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A novel fluorinated chiral dialdehyde (S,S)-1, prepared from 

(S,S)- or (R,R)-2,6-bis(1-hydroxyethyl)pyridine and 2-

naphthol containing a highly fluorinated alkyl group, is 

found to show enantioselective as well as chemoselective 

fluorescent recognition of lysine in the fluorous phase.  It is 

discovered that the fluorous phase greatly enhances the 

fluorescent sensitivity and selectivity of the probe.  Thus, 

the fluorous phase can not only allow the fluorescence 

measurement to be conducted away from common organic 

and aqueous media to minimize undesirable interferences, 

but can also provide a unique environment to greatly 

improve the selective fluorescent response. 

 
 

Highly fluorinated materials are hydrophobic and 

lipophobic, but fluorophilic.  These properties allow easy 

separation of highly fluorinated molecules from common 

organic and aqueous phases to the fluorous phase.  In the 

past three decades, extensive studies have been conducted in 

applying the fluorous phase-based separation techniques to 

the development of more efficient synthesis and catalysis.1-3  

However, much less work has been reported for the 

application of the fluorous phase-based chemistry in 

molecular sensing.4-9  Previously, we reported the use of a 

1,1’-binaphthyl-based perfluoroalkyl ketone for the 

enantioselective fluorescent recognition of chiral amino 

alcohols.6  This fluorous phase-based fluorescent sensing 

has been applied to screen catalysts for the asymmetric 

synthesis of chiral amino alcohols.7  Using the molecular 

probes to conduct fluorescent detection of reaction products 

in the fluorous phase can minimize the interference of other 

reaction components, and increase the efficiency and 

accuracy of the analysis.   

Fluorescent detection of amino acids are useful in both 

biological study and chemical analysis.10  L-Lysine is one of 

essential amino acids for human body and it is involved in 

important processes such as proteingenesis, fatty acid 

metabolism and uptake of mineral nutrients.11,12  D-Lysine 

is useful in medicine development13 and also plays role in 

bacterial and fungal metabolites.14  Although a number of 

analytic methods have been developed for the detection of 

lysine,15,16 fluorescent probes that can conduct both 

enantioselective as well as chemoselective recognition of 

lysine are rare17 and no fluorous phase-based selective lysine 

detection has been developed.  In this paper, we report a 

discovery of a fluorous phase-based enantioselective and 

chemoselective fluorescent detection of lysine.  The fluorous 

phase used in this study not only can allow the detection of 

lysine in a phase separated from ordinary media which can 

avoid the interference of other substances, but has also 

exhibited greatly increased fluorescent sensitivity over the 

nonfluorinated probe used in common organic solvents.   

We have designed the fluorinated chiral dialdehyde 

(S,S)-1 for selective detection of lysine (Figure 1).  The two 

highly fluorinated alkyl groups in (S,S)-1 will enable this 

compound soluble in fluorinated solvents and allow 

fluorescence measurement to be conducted in the fluorous 

phase.  Although various aldehydes have been actively 

utilized in the development of fluorescent probes for 

amines,18-25 an imine product formed from the condensation 

of an aldehyde group with a primary amine is normally 

nonfluorescent due to the excited state isomerization of the 

imine double bond.  Often, addition of a metal cation such 

as Zn2+ is needed to form chelated coordination with the 

imine nitrogen and restrict its excited state isomerization in 

order to turn on the fluorescence.20-24  Another strategy that 

could be used to turn on the fluorescence of an imine 

compound is to introduce cyclic structure to the imine 

product to restrict the excited state isomerization and 

increase the structural rigidity.25  We propose that when 

(S,S)-1 is used to interact with most amino acids, there 

should not be significant fluorescent response due to the 

expected formation of poorly emissive imine products from 

the condensation of the aldehyde groups of this probe with 

the amine groups of the substrates.  However, when lysine is 

used to react with (S,S)-1, both the amine groups of lysine 
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could react with the two aldehyde groups of (S,S)-1 to form 

a macrocyclic compound like 2.  The cyclic structure of 2 

could restrict the excited state isomerization of the two imine 

bonds to generate fluorescence enhancement.  Figure 1 gives 

a molecular modeling structure of 2 (R = H) by applying the 

density functional theory with Gaussian 16 software at 

B3LYP-D3BJ/6-31G(d,p) level.  It shows that the 

diastereomers formed with L-Lys has a slightly lower energy 

than the one formed with D-Lys (see Figure S19-24 in SI). 

 

 

 
Figure 1.  Design of a highly fluorinated fluorescent probe (S,S)-1 

for lysine and a molecular modeling structure of the cyclic di-imine 

product 2 (R = H).   
 

We synthesized compound (S,S)-1 according to Scheme 

1.  A literature Mitsunobu reaction procedure26 was modified 

for the synthesis of compound (S,S)-5 from the 

perfluorooctylethyl substituted 2-naphthol 327 and (R,R)-2,6-

bis(1-hydroxyethyl)pyridine, (R,R)-4.  Treatment of (S,S)-5 

with TiCl4 and methoxy dichloromethane gave the desired 

dialdehyde (S,S)-1 in 81% yield.28  HPLC-chiralcel-OD-3 

column analysis shows this compound with 95% ee and 86% 

de (see Figure S13 in SI).  In highly fluorinated solvents such 

as 2-(perfluorohexyl)-ethanol (PEOH) containing 1% 

CH2Cl2, it gives very weak emission at em = 460 nm (exc = 

392 nm).  Compound (R,R)-1, the enantiomer of (S,S)-1, was 

also prepared in the same way by starting with (S,S)-4.    

 

Scheme 1.  Synthesis of the chiral dialdehyde (S,S)-1.   

 
 

We first studied the fluorescence response of (S,S)-1 in 

the fluorous phase (PEOH) toward lysine in water.  When a 

solution of (S,S)-1 (5.0 × 10-5 M) in PEOH/CH2Cl2 was 

mixed with a water solution of either L- or D-Lys (7.0 equiv, 

HEPES buffer pH = 7.4) (PEOH:H2O:CH2Cl2 = 93:6:1, v) 

under vortexing, however, no change in fluorescence was 

observed (see Figure S1 in SI).  Under the same conditions, 

18 common amino acids and their enantiomers also caused 

little fluorescence response of (S,S)-1 (see Figure S2a in SI).  

Changing the cosolvent of PEOH from CH2Cl2 to THF gave 

similar results (see Figure S2b in SI).   

Then, the fluorescence response of (S,S)-1 toward the 

tetrabutylammonium (TBA) salts of D- and L-Lys in MeOH 

was investigated.  When a solution of (S,S)-1 (5.0 × 10-5 M) 

in PEOH/CH2Cl2 was mixed with a MeOH solution of L-

Lys-TBA (7.0 equiv) (PEOH:H2O:CH2Cl2 = 93:6:1, v) 

under vortexing, the fluorescence of (S,S)-1 at  = 460 nm 

was greatly enhanced (I/I0 = 55.5) (Figure 2a).  Under the 

same conditions, D-Lys-TBA caused much smaller 

fluorescence enhancement (I/I0 = 5.3) (Figure 2a).  As shown 

by the photos in Figure 2a, (S,S)-1 can be used to 

discriminate L- and D-Lys visually under UV light.  Effect 

of the concentration of lysine on the fluorescence response 

of (S,S)-1 was studied (see Figure S3 and S4 in SI).  As 

shown in Figure 2b, when the concentration of L-Lys-TBA 

increased from 0 to 7 equiv, the fluorescence enhancement 

reached maximum after which the fluorescence started 

decreasing with increasing concentration of L-Lys-TBA.  

The fluorescence enhancement of (S,S)-1 in the presence of 

D-Lys-TBA was small in the entire concentration range.  At 

7.0 equiv L-Lys-TBA, the enantioselective fluorescence 

enhancement ratio [ef = (IL-I0)/(ID-I0); IL, ID, I0: fluorescent 

intensity at 460 nm with and without L-/D-Lys-TBA, 

respectively] is 12.8, a highly enantioselective response.   
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Figure 2.  (a)  Fluorescence spectra of (S,S)-1 (5.0×10-5 M) with L- 

and D-Lys-TBA (7.0 equiv) in PEOH/MeOH/CH2Cl2 (93/6/1, v).  

Insert:  Photos under 365 nm UV light.  (b)  Fluorescence intensity 

at  = 460 nm versus the equivalent of L- and D-Lys-TBA.  (Error 

bars from three independent experiments. λexc = 392 nm, slits = 5/5 

nm, reaction time: 30 min, temperature: 25 ℃). 
 

We found that the fluorescence of (S,S)-1 was greatly 

enhanced in 30 min in the presence of L-Lys-TBA after 

which only very small changes were observed (See Figure 

S5 in SI).  D-Lys-TBA did not generate much fluorescence 

enhancement on (S,S)-1 over 6 h.  Thus, 30 min was chosen 

as the reaction time for all the fluorescence measurements.  

We also compared the fluorescence responses of (S,S)-1 

toward L-/D-Lys-TBA in various fluorous solvents and 

found that the highest enantioselectivity was achieved in 

PEOH (See Figure S6 in SI).  The limit of detection (LOD) 
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for the use of (S,S)-1 to detect L-Lys-TBA was determined 

to be 2.20 × 10-7 M (see Figure S7 in SI). 

We compared the fluorescence responses of (S,S)-1 

toward L- and D-Lys-TBA in PEOH with those in other 

solvents including CH2Cl2, CHCl3, MeOH, EtOH, iPrOH, 

DMSO, DMF, EtOAc, THF and MeCN.  As shown in Figure 

3, almost no fluorescence enhancement was observed when 

(S,S)-1 was treated L- or D-Lys-TBA in common organic 

solvents.  Only in the fluorous phase, was there highly 

enantioselective fluorescent enhancement.  This result 

demonstrates that the fluorous phase used in this study not 

only provides a different phase for fluorescence 

measurement, but also greatly enhances the sensitivity and 

enantioselectivity in the fluorescent recognition. 
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Figure 3.  Fluorescence intensity at  = 460 nm, I460, for the 

interaction of (S,S)-1 (5.0×10-5 M) with L-/D-Lys-TBA (7.0 equiv) 

in various organic solvents (0.5 mL) (λexc = 392 nm, slits = 5/5 nm.  

reaction time: 30 min.  temperature: 25℃). 
 

The observed large fluorescence enhancement for the 

chirality matched probe-substrate interaction in the fluorous 

phase as shown in Figure 3 could be attributed to the strong 

lipophobic properties of the highly fluorinated solvent.  It is 

proposed that (S,S)-1 might react with the chirality matched 

L-Lys-TBA more favorably than with D-Lys-TBA to form a 

macrocycle similar to 2.  Although the highly fluorinated R 

groups of 2 can make this compound soluble in the fluorous 

phase, the nonfluorinated macrocyclic part of this compound 

should not have favorable interaction with the highly 

fluorinated solvent.  This unfavorable solute-solvent 

interaction should increase the structural rigidity of this 

macrocycle which can greatly increase its fluorescence.  

Whereas, in other polar organic solvents, the macrocyclic 

part of 2 should be well-solvated with good structural 

flexibility and give very small fluorescence enhancement.   

We have also prepared compound (S,S)-6 that contains 

no fluorinated alkyl substituent (Figure 4).  When (S,S)-6 

(5.0 x 10-5 M) was treated with L- or D-Lys-TBA in 

MeOH/CH2Cl2 (99:1, v) at 25 ℃ for 30 min, only a slight 

change in fluorescence. was observed (see Figure S8 in SI).  

When the reaction time was extended to 300 min, the 

fluorescence intensity of (S,S)-6 with L-Lys-TBA at em = 

460 nm increased but still much weaker than that when (S,S)-

1 was treated with L-Lys-TBA in PEOH.  That is, the 

fluorescence response of (S,S)-6 toward lysine is much 

smaller and slower than the use of (S,S)-1 in the fluorous 

phase as shown in Figure 4 in which the fluorescence 

spectrum of (S,S)-6 in MeOH in the presence of L-Lys-TBA 

is compared with that of (S,S)-1 in PEOH.  When the 

reaction temperature of (S,S)-6 with L-Lys-TBA was 

increased to 35 oC, no obvious change in fluorescence 

response was observed in comparison with that at 25 oC (see 

Figure S9 in SI).  The study of (S,S)-6 further demonstrates 

that the fluorous phase is essential for the high sensitivity 

and enantioselectivity of the highly fluorinated probe (S,S)-

1 in the fluorescent recognition of lysine.   
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Figure 4.  Fluorescence spectra of (S,S)-6 (5.0×10-5 M) in 

MeOH/CH2Cl2 (99:1, v) and (S,S)-1 (5.0×10-5 M) in 

PEOH/MeOH/CH2Cl2 (93/6/1, v) with and without L-/D-Lys-TBA 

(7.0 equiv).  (λexc = 392 nm, slits = 5/5 nm.  reaction time: 30 min.  

temperature: 25℃). 
 

We used both (S,S)-1 and (R,R)-1 to interact with Lys-

TBA at various enantiomeric excesses (ee = [L-D]/[L+D] × 

100%) and the fluorescence intensities at  = 460 nm are 

plotted versus ee of Lys-TBA in Figure 5.  The fluorescence 

enhancements between (S,S)-1 and (R,R)-1 exhibit a mirror 

image relationship, which confirms the inherent chiral 

recognition.  These probes can be used to determine the 

enantiomeric composition of this amino acid. 
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Figure 5.  Fluorescence intensity of (S,S)- and (R,R)-1 (5.0 × 10-5 

M) at λem = 460 nm versus ee of Lys-TBA (6.0 equiv) (Solvent: 

PEOH/MeOH/CH2Cl2 = 93/6/1, v.  λexc = 392 nm, slits=5/5 nm.  

reaction time: 30 min.  temperature: 25 ℃). 
 

We studied the fluorescence response of (S,S)-1 toward 

18 additional enantiomeric pairs of common amino acid-

TBA salts by applying the conditions used in Figure 2.  As 

the results in Figure S10 in SI show, no significant 

fluorescence enhancement of (S,S)-1 was observed in the 

presence of most of the substrates except when phenyl 

alanine, isoleucine and valine were used whose fluorescence 

enhancements were still much smaller than the use of L-Lys-

TBA.  That is, (S,S)-1 is not only a highly enantioselective 
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fluorescent probe for lysine but also a chemoselective one.  

Our NMR and mass spectroscopic analyses support the 

formation of a macrocyclic compound similar to 2 when 

(S,S)-1 was treated with 1.0 equiv L-Lys-TBA (see Section 

3 in SI).   

In conclusion, we have designed and synthesized a novel 

highly fluorinated dialdehyde (S,S)-1 that can carry out 

enantioselective as well as chemoselective fluorescent 

recognition of lysine in the fluorous phase.  We have 

discovered that the fluorous solvent has greatly increased the 

fluorescent sensitivity of the probe.  Thus, the fluorous phase 

can not only provide a phase to allow the fluorescence 

measurement to be conducted separated from the common 

organic and aqueous phases to minimize the potential 

interference of other materials, but can also provide a unique 

environment to enhance the sensitivity and selectivity of the 

probe.  It is proposed that the lipophobic property of the 

fluorous phase could increase the rigidity of the chirality-

matched sensor-substrate adduct to generate greatly 

enhanced fluorescence.  This finding should contribute to 

further advancing the development of fluorescent 

recognition in the fluorous phase. 
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