C + ε.

Since ε can be made arbitrarily small and C arbitrarily large, limr→∞ Cr = 0. ��

6.3 Normal subgroups of hyperbolic groups

When X is the Cayley graph of a free groupwith respect to a standard set of generators,
Item 2 of Theorem 6.1 does not apply as the geodesic flow is not mixing in this case
(mixing fails more generally a hyperbolic group equipped with the word metric [4]).
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We deal in this section with subgroups H of hyperbolic groups G, especially when H
is normal. For the purposes of this subsection, X = � will be a Cayley graph ofG with
respect to a finite set of generators. It follows immediately from Theorem 6.1 that if H
is a finite index subgroup of G, then the action of H on (∂G, μPS) has non-vanishing
extremal cocycle growth. Assume henceforth that H is an infinite index subgroup of
G. H is said to be co-amenable in G if the left action of G on the (right) coset space
�/H is amenable. We shall use:

Theorem 6.5 [7] For G, H , X(= �) as above, let vG and vH denote the exponential
growth rates of G and H acting on X. Then H is co-amenable in G if and only if
vH = vG.

Let VH (1, 1, n) be the growth series of H acting on �. We now observe:

Proposition 6.6 Let G be a hyperbolic group and H a subgroup so that the left
G−action on the (right) coset space X/H is non-amenable (in particular when H
is normal, the quotient group G/H is non-amenable). Then ECG for the H−action
on the boundary ∂G of G, equipped with its Patterson–Sullivan measure vanishes. If
vH = vG, M = X/H and the Poincaré series for the H−action on � converges at
vH , then ECG for the H−action on its limit set �H ⊂ ∂G vanishes.

Proof It follows immediately from Theorem 6.5 that when the left G−action on the
(right) coset spaceG/H is non-amenable, then the critical exponent vH of H is strictly
less than the critical exponent vG of G. Then VH (1, 1, n) = o(exp(vGn)). The proof
of Theorem 6.3 now shows that ECG is vanishing in this case.

When the Poincaré series for the H−action on � converges at vH = vG , then
also, VH (1, 1, n) = o(exp(vGn)). The proof of Theorem 6.3 again shows that ECG
is vanishing in this case. ��

We finally come to:

Theorem 6.7 LetG beahyperbolic groupand H an infinite normal subgroupof infinite
index. Let X = � denote a Cayley graph of G with respect to a finite generating set.
LetμPS denote the Patterson–Sullivan measure of H on the limit set�H = ∂G. Then
the ECG for the triple (X ,�H , H) vanishes.

Proof It suffices, byProposition 6.6, to assume that vH = vG = v and that the Poincaré
series of H diverges at v. Further, as in the proof of Theorem 6.3, it is enough to show
that VH (1, 1,m) = o(exp (vm)).

We now invoke a Theorem due to Matsuzaki, Yabuki and Jaerisch [25,Theorem
4.2], [26,Theorem 1.2] that ensures that the Patterson–Sullivan measure μPS of H is,
up to uniformly bounded multiplicative constants, invariant under the action of G. We
normalize so that μPS is constructed with base-point 1 ∈ H . Thus, for all g ∈ G,

g∗μPS 
 μPS
g−1 ,

where the suffix g−1 indicates the shifted base-point. Hence, for all q ∈ �H = ∂G,

g∗μPS(q) + (g−1)∗μPS(q) 
 μPS(q),
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where 
 indicates uniform multiplicative constants independent of g. Since G/H is
infinite, we can choose distinct g1, g

−1
1 · · · , gn, g−1

n such that for all q ∈ �H = ∂G,

n∑
1

[g∗
i μ

PS(q) + (g−1
i )∗μPS(q)] 
 nμPS(q).

As usual, let B(1,m) denote the m−ball in X = �. It follows that for any distinct
g1, g

−1
1 · · · , gn, g−1

n , there exists N such that for m ≥ N ,

n∑
1

(VH (1, gi ,m) + VH (1, g−1
i ,m)) 
 n VH (1, 1,m).

Since

n∑
1

(VH (1, gi ,m) + VH (1, g−1
i ,m)) ≤ VG(1, 1,m) 
 exp(vm),

it follows that for m ≥ N ,

VH (1, 1,m) � 1

n
exp(vm).

Since n can be made arbitrarily large, VH (1, 1,m) = o(exp (vm)) as required. ��

7 Concluding Remarks

(1) Replacing Albuquerque’s results [2] in Sect. 3.1.2 by a Theorem of Link
[17,Theorem A] gives immediately an analog of Theorem 6.1 Item (4) for lattices
in products of negatively curved manifolds.
(2) The proof of Item 1 of Theorem 6.1 goes throughwithoutmodificationwhenG acts
cocompactly on (X , d) when the latter is only quasi-ruled in the sense of [5,Section
1.7] instead of being a geodesic metric space. Thus, let X = �(G, S) where G is
hyperbolic and S is a finite generating set. Let μ be a finitely supported symmetric
measure on G whose support generates G. Let ν be the hitting measure on ∂G. Let d
be the Green metric on X [5] and let � = (∂G, ν). Then proof of Item 1 of Theorem
6.1 goes through and shows that the action of G on � has non-vanishing ECG. Hence
by Theorem 2.6, the behavior of partial maxima is i.i.d. -like. Note that in this case,
the Busemann function is computed with respect to the Green metric rather than the
word metric [5].
(3) An exact analog of Ricks’ theorem [32] on mixing and convergence of spherical
averages 4.1 is absent at this point for general Gromov-hyperbolic spaces. This is the
only obstruction in obtaining an exact analog of Theorem 6.1 Item (2) for general
Gromov-hyperbolic spaces.

123



712 J. S. Athreya et al.

(4) Dependence on α: For a stationary SαS random field Yg = Yg(S, μ, φg, cg, f ),
ECG (Definition 1.5) identifies the qualitative behavior of partial maxima when μ is
a probability measure and f is a constant function. Note that this qualitative behavior
(of being i.i.d. -like) is independent of α. Thus, to determine the dependence of partial
maxima on α, we really need to investigate the general case of non-constant f .
(5) It might be worthwhile to extract axiomatically the essential features from all
the examples of non-vanishing ECG in Theorem 6.1 to provide a general sufficient
condition.
(6) It was kindly pointed out to us by the referee that the main result of the paper [8]
by Coulon–Dougall–Schapira–Tapie generalizes Theorem 6.5 as follows. In Theorem
6.5, X is assumed to be a Cayley graph of G. However, [8] allows Theorem 6.5 to
go through when G acts cocompactly on X , or more generally when X/G has finite
Bowen–Margulis measure. This allows all the results for subgroups of hyperbolic
groups to go through in this more general context.

We hope to take up some of the unexplored issues in the above list in subsequent
work.
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