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Abstract 14 

Robotics has attracted broad attention as an emerging technology in construction to help workers 15 

with repetitive, physically demanding, and dangerous tasks, thus improving productivity and 16 

safety. Under the new era of human-robot co-existence and collaboration in dynamic and complex 17 

workspaces, it is critical for robots to navigate to the targets efficiently without colliding with 18 

moving workers. This study proposes a new deep reinforcement learning (DRL)-based robot path 19 

planning method that integrates the predicted movements of construction workers, to achieve safe 20 

and efficient human-robot collaboration in construction. First, an uncertainty-aware long short-21 

term memory network is developed to predict the movements of construction workers and 22 

associated uncertainties. Second, a DRL framework is formulated, where predicted movements of 23 

construction workers are innovatively integrated into the state space and the computation of the 24 

reward function. By incorporating predicted trajectories in addition to current locations, the 25 

proposed method enables proactive planning such that the robot could better adapt to human 26 

movements, thus ensuring both safety and efficiency. The proposed method is demonstrated and 27 
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evaluated using simulations generated based on real construction scenarios. The results show that 28 

prediction-based DRL path planning achieves a 100% success rate (with a total of 10,000 episodes) 29 

for robots to achieve the destination along the near-shortest path. Furthermore, it reduces the 30 

collision rate with moving workers by 23% compared to the conventional DRL method which does 31 

not consider predicted information. 32 

Introduction 33 

The construction industry faces longstanding challenges including low productivity, high 34 

rates of injuries and facilities, as well as workforce aging, and labor shortage. Despite the high 35 

labor cost, construction productivity remained stagnant during the past decades, whereas that in 36 

manufacturing has nearly doubled (McKinsey&Company et al. 2015). Worker fatalities in the 37 

construction sector continuously account for 20% of total fatalities, highest among all private 38 

industries (OSHA 2020), and another 46% of construction workers suffer from work-related 39 

musculoskeletal disorder injuries (Dong et al. 2019). In addition, more than 20% of construction 40 

workers are aged 55 and older (The Center for Construction Research and Training 2018), with 41 

430,000 more workers needed to fill the vacancy (Associated Builders and Contractors 2021). 42 

Under such situation, construction automation and robotics has emerged as a promising solution 43 

to assist in physically demanding and dangerous work, and has been introduced in various 44 

operations, such as earthwork (ASI 2019), laying bricks (Madsen 2019), and site inspection 45 

(Jacob-Loyola et al. 2021). The co-existence of and collaboration between human workers and 46 

robots may lead to potential collision risks, which requires the robots to proactively plan their 47 

motion based on the dynamics of human workers to avoid any potential collision while ensuring 48 

collaboration efficiency. 49 



Several studies (Chen et al. 2022; Jeong et al. 2021; Kayhani et al. 2018; Kim et al. 2003) 50 

have developed methods for robotic motion planning on construction sites, while most of them 51 

only consider site configuration and static obstacles and neglect the impact of moving workers. 52 

For the few studies that can be used with moveable obstacles (e.g., Kim et al. (2003)), current 53 

obstacle locations are incorporated without any prediction of their future movement. In dynamic 54 

and complex environments that involve large uncertainties of movements, like construction sites, 55 

it is critical to have a reliable prediction of human behavior, and integrate their anticipated 56 

movement into robot path planning to generate safe and feasible trajectories (Fridovich-Keil et al. 57 

2020; Zhou et al. 2022). In some pilot studies, Hu et al. (2020) modeled predicted locations of 58 

construction workers as static obstacles to generate a collision-free path, which does not consider 59 

the temporal evolvement and associated uncertainty of the prediction. Another previous study by 60 

the authors (Cai et al. 2021) modeled the risk of collision between construction robots and workers 61 

based on the uncertainty-aware predicted trajectories of construction workers, which, however, 62 

has not been effectively integrated with robot path planning algorithms. 63 

To close these gaps, by integrating deep reinforcement learning (DRL) with trajectory 64 

prediction, this study proposes a new path planning method for safe and efficient human-robot 65 

collaboration on dynamic construction sites. The novelty and contributions of the proposed method 66 

are threefold. First, predicted trajectories of construction workers are innovatively introduced in 67 

the state space, and the computation of the reward function of the DRL framework. A new reward 68 

function is designed to ensure both safety and efficiency by integrating the current locations of the 69 

robot and workers, the target location of the robot, and the predicted locations of workers. Second, 70 

the proposed method is robust to different construction scenarios with a varying number of moving 71 

obstacles (e.g., workers and other machines). Furthermore, by leveraging high-level information 72 



(e.g., pre-processed locations) instead of raw sensing data, this method can be adaptive to various 73 

construction environments with different settings of sensors. Third, the proposed method is 74 

validated using simulations generated based on real construction scenarios, and is shown to 75 

outperform the conventional DRL-based path planning in both efficiency and safety (evaluated 76 

using quantitative metrics as detailed in the “Experiments and Results” section). 77 

Background and Review of Related Studies 78 

Robotic applications in construction 79 

The applications of robotics in construction have been evolving over the past years, ranging 80 

from single-task construction robots, such as brick-laying robot (Madsen 2019), rebar-tying robot 81 

(Cardno 2018), robotic excavator (ASI 2019), painting robot (Asadi et al. 2018), to general-82 

purpose robotic platforms equipped with multiple skills (e.g., sensing, navigation, manipulation) 83 

for more flexible human-robot collaboration (Kim et al. 2021). Particularly, mobile robots (both 84 

unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV)) have attracted increasing 85 

attention and are applied to various tasks, including site inspection and progress monitoring (Asadi 86 

et al. 2020; Freimuth and König 2018; Jacob-Loyola et al. 2021; Kim et al. 2019; Lu et al. 2021), 87 

material handling and object manipulation (Asadi et al. 2021; Wang et al. 2020), site layout 88 

drawing (Dusty Robotics 2022; Tsuruta et al. 2019), etc. Teleoperation is a common approach to 89 

control robots, where, conventionally, operators directly give commands via input devices such as 90 

joystick and tablets (Khasawneh et al. 2019; Okishiba et al. 2019). Methods have also been 91 

developed to control robots from intuitive motions of workers in either real or virtual reality (VR) 92 

environments (Gong et al. 2019; Wang et al. 2021; Zhou et al. 2022). With the advances in sensing, 93 

computer vision, and artificial intelligence (AI), many studies have been dedicated to enhancing 94 

machine intelligence for automatic robot control to further reduce workers’ mental load and 95 



increase productivity. Examples include vision-based navigation and object manipulation (Asadi 96 

et al. 2021; Narazaki et al. 2022; Wang et al. 2020), and brain signal-based robot control (Liu et 97 

al. 2021a; b), etc.  98 

Most existing studies focus on achieving specific construction tasks, with an underlying 99 

assumption that the robot can navigate to the target safely and efficiently across the unstructured 100 

and dynamic jobsites using various path planning algorithms developed in the general robotics 101 

domain (detailed in next section). Although a few studies devised new algorithms for mobile robot 102 

path planning to address challenges in construction sites, e.g., uneven terrain (Jeong et al. 2021), 103 

complex structures in congested spaces (Chen et al. 2022), they mainly considered static site 104 

configuration and obstacles, while neglecting the moving workers who work on various operations 105 

simultaneously and share the workspaces with robots. To achieve safe and efficient human-robot 106 

collaboration in construction, it is critical to incorporate the anticipated dynamics of workers in 107 

robot path planning.  108 

Path planning for mobile robots 109 

In the field of mobile robots, path planning is an essential task and has been extensively 110 

investigated by many studies. Path planning aims to find a sequence of actions to transform robots 111 

from a start to a final position, which typically follows a hierarchical approach, i.e., a combination 112 

of global and local path planning (Xiao et al. 2022). Global path planning is used to identify a 113 

coarse route from robot’s current location to the target position. Graph-based methods, e.g., 114 

Dijkstra’s (Dijkstra 1959) and A* (Hart et al. 1968) algorithms, and sampling-based algorithms, 115 

e.g., Rapidly-Exploration Random Tree (Lavalle 1998)), are classical methods for global path 116 

planning. These approaches generate the path plan based on the static configuration of an 117 

environment, and if the environment changes, methods such as D* algorithm (Stentz 1994) need 118 



to be used for dynamic re-planning. Local path planning generates a detailed motion plan for 119 

execution leveraging current observation of the environment obtained from onboard sensors. Since 120 

the current location of moving obstacles can be perceived in local path planning, it can be used for 121 

real-time collision avoidance in dynamic environments. Typical methods include artificial 122 

potential field (Ge and Cui 2002) and partial swarm optimization (Min et al. 2005), which can find 123 

a local path fast and efficiently, however, can be easily stuck in the local optimum (Zhang et al. 124 

2018).  125 

Despite the achievements, classical path planning algorithms heavily rely on mathematical 126 

models and expert experience to model the environment (both static configuration and dynamics 127 

of moving entities), and to solve for the optimal path given performance criteria. In dynamic and 128 

complex environments, especially with uncertain movement of entities, classic methods may not 129 

be sufficient to generate a reliable path (Xiao et al. 2022). To overcome these challenges, deep 130 

learning-based methods have been developed to learn robot motion plans directly from perceptual 131 

information of the environment in an end-to-end manner. Specifically, DRL has been increasingly 132 

explored in robot path planning (Ajeil et al. 2020; Botteghi et al. 2020; Xie et al. 2017). For 133 

instance, Gao et al. (2020) designed a DRL-based path planning method for collision-free 134 

autonomous navigation, The trained model was also transferred from 2D to a complex 3D 135 

environment, demonstrating the good generalizability of the DRL model. Yan et al. (2021) 136 

proposed a DRL-based method combined with a variant of the long short-term memory (LSTM) 137 

model to generate optimal angle motions in a marine environment for unmanned surface vehicles. 138 

Wen et al. (2020) leveraged a DRL-based active simultaneous localization and mapping (SLAM) 139 

framework to achieve autonomous navigation for the mobile robot in an environment with both 140 



static and moving obstacles, however, the number of moving obstacles is limited as one in their 141 

application. 142 

Existing studies have shown the great potential of DRL as an effective way to generate 143 

collision-free paths in complex and dynamic environments. However, there remain three 144 

knowledge gaps. First, most studies only consider the current locations of moving agents without 145 

a reliable prediction of their future behavior. Given the sensing uncertainty as well as the 146 

unexpected movement of agents in complex environments, such an approach cannot guarantee 147 

safety (Fridovich-Keil et al. 2020). A pilot study (Fridovich-Keil et al. 2020) incorporated 148 

confidence-aware motion prediction in the path planning, however, it still relies on mathematical 149 

models (i.e., hidden Markov model) to capture human dynamics by assuming people take actions 150 

following Markovian fashion. To close this gap, this study leverages an LSTM-based model to 151 

predict human trajectory and associated uncertainties and incorporate the predicted movement into 152 

the design of DRL-base path planning. Second, in DRL, the design of the reward function has a 153 

significant impact on the convergence and performance of the model, which should reflect the 154 

objective of the planning context. Most studies focus on collision-free path planning in a general 155 

mobile robot application, and cannot be readily applied to construction scenarios. In this study, a 156 

new reward function is designed to incorporate both safety and efficiency requirements in 157 

construction applications, considering the predicted trajectory of construction workers. Third, 158 

most studies model the state space using raw sensor measurements and focus on the environment 159 

with only one moving obstacle, constraining the applicability to specific robot and environment 160 

configurations. In contrast, this study leverages high-level information in the state space and 161 

integrates information of the nearest obstacle, which makes it applicable in various environments 162 

with different robot configurations and varying numbers of obstacles.  163 



Methodology 164 

Problem formulation 165 

In this study, the path planning problem is modeled as a Markov Decision Process (MDP) 166 

where a mobile robot selects its action at each time step (At), based on the environment states (St), 167 

such as the locations of the robot, destination, and moving workers. After executing the action, the 168 

environment is transmitted to the next state (St+1) and the robot receives a reward (rt+1). Over a 169 

given time horizon T, the goal of the robot is to learn an optimal policy π(At|St), to find a safe and 170 

efficient path from its initial location to a known destination on construction sites with moving 171 

workers, by maximizing the expectation of cumulative discounted long-term reward Rt (Eq. 1):  172 

𝑅𝑡 = 𝑟(𝑆𝑡, 𝐴𝑡) + 𝛾𝑟(𝑆𝑡+1, 𝐴𝑡+1) + ⋯ + 𝛾𝑇−𝑡𝑟(𝑆𝑇 , 𝐴𝑇) = ∑ 𝛾𝑖−𝑡𝑟(𝑆𝑖, 𝐴𝑖)𝑡+𝑇
𝑖=𝑡  (1) 173 

where 𝛾 is the discount factor in the range of 0 to 1. To ensure safety and efficiency, the reward 174 

function is designed to combine both the locations of obstacles (i.e., moving workers) and the 175 

destination to motivate the robot to find the shortest possible collision-free path. In contrast to 176 

most existing studies on DRL-based robot path planning that only consider current observations 177 

of the environment, the proposed method innovatively incorporates predicted trajectories of 178 

workers using an LSTM-based prediction model (detailed in the next section) to achieve more 179 

proactive planning. Figure 1 shows the overall process. 180 

 181 

Figure 1. The MDP framework for robot-environment interaction on construction site 182 



 183 

In this study, the construction site is discretized into a 2D grid map, following the common 184 

practice in robot path planning studies (Ajeil et al. 2020). Thus, the locations of workers, robot, 185 

and destination are represented by the grids they occupy. Discretizing the state space and the 186 

corresponding action space allows finite decisions and effective dimensionality reduction in the 187 

planning process, where there is a trade-off between precise path planning and computational 188 

efficiency. A small grid size enables the system to model the locations of each agent more 189 

accurately and to plan the robot’s path more precisely with relatively high computational 190 

complexity. On the other hand, a large grid size leads to fewer states and can significantly improve 191 

computational efficiency. However, a grid is more likely to be occupied by multiple agents and 192 

results in collisions even if the distance between them is still large, which might cause unnecessary 193 

detours. In addition, coarse grids could better accommodate uncertainties: considering possible 194 

uncertainties of agents’ locations (e.g., caused by sensing errors), the corresponding states are more 195 

likely to remain unchanged with coarse grids compared to fine grids. 196 

Taking into account the above factors, as well as existing studies on construction 197 

workspace modeling (Zhang et al. 2015; Dong et al. 2018), a grid size of 0.5x0.5 m is adopted in 198 

this study. The path is represented by a sequence of 2D grid coordinates resulting from the action 199 

taken by the robot at each time step. Since this study focuses on path planning for mobile robots 200 

instead of low-level control of robot motion, only the time-series locations are considered, and it 201 

is assumed that the robot moves one grid each time step as a simplification. In addition, it is 202 

assumed that the robot has full knowledge of the environment, including its location and 203 

destination, and the locations of all workers, which could be obtained from external sensing or 204 

camera systems (e.g., Cai and Cai (2020)).  205 



Uncertainty-aware worker trajectory prediction 206 

In a previous study (Cai et al. 2020), an LSTM network with an encoder-decoder 207 

architecture was developed to predict future trajectories of construction entities, where the 208 

trajectory was predicted from a deterministic perspective without considering the associated 209 

uncertainty of the prediction. Such practice may pose a potential risk of robot-worker collision in 210 

the path planning problem. The above method is extended to incorporate uncertainty in this study. 211 

Inspired by Alahi et al. (2016), the trajectory is assumed to follow bivariate Gaussian distribution, 212 

and the parameters that characterize the distribution rather than absolute locations are estimated, 213 

see Figure 2. 214 

 215 

Figure 2. Uncertainty-aware LSTM-based trajectory prediction model 216 

Specifically, the observed locations of workers are extracted from construction videos, 217 

represented as pixel coordinates of the mid-bottom point of the workers’ bounding box. In this 218 

study, the bounding boxes are manually labeled to generate worker’s movement data, which can 219 

also be obtained automatically via object tracking algorithms (e.g., Roberts and Golparvar-Fard 220 

(2019), Cai and Cai (2020)). Then, the observed trajectory from time 𝑇1 to 𝑇𝑜𝑏𝑠 serve as inputs and 221 

are fed into the LSTM encoder, and the position distributions, 𝑁(𝝁𝑡
𝑖 , 𝝈𝑡

𝑖 , 𝜌𝑡
𝑖) , from time 𝑇𝑜𝑏𝑠+1 to 222 



𝑇𝑜𝑏𝑠+𝑝𝑟𝑒𝑑 are generated via LSTM decoder, where 𝝁𝑡
𝑖 = (𝜇𝑥, 𝜇𝑦)

𝑡

𝑖
 is the mean, 𝝈𝑡

𝑖 = (𝜎𝑥, 𝜎𝑦)
𝑡

𝑖
 is 223 

the standard deviation, and 𝜌𝑡
𝑖  is the correlation coefficient (in this study, 𝜌𝑡

𝑖 = 0, assuming the 224 

movements in both directions are independent). Accordingly, the negative log-Likelihood is 225 

adopted as loss function: 𝐿𝑖 = − ∑ log (𝑃(𝑥𝑡
𝑖 , 𝑦𝑡

𝑖|𝜇𝑡
𝑖 , 𝜎𝑡

𝑖))
𝑇𝑜𝑏𝑠+𝑝𝑟𝑒𝑑

𝑡=𝑇𝑜𝑏𝑠+1
. Readers are referred to Cai et al. 226 

(2020, 2021) for details of the network architecture. The resulting predicted trajectory is then 227 

included in the state space to provide additional information for robot path planning (detailed in 228 

the next section). 229 

State space 230 

The state space reflects the observations of the robots about the environment, which serves 231 

as the input of its decision process. In conventional studies on robot navigation and control (e.g., 232 

(Gao et al. 2020), (Yan et al. 2021)), raw sensory data (e.g., light detection and ranging (LiDAR) 233 

measurement, images from cameras) are used to model state space. In contrast, this study models 234 

state space using high-level information, including the current location and destination of robots, 235 

as well as current and predicted locations of construction workers, which can be processed from 236 

raw sensory data using various object localization and tracking algorithms (Roberts and Golparvar-237 

Fard (2019), Cai and Cai (2020)). Through such an approach, the proposed method can be naturally 238 

extended to other systems with different sensors. As a result, at any time step t, state space is a 16-239 

dimensional vector, denoted as 𝑆𝑡 = [𝑥𝑟
𝑡 , 𝑦𝑟

𝑡, 𝑥𝑑
𝑡 , 𝑦𝑑

𝑡 , 𝑥𝑜
𝑡,0, 𝑦𝑜

𝑡,0, 𝑥𝑜
𝑡,1, 𝑦𝑜

𝑡,1, … , 𝑥𝑜
𝑡,5, 𝑦𝑜

𝑡,5], where,  240 

• [𝑥𝑟
𝑡 , 𝑦𝑟

𝑡] is the location of the robot in terms of 2D grid coordinates, varying at each time 241 

step after the robot takes an action. In practice, this information could be obtained via 242 

multiple sources, such as onboard GPS, cameras, and/or LiDAR.  243 



• [ 𝑥𝑑
𝑡 , 𝑦𝑑

𝑡 ]  is the destination of the robot in terms of 2D grid coordinates, remaining 244 

unchanged during the decision horizon. This is reasonable because a robot is typically 245 

given a specific task with a known goal (i.e., destination) in practice. 246 

• [ 𝑥𝑜
𝑡,0, 𝑦𝑜

𝑡,0, 𝑥𝑜
𝑡,1, 𝑦𝑜

𝑡,1, … , 𝑥𝑜
𝑡,5, 𝑦𝑜

𝑡,5] represents the current location ([𝑥𝑜
𝑡,0, 𝑦𝑜

𝑡,0]) and predicted 247 

locations ([𝑥𝑜
𝑡,1, 𝑦𝑜

𝑡,1, … , 𝑥𝑜
𝑡,5, 𝑦𝑜

𝑡,5]) of the robot’s nearest worker. The past trajectories of 248 

workers can be observed from various sensors (e.g., cameras, radio-based sensors), based 249 

on which the future trajectories can be predicted using the method described in the previous 250 

section. In this study, locations in the next five steps are considered. It is noted that since 251 

the proposed LSTM-based uncertainty-aware model predicts the distribution of the future 252 

trajectory, the future locations in state space are sampled from the distribution. Besides, to 253 

generalize the proposed methods to environments with varying numbers of 254 

workers/obstacles, only the nearest obstacle is modeled in the state space instead of all 255 

workers on the jobsite, which is reasonable because the nearest obstacle is expected to have 256 

the largest impact on robot path in terms of collision avoidance. 257 

In the above state space, all elements are represented in 2D grid coordinates, and have the same 258 

scale that is determined by the environment. Thus, it can be directly used as inputs for Deep Q-259 

Networks (DQN) as detailed in the “DQN model” section.  260 

Action space  261 

Given the current and target locations in the 2D grid environment, a robot takes action to 262 

move from the current location to the target location along the grids. Existing studies typically 263 

define the action space of a mobile robot to include four discrete actions, i.e., up, down, left, and 264 

right (Xu et al. 2019; Zhang et al. 2019). In addition to the four actions, this study also introduces 265 

a fifth action, i.e., stay, to incorporate the scenario where the robot can choose to wait for workers 266 



to move away based on the predicted movement of workers. Note that, it is assumed that the robot 267 

moves at a fixed speed (one grid per time step), and thus, the updated location of the robot after it 268 

takes one specific action can be illustrated in Figure 3, which determines the transition rule of 269 

robot location.  270 

 271 

Figure 3. Updated location after taking specific action at time t 272 

Reward Function 273 

The reward function is critical to the success of DRL in solving complex tasks. In mobile 274 

robot path planning on construction sites, a robot is expected to move efficiently from its start 275 

point to its destination without collision with other workers moving on the jobsites. Therefore, the 276 

design of the reward function considers both efficiency and safety. For efficiency, three factors are 277 

incorporated: 1) at any time step, the robot should be motivated to move closer to the target position 278 

instead of moving away from the target. Therefore, after taking an action, if the distance between 279 

robot’s location and desired position is smaller than their previous distance, a positive reward is 280 

given, otherwise, a negative reward (i.e., penalty) is applied. The value of this reward is denoted 281 

as 𝑟𝑑𝑖𝑠𝑡  . 2) By only applying the first reward, the robot may move aimlessly, exhibiting a tendency 282 

to move back and forth to avoid penalty while making minimum progress to the target. In this case, 283 

a negative reward should be given to prevent the aimless movement and force the robot to navigate 284 



to the target, which is denoted as 𝑟𝑎𝑖𝑚𝑙𝑒𝑠𝑠. 3) Eventually, the robot is given a large reward for 285 

reaching the target, denoted by 𝑟𝑑𝑒𝑠𝑡.  286 

For safety, two factors are incorporated: 1) the robot should not collide with moving 287 

workers. In this study, as both the current locations of the workers and a period of the predicted 288 

trajectory (i.e., 5-time steps) are considered, a deduction factor is applied for potential collision 289 

with the predicted positions of workers. Let 𝑟𝑜𝑏𝑠 denotes the penalty for colliding with a worker 290 

(i.e., the robot and worker are in the same grid) and 𝛾 is the deduction factor, then the penalty 291 

(negative reward) for colliding with a worker n-step later is denoted by 𝛾𝑛𝑟𝑜𝑏𝑠 (no deduction for 292 

colliding at the current location). As a result, a negative reward is formulated for potential collision 293 

with future positions of workers. To avoid applying penalties repeatedly, only the earliest time 294 

when a collision may occur is considered, thus, 𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = min{𝑟𝑜𝑏𝑠, 𝛾1𝑟𝑜𝑏𝑠, … 𝛾𝑛𝑟𝑜𝑏𝑠}, where 295 

n=5 in this case. Specifically, if the robot does not collide with the worker at t, 𝑟𝑜𝑏𝑠 for that step is 296 

0. In this way, the penalty is only applied to the earliest time step of a potential collision, and the 297 

later the collision, the smaller the penalty is; 2) Once the robot exceeds the boundary of the site, a 298 

large penalty, denoted as 𝑟𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, is applied if they go beyond the boundary to ensure the robot 299 

move within its workspace. As a result, the reward function of the proposed method is 𝑟 = 𝑟𝑑𝑖𝑠𝑡 +300 

𝑟𝑎𝑖𝑚𝑙𝑒𝑠𝑠 + 𝑟𝑑𝑒𝑠𝑡 + 𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦. 301 

DQN model 302 

The MDP problem is solved via DRL, a modern approach to overcome the limitation of 303 

traditional Q-learning by improving computational efficiency and convergence, leveraging 304 

advanced function approximators (e.g., neural networks) instead of Q-table (Du and Ghavidel 305 

2022). Various DRL algorithms have been developed, including DQN (Mnih et al. 2013), Deep 306 

Deterministic Policy Gradients (DDPG) (Lillicrap et al. 2015), and Actor-Critic methods (Mnih et 307 



al. 2016). In this study, the proposed DRL-based robot path planning method is implemented based 308 

on a typical DRL algorithm, DQN, which employs neural networks to approximate the Q values. 309 

Bellman equation (Eq. 2) is adopted for value iteration in the training of the neural network Q(s, 310 

a; θ) as an action-value function approximator. 311 

𝑄∗(𝑠, 𝑎) = 𝐸𝑠′~𝑆 [𝑟(𝑠, 𝑎) + 𝛾 max
𝛼′

𝑄∗( 𝑠′, 𝛼′)] (2) 312 

Where Q* denotes the optimum action-value (Q) function, θ denotes the weights of the neural 313 

network. To achieve supervised learning for DQN, temporal difference (TD) training is adopted 314 

which introduces a target network to provide target Q values to act as the “ground truth”. The 315 

target network is initialized with the same network structure and weights as the action-value 316 

network, and the weights of both networks will be updated using common stochastic gradient 317 

descent algorithms. However, the target network is updated in a delayed fashion compared to the 318 

action-value network that is updated in every training step, and such stability could also improve 319 

the convergence. 320 

Specifically, a fully connected (FC) neural network with two hidden layers (24 nodes for 321 

each layer) is used as approximators of both action-value function and target function of the DQN 322 

(Du and Ghavidel 2022). The 16-dimensional state vector is considered as input to the neural 323 

network. The Rectified Linear Unit (ReLU) activation function is implemented for the two hidden 324 

layers and a linear activation function is implemented for the output layer, illustrated in Figure 4.  325 



 326 

Figure 4. Architecture of DQN 327 

Experiments and Results 328 

Environment setup 329 

The proposed prediction-based DRL framework for robot path planning is demonstrated 330 

and evaluated using simulations that are generated based on real construction scenarios, detailed 331 

as follows.  332 

First, construction videos from three real construction projects (two recorded by authors, 333 

and one collected from (YouTube 2019)) were used to train the uncertainty-aware LSTM model 334 

for worker trajectory prediction, which was then used to generate simulation environments to 335 

validate the proposed method for robot path planning. The videos consist of a total of 84 workers 336 

conducting various construction activities, including site preparation, material handling, formwork, 337 

etc. The videos were taken from various angles at height, similar to the perspective of surveillance 338 

cameras. Figure 5 illustrates some sample images of the collected videos. All videos were down-339 

sampled to 2fps, compatible with other studies (Alahi et al. 2016) on video-based human trajectory 340 

prediction. The videos were pre-processed and bounding boxes of workers were manually labeled 341 

to extract entity positions, serving as inputs of the prediction model. A total of 2,544 frames 342 

consisting of 241 trajectories with various lengths were extracted (Cai et al. 2020), where a 343 



trajectory was terminated if the worker was severely occluded by other objects. In this study, the 344 

observation duration of worker movements was 3s (i.e., 6 frames) and the prediction duration was 345 

5s (i.e., 10 frames), following relevant studies (Alahi et al. 2016) on human trajectory prediction. 346 

Therefore, the 241 trajectories were further split into 16-frame tracks using a sliding window with 347 

a stride of 2 frames, resulting in 3640 tracks for training and testing the prediction model. 348 

Consistent with previous studies (Cai et al. 2020, 2021), the dataset was randomly split into 349 

training set (80%), validation set (10%), and testing set (10%). The network was trained with Adam 350 

optimizer (Kingma and Ba 2014), with a learning rate of 0.001, batch size of 20, and dropout rate 351 

of 0.5. The proposed method was implemented on a desktop with Intel i7-9700 CPU, 32GB, and 352 

NVIDIA GeForce GTX 2060 GPU using Keras library within Tensorflow platform. 353 

 354 

Figure 5. Sample images from the dataset: (a) and (b) from two building projects 355 

photographed by authors; (c) and (d) from a hospital project (YouTube 2019) 356 

 357 

Figure 6 visualizes an example of predicted trajectories with associated uncertainties, 358 

where red lines represent the actual trajectories of construction workers. In Figure 6, the predicted 359 

trajectories closest to the actual one have the highest probability (yellow color), while those farther 360 

away exhibit relatively low probability (blue color). This establishes a reliable basis to incorporate 361 

predicted trajectories and their associated uncertainties for robot path planning. 362 



 363 

Figure 6. Example of predicted distributions of future locations over 10 timesteps 364 

 365 

Second, the above construction scenario (shown in Figure 6) was selected to simulate the 366 

environment to train the DRL model for robot path planning. To establish a realistic environment, 367 

the construction site and worker locations were converted from image plane to ground plane via 368 

projective transformation (Hartley and Zisserman 2003), where the transformation matrix was 369 

estimated from known dimensions of construction equipment. Such approximation may not 370 

influence the simulation of robot path planning because the locations of different workers and the 371 

boundary of the jobsite were estimated from the same set of parameters. The construction site, 372 

after being converted to the ground plane, is a 16m x 11m area, and was further divided into a 373 

32x22 grid map with a grid size of 0.5 m. 374 

Third, to train a generalized DRL model, a large number of training data are needed. To 375 

achieve this, extensive simulations were conducted where construction environments with 376 

different configurations were generated based on the above construction scenario (shown in Figure 377 

6). Specifically, in each training episode of the DRL model, 1) the initial and target locations of 378 

the robot were randomly generated within the environment (i.e., 32x22 grid map obtained in the 379 

previous step); 2) the number of workers was randomly selected, ranging from 1 to 5; 3) the initial 380 



movements of workers were randomly extracted from all trajectories in the video to reflect real 381 

construction scenarios, and their following trajectories during the training process were sampled 382 

from predicted trajectory distribution obtained from the proposed LSTM model in the first step.  383 

Model training 384 

In the proposed path planning method, the parameter values in the reward function, 385 

especially the relative magnitudes of different components, have a significant influence on the 386 

model performance and convergence, and should be determined considering the planning context 387 

and objective. For instance, the relative magnitude between the reward of moving towards the 388 

destination (i.e., 𝑟𝑑𝑖𝑠𝑡) and the penalty of collision (i.e., 𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) indicates the relative importance 389 

of efficiency and safety. For human-robot collaboration in construction, safety is the priority, and 390 

thus the penalty of collision is set to be much larger than the reward of moving towards the 391 

destination. It implies that the robot tends to take a detour to avoid potential collisions with the 392 

workers. In terms of safety, collision at an earlier time step is more urgent and severe than at more 393 

future time steps. Besides, due to the increasing uncertainty of trajectory prediction at larger 394 

prediction horizons, the discount for the penalty of collision at future time steps should be set as a 395 

large value (i.e., 𝛾 should be relatively small) to ensure that the robot can efficiently achieve the 396 

goal, and the model can converge.  397 

For efficiency, the penalty for aimless movement (𝑟𝑎𝑖𝑚𝑙𝑒𝑠𝑠) should be compatible with the 398 

reward (or penalty) of the robot moving close to (or far away from) the destination. Otherwise, the 399 

robot tends to move back and forth instead of moving towards the goal. The reward for achieving 400 

the destination should be the largest so that the robot has the motivation to complete the task within 401 

the planning horizon. In addition, the boundary of the workspace is considered a hard constraint, 402 

and the episode is terminated if the robot exceeds the boundary. Therefore, the penalty for 403 



exceeding the boundary (𝑟𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦) should be the largest so that the robot can rapidly learn the 404 

boundary states and avoid exceeding the boundary.  405 

Given the above principles and after experiments with various combinations of values, the 406 

parameters in the reward function were determined as follows: 𝑟𝑑𝑒𝑠𝑡 = 100, indicating the robot 407 

is given a +100 reward for reaching the destination; 𝑟𝑑𝑖𝑠𝑡 = ±1, representing the robot receives a 408 

+1 reward or -1 penalty each step for moving close to or far away from the destination; if the 409 

distance between robot and destination remains unchanged in two steps, 𝑟𝑑𝑖𝑠𝑡 = 0; 𝑟𝑎𝑖𝑚𝑙𝑒𝑠𝑠 = −1, 410 

indicating the robot receives a -1 penalty each step for moving aimlessly; 𝑟𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = −20 , 411 

indicating the robot receives a -20 penalty for exceeding the boundary; 𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 =412 

min{𝑟𝑜𝑏𝑠, 𝛾1𝑟𝑜𝑏𝑠, … 𝛾𝑛𝑟𝑜𝑏𝑠}, where 𝑟𝑜𝑏𝑠 = −20 𝑎𝑛𝑑 𝛾 = 0.3, representing the robot is given a -20 413 

penalty for potential collision with workers at the current time step, and a deduction factor of 0.3 414 

is applied for collisions at future time steps. 415 

Exploration-exploitation strategy, i.e., the ε-greedy, was used to achieve a good balance 416 

between exploration (to explore those unvisited sequences) and exploitation (to leverage the policy 417 

that has been learned so far), where the exploration probability ε was initially set to 1.0, and 418 

exponentially decays to a minimum value of 0.01 along with the training episodes. The Adam 419 

optimizer was implemented for the neural network training with an initial learning rate of 0.01 and 420 

exponential learning rate decay. 50,000 training episodes were considered for the DRL model 421 

training. For each training episode, the process was terminated if either of the three criteria is 422 

satisfied: 1) the step reaches 100; 2) the robot reaches its destination; 3) the robot exceeds 423 

environment boundaries. The convergence of the training curve is shown in Figure 7. 424 



 425 

Figure 7. Training curve of the proposed DRL model 426 

 427 

Performance of the DRL model 428 

The trained DRL agent was further tested using 10,000 random episodes (100 steps per 429 

episode) to evaluate the learning performance. In addition, a conventional DRL agent that does 430 

not consider the predicted locations of workers was trained and tested for comparison. Specifically, 431 

in the conventional DRL method, the observation space only contained the current and target 432 

locations of the robot, and the current location of the nearest worker. The proposed reward function 433 

and corresponding parameters were also used in the conventional DRL agent for consistency, 434 

except for the exclusion of penalty for potential collision at future time steps. 435 

Quantitative metrics were used for performance evaluation in terms of both efficiency and 436 

safety. For efficiency, two metrics were used: 1) success rate, computed as the ratio between the 437 

number of successful cases and the total number of testing episodes, where a successful case is 438 

when the robot achieves the desired destination before the end of the episode; 2) average ratio 439 

between the actual path and shortest path, where for each episode, the actual path is learned from 440 

the DRL agent, and the shortest path is computed as 𝑎𝑏𝑠(𝑥𝑟
0 − 𝑥𝑑) + 𝑎𝑏𝑠(𝑦𝑟

0 − 𝑦𝑑).  441 



For safety, collision rate was used for evaluation, where one collision case is counted if the 442 

robot collides with a worker (at the current time step) at least once during an episode. To examine 443 

the efficacy of the proposed model in proactive planning, collision rates at anticipatory locations 444 

of workers were also examined, the smaller of which offers a more reliable and safer path and can 445 

accommodate potential sensing uncertainties in practice. Table 1 shows the results of the above 446 

metrics for both models. 447 

Table 1 shows that the proposed prediction-based DRL model outperforms the 448 

conventional model that does not consider the predicted locations of workers in both efficiency 449 

and safety. The proposed method achieves a 100% success rate with an average ratio between 450 

actual and shortest paths close to 1, which means that the robot can successfully reach the 451 

destination in all 10,000 episodes along the near-shortest path. It represents the high efficiency of 452 

the planned paths. Figure 8 shows the visualization of the robot’s planned path in one example, 453 

where the site was zoomed to the central area with moving workers and the robot.  454 



 455 

Figure 8. Example of robot’s path learned using proposed DRL model 456 

 457 

In contrast, the robot agent that is learned using the conventional DRL model fails to reach 458 

the destination in 2.64% of total cases (or 264 cases). In almost all unsuccessful cases, the robot 459 

ends up moving back and forth without heading to the destination, which has never occurred in 460 

the robot agent learned using the proposed model. One possible reason is that by introducing 461 

predicted locations of workers and associated penalties for future collision, the robot agent has 462 

more knowledge not only of the current situation but also of the situation in near future. It provides 463 

the robot with more information and incentive to make decisions to move to the destination. The 464 

less chance for the robot to collide with workers (both at the current time and in the near future), 465 

as shown in Table 1, also proves the advantage of the proposed method in terms of safety. 466 



Table. 1 Performance comparison between proposed and conventional DRL models (a total of 467 

10,000 episodes) 468 

Model Success 

rate 

Average ratio 

between 

actual and 

shortest paths 

(ideally 1) 

Collision 

rate (at 

current 

location) 

Collision 

rate (at 1-

step 

predicted 

location) 

Collision 

rate (at 2-

step 

predicted 

location) 

Collision 

rate (at 3-

step 

predicted 

location) 

Collision 

rate (at 4-

step 

predicted 

Collisi

on rate 

(at 5-

step 

predict

ed 

Convention

al DRL 

(without 

prediction) 

97.36% 1.08 (1.005) 3.34% 3.46% 3.43% 3.22% 3.27% 3.30% 

Prediction-

based DRL 

(proposed 

in this 

study) 

100% 1.0003 2.56% 2.47% 2.54% 2.54% 2.50% 2.58% 

Note: 1) the value in the bracket is the average ratio between actual and shortest paths for 469 

successful episodes using the conventional DRL model.; 2) the scenarios when the workers occupy 470 

the same cell with the destination were excluded when determining the number of collisions 471 

 472 

Conclusions 473 

This study proposes a new prediction-enabled path planning method for construction robots 474 

considering the predicted trajectories of onsite workers. Specifically, an LSTM-based model is 475 

developed to predict the trajectory distribution of workers instead of absolute trajectories to 476 

incorporate the uncertainty. DRL framework is used for path planning where the predicted 477 

trajectory is innovatively introduced to observation space and integrated into the computation of 478 

reward function to ensure both safety and efficiency. Extensive simulations generated from real 479 

construction scenarios are conducted to validate the proposed framework, which is also compared 480 

with conventional DRL-based path planning that does not consider prediction information. The 481 

results show that the proposed method generates safer and more efficient paths: 1) it achieves a 482 

100% success rate for the robot to move to the destination along the near-shortest path; 2) it reduces 483 

the collision rate with moving workers by 23% compared to conventional DRL method. By 484 

leveraging high-level information (e.g., pre-processed locations) instead of raw sensing data, this 485 



method is adaptive to various robotics and application scenarios with different settings of sensors. 486 

In addition, by incorporating location information of the nearest neighbor instead of all obstacles 487 

in the environment, the proposed method is robust to scenarios with a varying number of moving 488 

obstacles and can be extended to other environments (e.g., search and resecure, manufacturing). 489 

The proposed framework is critical for human-robot collaboration on unstructured and 490 

dynamic construction sites because it allows proactive adjustment of robot’s movement to avoid 491 

collisions without interrupting normal operation. It endows the mobile robot with the capability to 492 

automatically generate a safe and efficient path considering site dynamics, which is an essential 493 

prerequisite of multiple robotic construction operations, such as material handling, site inspection, 494 

etc. With intelligent path planning that takes into account anticipatory movements of site entities, 495 

it is safer and more feasible to introduce construction robots to on-site operations and share the 496 

workspaces with other workers who do not interact with them directly on a single task. 497 

Furthermore, in terms of human-robot collaborative tasks, human operators are released to only 498 

provide high-level commands that are related to the intended tasks (e.g., assign target areas to be 499 

inspected or materials to be handled), without having to specify a detailed path, which will 500 

significantly reduce the mental load of workers and increase the productivity.  501 

There remain some limitations to be addressed in the future study. First, despite the high 502 

successful rate, worker trajectories in only one real-world scenario (captured in construction video) 503 

were extracted and augmented by adding randomness in the simulated environments. In future 504 

study, more diverse scenarios will be generated to train the agent, which will be further tested on 505 

both robotic simulation and real robot implementation. Second, as this study focuses on moving 506 

workers with uncertain predicted trajectories, static obstacles are not modeled in the framework. 507 

However, the proposed framework can be easily extended to include static obstacles by integrating 508 



locations of static obstacles in the observation space and the computation of reward function, 509 

similar to moving obstacles except that only fixed locations instead of time-series locations need 510 

to be considered. Third, since the focus of this study is high-level robot path planning, the speed 511 

of the robot is assumed constant as a simplification. Such assumption could be relaxed in future 512 

study by incorporating speed into action space to accommodate different requirements on robot’s 513 

motion in various applications. 514 
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