Performance Evaluation of Quantum-Resistant TLS
for Consumer IoT Devices

Jessica Bozhko*,Yacoub Hannaf, Ricardo Harrilal-Parchment’, Samet Tonyalii, Kemal AkkayaT
*Dept. of Computer Science, Auburn University, Auburn, USA
Email: jab0245 @auburn.edu
TDept. of Electrical and Computer Engineering, Florida International University, Miami, USA
Email: {yhann002, rharr119, kakkaya}@fiu.edu
J:Dept. of Software Engineering, Gumushane University, Gumushane, Turkey
Email: samet.tonyali@ gumushane.edu.tr

Abstract—Post-quantum (PQ) cryptographic algorithms are
currently being developed to be able to resist attacks by quantum
computers. The practical use of these algorithms for securing
networks will depend on their computational and communication
efficiency. In particular, this is critical for the security of wireless
communications within the context of consumer IoT devices
that may have limited computational power and depend on a
constrained wireless bandwidth. To this end, there is a need
to evaluate the performance of widely used application layer
security standards such as transport layer security (TLS) to
understand the use of the existing PQ algorithms that are being
evaluated by NIST as a replacement to the current cryptographic
algorithms. This paper focuses on two widely used IoT standards
Bluetooth Low Energy (BLE) and WiFi to find out the optimal
performing PQ algorithm for their security when used in end-to-
end connections over the Internet. By implementing the capability
for IP over BLE and all options of TLS connection establishment,
we developed a client-server IoT testbed to measure the efficiency
of PQ key encapsulation mechanisms (KEMs) and PQ digital
signature algorithms. The test results showed that Kyber512 is
the ideal KEM while Falcon-512 and Dilithium2 are the best
signatures for BLE and WiFi devices. Based on this outcome, we
developed a mechanism for IoT devices with multiple communi-
cation interfaces, that dynamically chooses a PQ KEM algorithm
based on the MAC layer protocol being used at the time.

Index Terms—Post-Quantum Cryptography; Key Encapsula-
tion Mechanism; TLS; IoT; IP Over Bluetooth

I. INTRODUCTION

Quantum computers are predicted to be exponentially
more powerful than the computers in use today [1], which
poses many threats to existing communications security stan-
dards [2]-[4]. For example, a quantum computer could be
used to solve the elliptic curve discrete logarithm problem [5]
and the integer factorization problem [6] on which security
of elliptic curve cryptography (ECC) and RSA cryptosystem
rely, respectively. These cryptographic schemes secure almost
all electronic communications today, and any security breach
in these schemes will result in the exposure of private and per-
sonal identifying information such as usernames, passwords,
social security numbers, and credit card numbers. Fortunately,
post-quantum cryptography (PQC) algorithms designed to re-
sist attacks by quantum computers are already in the develop-
ment and testing stages. For instance, The Open Quantum Safe
(0OQS) project [7] has an open source library of algorithms that

claim to be able to provide levels of security specified by the
National Institute of Standards and Technology (NIST) [8] that
will be needed in a post-quantum world.

However, the application of these PQC algorithms still need
further evaluation to understand their feasibility, performance,
and overhead. One such area is the Internet of Things (IoT)
where devices have restrictions in terms of computation and
communication. As IoT is becoming a larger part of our
daily lives, people are starting to own more devices whose
communication relies on short-distance consumer wireless
technologies such as Bluetooth (BLE) or WiFi.

As IoT devices typically supply data to remote servers, an
end-to-end connection is becoming a de-facto use case that
relies on the availability of IP addresses for the IoT devices
to be reachable all over the world. Even in the case of BLE
which is mostly known for device-to-device communication
through pairing, (i.e., communication happens at the MAC
layer), there are increasing number of consumer cases where
BLE over IP will be needed (i.e., BLE device will use IP to
connect to any remote server). For instance, BLE is used in
a wide range of consumer applications in health, smart city,
and smart home applications on devices such as heart rate
sensors, security tags, and Fitbit. In each of these settings, the
ability to be able to send data directly to remote servers is an
important convenience for consumers. As an example, a Fitbit
BLE device may use a smartphone as a gateway to send its
measurements directly to a remote server through BLE over
IP. As such, IETF has already came up with a new standard
that will allow IPv6 over BLE [9]. This means in the future
we may see WiFi routers supporting BLE routing capability
to enable any BLE device to connect Internet through them
without a need for a separate gateway.

However, since these IoT devices must securely commu-
nicate with each other and other remote servers, they use
the same cryptographic standards as regular computers. When
establishing end-to-end connections through IP, standards such
as transport layer security protocol (TLS) or its UDP version
DTLS utilize certain cryptographic algorithms such as RSA
or ECC. This means that they will also be vulnerable in a
post-quantum world that utilizes TLS for IoT-based wireless
communications through BLE or WiFi. Therefore, it is impor-

tant to establish quantum-resistant cryptographic standards for
securing all forms of communications for IoT devices.

To this end, in this paper, we evaluate the efficiency of PQC
algorithms for consumer IoT devices when they establish a
TLS connection which is the current standard on the Internet
for any secure communication (i.e., https). In this setup, cryp-
tography is not only used for signatures on the certificates but
also for agreeing on a symmetric key. Therefore, a thorough
evaluation is needed to measure the overhead when IP over
BLE is started to be deployed, determine the best performing
PQC algorithms and dynamically choose the best option based
on the underlying wireless channel context.

For our evaluations, we chose to gather data on PQC
algorithms currently considered by NIST [8] over a BLE or
WiFi-based TLS connection. This end-to-end connection is
created by a Raspberry Pi as a client and a personal laptop
computer as a server. We measured the performance of both
the key encapsulation mechanisms (KEMs) and the digital
signature algorithms in TLS handshake and compared the
performance of BLE and WiFi.

Experiment results showed that the underlying wireless
connection used affects the performance significantly for both
KEM and digital signatures. For instance, Kyber512 is an
ideal KEM for BLE but for WiFi Dilithium2 can also be a
viable option. Based on this result, we propose a dynamic
KEM-switching mechanism within TLS in which an IoT client
device determines what KEM algorithm it should choose that
would be the most suitable for its underlying MAC layer.

This paper is organized as follows: In the next section,
we summarize the related work. Section III provides some
background on the used concepts while Section IV presents
the IP over BLE model along with two TLS approaches.
In Section V, we assess the performance, present a KEM-
switching mechanism and evaluates its effects on the TLS
handshake protocol. Lastly, Section VI concludes the paper.

II. RELATED WORK

Some recent works also focus on the implementation of
post-quantum algorithms over an IoT environment. The main
work presented in this context [10] focuses on the perfor-
mances of select PQ algorithms over a long-range connection
and implements a similar approach in using two Raspberry Pi’s
to simulate IoT devices and to test the connection efficiency of
PQ algorithms over long-range communications. Our goal in
this work differs in that it deals with testing the efficiency of
PQ algorithms for an end-to-end TLS connection that utilizes
short-range wireless connections.

An empirical study [11] evaluates the efficiency of several
PQ KEM and digital signature algorithms of the NIST’s stan-
dardization process. The paper considers an IoT environment
composed of a Raspberry Pi and an AWS server. In the
experiments, the Raspberry Pi and the AWS server exchange
messages to establish a TLS connection using Ethernet. La-
tency and message overhead of TLS handshakes are used as
performance metrics. Our work differs from this study in the
technology stacks (i.e., BLE) that we use.

A comprehensive study [12] integrates and evaluates Kyber
and SPHINCS+ on embedded systems using mbed TLS. First,
runtime of key generation, encryption, decryption, signing, and
verification operations for the algorithms is measured on the
platforms. Then, the algorithms are integrated into mbed TLS
library, and TLS handshake performance of the platforms is
measured in terms of runtime and message overhead. However,
the platforms operate on either Ethernet, WiFi, or both, but
none of them supports Bluetooth which is a very common
IoT network connectivity technology. Also, the study considers
only Kyber and SPHINCS+ whereas our study focuses on
multiple PQ KEM and digital signature algorithms.

Although NIST has decided not to advance the NTRU a re-
cent study [13] adapts it to IoT edge devices running Contiki-
NG operating system. Performance of key pair generation,
encryption, decryption, encapsulation, and decapsulation is
measured in terms of time, stack usage, average power, and
consumed energy. However, no information is given about
the communication medium and protocol. In addition, digital
signatures are not in the scope of the study at all.

Another closely related work is reported in [14], where
the efficiency of PQ KEM algorithms are considered for
securing IoT sensor devices. This work differs from ours
as its main focus is on evaluating KEM schemes instead of
signature algorithms, and uses a slightly different pool of KEM
algorithms than we do. The authors are also concerned with
the RAM and CPU usage of the devices themselves whereas
we are concerned with the network traffic and overhead of the
PQ algorithms.

III. BACKGROUND
A. Transport Layer Security (TLS) Handshake

The TLS handshake is a series of messages between a server
and a client machine that establish trust between the two
parties and decide upon a shared secret key to encrypt their
communications. Fig. 1 shows the steps of the TLS handshake
process. TLS supports two approaches to establish this key: 1)
Diffie-Hellman (DH) key exchange, and 2) Key Encapsulation
Mechanism (KEM). Note that in both cases, digital certificates
for sharing public keys are exchanged as will be detailed in

the next subsection.
r o) M
Client Hello
| ClientKeyShare

Server Hello
ServerKeyShare

ChangeCipherSpec
Server Cert
Certificate Verify
Finished

‘ Client

TLS A{
Handshake

(Client ChangeCipherSpec |
Finished

(- L)
: /T. - Lr i
Encrypted_ { : < Application Data \/> :
Communication N e 4

Fig. 1. TLS Handshake Messages
Security of the DH key exchange process relies on the dis-
crete logarithm problem, in which two parties utilize randomly

generated private numbers to establish a shared secret key (the
session key), whereas the KEM approach leverages public-key
cryptography to exchange the session key between parties [7].
Fig. 2 lists the steps of Elliptic-Curve (EC) DH key exchange
which is one of the variations of DH, and Fig. 3 shows the
steps of KEM.

Private keys randomly generated

)

Alice Bob

Public keys generated from point operations
involving private keys and elliptic curve

=
o

:,
O

Alice Bob

Public keys exchanged,
shared secret generated

Ho-
|
|

Begin encrypted communication
using shared secret

|
Qne

Alice Bob

Alice b

Fig. 2. Steps of Elliptic-Curve Diffie-Hellman Key Exchange

A randomly
generates
symmetric key

?, | (7R,

Aencrypts symmetric key

using KEM algorithm B decrypts symmetic

key with KEM algorithm

Encrypted communication using

A sends encrypted
keyto B ? symmetric key
@
: ? A B

Fig. 3. Steps of Key Encapsulation Management (KEM)

B. Public Key Certificates and Mutual Authentication in TLS

A public key certificate is a digitally signed document that
verifies to the recipient of a public key that the owner is
legitimate. A certificate can be issued by a trusted organization
that issues certificates, known as a Certificate Authority (CA).
As can be seen in Fig. 1, in TLS only the server must send
the client a certificate to verify its identity and public key (i.e.,
authenticate itself) to the client. However, optionally the client
can send its certificate to the server as well in a process called
mutual authentication.

C. Post-Quantum Algorithms

With the emergence of quantum computing, Shor’s algo-
rithm shows us that the commonly used discrete logarithm and
integer factorization problems are relatively easy for a quan-
tum computer to break. Hence, post-quantum cryptography
aims to construct public-key cryptosystems that are believed
to be secure even against quantum computers [7]. These
approaches use a variety of mathematical functions, including
lattice problems, zero-knowledge proofs, and learning with
error problems.

The three signature scheme families (Dilithium, Falcon, and
SPHINCS+) and one of the KEM scheme families (Kyber) that
will be evaluated in our paper have been recently selected by
NIST as its first four choices of post-quantum algorithms to be
standardized in the future [15]. In addition to the new NIST

standards, our assessment also includes the performance of
additional KEM schemes: the NTRU_hps and Saber families
of algorithms.

D. IP over BLE

There is no defined standard for IPv4 over BLE; the two
technologies are normally incompatible, however, there have
been some efforts such as RFC7668 [9] to establish a standard
for running IP over BLE, though no official standard has been
adopted as yet. 6LowPAN is utilized to reduce the header size
of IPv6 packets.

IV. APPROACHES FOR TLS OVER BLE
A. Establishing IPv4 Over BLE Connections

While building a TLS over a WiFi-enabled connection is
well-known and widely used, this is not the case for BLE
since it is known for its deployment among two paired devices
with its own BLE protocol stack. Therefore, the first challenge
was to build an IP network by utilizing BLE as the link layer
(layer 2) so that eventually this connection will get you to
any machine in the world with an IP address. It is important
to note that this will require assuming a gateway device (i.e.,
replacing the Access Point concept in WiFi) where the BLE
device gets connected. As an example, a mobile phone can act
as a device that will forward any BLE connection to itself to
the rest of the Internet.

Since most of the existing efforts focused on IPv6 over BLE,
we resort to a fairly simple method of running IPv4 over BLE
by leveraging tools available on Linux. Linux uses the Bluez
Bluetooth stack, which possesses some APIs allowing it to
manipulate the traffic/operation with some flexibility. Using
the tools through Bluez in conjunction with a virtual network
interface created on both the client and server devices, we
redirected IPv4 packets passed to the virtual Ethernet interface
through a BLE physical interface.

In addition, we propose to host a DHCP server on the
gateway device to issue IP addresses to connecting devices for
the BLE interface, and this command includes the issuance of
an IP address to the connecting IoT device. Note that a mobile
phone acting as a gateway can also support DHCP services.
We need this IP connectivity between the devices as TLS
relies on underlying IP-based communication to complete the
connection. Assigning IP addresses to the IoT device allows it
to contact the gateway and send/receive data over the network
using TLS.

After establishing an IP over the BLE network, the next step
is using open-source quantum-resistant algorithms (e.g., Open
Quantum Safe library of libogs) to enable a TLS connection.
Since TLS is also available through open source tools such
as OpenSSL, a TLS handshake can be separately created for
only assessment purposes (i.e., the machines do not transmit
any application data).

The handshakes in TLS may use two different approaches,
one using only the PQ signature schemes with ECDH key
exchange, and the other using the PQ signature schemes in
tandem with PQ KEM schemes.

B. First Approach - ECDH Based Key Exchange

The first approach involves using PQ-signed certificates and
ECDH for key exchange. In ECDH, both parties randomly
generate their own private key and use it for point operations
on a specified elliptic curve to generate a public key. The
public keys are shared between the two parties, who then
conduct more point operations on the same curve in order to
arrive at the same point, known as the shared secret, which is
used to encrypt and decrypt communications between the two
parties. The X25519 elliptic curve is used over the P256 curve
in this approach because X25519 requires less processing
power than P256 [16], making it useful to consider for the
devices with limited processing resources such as IoT.

For our tests, the post-quantum signature algorithms are
used to sign self-signed certificates (as opposed to RSA or
ECDSA) verifying the identity of the server (and client if
mutual authentication is required). The server machine sends
its certificate to the client during the TLS handshake, after
which the client needs to verify the PQ-signature of the
certificate to validate the authenticity of the server. We assume
that the PQ public key of the CA will be available at the client
(i.e., as part of the browsers).

C. Second Approach - PQ Key Encapsulation Mechanism

The second approach also involves PQ self-signed certifi-
cates but uses PQ KEM schemes for key exchange. KEM
involves one party randomly generating a secret key, then
encrypting it with the KEM algorithm. The first party then
sends the encrypted key to the second party, and the second
party then uses the same KEM algorithm to decrypt it. Once
the secret key has been shared with the second party, both
parties can use it to securely encrypt their communications.

In the first approach, only the signature of the server’s
certificate uses PQ-cryptography, and the keys that encrypt
the communications use the standard ECDH approach for
key exchange, where both parties individually generate a
shared secret key based on mathematical computations on an
elliptic curve. The approach of combining post-quantum KEM
and signature schemes instead uses key encapsulation, where
both machines send the other a secret key encrypted by the
destination machine’s public key.

V. PERFORMANCE EVALUATION
A. Implementation and Experiment Setup

In order to evaluate the performance of post-quantum algo-
rithms, we set up a testbed and performed various tests.
Hardware and Software: We used a Raspberry Pi 4 and
a laptop to simulate a connection between IoT devices on
a Bluetooth network by using an IP-over-BLE connection.
The Raspberry Pi 4 used in this experiment has 4GB RAM,
Bluetooth 5.0 and BLE capabilities, and a 1.8GHz ARM
processor. The laptop used in this experiment runs Ubuntu
20.04 and has 8GB RAM, Bluetooth 5.0, and a 1.8GHz Intel
i5 8" gen. processor.

In order to use post-quantum algorithms over a TLS connec-
tion between a client and server machine, first libogs must be

downloaded and built from the official GitHub repository on
both machines. To install libogs on the laptop, the commands
outlined in the README of the OpenSSL 1_1_1 fork [17]
can be followed. However, the Raspberry Pi requires cross-
compilation due to its ARM processor.

The Pi obtained an IP address over the network and used
this address to identify itself and send/receive data over the
network. OpenSSL was then used to establish a server and
a client on this Bluetooth network, and to send a series of
consecutive TLS handshake messages between the client (Pi)
and the server (laptop). During the transmission of the data
by s_time, the data packets containing the TLS handshake
messages were recorded using Wireshark to determine the total
wall-clock time per run, and then analyze to determine the
most effective PQ algorithm for use in a Bluetooth-connected
environment. Note that this setup can be reproduced on any
machine that can use OpenSSL, including typical Windows,
Mac, or Linux machines. R

Fig. 4 illustrates the setup @Ea
that we propose in simulat- wiri 9

hotspot

ing the IoT environment. In o ~—
this setup, the Pi simulates an ~— i (tom) Bluetooth
P’ \/ sonom Network

IoT device that connects to e,
3 3 L
the laptop, \yhlch simulates a A~ o
server machine. The connec- %\\ é

tions are conducted at a set
distance of 30 feet (10 me-
ters) between the machines to
better highlight the differences between Bluetooth and WiFi
performance.

Raspberry Pid

Fig. 4. Testbed Implementation.

IP Connections: Initially, we configured the laptop as a
Network Access Point (NAP), and bind the interface to the
Bluetooth radio. This is made possible through the use of an
open-source Linux software package called bluez-tools [18].
Bluez-tools provides some additional scripts, commands, and
tools which implement various aspects of the Bluez API, with
the goal of simplifying working with Bluez - the official Linux
Bluetooth protocol stack [19]. The Raspberry Pi is then paired
with the laptop over Bluetooth to establish a BLE network, and
IP connectivity is established.

The WiFi approach was implemented by using the built-
in “WiFi hotspot” functionality of the laptop to enable a
direct wireless connection between the Pi and laptop for a fair
comparison with BLE. It followed the same steps as above for
data collection.

Measuring the Connection Speed: To measure the connection
speed of each algorithm, we set s_time to be run for 30 seconds
per algorithm while the connection is recorded with the use
of Wireshark. Since s_time displays user time instead of wall-
clock time, the built-in timer in Wireshark is used to record the
actual runtime of each s_time run. This time is then divided
by the number of connections displayed by s_time, which
provides us with the average time in seconds it takes each
PQ algorithm to complete one connection.

B. Metrics and Baselines

We ran tests to analyze the connection speed of each post-
quantum algorithm that was being considered. The main metric
we are concerned about is how quickly the TLS handshakes
can be conducted (i.e., TLS Handshake delay) using these
algorithms over a BLE or WiFi network.

As a baseline for comparison to the PQ algorithms, we
recorded data for connections using the current standards such
as RSA and ECDSA. Also, we used WiFi as a benchmark to
compare against since it offers a higher bandwidth.

C. PQ Signature Schemes with ECDH Performance Results

This section details the performances of post-quantum sig-
nature schemes when paired with ECDH Exchange along with
their signature sizes. Table I lists the performance results for
each PQ signature algorithm over BLE connection, with WiFi
connection performance and the standard signature schemes
RSA and ECDSA included as baselines for comparison.

TABLE I
TLS HANDSHAKE DELAY OF ECDH WITH DIFFERENT SIGNATURES (MS)
Signature Scheme Signature Size | Bluetooth | WiFi
RSA 2048 bits 69.4 12.2
ECDSA 576 bits 59.9 8.7
Dilithium2 19360 bits 123.3 10.6
Dilithium3 26344 bits 150.3 12.3
Dilithium5 36760 bits 180.4 14.7
Falcon-512 5328 bits 78.7 10.2
Falcon-1024 10240 bits 104.1 12.1
SPHINCS+ Haraka 136704 bits 484.6 88.4
SPHINCS+ SHA 136704 bits 509.5 56.5
SPHINCS+ SHAKE 136704 bits 695.9 286.3

The results indicate that the Falcon-512 signature scheme is
the fastest over a Bluetooth connection, with speeds closer to
the baseline than any of the other chosen signature schemes.
Over WiFi, however, Dilithium?2 also shows comparable per-
formance to the baseline results. It is likely that the perfor-
mance of Dilithium2 decreased over BLE since the Dilithium
family of signature schemes have a larger signature size than
Falcon [17]. This would cause some extra delay in a lower-
bandwidth environment like Bluetooth because the larger the
signature size, the more time it requires to transmit the
certificate. The SPHINCS+ signature schemes performed the
worst over both BLE and WiFi due to delay incurred by their
massive signature sizes.

An interesting observation here is among Dilithium2 and
Falcon-512. We see that when the signature size is increasing,
this has a major impact on lower bandwidth connections
such as BLE. However, this is not the case with WiFi. Even
though the signature size of Dilithium?2 is almost 4 times more
than Falcon-512, the delays for BLE and WiFi are still very
close to each other (i.e., 10.6 vs 10.2 ms). This suggests that
Falcon-512 requires more computation during the verification
process. In other words, there are additional computational

delays. Nevertheless, this is about the machine speed, not the
connection. Therefore, signature size by itself should not be
the sole indicator when selecting a PQ algorithm. Depending
on the security level provided, higher bandwidth connections
can afford bigger signature sizes. For BLE-like connections
both the signature size and computation time are important.

TABLE II
TLS HANDSHAKE DELAY FOR SIGNATURE AND KEM SCHEMES (MSECS)
. KEM Algorithm
Signature
Kyber512 | Kyber768 | Kyber1024

RSA-WF 12.6 12.9 14.1
RSA-BT 83.6 94.6 113.6
ECDSA-WF 9.4 10.0 11.7
ECDSA-BT 71.8 76.6 91.9
Dilithium2-WF 114 11.6 12.1
Dilithium2-BT 1354 1574 167.8
Dilithium3-WF 12.6 14.1 14.5
Dilithium3-BT 162.4 180.1 188.8
Dilithium5-WF 154 16.6 17.0
Dilithium5-BT 197.1 218.3 221.7
Falcon-512-WF 10.7 11.2 12.0
Falcon-512-BT 92.9 100.5 116.8
Falcon-1024-WF 114 114 12.1
Falcon-1024-BT 1194 127.5 133.0
S+ Haraka-WF 89.7 90.6 91.6
S+ Haraka-BT 495.8 514.7 523.2
S+ SHA-WF 58.5 59.3 63.8
S+ SHA-BT 535.2 550.3 568.6
S+ SHAKE-WF 288.2 289.7 292.0
S+ SHAKE-BT 684.9 725.1 740.5

D. PQ Signature and KEM Schemes Performance Results

Our second experiment assessed the performances of PQ
signature and KEM schemes, where a PQ signature included
in a certificate sent in a TLS handshake that used PQ KEM for
key exchange. Table II displays the average connection delays
for combinations of PQ signature and KEM schemes over
BLE (abbreviated BT), and the same over WiFi (abbreviated
WF). SPHINCS+ is abbreviated as S+ in Table II for layout
purposes.

First of all, it is important to note that due to the added
complexity of the PQ key management schemes, all combi-
nations showed slightly worse performance than using ECDH
key exchange. The gap is higher with BLE. We can see that
there is at least 10% delay increase which shows that for BLE
like connections ECDH solutions could be preferred.

Among KEMs, we found that Falcon-512 was consistently
the fastest signature scheme, followed by Falcon-1024 and
Dilithium?2. Across both WiFi and BLE, the combination with
the fastest overall performance was Falcon-512 combined with
Kyber512. Combinations including any of the SPHINCS+
signature schemes performed least favorably, with each con-
sistently having a connection delay of over half a second
over BLE and over two-tenths of a second over WiFi. The
relatively massive delay seen with the SPHINCS+ family is

attributable to their very large signature sizes [17] causing lag
in the limited-bandwidth environment of the BLE network,
and to a less pronounced extent in the higher-bandwidth WiFi
connections.

To summarize, in every case, BLE connections were much
slower than WiFi connections but the most interesting point
is that the Falcon family performs almost as well as RSA
or ECDSA for both WiFi and BLE which makes it the top
candidate for standardization for IoT applications.

E. Evaluation of Mutual Authentication

As it is possible for the client to send a certificate to
the server as well (i.e., mutual authentication), we also per-
formed some experiments to assess the overhead in this case
compared to the single authentication approach. Since the
logical outcome was that mutual authentication would increase
the overhead further, we only selected the top candidates;
Dilithium2 and Falcon-512 from the previous results to display
this trend. The results are shown in Table II.

TABLE III
TLS DELAY WITH MUTUAL AUTHENTICATION (MSECS)
Signature ECDH Kyber512 | Kyber768 | Kyber1024

No KEM KEM KEM KEM
Falcon512-WF 30.6 31.1 322 33.2
Falcon512-BT 187.2 192.2 198.7 204.3
Dilithium2-WF 16.9 17.2 17.3 18.8
Dilithium2-BT 256.6 279.8 287.6 285.9

As can be logically assumed due to the extra certificate
transmission and verification required, all cases of mutual
authentication produced average results slower than the perfor-
mances of single authentication in Table II. As an example, we
will compare the differences in latency of Falcon-512. Over
WiFi, Falcon-512 combined with Kyber512 had an average
latency of 10.7ms with single authentication, but 31.1ms with
mutual authentication (i.e., tripled). Over BLE, the difference
is almost doubled; with average latency being 92.9ms using
single authentication and 192.2ms with mutual authentication.

However, there is another interesting observation here that
is consistent with our findings in Section V.D. The mutual au-
thentication impacted Falcon512 much more than Diltihium2.
If we look at Dilithim2 results with WiFi for Kyber512, the
delay is 17.2ms compared to 11.4ms when we had single au-
thentication. This means that the signature verification process
in Falcon512 is much higher, and thus, it makes Dilithium2
a better alternative for WiFi if mutual authentication is to be
applied.

VI. CONCLUSION

In this paper, we assessed the feasibility of various PQ
algorithms for use in an IoT environment that uses wireless
connections such as BLE and WiFi. The experiment results
indicate that the signature schemes Falcon-512 and Falcon-
1024 are generally the fastest in a BLE environment, regardless
of being combined with ECDH or a PQ KEM scheme. The
best overall performance over the BLE network was the
combination of a Falcon-512 signature with Kyber512 for
KEM. Surprisingly, Dilithium2 and Falcon-512 outperformed

RSA over the WiFi connection, although this was not the case
at all over Bluetooth. Dilithium2 and Falcon-512 proved to
be the fastest signature schemes, and Kyber512 was the most
efficient KEM scheme over WiFi.

ACKNOWLEDGMENT

This work is supported by the US NSF under the grant
numbers CNS 2150248 and RINGS 2147196.

REFERENCES

[1] E. Knill, “Quantum computing,” Nature, vol. 463, no. 7280, pp. 441—
443, 2010.

[2] A. Ekert and R. Jozsa, “Quantum computation and shor’s factoring
algorithm,” Reviews of Modern Physics, vol. 68, no. 3, p. 733, 1996.

[3] Y. I. Manin, “Classical computing, quantum computing, and shor’s
factoring algorithm,” Asterisque-Societe Mathematique De France, vol.
266, pp. 375-404, 2000.

[4] A. Mandviwalla, K. Ohshiro, and B. Ji, “Implementing grover’s al-
gorithm on the ibm quantum computers,” in 2018 IEEE international
conference on big data (big data). IEEE, 2018, pp. 2531-2537.

[5] H. T. Larasati and H. Kim, “Quantum cryptanalysis landscape of shor’s
algorithm for elliptic curve discrete logarithm problem,” in International
Conference on Information Security Applications. Springer, 2021, pp.
91-104.

[6] F. de Lima Marquezino, R. Portugal, and C. Lavor, “Shor’s algorithm
for integer factorization,” in A primer on quantum computing. Springer,
2019, pp. 57-717.

[7]1 D. Stebila and M. Mosca, “Post-quantum key exchange for the internet
and the open quantum safe project,” in International Conference on
Selected Areas in Cryptography. Springer, 2016, pp. 14-37. [Online].
Available: https://www.mdpi.com/1424-8220/22/2/489/htm

[8] National Institute of Standards & Technology,
quantum cryptography,” Jul. 22, 2022. [Online].
https://csrc.nist.gov/Projects/post-quantum-cryptography

[9] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby, and
C. Gomez, “Rfc 7668-ipv6 over bluetooth low energy,” IETF: Fremont,
CA, USA, 2015.

[10] R. Hernandez and Y. Hanna, “Quantum resistant cryptography over
lora,” 2021, unpublished.

[11] C.-C. Chung, C.-C. Pai, E.-S. Ching, C. Wang, and L.-J. Chen, “When
post-quantum cryptography meets the internet of things: an empirical
study,” in Proceedings of the 20th Annual International Conference on
Mobile Systems, Applications and Services, 2022, pp. 525-526.

[12] K. Biirstinghaus-Steinbach, C. Krauf}, R. Niederhagen, and M. Schnei-
der, “Post-quantum tls on embedded systems: Integrating and evaluating
kyber and sphincs+ with mbed tls,” in Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security, 2020, pp.
841-852.

[13] J. Sefior, J. Portilla, and G. Mujica, “Analysis of the ntru post-quantum
cryptographic scheme in constrained iot edge devices,” IEEE Internet of
Things Journal, 2022.

[14] J.-A. Septien-Hernandez, M. Arellano-Vazquez, M. A. Contreras-
Cruz, and J.-P. Ramirez-Paredes, “A comparative study of post-
quantum cryptosystems for internet-of-things applications,” Sensors,
vol. 22, no. 2, 2022. [Online]. Available: https://www.mdpi.com/1424-
8220/22/2/489

[15] National Institute of Standards & Technology, “Nist announces first
four quantum-resistant cryptographic algorithms,” Jul. 5, 2022. [On-
line]. Available: https://www.nist.gov/news-events/news/2022/07/nist-
announces-first-four-quantum-resistant-cryptographic-algorithms

[16] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in
Public Key Cryptography - PKC 2006, M. Yung, Y. Dodis, A. Kiayias,
and T. Malkin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 207-228.

[17] “Oqgs-openssl_1_1_1," Feb

“Post-
Available:

_1_1_ 2022. [Online].
https://github.com/open-quantum-safe/openssl/blob/OQS-
OpenSSL_1_1_1-stable/README.md

[18] A. Orlenko, “Khvzak/bluez-tools: A set of tools to manage bluetooth
devices for linux.” [Online]. Available: https://github.com/khvzak/bluez-
tools

[19] “Bluez about.” [Online]. Available: http://www.bluez.org/about/

Available:

