
Performance Evaluation of Quantum-Resistant TLS

for Consumer IoT Devices

Jessica Bozhko∗,Yacoub Hanna†, Ricardo Harrilal-Parchment†, Samet Tonyali‡, Kemal Akkaya†

∗Dept. of Computer Science, Auburn University, Auburn, USA

Email: jab0245@auburn.edu
†Dept. of Electrical and Computer Engineering, Florida International University, Miami, USA

Email: {yhann002, rharr119, kakkaya}@fiu.edu
‡Dept. of Software Engineering, Gumushane University, Gumushane, Turkey

Email: samet.tonyali@gumushane.edu.tr

AbstractÐPost-quantum (PQ) cryptographic algorithms are
currently being developed to be able to resist attacks by quantum
computers. The practical use of these algorithms for securing
networks will depend on their computational and communication
efficiency. In particular, this is critical for the security of wireless
communications within the context of consumer IoT devices
that may have limited computational power and depend on a
constrained wireless bandwidth. To this end, there is a need
to evaluate the performance of widely used application layer
security standards such as transport layer security (TLS) to
understand the use of the existing PQ algorithms that are being
evaluated by NIST as a replacement to the current cryptographic
algorithms. This paper focuses on two widely used IoT standards
Bluetooth Low Energy (BLE) and WiFi to find out the optimal
performing PQ algorithm for their security when used in end-to-
end connections over the Internet. By implementing the capability
for IP over BLE and all options of TLS connection establishment,
we developed a client-server IoT testbed to measure the efficiency
of PQ key encapsulation mechanisms (KEMs) and PQ digital
signature algorithms. The test results showed that Kyber512 is
the ideal KEM while Falcon-512 and Dilithium2 are the best
signatures for BLE and WiFi devices. Based on this outcome, we
developed a mechanism for IoT devices with multiple communi-
cation interfaces, that dynamically chooses a PQ KEM algorithm
based on the MAC layer protocol being used at the time.

Index TermsÐPost-Quantum Cryptography; Key Encapsula-
tion Mechanism; TLS; IoT; IP Over Bluetooth

I. INTRODUCTION

Quantum computers are predicted to be exponentially

more powerful than the computers in use today [1], which

poses many threats to existing communications security stan-

dards [2]±[4]. For example, a quantum computer could be

used to solve the elliptic curve discrete logarithm problem [5]

and the integer factorization problem [6] on which security

of elliptic curve cryptography (ECC) and RSA cryptosystem

rely, respectively. These cryptographic schemes secure almost

all electronic communications today, and any security breach

in these schemes will result in the exposure of private and per-

sonal identifying information such as usernames, passwords,

social security numbers, and credit card numbers. Fortunately,

post-quantum cryptography (PQC) algorithms designed to re-

sist attacks by quantum computers are already in the develop-

ment and testing stages. For instance, The Open Quantum Safe

(OQS) project [7] has an open source library of algorithms that

claim to be able to provide levels of security specified by the

National Institute of Standards and Technology (NIST) [8] that

will be needed in a post-quantum world.

However, the application of these PQC algorithms still need

further evaluation to understand their feasibility, performance,

and overhead. One such area is the Internet of Things (IoT)

where devices have restrictions in terms of computation and

communication. As IoT is becoming a larger part of our

daily lives, people are starting to own more devices whose

communication relies on short-distance consumer wireless

technologies such as Bluetooth (BLE) or WiFi.

As IoT devices typically supply data to remote servers, an

end-to-end connection is becoming a de-facto use case that

relies on the availability of IP addresses for the IoT devices

to be reachable all over the world. Even in the case of BLE

which is mostly known for device-to-device communication

through pairing, (i.e., communication happens at the MAC

layer), there are increasing number of consumer cases where

BLE over IP will be needed (i.e., BLE device will use IP to

connect to any remote server). For instance, BLE is used in

a wide range of consumer applications in health, smart city,

and smart home applications on devices such as heart rate

sensors, security tags, and Fitbit. In each of these settings, the

ability to be able to send data directly to remote servers is an

important convenience for consumers. As an example, a Fitbit

BLE device may use a smartphone as a gateway to send its

measurements directly to a remote server through BLE over

IP. As such, IETF has already came up with a new standard

that will allow IPv6 over BLE [9]. This means in the future

we may see WiFi routers supporting BLE routing capability

to enable any BLE device to connect Internet through them

without a need for a separate gateway.

However, since these IoT devices must securely commu-

nicate with each other and other remote servers, they use

the same cryptographic standards as regular computers. When

establishing end-to-end connections through IP, standards such

as transport layer security protocol (TLS) or its UDP version

DTLS utilize certain cryptographic algorithms such as RSA

or ECC. This means that they will also be vulnerable in a

post-quantum world that utilizes TLS for IoT-based wireless

communications through BLE or WiFi. Therefore, it is impor-



tant to establish quantum-resistant cryptographic standards for

securing all forms of communications for IoT devices.

To this end, in this paper, we evaluate the efficiency of PQC

algorithms for consumer IoT devices when they establish a

TLS connection which is the current standard on the Internet

for any secure communication (i.e., https). In this setup, cryp-

tography is not only used for signatures on the certificates but

also for agreeing on a symmetric key. Therefore, a thorough

evaluation is needed to measure the overhead when IP over

BLE is started to be deployed, determine the best performing

PQC algorithms and dynamically choose the best option based

on the underlying wireless channel context.

For our evaluations, we chose to gather data on PQC

algorithms currently considered by NIST [8] over a BLE or

WiFi-based TLS connection. This end-to-end connection is

created by a Raspberry Pi as a client and a personal laptop

computer as a server. We measured the performance of both

the key encapsulation mechanisms (KEMs) and the digital

signature algorithms in TLS handshake and compared the

performance of BLE and WiFi.

Experiment results showed that the underlying wireless

connection used affects the performance significantly for both

KEM and digital signatures. For instance, Kyber512 is an

ideal KEM for BLE but for WiFi Dilithium2 can also be a

viable option. Based on this result, we propose a dynamic

KEM-switching mechanism within TLS in which an IoT client

device determines what KEM algorithm it should choose that

would be the most suitable for its underlying MAC layer.

This paper is organized as follows: In the next section,

we summarize the related work. Section III provides some

background on the used concepts while Section IV presents

the IP over BLE model along with two TLS approaches.

In Section V, we assess the performance, present a KEM-

switching mechanism and evaluates its effects on the TLS

handshake protocol. Lastly, Section VI concludes the paper.

II. RELATED WORK

Some recent works also focus on the implementation of

post-quantum algorithms over an IoT environment. The main

work presented in this context [10] focuses on the perfor-

mances of select PQ algorithms over a long-range connection

and implements a similar approach in using two Raspberry Pi’s

to simulate IoT devices and to test the connection efficiency of

PQ algorithms over long-range communications. Our goal in

this work differs in that it deals with testing the efficiency of

PQ algorithms for an end-to-end TLS connection that utilizes

short-range wireless connections.

An empirical study [11] evaluates the efficiency of several

PQ KEM and digital signature algorithms of the NIST’s stan-

dardization process. The paper considers an IoT environment

composed of a Raspberry Pi and an AWS server. In the

experiments, the Raspberry Pi and the AWS server exchange

messages to establish a TLS connection using Ethernet. La-

tency and message overhead of TLS handshakes are used as

performance metrics. Our work differs from this study in the

technology stacks (i.e., BLE) that we use.

A comprehensive study [12] integrates and evaluates Kyber

and SPHINCS+ on embedded systems using mbed TLS. First,

runtime of key generation, encryption, decryption, signing, and

verification operations for the algorithms is measured on the

platforms. Then, the algorithms are integrated into mbed TLS

library, and TLS handshake performance of the platforms is

measured in terms of runtime and message overhead. However,

the platforms operate on either Ethernet, WiFi, or both, but

none of them supports Bluetooth which is a very common

IoT network connectivity technology. Also, the study considers

only Kyber and SPHINCS+ whereas our study focuses on

multiple PQ KEM and digital signature algorithms.

Although NIST has decided not to advance the NTRU a re-

cent study [13] adapts it to IoT edge devices running Contiki-

NG operating system. Performance of key pair generation,

encryption, decryption, encapsulation, and decapsulation is

measured in terms of time, stack usage, average power, and

consumed energy. However, no information is given about

the communication medium and protocol. In addition, digital

signatures are not in the scope of the study at all.

Another closely related work is reported in [14], where

the efficiency of PQ KEM algorithms are considered for

securing IoT sensor devices. This work differs from ours

as its main focus is on evaluating KEM schemes instead of

signature algorithms, and uses a slightly different pool of KEM

algorithms than we do. The authors are also concerned with

the RAM and CPU usage of the devices themselves whereas

we are concerned with the network traffic and overhead of the

PQ algorithms.

III. BACKGROUND

A. Transport Layer Security (TLS) Handshake

The TLS handshake is a series of messages between a server

and a client machine that establish trust between the two

parties and decide upon a shared secret key to encrypt their

communications. Fig. 1 shows the steps of the TLS handshake

process. TLS supports two approaches to establish this key: 1)

Diffie-Hellman (DH) key exchange, and 2) Key Encapsulation

Mechanism (KEM). Note that in both cases, digital certificates

for sharing public keys are exchanged as will be detailed in

the next subsection.

Client Server

Server Hello  
ServerKeyShare

ChangeCipherSpec 
Server Cert 

Certificate Verify 
Finished 

Client ChangeCipherSpec 
Finished 

Client Hello  
ClientKeyShare

TLS
Handshake

Encrypted 
Communication Application Data

Fig. 1. TLS Handshake Messages

Security of the DH key exchange process relies on the dis-

crete logarithm problem, in which two parties utilize randomly



generated private numbers to establish a shared secret key (the

session key), whereas the KEM approach leverages public-key

cryptography to exchange the session key between parties [7].

Fig. 2 lists the steps of Elliptic-Curve (EC) DH key exchange

which is one of the variations of DH, and Fig. 3 shows the

steps of KEM.

BobAlice

Private keys randomly generated

Alice Bob

Public keys generated from point operations
involving private keys and elliptic curve

BobAlice

Public keys exchanged,
shared secret generated Begin encrypted communication

using shared secret

Alice Bob

Fig. 2. Steps of Elliptic-Curve Diffie-Hellman Key Exchange

Fig. 3. Steps of Key Encapsulation Management (KEM)

B. Public Key Certificates and Mutual Authentication in TLS

A public key certificate is a digitally signed document that

verifies to the recipient of a public key that the owner is

legitimate. A certificate can be issued by a trusted organization

that issues certificates, known as a Certificate Authority (CA).

As can be seen in Fig. 1, in TLS only the server must send

the client a certificate to verify its identity and public key (i.e.,

authenticate itself) to the client. However, optionally the client

can send its certificate to the server as well in a process called

mutual authentication.

C. Post-Quantum Algorithms

With the emergence of quantum computing, Shor’s algo-

rithm shows us that the commonly used discrete logarithm and

integer factorization problems are relatively easy for a quan-

tum computer to break. Hence, post-quantum cryptography

aims to construct public-key cryptosystems that are believed

to be secure even against quantum computers [7]. These

approaches use a variety of mathematical functions, including

lattice problems, zero-knowledge proofs, and learning with

error problems.

The three signature scheme families (Dilithium, Falcon, and

SPHINCS+) and one of the KEM scheme families (Kyber) that

will be evaluated in our paper have been recently selected by

NIST as its first four choices of post-quantum algorithms to be

standardized in the future [15]. In addition to the new NIST

standards, our assessment also includes the performance of

additional KEM schemes: the NTRU hps and Saber families

of algorithms.

D. IP over BLE

There is no defined standard for IPv4 over BLE; the two

technologies are normally incompatible, however, there have

been some efforts such as RFC7668 [9] to establish a standard

for running IP over BLE, though no official standard has been

adopted as yet. 6LowPAN is utilized to reduce the header size

of IPv6 packets.

IV. APPROACHES FOR TLS OVER BLE

A. Establishing IPv4 Over BLE Connections

While building a TLS over a WiFi-enabled connection is

well-known and widely used, this is not the case for BLE

since it is known for its deployment among two paired devices

with its own BLE protocol stack. Therefore, the first challenge

was to build an IP network by utilizing BLE as the link layer

(layer 2) so that eventually this connection will get you to

any machine in the world with an IP address. It is important

to note that this will require assuming a gateway device (i.e.,

replacing the Access Point concept in WiFi) where the BLE

device gets connected. As an example, a mobile phone can act

as a device that will forward any BLE connection to itself to

the rest of the Internet.

Since most of the existing efforts focused on IPv6 over BLE,

we resort to a fairly simple method of running IPv4 over BLE

by leveraging tools available on Linux. Linux uses the Bluez

Bluetooth stack, which possesses some APIs allowing it to

manipulate the traffic/operation with some flexibility. Using

the tools through Bluez in conjunction with a virtual network

interface created on both the client and server devices, we

redirected IPv4 packets passed to the virtual Ethernet interface

through a BLE physical interface.

In addition, we propose to host a DHCP server on the

gateway device to issue IP addresses to connecting devices for

the BLE interface, and this command includes the issuance of

an IP address to the connecting IoT device. Note that a mobile

phone acting as a gateway can also support DHCP services.

We need this IP connectivity between the devices as TLS

relies on underlying IP-based communication to complete the

connection. Assigning IP addresses to the IoT device allows it

to contact the gateway and send/receive data over the network

using TLS.

After establishing an IP over the BLE network, the next step

is using open-source quantum-resistant algorithms (e.g., Open

Quantum Safe library of liboqs) to enable a TLS connection.

Since TLS is also available through open source tools such

as OpenSSL, a TLS handshake can be separately created for

only assessment purposes (i.e., the machines do not transmit

any application data).

The handshakes in TLS may use two different approaches,

one using only the PQ signature schemes with ECDH key

exchange, and the other using the PQ signature schemes in

tandem with PQ KEM schemes.



B. First Approach - ECDH Based Key Exchange

The first approach involves using PQ-signed certificates and

ECDH for key exchange. In ECDH, both parties randomly

generate their own private key and use it for point operations

on a specified elliptic curve to generate a public key. The

public keys are shared between the two parties, who then

conduct more point operations on the same curve in order to

arrive at the same point, known as the shared secret, which is

used to encrypt and decrypt communications between the two

parties. The X25519 elliptic curve is used over the P256 curve

in this approach because X25519 requires less processing

power than P256 [16], making it useful to consider for the

devices with limited processing resources such as IoT.

For our tests, the post-quantum signature algorithms are

used to sign self-signed certificates (as opposed to RSA or

ECDSA) verifying the identity of the server (and client if

mutual authentication is required). The server machine sends

its certificate to the client during the TLS handshake, after

which the client needs to verify the PQ-signature of the

certificate to validate the authenticity of the server. We assume

that the PQ public key of the CA will be available at the client

(i.e., as part of the browsers).

C. Second Approach - PQ Key Encapsulation Mechanism

The second approach also involves PQ self-signed certifi-

cates but uses PQ KEM schemes for key exchange. KEM

involves one party randomly generating a secret key, then

encrypting it with the KEM algorithm. The first party then

sends the encrypted key to the second party, and the second

party then uses the same KEM algorithm to decrypt it. Once

the secret key has been shared with the second party, both

parties can use it to securely encrypt their communications.

In the first approach, only the signature of the server’s

certificate uses PQ-cryptography, and the keys that encrypt

the communications use the standard ECDH approach for

key exchange, where both parties individually generate a

shared secret key based on mathematical computations on an

elliptic curve. The approach of combining post-quantum KEM

and signature schemes instead uses key encapsulation, where

both machines send the other a secret key encrypted by the

destination machine’s public key.

V. PERFORMANCE EVALUATION

A. Implementation and Experiment Setup

In order to evaluate the performance of post-quantum algo-

rithms, we set up a testbed and performed various tests.

Hardware and Software: We used a Raspberry Pi 4 and

a laptop to simulate a connection between IoT devices on

a Bluetooth network by using an IP-over-BLE connection.

The Raspberry Pi 4 used in this experiment has 4GB RAM,

Bluetooth 5.0 and BLE capabilities, and a 1.8GHz ARM

processor. The laptop used in this experiment runs Ubuntu

20.04 and has 8GB RAM, Bluetooth 5.0, and a 1.8GHz Intel

i5 8th gen. processor.

In order to use post-quantum algorithms over a TLS connec-

tion between a client and server machine, first liboqs must be

downloaded and built from the official GitHub repository on

both machines. To install liboqs on the laptop, the commands

outlined in the README of the OpenSSL 1 1 1 fork [17]

can be followed. However, the Raspberry Pi requires cross-

compilation due to its ARM processor.

The Pi obtained an IP address over the network and used

this address to identify itself and send/receive data over the

network. OpenSSL was then used to establish a server and

a client on this Bluetooth network, and to send a series of

consecutive TLS handshake messages between the client (Pi)

and the server (laptop). During the transmission of the data

by s time, the data packets containing the TLS handshake

messages were recorded using Wireshark to determine the total

wall-clock time per run, and then analyze to determine the

most effective PQ algorithm for use in a Bluetooth-connected

environment. Note that this setup can be reproduced on any

machine that can use OpenSSL, including typical Windows,

Mac, or Linux machines.

Raspberry Pi4

Linux Workstation

Bluetooth 
Network 

30ft (10m)

WiFi
hotspot

Fig. 4. Testbed Implementation.

Fig. 4 illustrates the setup

that we propose in simulat-

ing the IoT environment. In

this setup, the Pi simulates an

IoT device that connects to

the laptop, which simulates a

server machine. The connec-

tions are conducted at a set

distance of 30 feet (10 me-

ters) between the machines to

better highlight the differences between Bluetooth and WiFi

performance.

IP Connections: Initially, we configured the laptop as a

Network Access Point (NAP), and bind the interface to the

Bluetooth radio. This is made possible through the use of an

open-source Linux software package called bluez-tools [18].

Bluez-tools provides some additional scripts, commands, and

tools which implement various aspects of the Bluez API, with

the goal of simplifying working with Bluez - the official Linux

Bluetooth protocol stack [19]. The Raspberry Pi is then paired

with the laptop over Bluetooth to establish a BLE network, and

IP connectivity is established.

The WiFi approach was implemented by using the built-

in ªWiFi hotspotº functionality of the laptop to enable a

direct wireless connection between the Pi and laptop for a fair

comparison with BLE. It followed the same steps as above for

data collection.

Measuring the Connection Speed: To measure the connection

speed of each algorithm, we set s time to be run for 30 seconds

per algorithm while the connection is recorded with the use

of Wireshark. Since s time displays user time instead of wall-

clock time, the built-in timer in Wireshark is used to record the

actual runtime of each s time run. This time is then divided

by the number of connections displayed by s time, which

provides us with the average time in seconds it takes each

PQ algorithm to complete one connection.



B. Metrics and Baselines

We ran tests to analyze the connection speed of each post-

quantum algorithm that was being considered. The main metric

we are concerned about is how quickly the TLS handshakes

can be conducted (i.e., TLS Handshake delay) using these

algorithms over a BLE or WiFi network.

As a baseline for comparison to the PQ algorithms, we

recorded data for connections using the current standards such

as RSA and ECDSA. Also, we used WiFi as a benchmark to

compare against since it offers a higher bandwidth.

C. PQ Signature Schemes with ECDH Performance Results

This section details the performances of post-quantum sig-

nature schemes when paired with ECDH Exchange along with

their signature sizes. Table I lists the performance results for

each PQ signature algorithm over BLE connection, with WiFi

connection performance and the standard signature schemes

RSA and ECDSA included as baselines for comparison.

TABLE I
TLS HANDSHAKE DELAY OF ECDH WITH DIFFERENT SIGNATURES (MS)

Signature Scheme Signature Size Bluetooth WiFi

RSA 2048 bits 69.4 12.2

ECDSA 576 bits 59.9 8.7

Dilithium2 19360 bits 123.3 10.6

Dilithium3 26344 bits 150.3 12.3

Dilithium5 36760 bits 180.4 14.7

Falcon-512 5328 bits 78.7 10.2

Falcon-1024 10240 bits 104.1 12.1

SPHINCS+ Haraka 136704 bits 484.6 88.4

SPHINCS+ SHA 136704 bits 509.5 56.5

SPHINCS+ SHAKE 136704 bits 695.9 286.3

The results indicate that the Falcon-512 signature scheme is

the fastest over a Bluetooth connection, with speeds closer to

the baseline than any of the other chosen signature schemes.

Over WiFi, however, Dilithium2 also shows comparable per-

formance to the baseline results. It is likely that the perfor-

mance of Dilithium2 decreased over BLE since the Dilithium

family of signature schemes have a larger signature size than

Falcon [17]. This would cause some extra delay in a lower-

bandwidth environment like Bluetooth because the larger the

signature size, the more time it requires to transmit the

certificate. The SPHINCS+ signature schemes performed the

worst over both BLE and WiFi due to delay incurred by their

massive signature sizes.

An interesting observation here is among Dilithium2 and

Falcon-512. We see that when the signature size is increasing,

this has a major impact on lower bandwidth connections

such as BLE. However, this is not the case with WiFi. Even

though the signature size of Dilithium2 is almost 4 times more

than Falcon-512, the delays for BLE and WiFi are still very

close to each other (i.e., 10.6 vs 10.2 ms). This suggests that

Falcon-512 requires more computation during the verification

process. In other words, there are additional computational

delays. Nevertheless, this is about the machine speed, not the

connection. Therefore, signature size by itself should not be

the sole indicator when selecting a PQ algorithm. Depending

on the security level provided, higher bandwidth connections

can afford bigger signature sizes. For BLE-like connections

both the signature size and computation time are important.

TABLE II
TLS HANDSHAKE DELAY FOR SIGNATURE AND KEM SCHEMES (MSECS)

Signature
KEM Algorithm

Kyber512 Kyber768 Kyber1024

RSA-WF 12.6 12.9 14.1

RSA-BT 83.6 94.6 113.6

ECDSA-WF 9.4 10.0 11.7

ECDSA-BT 71.8 76.6 91.9

Dilithium2-WF 11.4 11.6 12.1

Dilithium2-BT 135.4 157.4 167.8

Dilithium3-WF 12.6 14.1 14.5

Dilithium3-BT 162.4 180.1 188.8

Dilithium5-WF 15.4 16.6 17.0

Dilithium5-BT 197.1 218.3 221.7

Falcon-512-WF 10.7 11.2 12.0

Falcon-512-BT 92.9 100.5 116.8

Falcon-1024-WF 11.4 11.4 12.1

Falcon-1024-BT 119.4 127.5 133.0

S+ Haraka-WF 89.7 90.6 91.6

S+ Haraka-BT 495.8 514.7 523.2

S+ SHA-WF 58.5 59.3 63.8

S+ SHA-BT 535.2 550.3 568.6

S+ SHAKE-WF 288.2 289.7 292.0

S+ SHAKE-BT 684.9 725.1 740.5

D. PQ Signature and KEM Schemes Performance Results

Our second experiment assessed the performances of PQ

signature and KEM schemes, where a PQ signature included

in a certificate sent in a TLS handshake that used PQ KEM for

key exchange. Table II displays the average connection delays

for combinations of PQ signature and KEM schemes over

BLE (abbreviated BT), and the same over WiFi (abbreviated

WF). SPHINCS+ is abbreviated as S+ in Table II for layout

purposes.

First of all, it is important to note that due to the added

complexity of the PQ key management schemes, all combi-

nations showed slightly worse performance than using ECDH

key exchange. The gap is higher with BLE. We can see that

there is at least 10% delay increase which shows that for BLE

like connections ECDH solutions could be preferred.

Among KEMs, we found that Falcon-512 was consistently

the fastest signature scheme, followed by Falcon-1024 and

Dilithium2. Across both WiFi and BLE, the combination with

the fastest overall performance was Falcon-512 combined with

Kyber512. Combinations including any of the SPHINCS+

signature schemes performed least favorably, with each con-

sistently having a connection delay of over half a second

over BLE and over two-tenths of a second over WiFi. The

relatively massive delay seen with the SPHINCS+ family is



attributable to their very large signature sizes [17] causing lag

in the limited-bandwidth environment of the BLE network,

and to a less pronounced extent in the higher-bandwidth WiFi

connections.

To summarize, in every case, BLE connections were much

slower than WiFi connections but the most interesting point

is that the Falcon family performs almost as well as RSA

or ECDSA for both WiFi and BLE which makes it the top

candidate for standardization for IoT applications.

E. Evaluation of Mutual Authentication

As it is possible for the client to send a certificate to

the server as well (i.e., mutual authentication), we also per-

formed some experiments to assess the overhead in this case

compared to the single authentication approach. Since the

logical outcome was that mutual authentication would increase

the overhead further, we only selected the top candidates;

Dilithium2 and Falcon-512 from the previous results to display

this trend. The results are shown in Table II.

TABLE III
TLS DELAY WITH MUTUAL AUTHENTICATION (MSECS)

Signature ECDH Kyber512 Kyber768 Kyber1024

No KEM KEM KEM KEM

Falcon512-WF 30.6 31.1 32.2 33.2

Falcon512-BT 187.2 192.2 198.7 204.3

Dilithium2-WF 16.9 17.2 17.3 18.8

Dilithium2-BT 256.6 279.8 287.6 285.9

As can be logically assumed due to the extra certificate

transmission and verification required, all cases of mutual

authentication produced average results slower than the perfor-

mances of single authentication in Table II. As an example, we

will compare the differences in latency of Falcon-512. Over

WiFi, Falcon-512 combined with Kyber512 had an average

latency of 10.7ms with single authentication, but 31.1ms with

mutual authentication (i.e., tripled). Over BLE, the difference

is almost doubled; with average latency being 92.9ms using

single authentication and 192.2ms with mutual authentication.

However, there is another interesting observation here that

is consistent with our findings in Section V.D. The mutual au-

thentication impacted Falcon512 much more than Diltihium2.

If we look at Dilithim2 results with WiFi for Kyber512, the

delay is 17.2ms compared to 11.4ms when we had single au-

thentication. This means that the signature verification process

in Falcon512 is much higher, and thus, it makes Dilithium2

a better alternative for WiFi if mutual authentication is to be

applied.
VI. CONCLUSION

In this paper, we assessed the feasibility of various PQ

algorithms for use in an IoT environment that uses wireless

connections such as BLE and WiFi. The experiment results

indicate that the signature schemes Falcon-512 and Falcon-

1024 are generally the fastest in a BLE environment, regardless

of being combined with ECDH or a PQ KEM scheme. The

best overall performance over the BLE network was the

combination of a Falcon-512 signature with Kyber512 for

KEM. Surprisingly, Dilithium2 and Falcon-512 outperformed

RSA over the WiFi connection, although this was not the case

at all over Bluetooth. Dilithium2 and Falcon-512 proved to

be the fastest signature schemes, and Kyber512 was the most

efficient KEM scheme over WiFi.

ACKNOWLEDGMENT

This work is supported by the US NSF under the grant

numbers CNS 2150248 and RINGS 2147196.

REFERENCES

[1] E. Knill, ªQuantum computing,º Nature, vol. 463, no. 7280, pp. 441±
443, 2010.

[2] A. Ekert and R. Jozsa, ªQuantum computation and shor’s factoring
algorithm,º Reviews of Modern Physics, vol. 68, no. 3, p. 733, 1996.

[3] Y. I. Manin, ªClassical computing, quantum computing, and shor’s
factoring algorithm,º Asterisque-Societe Mathematique De France, vol.
266, pp. 375±404, 2000.

[4] A. Mandviwalla, K. Ohshiro, and B. Ji, ªImplementing grover’s al-
gorithm on the ibm quantum computers,º in 2018 IEEE international
conference on big data (big data). IEEE, 2018, pp. 2531±2537.

[5] H. T. Larasati and H. Kim, ªQuantum cryptanalysis landscape of shor’s
algorithm for elliptic curve discrete logarithm problem,º in International
Conference on Information Security Applications. Springer, 2021, pp.
91±104.

[6] F. de Lima Marquezino, R. Portugal, and C. Lavor, ªShor’s algorithm
for integer factorization,º in A primer on quantum computing. Springer,
2019, pp. 57±77.

[7] D. Stebila and M. Mosca, ªPost-quantum key exchange for the internet
and the open quantum safe project,º in International Conference on
Selected Areas in Cryptography. Springer, 2016, pp. 14±37. [Online].
Available: https://www.mdpi.com/1424-8220/22/2/489/htm

[8] National Institute of Standards & Technology, ªPost-
quantum cryptography,º Jul. 22, 2022. [Online]. Available:
https://csrc.nist.gov/Projects/post-quantum-cryptography

[9] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby, and
C. Gomez, ªRfc 7668-ipv6 over bluetooth low energy,º IETF: Fremont,
CA, USA, 2015.

[10] R. Hernandez and Y. Hanna, ªQuantum resistant cryptography over
lora,º 2021, unpublished.

[11] C.-C. Chung, C.-C. Pai, F.-S. Ching, C. Wang, and L.-J. Chen, ªWhen
post-quantum cryptography meets the internet of things: an empirical
study,º in Proceedings of the 20th Annual International Conference on
Mobile Systems, Applications and Services, 2022, pp. 525±526.

[12] K. BÈurstinghaus-Steinbach, C. Krauû, R. Niederhagen, and M. Schnei-
der, ªPost-quantum tls on embedded systems: Integrating and evaluating
kyber and sphincs+ with mbed tls,º in Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security, 2020, pp.
841±852.

[13] J. Señor, J. Portilla, and G. Mujica, ªAnalysis of the ntru post-quantum
cryptographic scheme in constrained iot edge devices,º IEEE Internet of
Things Journal, 2022.

[14] J.-A. Septien-Hernandez, M. Arellano-Vazquez, M. A. Contreras-
Cruz, and J.-P. Ramirez-Paredes, ªA comparative study of post-
quantum cryptosystems for internet-of-things applications,º Sensors,
vol. 22, no. 2, 2022. [Online]. Available: https://www.mdpi.com/1424-
8220/22/2/489

[15] National Institute of Standards & Technology, ªNist announces first
four quantum-resistant cryptographic algorithms,º Jul. 5, 2022. [On-
line]. Available: https://www.nist.gov/news-events/news/2022/07/nist-
announces-first-four-quantum-resistant-cryptographic-algorithms

[16] D. J. Bernstein, ªCurve25519: New diffie-hellman speed records,º in
Public Key Cryptography - PKC 2006, M. Yung, Y. Dodis, A. Kiayias,
and T. Malkin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 207±228.

[17] ªOqs-openssl 1 1 1,º Feb 2022. [Online]. Available:
https://github.com/open-quantum-safe/openssl/blob/OQS-
OpenSSL 1 1 1-stable/README.md

[18] A. Orlenko, ªKhvzak/bluez-tools: A set of tools to manage bluetooth
devices for linux.º [Online]. Available: https://github.com/khvzak/bluez-
tools

[19] ªBluez about.º [Online]. Available: http://www.bluez.org/about/


