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Abstract

Personalizing an avatar for co-speech gesture generation
from spoken language requires learning the idiosyncrasies
of a person’s gesture style from a small amount of data. Pre-
vious methods in gesture generation require large amounts
of data for each speaker, which is often infeasible. We pro-
pose an approach, named DiffGAN, that efficiently personal-
izes co-speech gesture generation models of a high-resource
source speaker to target speaker with just 2 minutes of target
training data. A unique characteristic of DiffGAN is its abil-
ity to account for the crossmodal grounding shift, while also
addressing the distribution shift in the output domain. We
substantiate the effectiveness of our approach a large scale
publicly available dataset through quantitative, qualitative
and user studies, which show that our proposed methodology
significantly outperforms prior approaches for low-resource
adaptation of gesture generation. Code and videos can be
found at https://chahuja.com/diffgan.

1. Introduction
Technologies to assist human communication, both ver-

bal (e.g. spoken language) and nonverbal (e.g. co-speech
gestures), have gained more traction in the past decade. One
promising direction is virtual reality [10, 17, 18, 29] which
aims at creating a more realistic online communication plat-
form for embodied virtual agents [6, 28] and remote avatars
[38, 39]. These advancements could be seen as a normal
progression to speech-based technologies such as intelligent
personal assistants (e.g. Alexa, Siri, Cortana). These agents,
in the future, could also communicate more naturally with a
nonverbal embodiment that complements the verbal commu-
nication [33]. To enable this vision of immersive verbal and
nonverbal communication through an avatar, one technical
challenge is generating visual gestures based on input speech
and language [2, 12, 15, 21]. An even more challenging task
is the generation of personalized visual gestures, which re-
flects the idiosyncratic behaviours of a specific person [33].
The main goal of our paper is to create a personalized ges-
ture generation model (e.g. as part of a personalized avatar)

Figure 1. Overview of the co-speech gesture personalization task.
On the left is a generative source model Gs pre-trained on a source
speaker. We adapt Gs to multiple target models Gt using low-
resource data for each of the target speaker.

with limited data from a new speaker. In technical terms,
this problem requires an adaptation of crossmodal generative
models in a low-resource setting as illustrated in Figure 1.
Leveraging an existing source model, pretrained on a large
dataset of one speaker (i.e. source domain), our goal is to
personalize to a new speaker (i.e. target domain) with only 2
minutes of the target data.

The problem setting brings a unique challenge, typically
not studied in typical domain adaptation settings: cross-
modal grounding shift. Due to the crossmodal nature of our
task, crossmodal grounding shift refers to the distributional
shift of the relationships between the input spoken language
modalities and output gesture modality. For example, con-
sider a speaker, Aarti, who waves their right hand while
greeting a friend. These gestures are conditionally depen-
dent on what the speaker says. We define such relationships
between the gestures and spoken language as crossmodal
grounding. While these relationships are conditioned on
spoken language, they are also heavily influenced by the
speaker’s idiosyncrasies. Now, consider a new speaker, Bob,
who chooses from a set of two gestures while greeting: a

https://chahuja.com/diffgan


Figure 2. Overview of the key components of our proposed model DiffGAN. (a)-(d): Low-resource adaptation of the crossmodal grounding
relationships from source to target domain. (e): Modeling output domain shift from source to target domain

left handed wave or waving both their hands vigorously. As
is the case for this speaker, typically the conditional gesture
spaces have a larger support (i.e. different kinds of gestures)
for the same language context. Such differences between
conditional gestures of source and target speakers are very
common, especially because the conditional variable is lan-
guage which is a very large space. These common, yet
complex differences represent crossmodal grounding shift.

In this paper, we propose an approach, named DiffGAN,
that can efficiently personalize co-speech gesture genera-
tion models from a high-resource source speaker to a low-
resource target speaker. To the best of our knowledge, this is
the first approach that is able to learn a personalized model
with only 2 minutes of speaker data (i.e. as opposed to 10
hours [2, 12, 15, 21]). Our DiffGAN approach does not
require access to source training data. Instead, DiffGAN di-
rectly identifies shifts in crossmodal grounding relationships
along with the shifts in the output domain from the pre-
trained source model. Based on these identified distribution
shifts, DiffGAN updates a few necessary parameters in a sin-
gle layer of the source model, allowing efficient adaptation
with low resources. Our experiments study the effectiveness
of our DiffGAN approach on a diverse publicly available
dataset. As part of our evaluation methodology, we report
that DiffGAN produces a consistent improvement of around
10% preference scores of human judgments over strong base-
lines among other quantitative improvements. Furthermore,
DiffGAN extrapolates to gestures in the target distribution
without ever having seen them in the source distribution.

2. Related Work

Language and speech for gesture generation A rule-
based approach was proposed in an earlier study by Cassell
et al. [7], where the behavior expression animation toolkit
(BEAT) was developed to schedule behaviors, such as hand
gestures, head nods and gaze. This approach was extended
to utilize linguistic information from input text for decision
making [22, 25, 26, 31, 49].

Rule based approaches were replaced by deep conditional
neural fields [8, 9] and Hidden Markov Models for prosody-
driven head motion generation [42] and body motion gener-
ation [23, 24]. These use a dictionary of predefined anima-
tions, limiting the diversity of generated gestures. Soon, neu-
ral network based models were introduced, using unimodal
inputs, specifically speech, to generate a sequence of gestures
[14], head motions [41] and body motions [1, 3, 11, 12, 43].
On the other hand, Yoon et al. [50] uses only a text input for
gesture generation. More recently, multimodal models rely-
ing both speech and language were developed. Kucherenko
et al. [21] uses early fusion to combine the two representa-
tions, Ahuja et al. [2] utilizes a cross-modal attention mech-
anism to account for correlations between speech and lan-
guage. These approaches typically require many hours of
multimodal data to train a single speaker-specific model. We
propose an approach that can adapt a single-speaker genera-
tive model to a new speaker domain after being exposed to
only a few minutes of data.



Figure 3. Qualitative comparison of our DiffGAN with prior work over shape of generated gestures. With maher as the source domain,
target model outputs over the target domain are superimposed over ground truth video frames for easy comparison.

Low-resource adaptation of generative models Prior
works similary focus on pre-training a source model on large
source data, then adapting it to a low-resource setting. Nichol
et al. [35], Wang et al. [47] introduce new parameters in the
model, whereas Karras et al. [20], Wang et al. [46] fine-tunes
the complete model on the target data or to specific layers
or modules are applied [34, 36]. Li et al. [27], Wang et al.
[47] utilize importance sampling to transform the original
latent space of the source to a space which is more relevant
to the target. While this approach can be effective when the
source distribution and the target distributions share support,
it may not be well-generalizable when their supports are
disjoint. To address this concern, Ojha et al. [37] introduces
a contrastive learning approach to preserve the similarities
and differences in the source, and then adapting to the target
domain. These methods focus on adapting only the output
domain of unimodal generative models (i.e. generate one
modality with noise or a small set of discrete classes as the
input). However, we believe that for crossmodal genera-
tive modeling tasks, we need to explicitly model complex
relationships between the input modalities and the gener-
ated output modality, both of which have a spatial and/or
temporal structure.

3. Problem Statement
We are given a pretrained gesture generation model of

a source speaker as a generator-discriminator pair (Gs, Ds)
[13] that is trained on a large gesture source dataset Ds =
{Xs

i ,Y
s
i }Ni=1. It generates gestures as a sequence of body

poses Ys
i that is driven by both language and speech as

the input modalities Xs
i . A goal is to adapt parameters of

the pretrained generator Gs to a target model Gt by using
a much smaller target dataset of the target speaker Dt =
{Xt

i,Y
t
i}Pi=1 where P << N .

4. Method
We propose a new approach, DiffGAN, that learns a target

model Gt by adapting a pre-trained source model Gs in a
low-resource setting. This approach is a two-step process
illustrated in Figure 2. First, in section 4.1, the model learns

to identify the crossmodal grounding shifts through a novel
loss function Ldiff and low-resource target data. Second,
in section 4.2, we discuss use of a loss function Lshift,
which encourages the target model to shift the output domain
distribution to be closer to that of the target’s. Optimization
of the combined loss function describes the complete model,

G∗
t = EX,Y∈Dt

argmin
Gs,θl−1:l

max
Ds

Ldiff (θl−1:l)+Lshift(Gs, Ds)

(1)
where θl−1:l are parameters of a layer l in Gs (discussed

in Section 4.1).

4.1. Crossmodal Grounding Shift

The crossmodal grounding relationships between input
and outputs spaces of source data are already encoded in
the source model, Gs. Instead of modifying all of these
relationships in the source model, we first discover the shift
in grounding from the source to the the target dataset. This
is followed by the adaptation of the model parameters which
account for only the shifted relationships in the target model.
This approach has a two key advantages. First, adapting to
only the differences suggested by the discrepancies between
target and source data, allows the model to retain the previ-
ously learnt essential grounding relationships intact. Second,
in a low-resource setting, updating only a few layers instead
of the complete model is sufficient [5, 34]. Doing so allows
the target model to learn new grounding relationships while
preventing overfitting.

Notations: Source Gs and target Gt models both have
a total of L layers. Function Gl:m

s (.) represents layers l
through m in Gs. For example, Gl:m

s (.) takes activation
maps of layer l (or zl) in Gs as the input and returns activa-
tion maps of layer m (or zm) in Gs as the output. Parameters
of layers l through m can be explicitly specified in function
Gl:m

s (.; θl:m), but may be skipped for brevity.

Discovering shift in crossmodal grounding relationships:
Crossmodal grounding represents relationships between the
input and output modalities. For the source data. these rela-
tionships are already encoded in the latent spaces [3, 19, 51]
of the source model, Gs. In the adapted target model Gt, this



Gesture Quality Crossmodal Grounding Output Domain

Amount
of data

(minutes)

Pre-
trained
Gs

Models Naturalness Expressivity Timing Relevance Style

2

✗ AISLe [2] 7.3 ± 2.9 15.3 ± 7.6 9.2 ± 2.4 8.3 ± 4.1 16.3 ± 5.3
✓ TGAN [46] 9.4 ± 3.8 12.7 ± 4.6 12.1 ± 2.3 10.8 ± 4.0 13.7 ± 2.9
✓ MineGAN [47] 13.0 ± 2.9 16.6 ± 4.8 16.0 ± 2.3 14.1 ± 4.2 29.6 ± 7.3
✓ ConsistentGAN [37] 9.0 ± 1.9 17.7 ± 3.1 10.9 ± 1.9 9.3 ± 1.6 17.6 ± 6.3

2
✓ DiffGAN (Ours) 21.9 ± 2.5 27.6 ± 6.5 26.2 ± 2.1 23.9 ± 4.8 46.3 ± 9.2
✓ DiffGAN w/o Ldiff 19.8 ± 1.3 24.4 ± 5.0 22.1 ± 3.3 21.0 ± 3.0 47.8 ± 4.8
✓ DiffGAN w/o Lshift 12.3 ± 4.1 20.0 ± 5.9 15.8 ± 3.9 13.6 ± 3.8 26.5 ± 6.4

Table 1. Human perceptual study comparing our model with prior work and strong baselines over five criteria measuring quality, crossmodal
grounding and output domain shift of generated gestures. We report the preference scores of a model as compared to the ground truth
gestures. Confidence intervals reported as standard deviation across experiments on all source-target pairs. Higher is better with 50 % being
the best possible score. Scores in green are the best and orange are the second best but lie in the confidence interval of the best.

latent space will shift creating new grounding relationships.
More concretely, this latent space represents the activation
maps at layer l for source and target models, or zl and z∗l re-
spectively. To estimate the direction along which the ground-
ing relationships have shifted, we compute the element-wise
difference Ψ = |zl − z∗l | between the activation maps at
layer l. We can now update the parameters of layer l in the
direction Ψ to produce the required grounding shift.

Computing direction of grounding shift Ψ: To compute
Ψ = |zl− z∗l |, we need both zl and z∗l . As zl is an activation
map of the source model with a target sample Xt as input,
we can compute it as zl = G0:l

s (Xt) as shown in Figure 2a.
Estimating z∗l is tricky as the target model is not available
yet. As we are only updating the parameters of layer l
in this step, the parameters of Gl:L

s do not change. As a
result, we can use values of the target output modality Yt to
optimize argminz∥Gl:L

s (z) − Yt∥2 as shown in Figure 2b.
This minimization objective serves as an accurate estimate
of z∗l , and consequently an accurate estimate of the direction
of grounding shift Ψ. To prevent overfitting due to limited
amount of data, we concentrate the gradient update to the
directions (i.e. channel dimensions) with top-k grounding
shifts represented as Ψk. The criteria for choosing l and k is
discussed in Section 6.

Updating Crossmodal Grounding in layer l: To encour-
age generation of the shifted latent space z∗l for target domain
inputs Xt, we update the weights of only layer l (or θl−1:l)
through an L2 loss. Furthermore, as Ψk is the measure of
grounding shift for each parameter, we use it as a weighting
function to guide parameter updates of layer l,

Ldiff = ∥Ψk ⊙ z∗l −Ψk ⊙Gl−1:l
s

(
G0:l−1

s (Xt); θl−1:l

)
∥2,
(2)

where ⊙ is element-wise product. As the training progresses,
both Ψk and z∗l are re-estimated based on the updated pa-
rameters of the source model. Hence, as the latent space
of the adapted source model shifts closer to that of the tar-
get domain, Ψk will re-adjust until convergence, arriving

at the target model. Please note that while this approach is
described for a single layer l, it can easily be adjusted to
update any sequence of layers l through m without loss of
generality.

4.2. Output Domain Shift

The second step is to shift the output domain of the source
model Gs toward that of the target gesture distribution. We
follow the fine-tuning approach suggested in [37, 46] of
optimizing for the adversarial loss function Ladv ,

Ladv = EXt,Yt∈Dt
logDs

(
Yt

)
+log

(
1−Ds

(
Gs

(
Xt

)))
,

(3)
where the discriminator Ds(.) measures domain correct-

ness of the output modality. This adversarial loss encourages
the model to generate gesture sequences whose structure
represents the target distribution. We would also like to
encourage generation of output sequences that temporally
match the target ground truth sequences Yt ∈ Dt for which
we use a reconstruction loss [2, 3, 12],

Lrec = EXt,Yt∈Dt
∥Yt − Ŷt∥1, (4)

where Ŷt = Gt(X
t). The combination of the adversarial

and reconstruction loss, Ladv + Lrec, is defined as Lshift

and encourages the output domain to shift toward the target
distribution (see Figure 2e).

5. Experiments
Dataset: We use the PATS dataset [2, 3, 12] as the bench-
mark to measure performance. It consists of around 10 hours
of aligned body pose, audio and transcripts for each of the
25 speakers. We choose five speakers (oliver, maher,
chemistry, ytch_prof and lec_evol) with visually
different gesture styles and diverse linguistic content for our
experiments, in which source → target denotes the
source and target domain. For speakers in the target domain,
we simulate a low-resource setting by randomly sampling 2
or 10 minutes of data for all experiments.



Figure 4. Visual Histograms of generated gestures visually describe the distribution of hand gestures in space. Red and blue colors denote
the left and right arms respectively. First row is the source speaker, below which we have all the target speakers. Each column denotes a
model which adapts output distribution of the source domain to the target domain. Qualitatively, DiffGAN is successful in modeling the
distribution of the source speaker with just 2 minutes of data.

Baseline Models: We compare our proposed model with
a family of baselines that adapts the same source model to a
target domain in a low-resource setting. (a) TGAN [46] fine-
tunes all layers of source model with the low-resource target
data, (b) MineGAN [47] projects the source latent space
of the noise input onto a latent space representative of the
target data, (c) ConsistentGAN [37] uses a cross-domain
consistency loss which regularizes the tuning process and
a patch discriminator which encourages different levels of
realism over different image patches, and (d) AISLe [2]
learns the target model without a pretrained source model.
We also run ablation studies on two versions of our model
(e) DiffGAN w/o Lshift and (f) DiffGAN w/o Ldiff .

Human Perceptual Study: We conduct a human percep-
tual study on Amazon Mechanical Turk (AMT) to measure
human preference towards generated animations. Given a
pair of videos, one of which is from the ground truth and

the other is generated by a model, the annotators have to
choose either one of the videos based on the five criterion:
gesture quality (naturalness and expressivity), crossmodal
grounding (timing and relevance) and output domain shift
(style) of generated gestures. The correctness of output do-
main shift is measured by the reflection of the true gesture
style of a target speaker in the gestures generated by a target
model [3]. We report the average preference % of human
annotators as a score for comparison. We refer the readers
to the appendix for more detailed definitions and setup.

Quantitative Metrics: (a) To measure relevance and tim-
ing of gestures with respect to spoken language we use two
metrics, Probability of Correct Keypoints (PCK) [4, 44]
where values are averaged over α = 0.1, 0.2 as suggested in
[12] and L1 distance between generated and ground truth
gestures. To measure the distribution of the output domain
we use Fréchet Inception Distance (FID) which is the dis-



FID ↓ PCK ↑

Amount
of data

(minutes)

Pre-
trained
Gs

Models
source

↓
target

maher
↓

oliver

maher
↓

chemistry

oliver
↓

maher

oliver
↓

chemistry

maher
↓

oliver

maher
↓

chemistry

oliver
↓

maher

oliver
↓

chemistry

2

✗ AISLe [2] 49.2 ± 0.8 84.5 ± 3.1 83.7 ± 2.6 84.5 ± 3.1 0.18 ± 0.01 0.2 ± 0.0 0.18 ± 0.0 0.2 ± 0.0
✓ TGAN [46] 57.5 ± 2.4 184.3 ± 5.4 339.1 ± 1.2 323.5 ± 1.9 0.31 ± 0.01 0.23 ± 0.0 0.2 ± 0.0 0.25 ± 0.0
✓ MineGAN [47] 42.5 ± 2.5 157.5 ± 10.6 290.3 ± 7.2 302.5 ± 6.8 0.38 ± 0.03 0.26 ± 0.02 0.21 ± 0.01 0.31 ± 0.01
✓ ConsistentGAN [37] 61.0 ± 3.2 194.2 ± 15.6 320.1 ± 11.5 325.6 ± 44.3 0.39 ± 0.01 0.27 ± 0.01 0.21 ± 0.01 0.25 ± 0.01
✓ DiffGAN (Ours) 25.0 ± 3.7 42.8 ± 5.1 47.9 ± 25.5 48.2 ± 15.9 0.45 ± 0.02 0.31 ± 0.01 0.26 ± 0.01 0.29 ± 0.01

10

✗ AISLe [2] 47.1 ± 0.2 85.0 ± 1.9 80.3 ± 0.8 85.0 ± 1.9 0.18 ± 0.0 0.21 ± 0.0 0.19 ± 0.0 0.21 ± 0.0
✓ TGAN [46] 62.9 ± 1.8 191.7 ± 1.2 341.5 ± 0.4 326.8 ± 1.6 0.3 ± 0.01 0.22 ± 0.01 0.2 ± 0.0 0.24 ± 0.0
✓ MineGAN [47] 41.4 ± 3.1 145.0 ± 14.1 293.5 ± 12.7 318.2 ± 5.4 0.4 ± 0.01 0.24 ± 0.03 0.22 ± 0.02 0.31 ± 0.01
✓ ConsistentGAN [37] 63.1 ± 1.9 188.2 ± 17.0 322.2 ± 2.4 327.0 ± 18.7 0.41 ± 0.03 0.28 ± 0.04 0.22 ± 0.01 0.27 ± 0.01
✓ DiffGAN (Ours) 15.0 ± 5.2 31.7 ± 3.8 30.3 ± 6.9 24.3 ± 4.2 0.46 ± 0.01 0.32 ± 0.02 0.26 ± 0.01 0.3 ± 0.01

Full ✗ AISLe [2] 16.1 8.7 10.2 8.7 0.49 0.39 0.27 0.39

Table 2. Comparison of our DiffGAN with prior work for low-resource crossmodal generative modeling from source to target speakers to
evaluate output domain shift (i.e. FID) and crossmodal grounding (i.e. PCK)

tance between distributions of generated and ground truth
poses [16]

Qualitative Visualization: To judge the quality of the
generated spatio-temporal outputs, we would encourage the
readers to see the supplementary video. Other than that, we
qualitatively visualize three key properties of gestures [32,
40] (1) distribution, (2) velocities and (3) shapes of gestures

Implementation Details: For our pretrained source mod-
els, we use publicly available models by Ahuja et al. [2]
for all experiments. We trained all the baselines with the
reported hyperparameters. All our models were trained for
4000 iterations with a batch size of 32. Either 2 minutes or
10 minutes of video recordings were used as the target data.
Each model was trained over three such randomly chosen tar-
get sets and quantitative metrics were averaged across these
runs. We refer the readers to the supplementary materials for
more implementation details.

6. Results and Discussion
In this section, we discuss the qualitative, quantitative

and user study results from our experiments.

Comparison with prior work When evaluating genera-
tive models human judgements are often seen as a de facto
evaluation [2, 48]. The results of out human perceptual
study are summarized in in Table 1. We see a 10% larger
preference, if not more, for our model DiffGAN as compared
to the baseline models across all five criteria.

Crossmodal grounding shift is evaluated by measuring
the relevance, timing and correctness of the generated ges-
ture in context of spoken language. In the human perceptual
study in Table 1, higher preference scores for DiffGAN over
relevance and timing criteria are indicative of the positive
impact of modeling the grounding shift explicitly which is
not the case for the other baselines. Qualitatively, in Figure 3,
we observe gesture shapes that are closer to the ground truth
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Figure 5. Distribution of the generated gestures with average abso-
lute velocity as the statistic for source to target domain adaptation.
The support (or coverage) of the distribution is denoted with the
colour coded lines at the top of each plot. Larger overlap of a
model’s distribution with the ground truth distribution is desirable.

for DiffGAN than the other baselines, further indicating that
the generated gesture shapes are more relevant to the input
modality for DiffGAN. This is further corroborated by sig-
nificantly higher PCK values for DiffGAN when compared
with TGAN [46], MineGAN [47] and, ConsistentGAN [37]
in Table 2.

Output domain shift (i.e. gesture style) of the generated
gestures was especially convincing, as DiffGAN was pre-
ferred by human annotators (in Table 1) over the ground
truth motion 46% of the time. A similar trend is also seen
qualitatively in Figure 4 where we are comparing the pose
histograms for both ground truth of the target speaker and the
generated animations. DiffGAN is able to adapt the source
model such that it generates a distribution of gestures similar
to the target domain. Even though source oliver typically
has gestures close to his body with hands moving up and
down, DiffGAN is able to extrapolate to a target model for
maher with his prototypical side to side arm movements.
For TGAN [46] and MineGAN [47], the hand positions are
concentrated in only one region indicating reduced diversity



FID ↓ L1 ↓

Amount
of data

(minutes)

Pre-
trained
Gs

Models
source

↓
target

oliver
↓

maher

oliver
↓

chemistry

maher
↓

oliver

maher
↓

chemistry

oliver
↓

maher

oliver
↓

chemistry

maher
↓

oliver

maher
↓

chemistry

10
✓ DiffGAN (Ours) 30.3 ± 6.9 24.3 ± 4.2 15.0 ± 5.2 31.7 ± 3.8 1.48 ± 0.01 1.36 ± 0.03 0.53 ± 0.02 0.88 ± 0.03
✓ DiffGAN w/o Ldiff 25.9 ± 4.3 27.5 ± 6.7 19.0 ± 7.7 29.0 ± 1.6 1.57 ± 0.03 1.43 ± 0.01 0.61 ± 0.02 0.96 ± 0.02
✓ DiffGAN w/o Lshift 119.1 ± 7.0 131.0 ± 5.1 22.4 ± 2.1 54.1 ± 1.9 1.33 ± 0.01 1.26 ± 0.01 0.53 ± 0.01 0.84 ± 0.0

Full ✗ AISLe [2] 10.2 8.7 16.1 8.7 0.91 0.73 0.71 0.73

Table 3. Evaluating impact of loss functions: DiffGAN and its ablations are trained on 10 minuites of low-resource data. The metrics
measure the impact of Lshift and Ldiff on both output domain shift (i.e. FID) and crossmodal grounding (i.e. L1).

(a) Choice of Layer l (b) Choice of k in Grounding Shift

Figure 6. (a) Impact of choice of Layer l on crossmodal grounding
shift (i.e. PCK ↑). Layer numbers are in increasing order from
input to output. Layers corresponding to indices on the X-axis are
defined in supplementary. (b) Impact of choice of k in grounding
shift direction Ψk on crossmodal grounding shift (i.e. PCK ↑).

in the generated gestures and therefore a mode collapse. In
column three of Figure 4, ConsistentGAN [37] is able to
learn the correct rest pose for the target speakers, potentially
due to its approach of encouraging distance consistency in
the output domain. But the distribution of output gestures
does not correctly match the distribution of true distribution
of target speakers illustrated in column one of Figure 4.
These trends are further corroborated by significantly better
values of FID for DiffGAN when compared with TGAN [46],
MineGAN [47] and ConsistentGAN [37] in Table 2.

The distribution of gesture velocities is another statistic
with which we can examine the correctness of output domain
shift [40]. In Figure 5, we find that our model DiffGAN
( ) is closely able to generate a velocity distribution that is
similar to the true distribution of the target domain. However,
distribution modes of MineGAN [47] and, ConsistentGAN
[37] are close to zero indicating that the generated gestures
are have very little or no movements.

Impact of Ldiff on crossmodal grounding shift In Ta-
ble 1, we observe that the removal of Ldiff from DiffGAN
reduces human preference for the gestures generated by the
model with respect to timing and relevance criteria. We
observe a similar trend in the accuracy metric L1, which
significantly worsens in Table 3. This supports our hypothe-
sis that optimizing Ldiff can improve the discovery of new
grounding relationships in a low-resource setting.

Figure 7. Impact of amount of data on crossmodal grounding shift
(i.e. PCK ↑) and output domain shift (i.e. FID ↓) in crossmodal
generative models. Note that X-Axis is logarithmic and error bars
are standard deviation over three randomly sampled training sets.

Impact of Lshift on output domain shift On the other
hand, removal of Lshift reduces correctness of the style of
generated gestures (i.e. output domain shift) as indicated
by human preference in Table 1. This is most likely due to
the adversarial component of Lshift which adapts the output
domain with the help of gesture sequences from the target
data. In parallel, FID values in Table 3 undergo the same
effect indicating that the target model does not generate a
large variety of gestures without Lshift, even though the
gestures are well-grounded in the input. We note here that
human annotators’ judgements can be strongly influenced
by the naturalness of generated gestures [48]. This is a likely
reason for decrease in preference of crossmodal grounding
metrics for DiffGAN w/o Lshift, however it is still preferred
more often than other baseline models in Table 1.

Impact of number of training examples on model ges-
ture style and grounding The amount of data has a large
part to play in generative modeling and adaptation [45, 52].
We vary the amount of training data from 30 seconds to
100 minutes in Figure 7. We observe for our model Diff-
GAN, the output domain shift and crossmodal grounding
adapts faster than all the baselines. The variance of these
metrics decreases with increasing amount of data indicates a
more stable training. Our choice of low-resource datasets is
completely random.



Which weights should be updated? For a successful low-
resource adaptation, a challenge is to select the best weights
to update. Our DiffGAN approach requires a choice of
trainable layer l and a choice of k number of channels that get
updated in each iteration. Through hyperparameter tuning,
we observe that layers closer to the output are typically able
to model a better crossmodal grounding shift as seen in
Figure 6a. The ideal choice of k is trickier. We want to
update enough parameters to model the grounding shifts, but
not so many that the model would overfit on the target data.
For our choice of pretrained source models, we conduct an
experiment with varying number of ks in Figure 6b. At
k = 0 we see a drop in performance, likely due to the
inactivity of Ldiff . At k = 64, we find the performance
saturates indicating an overfitted model. We find a balance
somewhere in the middle at k = 10.

Visualizing crossmodal grounding shift For the same
input, we probe the output spaces of the source and target
model in Figure 8. We find that distribution gestures corre-
sponding to the input can be sparse (i.e. visually different
gestures) or dense (i.e. visually similar gestures). In other
words, a verbal concept such as a greeting has a single way of
gesturing when the conditional output distribution is dense,
but has multiple possible gestures if the conditional output
distribution is sparse. As the output distribution is condi-
tioned not only on the input but also on the speaker, we
can visually observe crossmodal grounding shift in form of
expansion or contraction as we traverse from the source to
target output space.

Limitations and future work: While our method gener-
ates compelling results, it is not without limitations. Our
choice of source models were trained on a single source
domain (i.e. speaker), which may can sometimes have a
smaller overlap with the target domain. This poses a trade-
off between the complexity of the source model and the
amount of target data. Another challenge with our approach,
is that the choice of layer(s) l and k grounding shift channels
can potentially change depending on the choice of the pre-
trained model architecture. Hence, these hyperparameters
may need some tuning.

7. Conclusions

In this paper, we studied low-resource adaptation of cross-
modal generative models for gesture generation. We intro-
duced a new generative model DiffGAN, that can efficiently
address the shift in crossmodal grounding and the output
distribution from the source to target speaker with only a few
minutes of data. We benchmarked the effectiveness of our
approach on a publicly available dataset through quantitative,
qualitative and human studies. To our knowledge, this is the
first approach that is able to learn a personalized gesture
generation model with only 2 minutes of speaker data.

Figure 8. At the bottom, we display a t-SNE [30] plot of the input
space for both the target and source data. We choose a region
which contains both source and target input samples. At the top,
we display the t-SNE plots corresponding to where these samples
map to in the output space (indicated in black). On top left, similar
inputs produces a compact source output space (i.e. visually similar
gestures) but a sparse target output space (i.e. visually different
gestures). On top right, the opposite effect is observed. These
contractions and expansions of the output space conditioned on the
input space represent crossmodal grounding shift.

Broader Impact: Our work enables for low-resource gen-
eration of personalized avatar animation, which typically
requires many hours of training. It allows for the generation
of gestures for new speakers with low resources. We devel-
oped this technology to improve the naturalness of an AI
agent, which would improve human-to-AI communication
as nonverbal behavior plays a key role in communication.
These gestures in the form of skeletal keypoints alone could
not be used to fully impersonate others, but it could be mali-
ciously used to enhance the naturalness of deepfakes when
combined with other generative modeling technology. Re-
alistic deepfakes can further enable misinformation spread,
abuse and stolen identities. As a potential measure to deter
such behaviour, we release our code under an ethical license
which prevent the usage of the code by any party that support
or contribute to hate speech or false impersonation (Do No
Harm, Nonviolent Public or Hippocratic License)
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