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A novel fluorinated chiral dialdehyde (S,S)-1, prepared from
(5,5)- or (R R)-2,6-bis(1-hydroxyethyl)pyridine and 2-
naphthol containing a highly fluorinated alkyl group, is
found to show enantioselective as well as chemoselective
fluorescent recognition of lysine in the fluorous phase. It is
discovered that the fluorous phase greatly enhances the
fluorescent sensitivity and selectivity of the probe. Thus,
the fluorous phase can not only allow the fluorescence
measurement to be conducted away from common organic
and aqueous media to minimize undesirable interferences,
but can also provide a unique environment to greatly
improve the selective fluorescent response.
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Highly fluorinated materials are hydrophobic and
lipophobic, but fluorophilic. These properties allow easy
separation of highly fluorinated molecules from common
organic and aqueous phases to the fluorous phase. In the
past three decades, extensive studies have been conducted in
applying the fluorous phase-based separation techniques to
the development of more efficient synthesis and catalysis.!-3
However, much less work has been reported for the
application of the fluorous phase-based chemistry in
molecular sensing.*® Previously, we reported the use of a
1,1’-binaphthyl-based perfluoroalkyl ketone for the
enantioselective fluorescent recognition of chiral amino
alcohols.® This fluorous phase-based fluorescent sensing
has been applied to screen catalysts for the asymmetric
synthesis of chiral amino alcohols.” Using the molecular
probes to conduct fluorescent detection of reaction products
in the fluorous phase can minimize the interference of other
reaction components, and increase the efficiency and
accuracy of the analysis.

Fluorescent detection of amino acids are useful in both
biological study and chemical analysis.!® L-Lysine is one of
essential amino acids for human body and it is involved in
important processes such as proteingenesis, fatty acid
metabolism and uptake of mineral nutrients.!!"'? D-Lysine
is useful in medicine development!® and also plays role in
bacterial and fungal metabolites.!* Although a number of
analytic methods have been developed for the detection of
lysine,'>!® fluorescent probes that can conduct both
enantioselective as well as chemoselective recognition of
lysine are rare!” and no fluorous phase-based selective lysine
detection has been developed. In this paper, we report a

discovery of a fluorous phase-based enantioselective and
chemoselective fluorescent detection of lysine. The fluorous
phase used in this study not only can allow the detection of
lysine in a phase separated from ordinary media which can
avoid the interference of other substances, but has also
exhibited greatly increased fluorescent sensitivity over the
nonfluorinated probe used in common organic solvents.

We have designed the fluorinated chiral dialdehyde
(S,5)-1 for selective detection of lysine (Figure 1). The two
highly fluorinated alkyl groups in (S,S)-1 will enable this
compound soluble in fluorinated solvents and allow
fluorescence measurement to be conducted in the fluorous
phase. Although various aldehydes have been actively
utilized in the development of fluorescent probes for
amines,'®? an imine product formed from the condensation
of an aldehyde group with a primary amine is normally
nonfluorescent due to the excited state isomerization of the
imine double bond. Often, addition of a metal cation such
as Zn?' is needed to form chelated coordination with the
imine nitrogen and restrict its excited state isomerization in
order to turn on the fluorescence.?>* Another strategy that
could be used to turn on the fluorescence of an imine
compound is to introduce cyclic structure to the imine
product to restrict the excited state isomerization and
increase the structural rigidity.?> We propose that when
(5,9)-1 is used to interact with most amino acids, there
should not be significant fluorescent response due to the
expected formation of poorly emissive imine products from
the condensation of the aldehyde groups of this probe with
the amine groups of the substrates. However, when lysine is
used to react with (S,S)-1, both the amine groups of lysine
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could react with the two aldehyde groups of (S,S5)-1 to form
a macrocyclic compound like 2. The cyclic structure of 2
could restrict the excited state isomerization of the two imine
bonds to generate fluorescence enhancement. Figure 1 gives
a molecular modeling structure of 2 (R = H) by applying the
density functional theory with Gaussian 16 software at
B3LYP-D3BJ/6-31G(d,p) level. It shows that the
diastereomers formed with L-Lys has a slightly lower energy
than the one formed with D-Lys (see Figure S19-24 in SI).
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Figure 1. Design of a hlghly fluorinated fluorescent probe (,S)-1

for lysine and a molecular modeling structure of the cyclic di-imine
product 2 (R = H).

We synthesized compound (S,S)-1 according to Scheme
1. A literature Mitsunobu reaction procedure?® was modified
for the synthesis of compound (S,5)-5 from the
perfluorooctylethyl substituted 2-naphthol 327 and (R, R)-2,6-
bis(1-hydroxyethyl)pyridine, (R,R)-4. Treatment of (S,S)-5
with TiCls and methoxy dichloromethane gave the desired
dialdehyde (S,S)-1 in 81% yield.?® HPLC-chiralcel-OD-3
column analysis shows this compound with 95% ee and 86%
de (see Figure S13 in SI). In highly fluorinated solvents such
as 2-(perfluorohexyl)-ethanol (PEOH) containing 1%
CH,Cl,, it gives very weak emission at Aem = 460 nm (Aexe =
392 nm). Compound (R,R)-1, the enantiomer of (S,5)-1, was
also prepared in the same way by starting with (S,S)-4.

Scheme 1. Synthesis of the chiral dialdehyde (S,9)-1.
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We first studied the fluorescence response of (S,5)-1 in
the fluorous phase (PEOH) toward lysine in water. When a
solution of (S,S5)-1 (5.0 x 10 M) in PEOH/CH,Cl, was

mixed with a water solution of either L- or D-Lys (7.0 equiv,
HEPES buffer pH = 7.4) (PEOH:H,0:CH,Cl, = 93:6:1, v)
under vortexing, however, no change in fluorescence was
observed (see Figure S1 in SI). Under the same conditions,
18 common amino acids and their enantiomers also caused
little fluorescence response of (S,5)-1 (see Figure S2a in SI).
Changing the cosolvent of PEOH from CH,Cl, to THF gave
similar results (see Figure S2b in SI).

Then, the fluorescence response of (S,S)-1 toward the
tetrabutylammonium (TBA) salts of D- and L-Lys in MeOH
was investigated. When a solution of (5,5)-1 (5.0 x 107> M)
in PEOH/CH,Cl, was mixed with a MeOH solution of L-
Lys-TBA (7.0 equiv) (PEOH:H,O:CH,Cl, = 93:6:1, v)
under vortexing, the fluorescence of (S,5)-1 at A = 460 nm
was greatly enhanced (I/Ip = 55.5) (Figure 2a). Under the
same conditions, D-Lys-TBA caused much smaller
fluorescence enhancement (I/Io =5.3) (Figure 2a). Asshown
by the photos in Figure 2a, (S,5)-1 can be used to
discriminate L- and D-Lys visually under UV light. Effect
of the concentration of lysine on the fluorescence response
of (S,5)-1 was studied (see Figure S3 and S4 in SI). As
shown in Figure 2b, when the concentration of L-Lys-TBA
increased from 0 to 7 equiv, the fluorescence enhancement
reached maximum after which the fluorescence started
decreasing with increasing concentration of L-Lys-TBA.
The fluorescence enhancement of (S,S)-1 in the presence of
D-Lys-TBA was small in the entire concentration range. At
7.0 equiv L-Lys-TBA, the enantioselective fluorescence
enhancement ratio [ef = (I.-Io)/(Ip-lo); Ir, Ip, Io: fluorescent
intensity at 460 nm with and without L-/D-Lys-TBA,
respectively] is 12.8, a highly enantioselective response.
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Figure 2. (a) Fluorescence spectra of (S,5)-1 (5.0x10-° M) with L-
and D-Lys-TBA (7.0 equiv) in PEOH/MeOH/CH:Cl2 (93/6/1, v).
Insert: Photos under 365 nm UV light. (b) Fluorescence intensity
at A =460 nm versus the equivalent of L- and D-Lys-TBA. (Error
bars from three independent experiments. Aexc = 392 nm, slits = 5/5
nm, reaction time: 30 min, temperature: 25 °C).

We found that the fluorescence of (S,5)-1 was greatly
enhanced in 30 min in the presence of L-Lys-TBA after
which only very small changes were observed (See Figure
S5 in SI). D-Lys-TBA did not generate much fluorescence
enhancement on (S,5)-1 over 6 h. Thus, 30 min was chosen
as the reaction time for all the fluorescence measurements.
We also compared the fluorescence responses of (S,5)-1
toward L-/D-Lys-TBA in various fluorous solvents and
found that the highest enantioselectivity was achieved in
PEOH (See Figure S6 in SI). The limit of detection (LOD)



for the use of (S,5)-1 to detect L-Lys-TBA was determined
to be 2.20 x 107 M (see Figure S7 in SI).

We compared the fluorescence responses of (S,5)-1
toward L- and D-Lys-TBA in PEOH with those in other
solvents including CH,Cl,, CHCl;, MeOH, EtOH, PrOH,
DMSO, DMF, EtOAc, THF and MeCN. As shown in Figure
3, almost no fluorescence enhancement was observed when
(S,5)-1 was treated L- or D-Lys-TBA in common organic
solvents. Only in the fluorous phase, was there highly
enantioselective fluorescent enhancement.  This result
demonstrates that the fluorous phase used in this study not
only provides a different phase for fluorescence
measurement, but also greatly enhances the sensitivity and
enantioselectivity in the fluorescent recognition.
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Figure 3. Fluorescence intensity at A = 460 nm, lsco, for the
interaction of (S,S)-1 (5.0x10-> M) with L-/D-Lys-TBA (7.0 equiv)
in various organic solvents (0.5 mL) (Aexc = 392 nm, slits = 5/5 nm.
reaction time: 30 min. temperature: 25°C).

The observed large fluorescence enhancement for the
chirality matched probe-substrate interaction in the fluorous
phase as shown in Figure 3 could be attributed to the strong
lipophobic properties of the highly fluorinated solvent. It is
proposed that (S,S)-1 might react with the chirality matched
L-Lys-TBA more favorably than with D-Lys-TBA to form a
macrocycle similar to 2. Although the highly fluorinated R
groups of 2 can make this compound soluble in the fluorous
phase, the nonfluorinated macrocyclic part of this compound
should not have favorable interaction with the highly
fluorinated solvent. = This unfavorable solute-solvent
interaction should increase the structural rigidity of this
macrocycle which can greatly increase its fluorescence.
Whereas, in other polar organic solvents, the macrocyclic
part of 2 should be well-solvated with good structural
flexibility and give very small fluorescence enhancement.

We have also prepared compound (S,S)-6 that contains
no fluorinated alkyl substituent (Figure 4). When (S,S)-6
(5.0 x 10° M) was treated with L- or D-Lys-TBA in
MeOH/CH,Cl, (99:1, v) at 25 °C for 30 min, only a slight
change in fluorescence. was observed (see Figure S8 in SI).
When the reaction time was extended to 300 min, the
fluorescence intensity of (S,5)-6 with L-Lys-TBA at Aem =
460 nm increased but still much weaker than that when (S,S)-
1 was treated with L-Lys-TBA in PEOH. That is, the
fluorescence response of (S,5)-6 toward lysine is much
smaller and slower than the use of (S,5)-1 in the fluorous
phase as shown in Figure 4 in which the fluorescence
spectrum of (§,S5)-6 in MeOH in the presence of L-Lys-TBA
is compared with that of (§5,S)-1 in PEOH. When the

reaction temperature of (S,5)-6 with L-Lys-TBA was
increased to 35 °C, no obvious change in fluorescence
response was observed in comparison with that at 25 °C (see
Figure S9 in SI). The study of (S,S5)-6 further demonstrates
that the fluorous phase is essential for the high sensitivity
and enantioselectivity of the highly fluorinated probe (S,S)-
1 in the fluorescent recognition of lysine.
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Figure 4. Fluorescence spectra of (S5,5)-6 (5.0x10° M) in
MeOH/CH2Cl2  (99:1, v) and (S,9)-1 (5.0x10° M) in

PEOH/MeOH/CH2Cl2(93/6/1, v) with and without L-/D-Lys-TBA
(7.0 equiv). (Aexe =392 nm, slits = 5/5 nm. reaction time: 30 min.
temperature: 25°C).

We used both (S,5)-1 and (R,R)-1 to interact with Lys-
TBA at various enantiomeric excesses (ee = [L-D]/[L+D] x
100%) and the fluorescence intensities at A = 460 nm are
plotted versus ee of Lys-TBA in Figure 5. The fluorescence
enhancements between (S,S)-1 and (R,R)-1 exhibit a mirror
image relationship, which confirms the inherent chiral
recognition. These probes can be used to determine the
enantiomeric composition of this amino acid.
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Figure 5. Fluorescence intensity of (S,5)- and (R,R)-1 (5.0 x 107
M) at dem = 460 nm versus ee of Lys-TBA (6.0 equiv) (Solvent:
PEOH/MeOH/CH2Cl2 = 93/6/1, v. Aexe = 392 nm, slits=5/5 nm.
reaction time: 30 min. temperature: 25 °C).

We studied the fluorescence response of (S,S)-1 toward
18 additional enantiomeric pairs of common amino acid-
TBA salts by applying the conditions used in Figure 2. As
the results in Figure S10 in SI show, no significant
fluorescence enhancement of (S,5)-1 was observed in the
presence of most of the substrates except when phenyl
alanine, isoleucine and valine were used whose fluorescence
enhancements were still much smaller than the use of L-Lys-
TBA. That is, (S,5)-1 is not only a highly enantioselective



fluorescent probe for lysine but also a chemoselective one.
Our NMR and mass spectroscopic analyses support the
formation of a macrocyclic compound similar to 2 when
(S,5)-1 was treated with 1.0 equiv L-Lys-TBA (see Section
3 in SI).

In conclusion, we have designed and synthesized a novel
highly fluorinated dialdehyde (S,S)-1 that can carry out
enantioselective as well as chemoselective fluorescent
recognition of lysine in the fluorous phase. We have
discovered that the fluorous solvent has greatly increased the
fluorescent sensitivity of the probe. Thus, the fluorous phase
can not only provide a phase to allow the fluorescence
measurement to be conducted separated from the common
organic and aqueous phases to minimize the potential
interference of other materials, but can also provide a unique
environment to enhance the sensitivity and selectivity of the
probe. It is proposed that the lipophobic property of the
fluorous phase could increase the rigidity of the chirality-
matched sensor-substrate adduct to generate greatly
enhanced fluorescence. This finding should contribute to
further advancing the development of fluorescent
recognition in the fluorous phase.
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