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Abstract

Robotics has attracted broad attention as an emerging technology in construction to help workers
with repetitive, physically demanding, and dangerous tasks, thus improving productivity and
safety. Under the new era of human-robot co-existence and collaboration in dynamic and complex
workspaces, it is critical for robots to navigate to the targets efficiently without colliding with
moving workers. This study proposes a new deep reinforcement learning (DRL)-based robot path
planning method that integrates the predicted movements of construction workers, to achieve safe
and efficient human-robot collaboration in construction. First, an uncertainty-aware long short-
term memory network is developed to predict the movements of construction workers and
associated uncertainties. Second, a DRL framework is formulated, where predicted movements of
construction workers are innovatively integrated into the state space and the computation of the
reward function. By incorporating predicted trajectories in addition to current locations, the
proposed method enables proactive planning such that the robot could better adapt to human

movements, thus ensuring both safety and efficiency. The proposed method is demonstrated and
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evaluated using simulations generated based on real construction scenarios. The results show that
prediction-based DRL path planning achieves a 100% success rate (with a total of 10,000 episodes)
for robots to achieve the destination along the near-shortest path. Furthermore, it reduces the
collision rate with moving workers by 23% compared to the conventional DRL method which does
not consider predicted information.
Introduction

The construction industry faces longstanding challenges including low productivity, high
rates of injuries and facilities, as well as workforce aging, and labor shortage. Despite the high
labor cost, construction productivity remained stagnant during the past decades, whereas that in
manufacturing has nearly doubled (McKinsey&Company et al. 2015). Worker fatalities in the
construction sector continuously account for 20% of total fatalities, highest among all private
industries (OSHA 2020), and another 46% of construction workers suffer from work-related
musculoskeletal disorder injuries (Dong et al. 2019). In addition, more than 20% of construction
workers are aged 55 and older (The Center for Construction Research and Training 2018), with
430,000 more workers needed to fill the vacancy (Associated Builders and Contractors 2021).
Under such situation, construction automation and robotics has emerged as a promising solution
to assist in physically demanding and dangerous work, and has been introduced in various
operations, such as earthwork (ASI 2019), laying bricks (Madsen 2019), and site inspection
(Jacob-Loyola et al. 2021). The co-existence of and collaboration between human workers and
robots may lead to potential collision risks, which requires the robots to proactively plan their
motion based on the dynamics of human workers to avoid any potential collision while ensuring

collaboration efficiency.
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Several studies (Chen et al. 2022; Jeong et al. 2021; Kayhani et al. 2018; Kim et al. 2003)
have developed methods for robotic motion planning on construction sites, while most of them
only consider site configuration and static obstacles and neglect the impact of moving workers.
For the few studies that can be used with moveable obstacles (e.g., Kim et al. (2003)), current
obstacle locations are incorporated without any prediction of their future movement. In dynamic
and complex environments that involve large uncertainties of movements, like construction sites,
it is critical to have a reliable prediction of human behavior, and integrate their anticipated
movement into robot path planning to generate safe and feasible trajectories (Fridovich-Keil et al.
2020; Zhou et al. 2022). In some pilot studies, Hu et al. (2020) modeled predicted locations of
construction workers as static obstacles to generate a collision-free path, which does not consider
the temporal evolvement and associated uncertainty of the prediction. Another previous study by
the authors (Cai et al. 2021) modeled the risk of collision between construction robots and workers
based on the uncertainty-aware predicted trajectories of construction workers, which, however,
has not been effectively integrated with robot path planning algorithms.

To close these gaps, by integrating deep reinforcement learning (DRL) with trajectory
prediction, this study proposes a new path planning method for safe and efficient human-robot
collaboration on dynamic construction sites. The novelty and contributions of the proposed method
are threefold. First, predicted trajectories of construction workers are innovatively introduced in
the state space, and the computation of the reward function of the DRL framework. A new reward
function is designed to ensure both safety and efficiency by integrating the current locations of the
robot and workers, the target location of the robot, and the predicted locations of workers. Second,
the proposed method is robust to different construction scenarios with a varying number of moving

obstacles (e.g., workers and other machines). Furthermore, by leveraging high-level information
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(e.g., pre-processed locations) instead of raw sensing data, this method can be adaptive to various
construction environments with different settings of sensors. Third, the proposed method is
validated using simulations generated based on real construction scenarios, and is shown to
outperform the conventional DRL-based path planning in both efficiency and safety (evaluated
using quantitative metrics as detailed in the “Experiments and Results” section).
Background and Review of Related Studies
Robotic applications in construction

The applications of robotics in construction have been evolving over the past years, ranging
from single-task construction robots, such as brick-laying robot (Madsen 2019), rebar-tying robot
(Cardno 2018), robotic excavator (ASI 2019), painting robot (Asadi et al. 2018), to general-
purpose robotic platforms equipped with multiple skills (e.g., sensing, navigation, manipulation)
for more flexible human-robot collaboration (Kim et al. 2021). Particularly, mobile robots (both
unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV)) have attracted increasing
attention and are applied to various tasks, including site inspection and progress monitoring (Asadi
et al. 2020; Freimuth and Konig 2018; Jacob-Loyola et al. 2021; Kim et al. 2019; Lu et al. 2021),
material handling and object manipulation (Asadi et al. 2021; Wang et al. 2020), site layout
drawing (Dusty Robotics 2022; Tsuruta et al. 2019), etc. Teleoperation is a common approach to
control robots, where, conventionally, operators directly give commands via input devices such as
joystick and tablets (Khasawneh et al. 2019; Okishiba et al. 2019). Methods have also been
developed to control robots from intuitive motions of workers in either real or virtual reality (VR)
environments (Gong et al. 2019; Wang et al. 2021; Zhou et al. 2022). With the advances in sensing,
computer vision, and artificial intelligence (Al), many studies have been dedicated to enhancing

machine intelligence for automatic robot control to further reduce workers’ mental load and
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increase productivity. Examples include vision-based navigation and object manipulation (Asadi
et al. 2021; Narazaki et al. 2022; Wang et al. 2020), and brain signal-based robot control (Liu et
al. 2021a; b), etc.

Most existing studies focus on achieving specific construction tasks, with an underlying
assumption that the robot can navigate to the target safely and efficiently across the unstructured
and dynamic jobsites using various path planning algorithms developed in the general robotics
domain (detailed in next section). Although a few studies devised new algorithms for mobile robot
path planning to address challenges in construction sites, e.g., uneven terrain (Jeong et al. 2021),
complex structures in congested spaces (Chen et al. 2022), they mainly considered static site
configuration and obstacles, while neglecting the moving workers who work on various operations
simultaneously and share the workspaces with robots. To achieve safe and efficient human-robot
collaboration in construction, it is critical to incorporate the anticipated dynamics of workers in
robot path planning.

Path planning for mobile robots

In the field of mobile robots, path planning is an essential task and has been extensively
investigated by many studies. Path planning aims to find a sequence of actions to transform robots
from a start to a final position, which typically follows a hierarchical approach, i.e., a combination
of global and local path planning (Xiao et al. 2022). Global path planning is used to identify a
coarse route from robot’s current location to the target position. Graph-based methods, e.g.,
Dijkstra’s (Dijkstra 1959) and A* (Hart et al. 1968) algorithms, and sampling-based algorithms,
e.g., Rapidly-Exploration Random Tree (Lavalle 1998)), are classical methods for global path
planning. These approaches generate the path plan based on the static configuration of an

environment, and if the environment changes, methods such as D* algorithm (Stentz 1994) need
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to be used for dynamic re-planning. Local path planning generates a detailed motion plan for
execution leveraging current observation of the environment obtained from onboard sensors. Since
the current location of moving obstacles can be perceived in local path planning, it can be used for
real-time collision avoidance in dynamic environments. Typical methods include artificial
potential field (Ge and Cui 2002) and partial swarm optimization (Min et al. 2005), which can find
a local path fast and efficiently, however, can be easily stuck in the local optimum (Zhang et al.
2018).

Despite the achievements, classical path planning algorithms heavily rely on mathematical
models and expert experience to model the environment (both static configuration and dynamics
of moving entities), and to solve for the optimal path given performance criteria. In dynamic and
complex environments, especially with uncertain movement of entities, classic methods may not
be sufficient to generate a reliable path (Xiao et al. 2022). To overcome these challenges, deep
learning-based methods have been developed to learn robot motion plans directly from perceptual
information of the environment in an end-to-end manner. Specifically, DRL has been increasingly
explored in robot path planning (Ajeil et al. 2020; Botteghi et al. 2020; Xie et al. 2017). For
instance, Gao et al. (2020) designed a DRL-based path planning method for collision-free
autonomous navigation, The trained model was also transferred from 2D to a complex 3D
environment, demonstrating the good generalizability of the DRL model. Yan et al. (2021)
proposed a DRL-based method combined with a variant of the long short-term memory (LSTM)
model to generate optimal angle motions in a marine environment for unmanned surface vehicles.
Wen et al. (2020) leveraged a DRL-based active simultaneous localization and mapping (SLAM)

framework to achieve autonomous navigation for the mobile robot in an environment with both
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static and moving obstacles, however, the number of moving obstacles is limited as one in their
application.

Existing studies have shown the great potential of DRL as an effective way to generate
collision-free paths in complex and dynamic environments. However, there remain three
knowledge gaps. First, most studies only consider the current locations of moving agents without
a reliable prediction of their future behavior. Given the sensing uncertainty as well as the
unexpected movement of agents in complex environments, such an approach cannot guarantee
safety (Fridovich-Keil et al. 2020). A pilot study (Fridovich-Keil et al. 2020) incorporated
confidence-aware motion prediction in the path planning, however, it still relies on mathematical
models (i.e., hidden Markov model) to capture human dynamics by assuming people take actions
following Markovian fashion. To close this gap, this study leverages an LSTM-based model to
predict human trajectory and associated uncertainties and incorporate the predicted movement into
the design of DRL-base path planning. Second, in DRL, the design of the reward function has a
significant impact on the convergence and performance of the model, which should reflect the
objective of the planning context. Most studies focus on collision-free path planning in a general
mobile robot application, and cannot be readily applied to construction scenarios. In this study, a
new reward function is designed to incorporate both safety and efficiency requirements in
construction applications, considering the predicted trajectory of construction workers. Third,
most studies model the state space using raw sensor measurements and focus on the environment
with only one moving obstacle, constraining the applicability to specific robot and environment
configurations. In contrast, this study leverages high-level information in the state space and
integrates information of the nearest obstacle, which makes it applicable in various environments

with different robot configurations and varying numbers of obstacles.
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Methodology
Problem formulation

In this study, the path planning problem is modeled as a Markov Decision Process (MDP)
where a mobile robot selects its action at each time step (4), based on the environment states (.S;),
such as the locations of the robot, destination, and moving workers. After executing the action, the
environment is transmitted to the next state (S;+;) and the robot receives a reward (7:+7). Over a
given time horizon 7, the goal of the robot is to learn an optimal policy 7(A44S;), to find a safe and
efficient path from its initial location to a known destination on construction sites with moving
workers, by maximizing the expectation of cumulative discounted long-term reward R; (Eq. 1):

Re = 7(Se, Ap) + 7 (Sean, Aesn) + =+ ¥ (S, Ar) = Lyt (S, A ey
where y is the discount factor in the range of 0 to 1. To ensure safety and efficiency, the reward
function is designed to combine both the locations of obstacles (i.e., moving workers) and the
destination to motivate the robot to find the shortest possible collision-free path. In contrast to
most existing studies on DRL-based robot path planning that only consider current observations
of the environment, the proposed method innovatively incorporates predicted trajectories of
workers using an LSTM-based prediction model (detailed in the next section) to achieve more

proactive planning. Figure 1 shows the overall process.

!
State S, Agent: robot
* Robot location
+ Destination Reward r, Action A
* Current and future + Safety :

: . = (e.g., move right, left, etc.)
locations of workers |+ Efficiency g g

’r
- . [—
Construction site

+1 Environment:
qf' 1 |

i

g

Figure 1. The MDP framework for robot-environment interaction on construction site
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In this study, the construction site is discretized into a 2D grid map, following the common
practice in robot path planning studies (Ajeil et al. 2020). Thus, the locations of workers, robot,
and destination are represented by the grids they occupy. Discretizing the state space and the
corresponding action space allows finite decisions and effective dimensionality reduction in the
planning process, where there is a trade-off between precise path planning and computational
efficiency. A small grid size enables the system to model the locations of each agent more
accurately and to plan the robot’s path more precisely with relatively high computational
complexity. On the other hand, a large grid size leads to fewer states and can significantly improve
computational efficiency. However, a grid is more likely to be occupied by multiple agents and
results in collisions even if the distance between them is still large, which might cause unnecessary
detours. In addition, coarse grids could better accommodate uncertainties: considering possible
uncertainties of agents’ locations (e.g., caused by sensing errors), the corresponding states are more
likely to remain unchanged with coarse grids compared to fine grids.

Taking into account the above factors, as well as existing studies on construction
workspace modeling (Zhang et al. 2015; Dong et al. 2018), a grid size of 0.5x0.5 m is adopted in
this study. The path is represented by a sequence of 2D grid coordinates resulting from the action
taken by the robot at each time step. Since this study focuses on path planning for mobile robots
instead of low-level control of robot motion, only the time-series locations are considered, and it
is assumed that the robot moves one grid each time step as a simplification. In addition, it is
assumed that the robot has full knowledge of the environment, including its location and
destination, and the locations of all workers, which could be obtained from external sensing or

camera systems (e.g., Cai and Cai (2020)).
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Uncertainty-aware worker trajectory prediction
In a previous study (Cai et al. 2020), an LSTM network with an encoder-decoder
architecture was developed to predict future trajectories of construction entities, where the
trajectory was predicted from a deterministic perspective without considering the associated
uncertainty of the prediction. Such practice may pose a potential risk of robot-worker collision in
the path planning problem. The above method is extended to incorporate uncertainty in this study.
Inspired by Alahi et al. (2016), the trajectory is assumed to follow bivariate Gaussian distribution,

and the parameters that characterize the distribution rather than absolute locations are estimated,

see Figure 2.

Observed locations

Y Ry g
(chovh) k) (%h 0 Vhop)
|
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- X >
" Encoded |
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: e T Dense Dense Dense
e - » o L2
Construction videos el b WXy Tapsrar (T 1KY o

L L 4 i 1
JXTUDS*P”’“' ayTﬂbﬁ*‘l-'Tr‘d) OXT opsea? ayTuLv5+z) OXTopssr? T Tobs+r )

Distributions of future locations
Figure 2. Uncertainty-aware LSTM-based trajectory prediction model
Specifically, the observed locations of workers are extracted from construction videos,
represented as pixel coordinates of the mid-bottom point of the workers’ bounding box. In this
study, the bounding boxes are manually labeled to generate worker’s movement data, which can
also be obtained automatically via object tracking algorithms (e.g., Roberts and Golparvar-Fard
(2019), Cai and Cai (2020)). Then, the observed trajectory from time T; to T, serve as inputs and

are fed into the LSTM encoder, and the position distributions, N (ué, o, pé) , from time T,p¢4q to
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Tops+prea are generated via LSTM decoder, where = (,ux, ,uy) is the mean, ot = (ax, ay) is

the standard deviation, and p! is the correlation coefficient (in this study, pi = 0, assuming the

movements in both directions are independent). Accordingly, the negative log-Likelihood is

ZTobs+pred

E=Topers log(P(xt, yt|uk, o). Readers are referred to Cai et al.

adopted as loss function: L} = —

(2020, 2021) for details of the network architecture. The resulting predicted trajectory is then
included in the state space to provide additional information for robot path planning (detailed in
the next section).
State space

The state space reflects the observations of the robots about the environment, which serves
as the input of its decision process. In conventional studies on robot navigation and control (e.g.,
(Gao et al. 2020), (Yan et al. 2021)), raw sensory data (e.g., light detection and ranging (LiDAR)
measurement, images from cameras) are used to model state space. In contrast, this study models
state space using high-level information, including the current location and destination of robots,
as well as current and predicted locations of construction workers, which can be processed from
raw sensory data using various object localization and tracking algorithms (Roberts and Golparvar-
Fard (2019), Cai and Cai (2020)). Through such an approach, the proposed method can be naturally
extended to other systems with different sensors. As a result, at any time step ¢, state space is a 16-

t0 t1 . t1 t,5
dimensional vector, denoted as St = [xr, vt xb, vk x O , yo 2 Xo Vo s ees O , yo ] where,

o [xf,yf]is the location of the robot in terms of 2D grid coordinates, varying at each time
step after the robot takes an action. In practice, this information could be obtained via

multiple sources, such as onboard GPS, cameras, and/or LiDAR.
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o [xf,yt] is the destination of the robot in terms of 2D grid coordinates, remaining
unchanged during the decision horizon. This is reasonable because a robot is typically
given a specific task with a known goal (i.e., destination) in practice.

o [xb0 ybO byt L xE?, yb5] represents the current location ([x5°, y£°]) and predicted
locations ([x5*, v52, ..., x§5, yot’s]) of the robot’s nearest worker. The past trajectories of
workers can be observed from various sensors (e.g., cameras, radio-based sensors), based
on which the future trajectories can be predicted using the method described in the previous
section. In this study, locations in the next five steps are considered. It is noted that since
the proposed LSTM-based uncertainty-aware model predicts the distribution of the future
trajectory, the future locations in state space are sampled from the distribution. Besides, to
generalize the proposed methods to environments with varying numbers of
workers/obstacles, only the nearest obstacle is modeled in the state space instead of all
workers on the jobsite, which is reasonable because the nearest obstacle is expected to have
the largest impact on robot path in terms of collision avoidance.

In the above state space, all elements are represented in 2D grid coordinates, and have the same
scale that is determined by the environment. Thus, it can be directly used as inputs for Deep Q-
Networks (DQN) as detailed in the “DQN model” section.

Action space

Given the current and target locations in the 2D grid environment, a robot takes action to
move from the current location to the target location along the grids. Existing studies typically
define the action space of a mobile robot to include four discrete actions, i.e., up, down, left, and
right (Xu et al. 2019; Zhang et al. 2019). In addition to the four actions, this study also introduces

a fifth action, i.e., stay, to incorporate the scenario where the robot can choose to wait for workers
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to move away based on the predicted movement of workers. Note that, it is assumed that the robot
moves at a fixed speed (one grid per time step), and thus, the updated location of the robot after it
takes one specific action can be illustrated in Figure 3, which determines the transition rule of

robot location.

Action 2: [xt*, yt*Y] = [xf, vt + 1]

Action 5:
[xt*1, yt+1] =
T rJr T,
[xf 9] Y
Actiont?}—:1 et <C Action 1:
[_J:wtxt’%‘lllyt] M [xf'+1'y?§+1] = [x?‘t + 11 y?t]
— ?. - » ?..

t ot
o, v
y

Action 4: [xﬁ“,yf“] = [x:tuyf —1]

Figure 3. Updated location after taking specific action at time ¢
Reward Function

The reward function is critical to the success of DRL in solving complex tasks. In mobile
robot path planning on construction sites, a robot is expected to move efficiently from its start
point to its destination without collision with other workers moving on the jobsites. Therefore, the
design of the reward function considers both efficiency and safety. For efficiency, three factors are
incorporated: 1) at any time step, the robot should be motivated to move closer to the target position
instead of moving away from the target. Therefore, after taking an action, if the distance between
robot’s location and desired position is smaller than their previous distance, a positive reward is
given, otherwise, a negative reward (i.e., penalty) is applied. The value of this reward is denoted
as 7q;s¢ - 2) By only applying the first reward, the robot may move aimlessly, exhibiting a tendency
to move back and forth to avoid penalty while making minimum progress to the target. In this case,

a negative reward should be given to prevent the aimless movement and force the robot to navigate
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to the target, which is denoted as 7,;ess- 3) Eventually, the robot is given a large reward for
reaching the target, denoted by 74,4 .

For safety, two factors are incorporated: 1) the robot should not collide with moving
workers. In this study, as both the current locations of the workers and a period of the predicted
trajectory (i.e., S5-time steps) are considered, a deduction factor is applied for potential collision
with the predicted positions of workers. Let r,,¢ denotes the penalty for colliding with a worker
(i.e., the robot and worker are in the same grid) and y is the deduction factor, then the penalty
(negative reward) for colliding with a worker n-step later is denoted by y ™1, s (no deduction for
colliding at the current location). As a result, a negative reward is formulated for potential collision
with future positions of workers. To avoid applying penalties repeatedly, only the earliest time
when a collision may occur is considered, thus, Tcopision = MiN{Typs, ¥ Topss - ¥ Tops}, Where
n=5 in this case. Specifically, if the robot does not collide with the worker at ¢, ,;,; for that step is
0. In this way, the penalty is only applied to the earliest time step of a potential collision, and the
later the collision, the smaller the penalty is; 2) Once the robot exceeds the boundary of the site, a
large penalty, denoted as 7pyndary» 18 applied if they go beyond the boundary to ensure the robot

move within its workspace. As a result, the reward function of the proposed method is 7 = 745 +

Taimless T Tdest + Tcollision T Thoundary-
DON model
The MDP problem is solved via DRL, a modern approach to overcome the limitation of
traditional Q-learning by improving computational efficiency and convergence, leveraging
advanced function approximators (e.g., neural networks) instead of Q-table (Du and Ghavidel
2022). Various DRL algorithms have been developed, including DQN (Mnih et al. 2013), Deep

Deterministic Policy Gradients (DDPG) (Lillicrap et al. 2015), and Actor-Critic methods (Mnih et
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al. 2016). In this study, the proposed DRL-based robot path planning method is implemented based
on a typical DRL algorithm, DQN, which employs neural networks to approximate the Q values.
Bellman equation (Eq. 2) is adopted for value iteration in the training of the neural network Q(s,
a; 0) as an action-value function approximator.

Q*(s,a) =Ey.g [T(s. a) +y max Q' (s’, a’)] (2)
Where Q" denotes the optimum action-value (Q) function, 6 denotes the weights of the neural
network. To achieve supervised learning for DQN, temporal difference (TD) training is adopted
which introduces a target network to provide target Q values to act as the “ground truth”. The
target network is initialized with the same network structure and weights as the action-value
network, and the weights of both networks will be updated using common stochastic gradient
descent algorithms. However, the target network is updated in a delayed fashion compared to the
action-value network that is updated in every training step, and such stability could also improve
the convergence.

Specifically, a fully connected (FC) neural network with two hidden layers (24 nodes for
each layer) is used as approximators of both action-value function and target function of the DQN
(Du and Ghavidel 2022). The 16-dimensional state vector is considered as input to the neural
network. The Rectified Linear Unit (ReLU) activation function is implemented for the two hidden

layers and a linear activation function is implemented for the output layer, illustrated in Figure 4.
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Figure 4. Architecture of DQN
Experiments and Results
Environment setup

The proposed prediction-based DRL framework for robot path planning is demonstrated
and evaluated using simulations that are generated based on real construction scenarios, detailed
as follows.

First, construction videos from three real construction projects (two recorded by authors,
and one collected from (YouTube 2019)) were used to train the uncertainty-aware LSTM model
for worker trajectory prediction, which was then used to generate simulation environments to
validate the proposed method for robot path planning. The videos consist of a total of 84 workers
conducting various construction activities, including site preparation, material handling, formwork,
etc. The videos were taken from various angles at height, similar to the perspective of surveillance
cameras. Figure 5 illustrates some sample images of the collected videos. All videos were down-
sampled to 2fps, compatible with other studies (Alahi et al. 2016) on video-based human trajectory
prediction. The videos were pre-processed and bounding boxes of workers were manually labeled
to extract entity positions, serving as inputs of the prediction model. A total of 2,544 frames

consisting of 241 trajectories with various lengths were extracted (Cai et al. 2020), where a
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trajectory was terminated if the worker was severely occluded by other objects. In this study, the
observation duration of worker movements was 3s (i.e., 6 frames) and the prediction duration was
5s (i.e., 10 frames), following relevant studies (Alahi et al. 2016) on human trajectory prediction.
Therefore, the 241 trajectories were further split into 16-frame tracks using a sliding window with
a stride of 2 frames, resulting in 3640 tracks for training and testing the prediction model.
Consistent with previous studies (Cai et al. 2020, 2021), the dataset was randomly split into
training set (80%), validation set (10%), and testing set (10%). The network was trained with Adam
optimizer (Kingma and Ba 2014), with a learning rate of 0.001, batch size of 20, and dropout rate
of 0.5. The proposed method was implemented on a desktop with Intel 17-9700 CPU, 32GB, and

NVIDIA GeForce GTX 2060 GPU using Keras library within Tensorflow platform.

Figure 5. Sample images from the dataset: (a) and (b) from two building projects

photographed by authors; (¢) and (d) from a hospital project (YouTube 2019)

Figure 6 visualizes an example of predicted trajectories with associated uncertainties,
where red lines represent the actual trajectories of construction workers. In Figure 6, the predicted
trajectories closest to the actual one have the highest probability (yellow color), while those farther
away exhibit relatively low probability (blue color). This establishes a reliable basis to incorporate

predicted trajectories and their associated uncertainties for robot path planning.
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Figure 6. Example of predicted distributions of future locations over 10 timesteps

Second, the above construction scenario (shown in Figure 6) was selected to simulate the
environment to train the DRL model for robot path planning. To establish a realistic environment,
the construction site and worker locations were converted from image plane to ground plane via
projective transformation (Hartley and Zisserman 2003), where the transformation matrix was
estimated from known dimensions of construction equipment. Such approximation may not
influence the simulation of robot path planning because the locations of different workers and the
boundary of the jobsite were estimated from the same set of parameters. The construction site,
after being converted to the ground plane, is a 16m x 11m area, and was further divided into a
32x22 grid map with a grid size of 0.5 m.

Third, to train a generalized DRL model, a large number of training data are needed. To
achieve this, extensive simulations were conducted where construction environments with
different configurations were generated based on the above construction scenario (shown in Figure
6). Specifically, in each training episode of the DRL model, 1) the initial and target locations of
the robot were randomly generated within the environment (i.e., 32x22 grid map obtained in the

previous step); 2) the number of workers was randomly selected, ranging from 1 to 5; 3) the initial
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movements of workers were randomly extracted from all trajectories in the video to reflect real

construction scenarios, and their following trajectories during the training process were sampled

from predicted trajectory distribution obtained from the proposed LSTM model in the first step.
Model training

In the proposed path planning method, the parameter values in the reward function,
especially the relative magnitudes of different components, have a significant influence on the
model performance and convergence, and should be determined considering the planning context
and objective. For instance, the relative magnitude between the reward of moving towards the
destination (i.e., 74;5¢) and the penalty of collision (i.e., T.oyision ) indicates the relative importance
of efficiency and safety. For human-robot collaboration in construction, safety is the priority, and
thus the penalty of collision is set to be much larger than the reward of moving towards the
destination. It implies that the robot tends to take a detour to avoid potential collisions with the
workers. In terms of safety, collision at an earlier time step is more urgent and severe than at more
future time steps. Besides, due to the increasing uncertainty of trajectory prediction at larger
prediction horizons, the discount for the penalty of collision at future time steps should be set as a
large value (i.e., y should be relatively small) to ensure that the robot can efficiently achieve the
goal, and the model can converge.

For efficiency, the penalty for aimless movement (7;mess) Should be compatible with the
reward (or penalty) of the robot moving close to (or far away from) the destination. Otherwise, the
robot tends to move back and forth instead of moving towards the goal. The reward for achieving
the destination should be the largest so that the robot has the motivation to complete the task within
the planning horizon. In addition, the boundary of the workspace is considered a hard constraint,

and the episode is terminated if the robot exceeds the boundary. Therefore, the penalty for
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exceeding the boundary (73,0unaary) should be the largest so that the robot can rapidly learn the
boundary states and avoid exceeding the boundary.

Given the above principles and after experiments with various combinations of values, the
parameters in the reward function were determined as follows: 74,5 = 100, indicating the robot
is given a +100 reward for reaching the destination; ry4;5; = *1, representing the robot receives a
+1 reward or -1 penalty each step for moving close to or far away from the destination; if the
distance between robot and destination remains unchanged in two steps, 7gist = 0; Tgimiess = —1,

indicating the robot receives a -1 penalty each step for moving aimlessly; 7oundgary = —20,

indicating the robot receives a -20 penalty for exceeding the boundary; 7.ouision =
min{ryps, ¥ opss - ¥ ops ), Where 1,55 = —20 and y = 0.3, representing the robot is given a -20
penalty for potential collision with workers at the current time step, and a deduction factor of 0.3
is applied for collisions at future time steps.

Exploration-exploitation strategy, i.e., the e-greedy, was used to achieve a good balance
between exploration (to explore those unvisited sequences) and exploitation (to leverage the policy
that has been learned so far), where the exploration probability ¢ was initially set to 1.0, and
exponentially decays to a minimum value of 0.01 along with the training episodes. The Adam
optimizer was implemented for the neural network training with an initial learning rate of 0.01 and
exponential learning rate decay. 50,000 training episodes were considered for the DRL model
training. For each training episode, the process was terminated if either of the three criteria is
satisfied: 1) the step reaches 100; 2) the robot reaches its destination; 3) the robot exceeds

environment boundaries. The convergence of the training curve is shown in Figure 7.
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Figure 7. Training curve of the proposed DRL model

Performance of the DRL model

The trained DRL agent was further tested using 10,000 random episodes (100 steps per
episode) to evaluate the learning performance. In addition, a conventional DRL agent that does
not consider the predicted locations of workers was trained and tested for comparison. Specifically,
in the conventional DRL method, the observation space only contained the current and target
locations of the robot, and the current location of the nearest worker. The proposed reward function
and corresponding parameters were also used in the conventional DRL agent for consistency,
except for the exclusion of penalty for potential collision at future time steps.

Quantitative metrics were used for performance evaluation in terms of both efficiency and
safety. For efficiency, two metrics were used: 1) success rate, computed as the ratio between the
number of successful cases and the total number of testing episodes, where a successful case is
when the robot achieves the desired destination before the end of the episode; 2) average ratio
between the actual path and shortest path, where for each episode, the actual path is learned from

the DRL agent, and the shortest path is computed as abs(x? — x4) + abs(y? — v4).
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For safety, collision rate was used for evaluation, where one collision case is counted if the
robot collides with a worker (at the current time step) at least once during an episode. To examine
the efficacy of the proposed model in proactive planning, collision rates at anticipatory locations
of workers were also examined, the smaller of which offers a more reliable and safer path and can
accommodate potential sensing uncertainties in practice. Table 1 shows the results of the above
metrics for both models.

Table 1 shows that the proposed prediction-based DRL model outperforms the
conventional model that does not consider the predicted locations of workers in both efficiency
and safety. The proposed method achieves a 100% success rate with an average ratio between
actual and shortest paths close to 1, which means that the robot can successfully reach the
destination in all 10,000 episodes along the near-shortest path. It represents the high efficiency of
the planned paths. Figure 8 shows the visualization of the robot’s planned path in one example,

where the site was zoomed to the central area with moving workers and the robot.
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Figure 8. Example of robot’s path learned using proposed DRL model

In contrast, the robot agent that is learned using the conventional DRL model fails to reach
the destination in 2.64% of total cases (or 264 cases). In almost all unsuccessful cases, the robot
ends up moving back and forth without heading to the destination, which has never occurred in
the robot agent learned using the proposed model. One possible reason is that by introducing
predicted locations of workers and associated penalties for future collision, the robot agent has
more knowledge not only of the current situation but also of the situation in near future. It provides
the robot with more information and incentive to make decisions to move to the destination. The
less chance for the robot to collide with workers (both at the current time and in the near future),

as shown in Table 1, also proves the advantage of the proposed method in terms of safety.
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Table. 1 Performance comparison between proposed and conventional DRL models (a total of

10,000 episodes)

Model Success | Average ratio | Collision | Collision | Collision | Collision | Collision | Collisi
rate between rate  (at | rate (at 1- | rate (at 2- | rate (at 3- | rate (at4- | on rate
actual and | current step step step step (at  5-
shortest paths | location) | predicted | predicted | predicted | predicted | step
(ideally 1) location) location) location) predict
ed
Convention | 97.36% | 1.08 (1.005) 3.34% 3.46% 3.43% 3.22% 3.27% 3.30%
al DRL
(without
prediction)
Prediction- | 100% 1.0003 2.56% 2.47% 2.54% 2.54% 2.50% 2.58%
based DRL
(proposed
in this
study)

Note: 1) the value in the bracket is the average ratio between actual and shortest paths for
successful episodes using the conventional DRL model.; 2) the scenarios when the workers occupy
the same cell with the destination were excluded when determining the number of collisions
Conclusions

This study proposes a new prediction-enabled path planning method for construction robots
considering the predicted trajectories of onsite workers. Specifically, an LSTM-based model is
developed to predict the trajectory distribution of workers instead of absolute trajectories to
incorporate the uncertainty. DRL framework is used for path planning where the predicted
trajectory is innovatively introduced to observation space and integrated into the computation of
reward function to ensure both safety and efficiency. Extensive simulations generated from real
construction scenarios are conducted to validate the proposed framework, which is also compared
with conventional DRL-based path planning that does not consider prediction information. The
results show that the proposed method generates safer and more efficient paths: 1) it achieves a
100% success rate for the robot to move to the destination along the near-shortest path; 2) it reduces

the collision rate with moving workers by 23% compared to conventional DRL method. By

leveraging high-level information (e.g., pre-processed locations) instead of raw sensing data, this
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method is adaptive to various robotics and application scenarios with different settings of sensors.
In addition, by incorporating location information of the nearest neighbor instead of all obstacles
in the environment, the proposed method is robust to scenarios with a varying number of moving
obstacles and can be extended to other environments (e.g., search and resecure, manufacturing).

The proposed framework is critical for human-robot collaboration on unstructured and
dynamic construction sites because it allows proactive adjustment of robot’s movement to avoid
collisions without interrupting normal operation. It endows the mobile robot with the capability to
automatically generate a safe and efficient path considering site dynamics, which is an essential
prerequisite of multiple robotic construction operations, such as material handling, site inspection,
etc. With intelligent path planning that takes into account anticipatory movements of site entities,
it is safer and more feasible to introduce construction robots to on-site operations and share the
workspaces with other workers who do not interact with them directly on a single task.
Furthermore, in terms of human-robot collaborative tasks, human operators are released to only
provide high-level commands that are related to the intended tasks (e.g., assign target areas to be
inspected or materials to be handled), without having to specify a detailed path, which will
significantly reduce the mental load of workers and increase the productivity.

There remain some limitations to be addressed in the future study. First, despite the high
successful rate, worker trajectories in only one real-world scenario (captured in construction video)
were extracted and augmented by adding randomness in the simulated environments. In future
study, more diverse scenarios will be generated to train the agent, which will be further tested on
both robotic simulation and real robot implementation. Second, as this study focuses on moving
workers with uncertain predicted trajectories, static obstacles are not modeled in the framework.

However, the proposed framework can be easily extended to include static obstacles by integrating
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locations of static obstacles in the observation space and the computation of reward function,
similar to moving obstacles except that only fixed locations instead of time-series locations need
to be considered. Third, since the focus of this study is high-level robot path planning, the speed
of the robot is assumed constant as a simplification. Such assumption could be relaxed in future
study by incorporating speed into action space to accommodate different requirements on robot’s
motion in various applications.
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Some data, models, or code that support the findings of this study are available from the
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environment, and training and testing DRL path planning model, 2) codes for training and testing
LSTM-based trajectory prediction model.
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