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Abstract
Motivated by the problem of counting finite BPS webs, we count certain immersed
metric graphs, tripods, on the flat torus. Classical Euclidean geometry turns this into a
lattice point counting problem inC2, and we give an asymptotic counting result using
lattice point counting techniques.

Keywords Tripods · Lattice point counting · Trivalent graphs

1 Introduction

Given two points z, w in the plane C, the set of points p that minimize the sum
of distances |z − p| + |w − p| is exactly the line segment connecting z and w. At
any point p on this segment, the line segments between z and p and w and p have
angle 2π/2 = π . Given three points z, w, u in C such that the triangle they form
has largest angle at most 2π/3, the Fermat point p minimizes the sum of the lengths
|z− p|+|w− p|+|u− p|. A classical result in Euclidean geometry says that the angles
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Fig. 1 The graph
G(�1, �2, �3) ⊂ C

1
2

3

C

between the line segments connecting p to z, w, u are 2π/3. We call the configuration
of line segments a tripod.

An integral lattice point m + in ∈ Z[i] is called primitive if m and n are coprime.
A classical result states that as R tends to infinity, the number of primitive points in
the circle of radius R centered at the origin grows like R2

ζ(2) . These points correspond
to embedded closed geodesics in the flat torus C/Z[i]. Inspired by the work of [4],
we ask for a similar asymptotic for the number of immersed graphs in flat tori that are
the projections of tripods whose vertices are at points of a unimodular lattice.

Let � be a lattice in C. Throughout, we will assume that � has unit covolume.
A primitive vector in the complex plane descends to a primitive closed trajectory
on T = C/� with the origin marked. Analogously, a tripod on the torus will be an
immersed tripod from the plane such that all three endpoints of the tripod descend
to 0. More formally, I is an isometrically immersed copy in T of a metric graph
G = G(�1, �2, �3) ⊂ C (see Fig. 1) given by positive parameters �1, �2, �3,

G = {t : 0 ≤ t ≤ �1}
⋃

{te2π i/3: 0 ≤ t ≤ �2}
⋃

{te4π i/3: 0 ≤ t ≤ �3}.

The image of the tripod is in fact an immersed copy of an equiangular �-graph;
that is, a graph with two vertices with three edges between them. The vertices are the
point 0 and the tripod point p, and it is not difficult to check that the line segments
must meet with angle 2π/3 at 0. We will later discuss (see Sect. 3) that associated
to each tripod is a (minimal) cover of the torus where the tripod becomes embedded.
The degree of the cover is one more than the number of transverse self-intersections
of the original tripod, and the embedded tripod gives a representation of the covering
torus as an equiangular hexagon with parallel sides identified by translation.

Definition 1.1 A tripod � consists of a pair (G(�1, �2, �3), I), where I:G → T is an
isometric immersion, with I(0) = p, and

I(�1) = I(�2e
2π i/3) = I(�3e

4π i/3) = 0.

The length of the tripod is denoted �(�), and is given by

�(�) = �1 + �2 + �3.
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Counting Tripods on the Torus

Fig. 2 A (primitive) tripod �
drawn in a fundamental domain
for T

We say a tripod � is primitive if it is not a scaled copy of another tripod. A primitive
tripod is called reduced if the only lattice points lying on its legs are at its endpoints
and the tripod point is not at a lattice point (Fig. 2).

The distinction between primitive and reduced lattices is important for future work.
In the case of lattice points, the concepts are identical: a line segment from the origin
to a lattice point passes through another lattice point if and only if it is a scaled copy of
the vector from the origin to that other lattice point. However, this is not the case for
tripods. In futurework, we plan to analyze tripods on higher genus translation surfaces,
which admit cone points. In the presence of cone points, it is natural to define a tripod
as having endpoints at the cone points and no cone points on either of the legs or at
the tripod point. This is essential because there is no unique continuation of the leg
of a tripod through a cone point on a translation surface because the angle at the cone
point is greater than 2π . Thus, the tripod would not be well-defined.

Given a lattice �, let

N�(R,�) := #{�: � primitive with endpoints in � and �(�) ≤ R}.

Furthermore, let

Nred,�(R,�) := #{�: � reduced with endpoints in � and �(�) ≤ R}.

What is the asymptotic behavior of N�(R,�) Our main result is:

Theorem 1.1 For all (unit covolume) lattices � in C,

lim
R→∞

N�(R,�)

R4 = 1

ζ(4)
·
√
3π

24
= 15

√
3

4π3 .

We will prove this claim by turning our problem into a problem of counting pairs
(z, w) ⊂ � = Z + Zτ satisfying certain conditions. The 1/ζ(4) term in our theorem
arises from the fact that we will be counting pairs

z = a + bτ, w = c + dτ, a, b, c, d ∈ Z

with gcd(a, b, c, d) = 1. The term
√
3π
24 represents the volume of a region in C

2 in
which we will be counting dilations of sets of points.

To clarify how the concepts of primitive versus reduced tripods affect their asymp-
totics, we prove the following two theorems. Let Nnonred,�(R,�) be the count of the
nonreduced tripods up to length R.
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Fig. 3 Tripod � inscribed in
triangle �(0, 1, i). The tripod

point is
(

1
3+√

3
, 1
3+√

3

)

w = i

z = 1

Theorem 1.2 For almost every lattice �, Nnonred,�(R,�) = 0.

On the other hand, we show that Theorem 1.2 does not hold for all lattices.

Theorem 1.3 Let ζ = e2π i/6. Then, for � = Z + Zζ , there is a positive constant C
such that

Nnonred,�(R,�) ≥ CR4 for sufficiently large R.

1.1 Lifting

Note that if we lift a (primitive) tripod � from T to C, we obtain a center point p̃ and
segments emanating from p̃ to points in �. We can always choose our lift so that one
of these points is 0, and we call the other two z, w with, say arg(z) < arg(w). To
remove ambiguity, we insist that the point p̃ lies in the sector of C specified by

0 ≤ arg( p̃) < 2π/3.

Only certain pairs (z, w) will yield triangles which have inscribed tripods. The length
of the tripod can be computed explicitly in terms of z and w, thus turning our problem
into a lattice point counting problem in C2 (Fig. 3).

1.2 Differentials, Saddle Connections, and Tripods

Our problem is also inspired by the problem of counting saddle connections for
quadratic differentials. Given a holomorphic quadratic differential q on a compact
Riemann surface X , there is a singular flat metric associated to q with conical singu-
larities of angle (k+2)π at zeros of order k of the differential. A saddle connection is a
geodesic trajectory connecting two singular points with no singularities in its interior.
Alternatively, one can think of it as a regular point p on (X , q) with two geodesic rays
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γ1, γ2 emanating from p with an angle of π , each terminating in a singular point. Note
that angles of π correspond to different local choices of a square root of q. Of course
there are (infinitely) many choices of p in this setting. The problem of counting saddle
connections is verywell studied, see [3], for example.Our problem can be thought of as
a problem naturally adapted to the setting of holomorphic cubic differentials c, where
it is natural to consider trajectories emanating from a point at angles of 2π/3, each
corresponding to a different choice of cube root of the differential c. More generally,
finite BPS webs arise in the work of [4] and are immersed graphs on Riemann surfaces
with trivalent internal vertices and specified leaves, associated to lists of holomorphic
k-differentials of varying orders k, which generalize the idea of saddle connections
to the setting of higher Teichmüller theory. This work is motivated by discussions
with Andy Neitzke at MSRI in Fall 2019, where we discussed the general problem
of counting finite BPS webs of bounded length on higher genus surfaces. Our work
can be viewed as a model case for counting these kinds of webs. See also the work
of Douglas and Sun [2, Figure 8] for pictures of graphs on the once-punctured torus
which appear to be closely related to our problem.

Remark 1 We remark that recent work of Koziarz and Nguyen [7] shows that the
leading term for the normalized asymptotics for counting certain types of triangulations
on surfaces is in Q · (

√
3π)N for an appropriate power N . Nevertheless, we do not

see an obvious relation between the results. There is no primitivity assumption in the
work of [7], which accounts for the ζ(4) factor in our work. However, if the primitivity
is removed, then the R4 growth rate of N�(R,�) behaves as

√
3π/24 /∈ Q · (√3π)4.

So there does appear to be a fundamental difference in the objects being counted.

Organization

In Sect. 2, we explain the Euclidean geometry which allows us to translate the problem
to a lattice point counting problem. In Sect. 3, we summarize some nice properties
of tripods, lengths, intersections, and covers. In Sect. 4, we state precisely the lattice
point counting problem in C

2 and the lattice point counting results which we use to
solve the problem. In Sect. 5, we compute the volume of a region in C

2 which gives
us the main term in the asymptotic formula. In Sect. 6, we prove Theorems 1.2 and
1.3 concerning nonreduced tripods.

2 Fermat Points and Steiner Trees

2.1 Inscribed Tripods

We recall some beautiful facts from classical Euclidean geometry which are crucial
for our translation of our counting problem to a lattice point counting problem. The
following is due to Torricelli. The problemwas posed to him by Fermat, and published
by Torricelli’s student Viviani. An excellent history of this problem (and the more
general Steiner tree problem) can be found in [1].
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Fig. 4 Constructing a tripod
(aka Steiner tree) � inscribed in
a triangle �(ABC)

A B

D

C

E

F

P

Theorem 2.1 A triangle�(ABC) contains an inscribed tripod if and only if the largest
angle is at most 2π/3. In this case, the tripod �(ABC) is constructed by constructing
equilateral triangles on each side on the original triangle (which do not intersect the
interior), and drawing lines connecting the opposite vertex of each equilateral triangle
to the opposite vertex of the original triangle. That is,

• build an equilateral triangle �(ABD) on the side AB,
• an equilateral triangle �(ACE) on the side AC,
• an equilateral triangle �(BCF) on the side BC,
• build the segments DC, BE, and AF,
• the three line segments (DC, BE, AF) intersect at a common point, P, and the
line segments AP, BP, C P, form the tripod. See Fig. 4.

Furthermore, the point P is the unique point which minimizes the sum of distances

|AQ| + |BQ| + |CQ|

over all points Q in the plane. The tripod is known as the Steiner tree associated to the
points A, B,C [5]. Moreover, the length of the tripod �(�(ABC)) = |AP| + |BP| +
|CP| is equal to the length of each of the auxiliary segments,

�(�(ABC)) = |DC | = |BE | = |AF |.

The above result can be rephrased using numbers in the complex plane. Suppose

z, w ∈ C such that arg(z) < arg(w) and �(0, z, w) has all angles at most 2π/3,

Applying the above result to the triangle �(0, z, w), we obtain the following result.

Lemma 2.2 Let �(z, w) denote the tripod inscribed in the triangle �(0, z, w), and let
p denote the tripod point of �(z, w). Then,

�(�(z, w)) = |eiπ/3z + e−iπ/3w| (2.1)
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and

arg(p) = arg(eiπ/3z + e−iπ/3w). (2.2)

Proof We write � for �(z, w). Let p denote the tripod point. Then,

�(�) = |p| + |w − p| + |z − p|.

On the other hand, we assume that arg(z) < arg(w) and by the fact that the line
segments p0, pz, and pw are at angles of 2π/3, we have that the three complex
numbers

eiπ/3(z − p), p, e−iπ/3(w − p)

are parallel (that is, their ratios are real and positive). Therefore, the magnitude of their
sum is the sum of their magnitudes. Since

1 = eiπ/3 + e−iπ/3,

it follows that

�(�) = |p| + |w − p| + |z − p|
= |p| + |e−iπ/3(w − p)| + |eiπ/3(z − p)|
= |p + e−iπ/3(w − p) + eiπ/3(z − p)|
= |e−iπ/3w + eiπ/3z|. (2.3)

Our earlier observation that the complex numbers p, e−iπ/3(w − p), eiπ/3(z − p) all
have the same argument implies that

arg(p) = arg(p + e−iπ/3(w − p) + eiπ/3(z − p))

= arg(e−iπ/3w + eiπ/3z)

as claimed. 	

If � is a tripod with endpoints 0, z, and w, and tripod point p, then u = eiπ/3z +

e−iπ/3w is the third vertex of the equilateral triangle with vertices at z and w. We call
u the Torricelli point of the tripod; see Fig. 5. By Lemma 2.2, the point u satisfies
arg(u) = arg(p) and P|u| = �(�) = |p| + |z − p| + |w − p|.
Remark 2 There are also other ways of defining lengths of tripods. For example, given
a tripod � inscribed in the triangle �(ABC), we could define its triangle length �� to
be

��(�) = |AB| + |AC | + |BC |.
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Fig. 5 Tripod with endpoints
0, z, w, and Torricelli point u

0

z

w
u

p

2.2 Steiner Trees

More generally, it could be interesting to consider projections to the torus of solutions
to the Euclidean Steiner tree problem with integer vertices: given N points in the
plane, find the connected embedded graph with minimal total length with vertices at
these points. For two points, this is of course the straight line, and more generally, it
is not hard to see that the minimizer must be a tree.

3 Tripod Properties

In this section, we consider the number of self-intersections of a tripod on a torus
and the number of subregions that a tripod divides a torus into. We relate these tripod
properties to its lengths, defined in the previous section.

3.1 Lattice Index and Tripod Lengths

Given a tripod � in a lattice �, let �(�) be the minimal lattice in R2 which contains �
as a tripod. We call �(�) the spanning lattice of �; it is a sublattice of �. We define
the lattice index of � in � as the index [�: �(�)]. By our running assumption that �
has unit covolume, we have covol(�(�)) = [�: �(�)]. Recall that the tripod length
is given by �(�) = �1 + �2 + �3. We define the L2-length of a tripod by

L2(�) = (�21 + �22 + �23)
1/2.

Proposition 3.1 Let � be a lattice in R
2 with unit covolume, and let � be a tripod in

�. The lattice index [�: �(�)] is related to the tripod lengths �(�) and L2(�) by

[�: �(�)] = covol(�(�)) =
√
3

4

(
�(�)2 − L2(�)

2
)

.
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Proof Suppose � spans the triangle with vertices 0, z, w. Then, the area of a
fundamental domain of �(�) is twice the area of the triangle, covol(�(�)) =
2Area(�(0, z, w)). The tripod dissects the triangle �(0, z, w) into three subtrian-
gles, each with internal angle 2π/3. By adding up these areas, we have

Area(�(0, z, w)) =
√
3

4
(�1�2 + �1�3 + �2�3) .

Therefore,

covol(�(�)) =
√
3

2
(�1�2 + �1�3 + �2�3)

=
√
3

4

(
(�1 + �2 + �3)

2 − (�21 + �22 + �23)
)

.

This proves the second part of the proposition. The first part follows from the assump-
tion that � has unit covolume, so [�: �(�)] = covol(�(�)). 	


3.2 Counting Intersections and Regions

Proposition 3.2 Suppose � is a tripod in�with index n = [�: �(�)], with only trans-
verse self-intersections on the torus T = C/�. Then, the number of self-intersections
of � on T is n − 1.

Proof Suppose the tripod � spans the triangle with vertices 0, z, w. Let �(�) denote
the lattice in C spanned by z and w; we have �(�) ⊂ � by assumption that � is a
tripod in �.

Let n = [�:�(�)]. If we lift the tripod� fromC/� toC/�(�), then the preimage of
� is a union of n tripods �1,�2, . . . ,�n which are translates of each other. Each �i has
no self-intersections onC/�(�). We claim that for each i �= j , the intersection �i ∩� j
consists of exactly two points in the covering torus C/�(�). To verify this claim, first
observe that |�i ∩� j | = |�i ∩(� j +ε)| as ε varies over a small neighborhoodU of zero
inR2, with the neighborhood chosen such that the intersection remains transverse. By
moving the copy � j toward �i , along a path that keeps the intersection transverse,
we have | �i ∩ � j | = | �i ∩(�i + ε)|. Finally, we verify that | �i ∩(�i + ε)| = 2
when intersecting a tripod with a small translate of itself, as demonstrated in Fig. 6. It
follows that | �i ∩ � j | = 2 as claimed.

From this claim, it follows that � = ∪i�i has 2
(n
2

) = n(n− 1) self-intersections on
the torusC/�(�). The quotient mapC/�(�) → C/� to the original torus has degree
n, so this implies that the tripod on C/� has n − 1 self-intersections. 	

Proposition 3.3 Suppose � is a tripod in � with index n = [�:�(�)], with only
transverse self-intersections on the torus T = C/�. Then, the complement T \ �
consists of n connected regions.

Proof The tripod � induces a cell structure on T as follows. The vertices (0-cells) are
the two tripod points of � and all self-intersection points. The edges (1-cells) are the
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Fig. 6 Intersection of �i and
�i + ε

segments of� after subdividing along vertices, and the faces (2-cells) are the connected
components of T\�. Note that the components of T\� are simply connected because
their lifts to the coverC/�(�) are homeomorphic and simply connected. Let ci denote
the number of i-cells, for i = 0, 1, 2. The Euler characteristic of T is zero, so

c0 − c1 + c2 = 0.

By Proposition 3.2, the number of vertices in this cell decomposition is c0 = 2 +
(n − 1) = n + 1. To compute the number of edges, we observe that two vertices have
degree 3 while the other n − 1 vertices have degree 4. Thus,

c1 = 1

2

∑

v

deg(v) = 1

2
(3 · 2 + 4(n − 1)) = 2n + 1.

Finally, using the Euler characteristic relation, we have c2 = c1 − c0 = 2n+1− (n+
1) = n, as claimed. 	


3.3 Counting Tripods by Spanning Lattice

Given a tripod �, recall that �(�) denotes the minimal lattice which contains the
endpoints of �; we call �(�) the spanning lattice of �.

The association of � to �(�) defines a map

( tripods in �) → (sublattices of �).

This map is surjective, but not injective. For a fixed sublattice �0 ⊂ �, the set of
tripods

{�: �(�) = �0}

is finite, but as �0 varies the size of this preimage is unbounded. In particular, the size
of this preimage grows arbitrarily large asymptotically in proportion to the ratio

(length of second-shortest vector in �0)/(length of shortest vector in �0).
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Proposition 3.4 Given a lattice � in C, there are finitely many tripods � such that
�(�) = �.

Proof Without loss of generality, assume that � has unit covolume. Say a triangle
with endpoints in � is a unit triangle if it has area 1/2. By Theorem 2.1, it suffices
to show that � contains finitely many unit triangles with angles at most 2π/3, up to
translation so that one triangle vertex is at the origin.

Suppose �(0, z, w) is a unit triangle with angles at most 2π/3. If θ is the angle of
the triangle at 0, then the triangle area satisfies

1

2
|z||w| sin θ = area(�(0, z, w)) = 1

2
.

Up to translation, we may assume that the largest angle of �(0, z, w) is at 0, so that
θ ≥ π/3, and our initial hypothesis is that θ ≤ 2π/3. Therefore, sin θ ≥ √

3/2, which
implies

|z||w| = 1

sin θ
≤ 2√

3
.

Let L = min{|z|: z ∈ �, z �= 0}. The above bound implies that z and w lie in the
set {z ∈ �: |z| ≤ 2√

3L
} which is finite. This verifies that there are finitely many unit

triangles in � up to translation with angles at most 2π/3. 	


4 Lattice Point Counting

4.1 Lifting

We now describe how to turn our counting problem for tripods on the torus into a
lattice point counting problem in C

2. Given a tripod � on T = C/�, we fix a lift to
C by choosing the center point p̃ to lie in the sector 0 ≤ arg( p̃) < 2π/3. The lifted
tripod will have one endpoint at 0. Denote the other endpoints by z, w ∈ �, with
arg(z) < arg(w). (By arg(z) < arg(w), we mean arg(z) < arg(w) < π + arg(z).) See
Fig. 7 for an example of determining a lift.

4.2 Angle Bound

By Theorem 2.1, a necessary and sufficient condition for 0, z, w to be endpoints of a
tripod is that

the angles of the triangle �(0, z, w) are at most 2π/3. (4.1)
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Fig. 7 Tripod � lifted to C, with
endpoints 0, z, w. The lift with
arg( p̃) ∈ [0, 2π/3) is labeled

w = i

z = 1

p̃

4.3 Length Bound

Finally, if we want �(�(z, w)) ≤ R, we need, by Lemma 2.2, that the Torricelli point
u = zeiπ/3 + we−iπ/3 is distance at most R from the origin,

|zeiπ/3 + we−iπ/3| ≤ R. (4.2)

Putting (4.1) and (4.2) together, we obtain:

Lemma 4.1 Suppose � = Z+Zτ is a lattice inC ∼= R
2 with Im(τ ) > 0. The number

of primitive tripods N�(R,�) is given by the number of pairs (z, w) ∈ �2 satisfying
the following conditions:

z = a + bτ, w = c + dτ, gcd(a, b, c, d) = 1,

arg(z) < arg(w), �(0, z, w) has all angles ≤ 2π/3,

|zeiπ/3 + we−iπ/3| ≤ R and 0 ≤ arg(eiπ/3z + e−iπ/3w) < 2π/3.

(4.3)

The following corollary follows from standard lattice point counting results [6,
§24.10].

Corollary 4.2

lim
R→∞

N�(R,�)

R4 = 1

ζ(4)
vol(��),

where

�� =
⎧
⎨

⎩(z, w) ∈ C
2:

arg(z) < arg(w) < π + arg(z),
�(0, z, w) has all angles ≤ 2π/3,

|eiπ/3z + e−iπ/3w| ≤ 1 and 0 ≤ arg(eiπ/3z + e−iπ/3w) < 2π/3

⎫
⎬

⎭ .
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Proof N�(R,�) counts primitive points in �2 = (Z + Zτ)2 in the dilated set R��.
�� is a compact region with smooth boundary (in C

2 ∼= R
4), and so by [6, §24.10],

N�(R,�) is asymptotic to

1

ζ(4)
vol(��)R4,

where the factor of 1/ζ(4) is the probability that a random integer vector (a, b, c, d) ∈
Z
4 is primitive, that is, gcd(a, b, c, d) = 1. 	


5 Volumes

To finish the proof of Theorem 1.1, we need to compute the volume of ��. This is
given by

Lemma 5.1

vol(��) =
√
3

24
π = 1

4
· 2π
3

·
√
3

4
(5.1)

Proof of Theorem 1.1 Combining Corollary 4.2 and Lemma 5.1, we obtain Theo-
rem 1.1.

5.1 Proof of Lemma 5.1

To prove Lemma 5.1, we will apply the following volume-preserving change of coor-
dinates. Recall that u = eiπ/3z + e−iπ/3w is the Torricelli point of the tripod (see
Section 2). Let φ:C2 → C

2 be defined by

φ

(
z
w

)
=

(
1 0

eiπ/3 e−iπ/3

) (
z
w

)
=

(
z

eiπ/3z + e−iπ/3w

)
.

The inverse map φ−1 with u = eiπ/3z + e−iπ/3w is

φ−1
(
z
u

)
=

(
1 0

e−iπ/3 eiπ/3

) (
z
u

)
=

(
z

e−iπ/3z + eiπ/3u

)
.

By Lemma 2.2, the point u satisfies arg(u) = arg(p) and |u| = �(�) = |p| + |z −
p| + |w − p|.

Recall that �� is defined as

�� =
⎧
⎨

⎩

(
z
w

)
∈ C

2:
arg(z) < arg(w) < π + arg(z),

triangle �(0, z, w) has all angles ≤ 2π/3,
|eiπ/3z + e−iπ/3w| ≤ 1 and 0 ≤ arg(eiπ/3z + e−iπ/3w) < 2π/3

⎫
⎬

⎭ .
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Its image under φ is

φ(��) =
⎧
⎨

⎩

(
z
u

)
∈ C

2:
arg(z) < arg(e−iπ/3z + eiπ/3u) < π + arg(z)

triangle �(0, z, e−iπ/3z + eiπ/3u) has all angles ≤ 2π/3,
|u| ≤ 1, 0 ≤ arg(u) < 2π/3

⎫
⎬

⎭ .

(5.2)

For u ∈ C satisfying |u| ≤ 1 and 0 ≤ arg(u) < 2π/3, let

φ(��)u = {z ∈ C: (z, u) ∈ φ(��)}

=
{
z ∈ C: 0, z, and e

−iπ/3z + eiπ/3u are endpoints of a tripod

with arg(z) < arg(e−iπ/3z + eiπ/3u) < π + arg(z)

}
.

and as a special case

φ(��)1 =
{
z ∈ C: 0, z, and e

−iπ/3z + eiπ/3 are endpoints of a tripod

with arg(z) < arg(e−iπ/3z + eiπ/3)

}
. (5.3)

Lemma 5.2 The region φ(��)1 is equal to the equilateral triangle �(0, 1, e−iπ/3) ⊂
C (Fig. 9).

Proof Bydefinitionφ(��)1 consists of points z such that the triangle�(0, z, e−iπ/3z+
eiπ/3) has all angles at most 2π/3. By Theorem 2.1, such a triangle has an inscribed
tripod. Using Lemma 2.2 with w = e−iπ/3z + eiπ/3 and the computation

eiπ/3z + e−iπ/3w = eiπ/3z + (e−2iπ/3z + 1) = 1,

such a tripod has length 1 and has its tripod point on the positive real axis.
Such a tripod has the following description, illustrated in Fig. 8. The center tripod

point p lies on the positive real axis, and let a denote its distance from the origin. The
lower endpoint is z, and let b denote its distance from p, while the upper endpoint w
is at distance 1− a − b from p. Each tripod leg has nonnegative length, so we assume
0 ≤ a, b ≤ 1 and 0 ≤ a + b ≤ 1.

In such a tripod, z = a + be−iπ/3. The points

{z = a + be−iπ/3: a ≥ 0, b ≥ 0, a + b ≤ 1}

are exactly those inside the equilateral triangle with endpoints 0, 1, and e−iπ/3.
It follows that φ(��)1 = �(0, 1, e−iπ/3) as claimed. 	


Lemma 5.3 The region φ(��)u has area
√
3
4 |u|2.
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Fig. 8 A tripod in C

a

b

1 − a − b

z

w

p

Fig. 9 The unit equilateral
triangle �(0, 1, e−iπ/3) in C

Proof When u = 1, the claim follows fromLemma 5.2. For arbitrary u, the association
u �→ φ(��)u is equivariant under multiplication, i.e.,

φ(��)u = {uz: z ∈ φ(��)1}.

The region φ(��)u has real dimension 2, so it follows that

vol(φ(��)u) = |u|2 vol(φ(��)1) =
√
3

4
|u|2

as claimed. 	

Proof of Lemma 5.1 First, note that vol(��) = vol(φ(��)) sinceφ has unit-magnitude
Jacobian:

|Jac(φ)| =
∣∣∣∣det

(
1 0

eiπ/3 e−iπ/3

)∣∣∣∣ = 1.

Then, to compute φ(��): we slice the region according to the u-coordinate.

vol(φ(��)) =
∫ ∫

(z,u)∈φ(��)

dz du =
∫

u
vol(φ(��)u)du.

From the definition of φ(��), it is clear that the region φ(��)u is nonempty only
if

u = reiθ where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π/3.
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Using this substitution u = reiθ and the identity vol(φ(��)u) =
√
3
4 |u|2 =

√
3
4 r2

from Lemma 5.3, we have

vol(φ(��)) =
∫ 2π/3

θ=0

∫ 1

r=0

√
3

4
r2 · r dr dθ

=
√
3

4

∫ 2π/3

θ=0
dθ

∫ 1

r=0
r3 dr =

√
3

4
· 2π
3

· 1
4

=
√
3π

24

as claimed.

6 Nonreduced Tripods

Proof of Theorem 1.2 We will consider a lattice with a nonreduced tripod and show
that the real and imaginary parts of the complex number determining the lattice are
related by an equation with rational coefficients. From this, we conclude that a lattice
admitting a nonreduced tripod must lie in a countable union of positive codimension
subsets of the space of lattices.

Consider a lattice � in C. Consider a tripod in this lattice with the property that
at least one of its legs has a lattice point on its interior. We consider the following
transformations. Let �1 be a leg that has a lattice point in its interior. Without loss of
generality, translate the lattice so that the endpoint of �1 is the origin. Next observe
that rotating a tripod preserves the tripod property. Therefore, we rotate the lattice �

about the origin to a new lattice such that �1 lies in the positive real axis. Next, we
scale the entire lattice so that one of its basis vectors is 1 and we write �′ = Z⊕ τZ,
where τ = s + i t . We make no claims that �′ has unit covolume. From now on, we
work entirely with respect to this tripod in the lattice �′.

Let z and w be the other endpoints of the tripod. Then, there exist integers
az, bz, aw, bw ∈ Z such that z = az +bzτ andw = aw +bwτ . Furthermore, the tripod
point is simply given by a real number rp and the assumption that �1 has a lattice point
on it implies rp ≥ 1. Our assumption that the tripod point lies on the positive real axis,
along with our convention that arg(z) < arg(w), implies that arg(z − rp) = −π/3
and arg(w − rp) = π/3. See Fig. 8, where p = rp. The angle conditions on the tripod
points imply that

(
1

2
+ i

√
3

2

)
(
az + bzτ − rp

) ∈ R and

(
1

2
− i

√
3

2

)
(
aw + bwτ − rp

) ∈ R.

In particular, the imaginary parts of both quantities are 0. Recall that τ = s+ i t . After
multiplying by 2, this yields the equations

bzt + √
3

(
az + bzs − rp

) = 0 and bwt − √
3

(
aw + bws − rp

) = 0.
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It is convenient to define t = t ′
√
3 to get

bzt
′ + az + bzs − rp = 0 and bwt

′ − aw − bws + rp = 0.

Adding these equations yields

(bz + bw)t ′ + (az − aw) + (bz − bw)s = 0.

First we consider the case where bz + bw �= 0. In this case, t ′ = t/
√
3 = q1 + q2s

for some q1, q2 ∈ Q. However, this implies that τ = s + i t , which defines the lattice
�, is not free to be any point in the complex plane because its real and complex parts
are related by an equation. This completes the proof in this case.

Next, we consider the case where bz +bw = 0. We claim that bz −bw �= 0 because
otherwise, we would have bz = bw = 0 and this would contradict the assumption that
0, z and w form a tripod in �. Therefore, we conclude that s ∈ Q in which case we
have again reduced to a measure zero subset of the space of lattices.

6.1 Many Nonreduced Tripods

In this section, fix � = Z + Zζ as the triangular lattice, where ζ = e2π i/6 denotes a
sixth root of unity.

Proof of Theorem 1.3 Consider a tripod � in � with endpoints at 0, z = a + bζ ,
and w = c + dζ , where a, b, c, d are integers. Assume that arg(z) < arg(w). Let
u = eiπ/3z + e−iπ/3w be the Torricelli point of the tripod �(0, z, w) (see Sect. 2);
u also appears in the map φ(z, w) = (z, u) in the proof of Lemma 5.1. The point u
satisfies

u = zζ + wζ−1 = aζ + bζ 2 + cζ−1 + d

= aζ + b(ζ − 1) + c(1 − ζ ) + d

= (−b + c + d) + (a + b − c)ζ.

This shows that u ∈ �. The tripod point p of � is a positive real multiple of u.
Conversely, if z ∈ � and u = zζ +wζ−1 ∈ �, then it is straightforward to check that
also w ∈ �.

Recall that a tripod � is nonreduced if its interior contains a lattice point. If the leg
0p contains a lattice point in its interior, then 0u ⊃ 0p also contains a lattice point so
u must be a nonprimitive lattice point of �. Conversely, if u is a nonprimitive lattice
point so that 0u contains lattice points in its interior, a sufficient condition for 0p to
contain a lattice point in its interior is that

�(0p) >
1

2
�(0u).

Therefore, as a lower bound for the number of nonreduced tripods, we have
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#{nonreduced � in �} ≥
∑

nonprimitive
u∈�

#

{
tripods � : tripod point p ∈ 0u, �(0p) > 1

2�(0u),

0p is longest leg of �

}
.

The condition that 0p is the longest tripod leg is needed to avoid overcounting on
the torus R

2/�. Note that the length of the tripod �(�) is equal to the magnitude
|u| = �(0u) of the Torricelli point.

Suppose we fix some u with |u| = R. Then, the set

{tripods � : tripod point p ∈ 0u}

is parametrized by choosing w inside the equilateral triangle �(0, u, ζu) with side
length R, while the set

{
tripods � : tripod point p ∈ 0u, 0p is longest leg of �

}

is parametrized by choosing w inside a subregion of the previous triangle of one-third
size, see Fig. 10 (middle). Finally, the set

{
tripods � : tripod point p ∈ 0u, 0p is longest leg of �,

�(0p) > 1
2�(0u)

}

is parametrized by choosing w inside the subregion shown in Fig. 10 (right), which
has one-fourth the size of the original triangle.

Therefore, for fixed lattice point u with |u| = R,

#

{
tripods � : tripod point p ∈ 0u, �(0p) > 1

2�(0u),

0p is longest leg of �

}

= #{lattice points in subregion of �(0, u, ζu)}
= vol(triangle subregion)

covol(�)
+ O(R)

=
√
3R2/16√
3/2

+ O(R)

= 1

8
R2 + O(R).

Now, it remains to sum over the possible choices of u. Summing over all lattice
points u, we would have

∑

u∈�|u|≤R

#

{
tripods � : tripod point p ∈ 0u, �(0p) > 1

2�(0u),

0p is longest leg of �

}
=

∑

u∈�|u|=r≤R

1

8
r2 + O(r)

=
∫ R

r=0

(π

4
r3 + O(r2)

)
dr

= π

16
R4 + O(R3).
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Fig. 10 An equilateral triangle and relevant subregions

If we instead sum over only those u which are nonprimitive lattice points, our answer
changes asymptotically by a constant factor

1 − ζ(2)−1 = lim
R→∞

#{u ∈ �: |u| ≤ R, u nonprimitive}
#{u ∈ �, |u| ≤ R} = 1 − 6

π2 ≈ 0.392.

Therefore,

#{nonreduced � in �: �(�) ≤ R} =
(
1 − 6

π2

)
π

16
R4 + O(R3),

so we may take any positive constant C < (1 − 6
π2 )

π
16 ≈ 0.0770.

Note that the total number of tripods in � satisfies

#{� in �: �(�) ≤ R} ∼ π

12
R4.

Corollary 6.1 The number of nonreduced, primitive tripods in � satisfies

#{� nonreduced and primitive: �(�) ≤ R} ≥ CR4

for some positive constant C, for sufficiently large R.

Proof The previous theorem showed that

#{nonreduced � in �: �(�) ≤ R} �
(
1 − 6

π2

)
π

16
R4

∼
(
1 − 6

π2

)
3

4
#{total � : �(�) ≤ R},

where the constant

C1 =
(
1 − 6

π2

)
3

4
≈ 0.294.
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We also know that the number of primitive tripods satisfies

#{primitive � : �(�) ≤ R} ∼ ζ(4)−1#{total � : �(�) ≤ R},

where

C2 = ζ(4)−1 ≈ 0.924.

Together these bounds imply that

#{nonreduced, primitive � : �(�) ≤ R} � (C1 + C2 − 1)#{total �, �(�) ≤ R}
∼ (C1 + C2 − 1)

π

12
R4.

We may take C to be any positive constant less than (C1 + C2 − 1) π
12 . 	
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Appendix: Numerics

We obtained experimental evidence for Theorem 1.1 using the following elementary
Sage code, which computes the number of tripods in Z[i] of length at most R.

from itertools import product
from time import time
def is_prim(a,b,c,d):

’’’checks that a+bi and c+di are primitive’’’
return gcd(gcd(a,b), gcd(c,d))==1

def is_longest(a,b,c,d):
’’’checks that the largest angle of the triangle with vertices at 0, a+bi,

c+di
is at 0, by checking that the length of the side opposite 0,
whose length is |(a-c) + (b-d)i|, is longest.’’’
return min(aˆ2+bˆ2, cˆ2+dˆ2) > 2*a*c+2*b*d

def is_positively_oriented(a, b, c, d):
’’’checks that the triangle with vertices at 0, a+bi, c+di is positively
oriented’’’

return a*d-b*c > 0
def is_tripod(a,b,c,d):

’’’checks that the triangle with vertices at 0, a+bi, c+di admits a tripod’’’
return is_longest(a, b, c, d) and RR(2*a*c+2*b*d+ sqrt((aˆ2+bˆ2)*(cˆ2+dˆ2)))>0

def tripod_length_squared(a,b,c, d, R):
’’’computes the length-squared of the tripod’’’
return RR((a-c)ˆ2 + (b-d)ˆ2 + a*c + b*d + sqrt(3)*(a*d-b*c)) < RR(Rˆ2)

def tripod_counts(R): #guess is 0.20947986097*Rˆ4 = RR(15*sqrt(3)/(4*piˆ3)) Rˆ4
’’’returns the length of the list of tripods of length at most $R$’’’
L=[(a,b, c, d) for (a,b,c,d) in product(range(-1.5*R, 1.5*R), repeat=4)

if is_prim(a,b,c,d) and is_longest(a,b,c,d) and is_positively_oriented
(a,b,c,d)]

return len(L)
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For R = 35, this yields

tripod_counts(35) = 312488

For comparison,

∣∣∣∣∣
312488

(35)4
− 15

√
3

4π3

∣∣∣∣∣ = 0.00124129370635984 . . . .

We make no claims that this Sage code is particularly efficient.

References

1. Brazil, M., Graham, R.L., Thomas, D.A., Zachariasen, M.: On the history of the Euclidean Steiner tree
problem. Arch. Hist. Exact Sci. 68(3), 327–354 (2014)

2. Douglas, D.C., Sun, Z.: Tropical Fock–Goncharov coordinates for SL3-webs on surfaces II: naturality
(2020). arXiv:2012.14202

3. Eskin, A.: Counting problems in moduli space. In: Handbook of Dynamical Systems, vol. 1B, pp.
581–595. Elsevier B. V., Amsterdam (2006)

4. Gaiotto,D.,Moore,G.W.,Neitzke,A.: Spectral networks.Ann.Henri Poincaré 14(7), 1643–1731 (2013)
5. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics,

vol. 53. North-Holland Publishing Co., Amsterdam (1992)
6. Hardy, G.H.,Wright, E.M.: An Introduction to the Theory ofNumbers. OxfordUniversity Press, Oxford,

sixth edition: Revised by D. R. Heath-Brown and J. H, Silverman, With a foreword by Andrew Wiles
(2008)

7. Koziarz,V.,Nguyen,D.-M.:Variation ofHodge structure and enumerating tilings of surfaces by triangles
and squares. J. Éc. Polytech. Math. 8, 831–857 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

http://arxiv.org/abs/2012.14202

	Counting Tripods on the Torus
	Abstract
	1 Introduction
	1.1 Lifting
	1.2 Differentials, Saddle Connections, and Tripods
	Organization

	2 Fermat Points and Steiner Trees
	2.1 Inscribed Tripods
	2.2 Steiner Trees

	3 Tripod Properties
	3.1 Lattice Index and Tripod Lengths
	3.2 Counting Intersections and Regions
	3.3 Counting Tripods by Spanning Lattice

	4 Lattice Point Counting
	4.1 Lifting
	4.2 Angle Bound
	4.3 Length Bound

	5 Volumes
	5.1 Proof of Lemma 5.1

	6 Nonreduced Tripods
	6.1 Many Nonreduced Tripods

	Acknowledgements
	Appendix: Numerics
	References




