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A B S T R A C T   

Flash droughts develop rapidly (~1 month timescale) and produce significant ecological, agricultural, and 
socioeconomical impacts. Recent advances in our understanding of flash droughts have resulted in methods to 
identify and quantify flash drought events. However, few studies have been done to isolate the individual rapid 
intensification and drought components of flash drought, which could further determine their causes, evolution, 
and predictability. This study utilized the standardized evaporative stress ratio (SESR) to quantify individual 
components of flash drought from 1979 – 2019, using evapotranspiration (ET) and potential evapotranspiration 
(PET) data from the North American Regional Reanalysis (NARR) dataset. The temporal change in SESR was 
utilized to quantify the rapid intensification component of flash drought. The drought component was also 
determined using SESR and compared to the United States Drought Monitor. The results showed that SESR was 
able to represent the spatial coverage of drought well for regions east of the Rocky Mountains. Furthermore, the 
rapid intensification component agreed well with previous flash drought studies, with the overall climatology of 
rapid intensification events showing similar hotspots to the flash drought climatology east of the Rocky 
Mountains. The rapid intensification climatology suggested areas west of the Rocky Mountains experience rapid 
drying more often than east of the Rocky Mountains.   

1. Introduction 

Drought is a climate extreme resulting from below normal precipi
tation and above normal temperatures over a prolonged period of time, 
which causes an imbalance in the hydrologic system (American Mete
orological Society 1997; Pachauri et al., 2014). This puts stress on 
ecological systems and can have large socioeconomic impacts; extreme 
droughts can yield billions of dollars (US) of losses (Heim 2002; Dai 
2011; NCEI 2017). Many studies have focused on being able to detect, 
monitor, and predict drought events. Historically, this has been 
accomplished through long term indices (∼2 - 6+ month averages) such 
as the Palmer Drought Severity Index (PDSI; Palmer 1965) and Stan
dardized Precipitation Index (SPI; McKee et al., 1993, McKee et al., 
1995). 

More recent studies have focused on drought events that undergo 

rapid evolution (~1 month), denoted as “flash drought” in Svoboda 
et al. (2002). Flash droughts differ from traditional droughts in several 
ways. While traditional drought can occur in any given season, flash 
drought has a distinct seasonality, favoring the growing season (Chen 
et al., 2019; Christian et al., 2019a; Noguera et al., 2020; Christian et al., 
2021). Additionally, traditional drought can occur in any given region, 
while flash droughts tend to favor transition zones with a strong pre
cipitation gradient (Kim and Rhee 2016; Chen et al., 2019; Christian 
et al., 2019b). Further, because of the rapid drying and desiccation of the 
land surface, flash droughts can have large ecological, agricultural, and 
socioeconomic impacts (Christian et al., 2020, Christian et al., 2022). 
Examples include the 2015 flash drought in the southern Great Plains 
(Otkin et al., 2019), the 2012 flash drought across the central United 
States (Otkin et al., 2016, 2018; Basara et al., 2019), the 2010 western 
Russia flash drought (Christian et al., 2020; Hunt et al., 2021), and the 
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1936 flash drought (Hunt et al., 2020; Bolles et al., 2021). 
Because flash droughts develop over relatively short time periods, 

traditional drought monitoring, evaluation, and detection methods are 
generally unable to accurately capture rapid intensification events. 
Consequentially, there has been significant work focused on variables 
that respond quickly to a rapidly drying environment and have a high 
temporal resolution (e.g., ∼1 week timescale) that allows them to detect 
the rapid onset of drought on shorter time scales (Lisonbee et al., 2021). 
While changes in the United States Drought Monitor (USDM) database 
(Chen et al., 2019) and the standardized evaporative precipitation index 
(SPEI) at a monthly timescale (Noguera et al., 2020) have been exam
ined to determine flash drought, the main variables analyzed include 
soil moisture (e.g., Hunt et al., 2009; Ford et al., 2015; Otkin et al., 2019; 
Liu et al., 2020a; Osman et al., 2021) as well as evapotranspiration (ET) 
and potential evapotranspiration (PET; e.g., Otkin et al., 2013, 2014; Li 
et al., 2020; Kim et al., 2019; Hobbins et al., 2016; McEvoy et al., 2016; 
Kim et al., 2019; Vicente-Serrano et al., 2018; Christian et al., 2019b; 
Nguyen et al., 2019, 2021; Pendergrass et al., 2020; Osman et al., 2021). 
In particular, ET has been found to be one of the most sensitive variables 
to flash drought (McEvoy et al., 2016; Chen et al., 2019) and rapid de
creases in ET can serve as a precursor for flash drought development, 
typically occurring about 1 – 2 weeks in advance of drought onset 
(Otkin et al., 2013; Chen et al., 2019). In addition, ET has been associ
ated with the atmospheric supply of moisture available to the environ
ment while PET is associated with the terrestrial demand for moisture 
(Hobbins et al., 2016; Christian et al., 2019b). Thus, many studies have 
focused on ET and PET, creating a number of standardized indices to 
measure drought such as the evaporative demand drought index (EDDI; 
Hobbins et al., 2016; McEvoy et al., 2016; Pendergrass et al., 2020), the 
standardized evapotranspiration deficit index (SEDI; Kim and Rhee 
2016; Kim et al., 2019), the evaporative stress index (ESI; Anderson 
et al., 2007, 2013), the rapid change index (RCI; Otkin et al., 2014), and 
the standardized evaporative stress ratio (SESR; Christian et al., 2019b). 
Furthermore, ET is able to not only describe flash drought events, but it 
can also be used to examine drought in general, and capture historic 
drought events, including the 1934, 1954, 1988, and 2011 droughts 
(Kim and Rhee 2016; Kim et al., 2019). 

With the addition of numerous studies examining flash droughts 
events and the creation of various indices to identify and quantify flash 
drought events, Otkin et al. (2018) proposed a general framework that 
required any flash drought definition to include two critical compo
nents. First, a rapid intensification component on the order of a month 
should be included given its importance in flash drought development 
(Liu et al., 2020a,b, ; Noguera et al., 2020) and impacts due to rapid 
desiccation of the terrestrial surface. Additionally, flash drought cannot 
occur unless drought conditions are achieved (Lisonbee et al., 2021). 
Thus, a drought component should be clearly identifiable whereby 
environmental indices fall below the 20th percentile of their distribution. 
Some studies have examined the climatology of these components, such 
as Liu et al., 2020a, Noguera et al., 2020, and Otkin et al., 2021. How
ever, little work has been done to examine these two components 
individually. 

Dividing flash droughts into these two components can be critical in 
determining several features associated with flash droughts. For 
example, quantifying the occurrence of rapid intensification can help 
improve understanding of flash droughts drivers, aid in their real time 
identification, and denote areas to improve the predictability of flash 
droughts. Therefore, this study utilizes the SESR method of identifying 
flash drought (Christian et al., 2019b) to (1) analyze the rapid intensi
fication and drought components individually, (2) evaluate the ability of 
SESR to detect drought in general, (3) quantify the occurrence of rapid 
intensification and identify locations that experience rapid intensifica
tion but not drought, and (4) determine which of the two components is 
most critical for flash drought occurrence in space and time. 

2. Material and methods 

2.1. Data 

2.1.1. North American regional reanalysis 
This study utilized data from the North American Regional Rean

alysis (NARR) which was designed to accurately represent the climate 
and hydrology of North America (Mesinger et al., 2006). The spatial 
resolution of the NARR is 32 km × 32 km with a 3-hour temporal in
terval. For this study, surface evapotranspiration (ET) and potential 
evapotranspiration (PET) for the growing seasons of 1979 to 2019 were 
incorporated into the analysis. PET was calculated within the Noah land 
surface model using the Penman equation with surface temperature, soil 
flux, radiation, windspeed, and specific humidity (Ek et al., 2003; Mahrt 
and Ek 1984). ET calculations used numerous moisture and vegetation 
variables (such as vegetation density, stomatal conductance, precipita
tion, soil moisture, etc.) to determine three components (evaporation 
from the soil, transpiration, and evaporation from canopy intercept), 
which are calculated separately and then summed to obtain the total ET 
(Ek et al., 2003; Chen et al., 1996). The NARR has been successfully 
utilized in multiple, previous flash drought analyses including Christian 
et al., (2019a, b), Chen et al. (2019), and Basara et al. (2019). In addi
tion, this study refers to numerous locations that have similar climate 
and flora conditions by their geographic names. A guide to these 
geographic regions can be found in Supplementary Figure 1. 

2.1.2. United States drought monitor 
The USDM is a collaboration between numerous federal and state 

organizations and universities designed to monitor, identify, and convey 
information about drought to the public and stakeholders. It in
corporates the professional opinions of the expert scientists who serve as 
drought monitor authors and who use numerous metrics (e.g., temper
ature, precipitation, streamflow, soil moisture, snowpack, ground water, 
and vegetation conditions; Svoboda et al., 2002). Because the USDM has 
been widely utilized for drought identification (e.g., Otkin et al., 2013, 
2014; Ford et al., 2015; Chen et al., 2019), USDM drought values were 
incorporated into this study for evaluation of drought depicted by SESR. 
Because the data from the USDM are in a polygon format, it was ras
terized in this study by comparing each NARR grid point to the polygon, 
and assigning the grid point the value of the polygon, similar to the 
method used in Chen et al. (2019). Further, this study was not concerned 
with abnormally dry events and as such, D0 drought was given the same 
value as non-drought conditions. In addition, the USDM provides a basis 
for categorizing drought intensity based on percentiles (i.e., Table 2 in 
Svoboda et al. (2002)). Because the USDM has evolved and refined its 
determination of drought over time, data was used from 2010 – 2019 to 
evaluate the SESR drought component. Finally, when compared to the 
USDM, the SESR drought component was averaged to the same weekly 
time scale as the USDM. 

2.2. Standardized evaporative stress ratio 

This study employs the flash drought identification method devel
oped by Christian et al. (2019b), which incorporates surface moisture 
flux via ET (evaporation from the soil and transpiration from vegetation) 
and the atmospheric demand for moisture (PET). The ratio of ET to PET 
yields the evaporative stress ratio (ESR) defined in Christian et al. 
(2019b) as: 

ESR =
ET

PET
(1)  

whereby ESR values range from 0 (a completely dry near-surface at
mosphere) to 1 (a saturated near-surface atmosphere). Due to the 
diurnal variability of ESR, it is recommended to use ESR on daily or 
pentad time scales (Christian et al., 2019b); this study utilized 
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non-overlapping pentad (5-day) averages. 
To better investigate flash drought events across different climate 

zones, the standardized evaporative stress ratio (SESR) was used. 

SESRijp =
ESRijp − ESRijp

σESRijp

(2) 

The subscripts i and j refer to the ith and jth spatial grid point and the 
subscript p refers to the pth pentad in the Gregorian calendar (leap days 
excluded). Overbars indicate mean values, and σ refers to standard de
viations. For this study, the mean and standard deviation values were 
calculated from the 41 years in the dataset. This standardization process 
allows the variable to be more easily compared across different regions 
as well as allows a more robust comparison of values over multiple years 
and across parts of the growing season for each grid point (Christian 
et al., 2019b). Negative values of SESR indicate a region is drier than 
normal, and a region is more moist than normal when SESR is positive. 
Changes in SESR were also computed to determine how SESR changes in 
time (whether the region is drying or moistening over time). The change 
in SESR is given by 

ΔSESRij,p = SESRij,p+1 − SESRij,p (3)  

where the subscript p indicates the pth pentad. Note that ΔSESR should 
be calculated on the pentad timescale to better capture the trend in how 
SESR is changing. It is important to note that for this study, the change in 
SESR begins on the pth pentad. Thus, if a grid point has drying or 
moistening, it begins on the pth pentad and ends on the (p+1)th pentad. It 
should be noted that while ΔSESR was standardized in the original paper 
(Christian et al., 2019b), it was found that this second standardization 
did not impact the results and was thus omitted from discussion here. 

Finally, evaporative demand is dramatically reduced in cold envi
ronments such that rapid drought development driven by evaporative 
stress is limited. As such, this study is restricted to the agricultural 
growing season (April – October) to focus on the favored season for flash 
droughts and similar to previous studies (Hunt et al., 2014; Otkin et al., 
2014; Chen et al., 2019; Christian et al., 2019b; Noguera et al., 2020; 
Christian et al., 2021), with the domain set as the contiguous United 
States (CONUS). 

2.3. Flash drought criteria 

The method developed by Christian et al. (2019b) to identify flash 
drought using SESR is based on four specific criteria, which are used to 
identify rapid drying and drought conditions separately. They are:  

1) The flash drought must be at least 30 days in length.  
2) At the end of the flash drought, SESR must be at or below the 20th 

percentile for that grid point and pentad.  
3) a) During the flash drought, ΔSESR must be at or below the 40th 

percentile for that grid point and pentad. b) No more than one 
exception is allowed for criterion 3a during the flash drought.  

4) The temporal mean in ΔSESR during the whole rapid intensification 
period must be at or below the 25th percentile for that grid point and 
range of pentads. 

For this study, each criterion was determined for each pentad in the 
dataset. To accomplish this, each day was treated as an “end date” for 
the flash drought. For the criteria analysis, a binary value of 1 (true, the 
criterion was satisfied for that pentad and grid point) or 0 (the criterion 
was not satisfied for that pentad and grid point) was given to each grid 
point and for each pentad, illustrated in Fig. 1 and is described in more 
detail in the following sections. Each criterion was determined for every 
pentad in the NARR dataset in order to examine SESR’s representation of 
rapid intensification and drought independently. 

An example of how these criteria identify flash drought is illustrated 
in Fig. 2. In this example, from Christian et al., 2019b, rapid intensifi
cation began on June 11, where ΔSESR was at the 26th percentile. The 
following two pentads were also below the 40th percentile, fulfilling 
criterion 3a. On the fourth pentad within the intensification period 
(labeled P4), the percentile increased above the 40th percentile, but 
subsequently continued below the 40th percentile. Because the increase 
in ΔSESR only lasted for 1 pentad, it fulfilled the condition for being a 
moderation period and not a termination of the rapid intensification 
period (criterion 3b). Finally, after the sixth pentad (labeled as P6), 
ΔSESR increased to be at the 58th percentile and remained above the 
40th percentile on the following (eighth) pentad, signaling the end of the 
intensification period at July 11, after the sixth pentad. Finally, as the 
intensification period encompassed 6 pentads (30 days), criterion 1 was 

Fig. 1. Flow chart of flash drought detection. Flow chart showing the algorithm used for this study and how it calculated a) Criterion 1, b) Criterion 2 and the 
drought component, c) Criterion 3, d) Criterion 4 and the rapid intensification component, and e) flash drought. FD in the flow chart stands for flash drought. 
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satisfied. In addition, the mean ΔSESR over the 6 pentads that charac
terized intensification period was at the 24th percentile, when compared 
to that same mean over all other years, satisfying criterion 4. Lastly, at 
the end of the intensification period, SESR was below the 20th percentile 
(which was around -0.8 in this example), indicating the region was in 
drought and fulfilling all the conditions of flash drought (Christian et al., 
2019b). 

2.4. Rapid Intensification component 

For this study, the rapid intensification component is defined by the 
truth value of criterion 4, whereby rapid intensification occurs when 
criterion 4 is true. By extension, a rapid intensification event is said to 
have happened when criterion 4 is true. Criterion 1 is used to prevent the 
overall flash drought algorithm from identifying short-term “dry spells” 
as flash droughts. The algorithm checks whether the difference between 
the current day (plus five days, because criterion 3 considers ΔSESR 
which ends on the (p+1)th pentad) in the algorithm and the start of the 
flash drought is greater than 30 days (6 pentads). This means that cri
terion 1 is only true whenever rapid drying has almost continuously 
occurred, with a moderation period allowed, for at least 30 days. Note 
this also means that the algorithm identifies the near continuous rapid 
drying at the end of a specific drying period. For example, in Fig. 2, 
where the flash drought identified was 30 days in length (from June 11 
to July 11), the algorithm would only identify criterion 1 as true on July 
11 and later if the rapid intensification continued. 

Physically, criterion 3 checks for rapid drying over a grid point. For a 
standardized change variable, the 50th percentile is approximately 0 and 
it represents no change in conditions for a given location and pentad. As 
such, requiring that ΔSESR be at or below the 40th percentile means this 
criterion is checking whether SESR is decreasing between two pentads. 
Even so, criterion 3 allows an exception in the event moderation of 
evaporative stress occurs during the flash drought development. For 
example, if a light precipitation event occurs over a grid point experi
encing flash drought, the precipitation could slow how quickly SESR 
decreases (or even make it increase), but not enough to prevent the flash 

drought from occurring over longer time periods. Further, because this 
criterion identifies rapid drying from pentad to pentad, it can be used to 
determine when the flash drought begins and ends. This can be seen in 
the example shown in Fig. 2. 

Finally, criterion 4 is the last criteria designed to examine whether 
rapid drying is occurring over a grid point. Specifically, this criterion 
checks the overall drying between the start and end of the rapid drying 
period and determines if it was large enough to be considered a rapid 
intensification of drought conditions. An example is shown in Fig. 2, 
where the mean in ΔSESR (dashed red line) is below the 25th percentile. 
Note that this criterion infers the magnitude of the drying at the end of 
the rapid intensification by checking the magnitude of decreasing SESR. 
Additionally, the algorithm requires criterion 1 to be true for criterion 4 
to be true, to ensure that only means over 6 pentads or more (the full 
rapid intensification period) are considered. This also dictates that cri
terion 4 depends on criteria 1 and 3 (both of which measure rapid drying 
components). Further, because criterion 4 also has its own determina
tion for rapid intensification, it then represents all the parts of rapid 
intensification. 

2.5. The drought component 

The drought component (DC) was defined via criteria 2 which is the 
simplest criterion to determine and interpret. For flash drought to occur, 
the variable being used to identify it must be below the 20th percentile 
for that region and pentad to be considered in drought (Svoboda et al., 
2002; Otkin et al., 2018). In addition, a critical aspect of this study was 
to more explicitly determine how well SESR represents drought in 
general, both in spatial coverage and intensity. The drought coverage 
represents where drought is present (and can thus be defined as the 
drought component), whereas the drought intensity provides additional 
information on the scale, strength, or impact of the drought. The drought 
intensity was identified and classified using SESR percentiles and the 
classification method provided by the USDM (Table 1). Because this 
study focuses on examining the components of flash drought, the 
drought component was determined and analyzed for every pentad in 

Fig. 2. Flash drought detection example. A time series schematic illustrating the four criteria used in the flash drought identification method. The fourth, sixth, and 
seventh pentads after the start of the rapid intensification period are labeled (P4, P6, and P7 respectively). [Fig. and caption from Fig. 2 in Christian et al., 2019.] 
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the NARR dataset. 

2.6. Statistical analysis 

Statistical analyses of the rapid intensification and flash droughts 
were desired to determine where regions of rapid intensification occur, 
but may not fall into drought and how often this occurs. To this end, a 
contingency table and threat scores were used. For the contingency table 
or truth table, only two scenarios are considered. One is the frequency of 
rapid intensification events without flash drought and the other is the 
frequency of rapid intensification with flash drought, both relative to the 
total number of rapid intensification events. The other two scenarios 
have trivial results as the flash drought is not identified when there is no 
rapid intensification by definition. Equitable threat score time series 
were also used to show the occurrence of rapid intensification events 
that fall into drought relative to the total number of rapid intensification 
events. The equitable threat traditionally measures the skill of a model 
by comparing the number of correct forecasts from a truth table to the 
misses and false alarms. In this case, there are no false alarms (there 
cannot be flash drought events without rapid intensification), the misses 
are the rapid intensification events that do not reach drought, and 
“correct forecasts” are the rapid intensification events that become flash 
droughts. To this end, the equitable threat score then becomes a measure 
of rapid intensification events that become flash droughts relative to the 
total number of rapid intensification events. To test the robustness of the 
results, composite mean difference and Pearson correlation coefficient 
analyses were also performed and found similar results (not shown). 

A contingency table was also used to compare the SESR drought 
component and USDM to examine how often SESR may identify a false 
positive or a false negative relative to the USDM. In addition, composite 
mean differences and Pearson correlation coefficient were also calcu
lated to compare the SESR drought component with the USDM. A 
composite mean difference is the difference between to variables that 
have been average (in this case the average in time). The comparison 
then describes which of the two variables is greater and by how much. 
For this study, the difference was taken as drought identified by SESR 
minus USDM drought. For these analyses, the percentiles of SESR were 
averaged to the same weekly timescale as the USDM data, and the 
drought intensity was obtained from Table 1. Because the composite 
difference is the SESR drought component minus the USDM, positive 
values indicate that SESR predicted either more intense drought than the 
USDM, more frequent drought than the USDM, or it predicted false 
positives (SESR identified drought where there the USDM did not). 
Conversely, if the composite mean is negative, then SESR either 
underpredicted the strength of the drought, the frequency of the 
drought, or SESR failed to predict drought where it should have (misses). 
In order to determine which of these possibilities is true, these statistical 
comparisons were made for both drought intensity and coverage. For 
example, higher magnitudes in the composite difference for drought 
intensity comparisons while having smaller magnitude for the drought 
coverage would suggest that SESR is identifying where the drought is 
but is underestimating or overestimating the intensity of the drought 
depending on the sign of the composite difference. In this study statis
tical significance was determined using the Monte-Carlo bootstrapping 

method, which repeats a statistical calculation N times with the dataset 
shuffled to obtain a distribution. The original statistic is compared to 
that distribution in order to determine the significance. For this study, N 
= 5000 iterations was used. 

3. Results 

3.1. Case studies 

To examine the performance of the algorithm with respect to rapid 
intensification and to compare the drought component with the USDM 
for specific flash drought events, several known cases were analyzed. U. 
S. flash droughts from 2011 and 2012 were chosen because they are 
well-studied events (e.g., for 2011 see Otkin et al., 2013, Ford et al., 
2015, McEvoy et al., 2016, Vicente-Serrano et al., 2018, and Osman 
et al., 2021; for 2012 see Otkin et al., 2016, McEvoy et al., 2016, Basara 
et al., 2019, and Osman et al., 2021). 

3.1.1. 2011: southern United States 
During 2011, widespread and severe drought rapidly spread across 

much of the southern U.S. during the growing season, with the largest 
impacts focused on Texas and Oklahoma (Otkin et al., 2013; Ford et al., 
2015; McEvoy et al., 2016; Vicente-Serrano et al., 2018). With respect to 
rapid intensification during 2011, SESR identified areas of flash drought 
in parts of Texas and Oklahoma during May of 2011 that spread in that 
region during June and propagated to the northeast as time progressed 
into August and September (Fig. 3). The identification of rapid intensi
fication in central Oklahoma and north central Texas agrees with other 
studies using other datasets (Otkin et al., 2013; Ford et al., 2015; 
McEvoy et al., 2016). The timing of flash drought identified in May with 
additional intensification events in June also agreed with results of 
previous studies (McEvoy et al., 2016). Thus, SESR successfully identi
fied rapidly drying conditions in central Oklahoma and north central 
Texas during April into May. Little intensification occurred during May 
and early June in eastern Oklahoma and Arkansas due to some moder
ating precipitation events, but the dry conditions expanded in June and 
July and propagated north and east in the following months into the 
Corn Belt area, agreeing with the results of Flanagan et al. (2017). In 
addition, Fig. 3 shows SESR was able to identify the spatial extent of the 
drought but also underestimates the intensity of the drought, particu
larly in Texas. 

Figs. 4 and 5 show the correlation and composite mean difference 
between the drought component and USDM. Overall, SESR was well 
correlated with the drought identified by the USDM, with the correlation 
being statistically significant in most places except Texas, where it 
continuously underestimate the intensity of the drought and the corre
lation of the drought coverage was undefined due to persistent drought 
throughout the growing season. Additionally, some disagreement exis
ted across Georgia, Texas, and locations further west into New Mexico 
and Arizona, whereby the intensity of the drought was underestimated 
(Fig. 5). That is, the composite difference for drought intensity is more 
negative than if just coverage is considered, implying SESR under
estimated the intensity of the drought. The composite difference for 
spatial coverage of drought in Fig. 5 is negative for the Southern Plains 
and Georgia. Thus, SESR identified drought less frequently than the 
USDM. That is, there were weeks where SESR may not have identified 
drought whereas the USDM did identify drought for most weeks, thereby 
yielding the net negative difference in the spatial coverage comparison. 
This is possibly due to moderating influences (such as precipitation). 
Fig. 4 does show one potential weakness in the correlation coefficient. In 
regions where the drought coverage is continuous throughout the 
growing season, the variation in drought coverage is 0, which makes the 
Pearson correlation coefficient undefined. This can be seen in Texas in 
2011 (Fig. 4). However, based on Fig. 3 and the small composite dif
ference in Fig. 5, SESR was able to capture the spatial coverage of 
drought, agreeing with previous studies on ET’s ability to represent 

Table 1 
Percentiles used to determine drought categories (i.e., the 
drought intensity) with SESR. Percentiles are based on those 
used in the U.S. Drought Monitor (Svoboda et al., 2002).  

Drought Category Percentile Range 

No Drought 21 – 100 
Category 1 11 – 20 
Category 2 6 – 10 
Category 3 3 – 5 
Category 4 < 2  

S.G. Edris et al.                                                                                                                                                                                                                                  



Agricultural and Forest Meteorology 330 (2023) 109288

6

drought (e.g., Otkin et al., 2013, McEvoy et al., 2016, and Vice
nte-Serrano et al., 2018). 

Overall, SESR depicted drought spreading through most of west 
Texas and Louisiana in May, with expansion across most of the Deep 
South during June and July. Additionally, SESR identified exceptional 
drought for west Texas and Louisiana, but not to the extent identified by 
the USDM. This would explain the low correlation, as the USDM had 
exceptional drought (D4) for most of Texas and the Deep South, and D3 
in Georgia. Thus, SESR did not identify some of the more extreme areas 
of drought during 2011 relative to the USDM. This is reflected in Sup. 
Fig. 2, which shows SESR and the USDM recorded similar scale drought 
coverage (2 × 106 − 2.8 × 106 km2 or about 37% - 52% of the subre
gion in Fig. 3), however SESR found extreme (D3 and D4) drought much 
less frequently. However, the spatial coverage of the drought that SESR 
identified is very similar to the drought coverage in other studies (Otkin 

et al., 2013; Kim and Rhee 2016; McEvoy et al., 2016; Vicente-Serrano 
et al., 2018). Thus, SESR was able to identify the spatial coverage of the 
drought. It also identified regions where the drought was most intense 
(though not necessarily the scale of the intensity). 

3.1.2. 2012: central and midwestern United States 
During 2012, a large and severe drought event spread across the 

Central U.S. with large impacts on the Corn Belt and upper Mississippi 
River (Otkin et al., 2016; Ford et al., 2015; McEvoy et al., 2016; Basara 
et al., 2019). Rapid drought intensification began in May across central 
Kansas and northern Missouri and steadily spread into Nebraska in June, 
and to the rest of the Corn Belt in July (Fig. 6). These results are in 
agreement with Basara et al. (2019), McEvoy et al. (2016), and Otkin 
et al. (2016). More specifically, the algorithm yielded the individual 
regions that experienced rapid intensification found in Basara et al. 

Fig. 3. Case study for the growing season of 2011 (excluding March, April, and October). (left) Drought identified by the USDM for the last week of the month, 
(center) monthly-averaged SESR drought intensity, and (right) monthly coverage of rapid intensification (RI) and flash drought (FD). Black/red color indicates SESR 
rapid intensification component/flash drought was newly identified for at least 1 pentad in that month. CX refers to the criterion used to identify the flash drought 
component. Some months (April and October) have been omitted for better readability. 
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(2019), such as north central Kansas in May, north central Oklahoma in 
June, north central Missouri in May, central Nebraska in June, and 
southeast Minnesota in August. Additionally, the algorithm identified 
rapid intensification in some regions not previously discussed in 
connection with the 2012 drought such as southern Texas, and isolated 
parts of the Deep South. SESR also showed that it was able to represent 
the spatial coverage of the drought, but there was again a discrepancy in 
its representation of the intensity of the drought. 

Similar to the 2011 case, SESR was correlated to the drought iden
tified by the USDM, with that correlation generally being statistically 
significant. But it underestimated where the drought in Georgia and the 

Central Plains, where it was most intense (Fig. 7). In particular, it tended 
to underestimate persistence of the drought slightly in the Central Plains 
or failed to identify drought altogether, primarily in Georgia (Sup. 
Fig. 3). This is more prominent west of the Rocky Mountains (with some 
of the reason discussed in Sec. 4). But the monthly average (Fig. 6) tends 
to agree relatively well with the drought coverage for 2012, agreeing 
with Otkin et al., 2014 and McEvoy et al., 2016. Therefore, SESR had 
more trouble capturing the persistence of the drought from week to 
week rather than the spatial coverage east of the Rocky Mountains. This 
week to week variation in SESR is likely the cause of the low correlation 
in drought correlation in Fig. 7 and the negative difference in Sup. Fig. 3. 

Fig. 4. Correlation coefficient of the SESR drought component with the USDM using weekly data for April – October of 2011. (left) Correlation coefficient between 
the SESR drought component and USDM, and (right) the 95% statistical significance, calculated using the Monte-Carlo method with N = 5000. Statistical com
parisons are for (top) drought coverage and intensity and (bottom) only drought coverage. 

Fig. 5. Composite mean difference between the SESR drought component and the USDM using weekly data for April – October of 2011. (left) Composite mean 
difference between the SESR drought component and the USDM, and (right) the 95% statistical significance, calculated using the Monte-Carlo method with N =
5000. Statistical comparisons are for (top) drought coverage and intensity and (bottom) only drought coverage. 
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Fig. 6. Case study for the growing season of 2012 (excluding March, April, and October). (left) Drought identified by the USDM for the last week of the month, 
(center) monthly-averaged SESR drought intensity, and (right) monthly coverage of rapid intensification (RI) and flash drought (FD). Black/red color indicates SESR 
rapid intensification component/flash drought was newly identified for at least 1 pentad in that month. CX refers to the criterion used to identify the flash drought 
component. Some months (April and October) have been omitted for better readability. 
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Fig. 7. Correlation coefficient of the SESR drought component with the USDM using weekly data for April – October of 2012. (left) Correlation coefficient between 
the SESR drought component and USDM, and (right) the 95% statistical significance, calculated using the Monte-Carlo method with N = 5000. Statistical com
parisons are for (top) drought coverage and intensity and (bottom) only drought coverage. 

Fig. 8. Climatological average (from 1979 – 2019) of flash drought frequency (percentage of years with flash droughts; top) and the frequency of the rapid 
intensification component (bottom). 
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In addition, SESR underestimated the severity of the drought in most 
locations, particularly where the drought was most severe in the lower 
Ohio River Valley and Central Plains. 

Examining Fig. 6, minimal drought coverage occurred during May 
(2 × 106 km2 or about 43% of the subregion in Fig.; Sup. Fig. 4), except 
for along the upper Mississippi delta, following the above normal pre
cipitation at the start of the growing season (Basara et al., 2019). 
However, as time proceeded, the drought worsened and spread eastward 
into the upper Mississippi River region and lower Ohio River Valley in 
June, intensified in these regions, and spread into western Iowa and the 
Corn Belt region during July and August. The drought coverage maxi
mized around 3.5 × 106 km2 (about 62% of the subregion) according to 
the USDM and 2.8 × 106 km2 (about 54% of the subregion) according to 
SESR. Again, SESR tended to identify D2 and occasionally D3 drought 
with some D4 drought in Indiana and surrounding states, whereas the 
USDM identified widespread D3 and D4 drought for this event. In 
addition, SESR indicated that the drought spread northwestward into 
the Dakotas much faster than was indicated by the USDM. Hence, while 
SESR may not identify the severity of the drought, it continued to cap
ture the spatial extent and regions experiencing significant drought 
effectively (Fig. 6). 

3.2. Climatology 

3.2.1. SESR rapid intensification 
The first part of the climatological analysis focused on rapid inten

sification. The rapid intensification and flash drought climatologies are 
displayed in Fig. 8. Given that the flash drought climatology was based 
on the method of Christian et al. (2019b), the analysis was consistent in 
identifying hotspots in the Great Plains, the Yazoo Delta, the Coastal 
Plains, and various areas along the East Coast. The hotspots are located 
around various precipitation gradients and/or agricultural regions, in 
agreement with previous studies (Chen et al., 2019; Christian et al., 
2019b, Otkin et al., 2021). The rapid intensification analysis displays 
similar hotspots with an increased annual frequency of about 10% - 
20%. However, an additional expansive hotspot in the rapid intensifi
cation was located across the Desert Southwest, and into central Nevada. 
Further, other areas in the Intermountain West, including Central Valley 
and Great Salt Lake and surrounding areas yielded a higher frequency of 
rapid intensification not highlighted in the flash drought climatology. 
Overall, regions of rapid intensification occurred more frequently than 
flash drought as expected given rapid intensification is only one 
component of flash drought development. However, east of the Rocky 
Mountains rapid intensification is more closely linked to flash drought 

development while west of the Rocky Mountains and in the Desert 
Southwest there are frequent rapid intensification events (more 
frequently than east of the Rocky Mountains) but with few events 
reaching drought status and achieving flash drought development (see 
Sec. 4 for the reason). 

To examine areas with rapid intensification but no drought, a con
tingency table analysis was performed to examine the frequency of rapid 
intensification events that both do and do not fall into drought (Fig. 9). 
The analysis confirms that most of the rapid intensification events east of 
the Rocky Mountains correspond with drought. However, west of the 
Rocky Mountains and the more arid regions of western Texas experience 
more rapid intensification events without going into drought. This result 
is also displayed in Fig. 10, where the difference in areal coverage for 
rapid intensification and flash drought decreases when only the area 
“east” of the Rocky Mountains is considered (i.e., east of 105̊W). A 
benefit of using the binary values is that the areal coverage of each 
component can be easily calculated by summing over all the grid points 
in a domain (at any time scale desired, such as pentad, weekly, monthly, 
or yearly), and multiplying by the areal coverage of each grid point (32 
km × 32 km for the NARR grid), as seen in Fig. 10. Fig. 10 indicates that 
for locations east of the Rocky Mountains, the temporal peak in flash 
drought and rapid intensification events occurs in July and August 
which agrees with the seasonality of flash drought noted by Chen et al. 
(2019), Christian et al. (2019b), Noguera et al. (2020), and Otkin et al. 
(2021). Finally, the climatologically averaged threat score (Sup. Fig. 5) 
was also higher, by about 0.1 on average, for just the eastern U.S. when 
compared to CONUS. The eastern U.S. threat score also showed a 
maximum in the summer season, occurring with the seasonally favored 
time for flash droughts. In addition, correlation coefficient and com
posite mean difference analyses were performed on the rapid intensifi
cation and flash drought events and showed identical results (not 
shown). Thus, these results show that rapid intensification plays the 
prominent role in determining flash drought development east of the 
Rocky Mountains, whereas the drought component plays a more 
prominent role west of the Rocky Mountains. 

3.2.2. SESR drought component 
The second part of the climatological analysis focuses on the overall 

performance of the SESR drought component. The climatology of the 
drought component was found to be about 0.2 (20%) everywhere, by the 
definition of criterion 2. The results of the comparisons between the 
USDM and drought component for all years (2010 – 2019) is shown in 
Fig. 11. The comparisons were performed on the same weekly timescale 
as the USDM dataset. Across the Intermountain West, the composite 

Fig. 9. Frequency of rapid intensification and flash drought events. Frequency of rapid intensification events that (left) do not fall into drought and (right) do fall into 
drought, relative to the total number of rapid intensification events. The frequencies were calculated for the growing season of the 1979 – 2019 period. The con
tingency table below shows the frequency to the corresponding map above it. 
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mean difference between the USDM and drought component (Fig. 11) 
illustrates that SESR has difficulty identifying drought within the region, 
often failing to identify drought when one occurs (bottom panels). This 

could be due to the fact that the USDM is focused on a more long-term 
drought (i.e., different type of drought) as compared to SESR (see Sec
tion 4). Further, when it does identify drought in the Intermountain 

Fig. 10. Average time series of flash drought 
components. The annual average percentage of 
areal coverage for drought (top, red line), rapid 
intensification (bottom panel, blue line), and 
flash drought (bottom panel, black line) span
ning 1979 – 2019 in time for the whole domain 
(U.S.; left) and across the domain east of 105̊W 
to exclude the Intermountain West (right). 
Shaded areas denote 1 standard deviation 
variability for drought coverage (red), rapid 
intensification (blue), and flash drought (grey). 
Dark blue shading is where the variability in 
rapid intensification and flash drought overlap.   

Fig. 11. Composite mean difference between SESR drought component and USDM for the 2010 – 2019 growing seasons. Composite mean difference (left) between 
the SESR drought component and USDM and statistical significance (right) for the corresponding composite difference for coverage and intensity (top) and just 
drought coverage (bottom) for April – October of 2010 – 2019. 

Fig. 12. SESR drought component and USDM 
contingency table analysis for the 2010 – 2019 
growing seasons. Spatial distribution of aver
aged agreement of drought (SESR drought 
component and USDM both identified or did 
not identify drought at the same time; left), 
false positive error (center), and false negative 
error (right). The Fig. was determined by 
calculating the mean in the corresponding 
contingency table below the map for each grid 
point. The mean was performed across each 
week in April – October during 2010 – 2019 
period.   

S.G. Edris et al.                                                                                                                                                                                                                                  



Agricultural and Forest Meteorology 330 (2023) 109288

12

West, it tends to underestimate the intensity of the drought (hence the 
stronger mean difference in the top panels). Conversely, in the Ohio 
River Valley SESR tends to overestimate the intensity of drought. In 
contrast to this, the composite difference is small and near zero (no 
difference, SESR identifies drought well) in the Northern and Central 
Great Plains, Pacific Northwest, as well as parts of the Deep South. An 
additional note is that there is no statistical significance in the composite 
mean difference except where the difference is fairly large in the 
Intermountain West. This further demonstrates SESR’s ability to identify 
drought as there is no statistically significant difference between 
drought identified by the USDM and by SESR. 

To quantify the spatial coherency of drought identification between 
SESR and the USDM a contingency table analysis was performed for each 
pentad and grid point. The results display the frequency of correct 
drought identification by SESR when compared to the USDM (Fig. 12; 
left panel). A critical result of the analysis is the notable agreement 
between the USDM and SESR that consistently occurred across the 
majority of the U.S., particularly east of the Mississippi River and Pacific 
Northwest. Further, weaker to neutral agreement occurred in the semi- 
arid Great Plains (namely the Southern Great Plains), portions of 
Georgia, and the Intermountain West with frequent disagreement in the 
arid Desert Southwest. 

Fig. 12 provides the frequency of false positive and false negative 
errors respectively. When compared with the results of the composite 
mean difference (Fig. 11), SESR more frequently arrived at a false 
negative (or a “miss”) whereby it failed to identify drought when needed 
in the semi-arid to arid regions and portions of Georgia. This could 
explain the negative composite difference found in the Southern Great 
Plains and around the more arid regions. However, more false positives 
(or “false alarms”) were identified by SESR east of the Mississippi River 
centered around the Great Lakes region and the Ohio River Valley. An 
additional possibility is that SESR becomes a good indicator of drought 
in regions where there is moderate to high transpiration from the 
vegetation, so that the ET and PET become a more accurate measure of 
vegetative stress. This would also explain the high negative composite 
difference in the Intermountain West and Southern Plains, where the 
vegetation retains moisture in the arid environments, but works well in 
the Northern Plains and Pacific Northwest, where the agricultural crops 
and temperate vegetation transpire at a moderate rate. However, this 
does not explain the poor performance in Georgia and the Ohio River 
Valley, and additional research needs to be done to determine the reason 
for this. 

4. Discussion 

SESR was able to successfully capture the rapid intensification 
component shown in previous case studies (e.g., Otkin et al. (2013) and 
McEvoy et al. (2016) in 2011 and Basara et al. (2019) in 2012). 
Climatologically, the rapid intensification component occurs commonly 
in agriculturally-dominated land areas east of the Rocky Mountains, but 
also frequently occurs west of the Rocky Mountains, especially in the 
Desert Southwest (Fig. 8). While rapid intensification events that do not 
reach drought status do occur in the eastern half of the United States, 
they are uncommon (Fig. 9). However, west of the Rocky Mountains, 
rapid intensification events occur often but few flash droughts events are 
identified. This suggests that the critical factor in this region is the 
drought component. There may be several reasons for this dichotomy. 
For example, in the western United States the rapid intensification 
events may be due to the climatological onset or termination of the 
seasonal monsoon conditions in that region. As such, precipitation is 
often followed by rapid drying due to the arid nature of the region, but it 
would not necessarily enter drought (in Fig. 10, the peak in rapid 
intensification occurs in July when the Intermountain West is included 
which is shortly after or during monsoon season whereas the peak occurs 
in August and September east of the Rocky Mountains). It is also feasible 
that drought depiction by SESR may be limited in the Intermountain 

West due to the inherent arid nature of the region, emphasis on ET, and 
the role of winter precipitation instead of summer precipitation (Otkin 
et al., 2014) at higher elevations, which could lead to the frequent 
misses in drought identification. Finally, it is also possible this might be 
a reanalysis and resolution issue due to the complex topography of the 
region. Overall, there are several potential reasons why a high frequency 
of rapid intensification events west of the Rocky Mountains exist with 
limited drought occurrence, and future work is needed to determine the 
physical mechanisms. 

With regards to the drought component, SESR has the potential to 
identify drought as an individual metric. It successfully represented the 
spatial extent of drought events and identified areas where the drought 
is most extreme. For example, SESR was able to accurately depict the 
spatial extent of the 2011 drought found in Vicente-Serrano et al. (2018) 
and Kim et al. (2019). However, SESR was found to underestimate 
drought severity and its persistence. That is, SESR may be sensitive to 
moderating events (precipitation, cooler temperatures, etc.) and no 
longer identifies drought after such events even when impacts are still 
present. This effect with a noisy precipitation and temperature record 
has also been noted in Osman et al. (2021). It should be noted here that 
there is some level of subjectivity in the USDM (Leasor et al., 2020) and 
that the USDM uses multiple indices for a convergence of evidence 
across multiple time scales to identify drought (McEvoy et al., 2016), 
whereas SESR identifies rapidly changing drought across a pentad 
timescale. That is, the USDM represents agricultural and hydrologic 
drought, whereas SESR represents more meteorological and agricultural 
drought. Thus, areas that experienced more long-duration droughts (e. 
g., Georgia and the Intermountain West in the past 20 years) will not see 
as much agreement between SESR and the USDM. But SESR is able to 
depict rapidly deteriorating conditions. 

On a climatological scale, SESR continued to demonstrate strong 
potential in being able to identify drought, consistently identifying 
drought in the Pacific Northwest, the Northern and Central Plains, the 
majority of the Deep South, the Great Lakes Regions, and the Northeast. 
However, there was not much agreement between SESR and the USDM 
across arid and semi-arid regions and in regions of complex topography 
such as the Intermountain West and portions of the Southern Plains. 
There was also little agreement in Georgia and the Ohio River Valley. In 
addition to representing different types of drought, a possible explana
tion is that aridity and, to a lesser degree, temperature governs how well 
SESR and the USDM agreed. That is, SESR’s lowest error (Fig. 12) was in 
more humid regions, whereas it struggled in more arid regions. 
Although aridity cannot explain the performance of SESR in all loca
tions, (e.g., the low false positive and negative errors in the more arid 
Northern Plains and in Georgia) aridity serves as a proxy for the accu
racy of drought representation by SESR compared to the USDM. Another 
notable result is that SESR performs well in regions that experience 
moderate to high transpiration (e.g., the Northern Plains and Pacific 
Northwest). If the vegetation conserves moisture, as conifers and most 
arid vegetation do, then ET may not be a good measure for vegetation 
health. This would explain the low false positive and negative errors in 
the Pacific Northwest, despite the importance of wintertime precipita
tion (which was excluded for this study), as it has more temperate 
vegetation that transpires more readily. It would also explain the low 
false positive and negative errors in the cultivated Northern Plains. 

Lastly, the poor agreement between the USDM and SESR in the 
Intermountain West could also be related to hydrologic processes in that 
region. That is, the main precipitation in the Intermountain West is in 
snowpack during the winter, which SESR does not look at. Since SESR 
does not consider features such as river levels and snowpack, an addi
tional metric would be useful to represent the hydrologic processes that 
occur in that region of the country. It is suggested that more work be 
done to investigate the reasons for why SESR succeeds and fails where it 
does. 

The difficulty SESR showed in representing more long-term 
droughts, particularly in arid regions and in extreme scenarios, and 
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the fact that the percentiles can only identify D4 drought in one year out 
of the dataset given its relatively short period of record, suggests that it 
should have help from another index, variable, or dataset to help 
accurately represent drought. Because ET incorporates soil moisture, 
vegetation conditions, and general moisture conditions (Chen et al., 
1996), and PET incorporates temperature and soil fluxes (Mahrt and Ek, 
1984), the variable most indirectly represented by SESR is precipitation. 
Thus, a precipitation index such as SPI would be recommended to help 
identify drought. 

5. Conclusion 

This study utilized the method of flash drought identification 
developed by Christian et al. (2019b) and separated flash drought into 
(1) rapid intensification and (2) drought components. These compo
nents were examined separately to investigate their contribution to flash 
drought development for several different cases. Analysis of the drought 
component was completed by comparing the SESR results to the USDM 
from 2010 to 2019, and the rapid intensification component was 
compared to the results of previous studies. 

This study provided key insights into mechanisms that contribute 
towards flash drought development. It was determined that rapid 
intensification component plays a prominent role in flash drought 
development east of the Rocky Mountains, whereas the drought 
component plays a more prominent role west of the Rocky Mountains. 
Therefore, attempts to identify flash drought in real time, or predict 
them must be able to capture rapidly developing drought conditions. In 
addition, SESR showed strong potential in being able to identify rapidly 
changing and short-term drought. It is recommended to investigate how 
the results of this method changes with different climatological periods 
(e.g., of use 10, 20, or 30 year averages instead of the 41-year average 
used in this study) to quantify how the results may vary under a 
changing climate. It is also recommended to investigate SESR’s ability to 
identify drought in union with a precipitation index, such as SPI, to 
determine how effectively precipitation can accommodate for SESR’s 
deficiencies in more long-term drought representation. Overall, this 
analysis was able to separate flash drought into components and provide 
a means to quantify rapid intensification and drought using SESR, 
providing a new way to examine flash drought events. 
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